cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

spi-pxa2xx-dma.c (6444B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * PXA2xx SPI DMA engine support.
      4 *
      5 * Copyright (C) 2013, 2021 Intel Corporation
      6 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
      7 */
      8
      9#include <linux/device.h>
     10#include <linux/dma-mapping.h>
     11#include <linux/dmaengine.h>
     12#include <linux/scatterlist.h>
     13#include <linux/sizes.h>
     14
     15#include <linux/spi/pxa2xx_spi.h>
     16#include <linux/spi/spi.h>
     17
     18#include "spi-pxa2xx.h"
     19
     20static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
     21					     bool error)
     22{
     23	struct spi_message *msg = drv_data->controller->cur_msg;
     24
     25	/*
     26	 * It is possible that one CPU is handling ROR interrupt and other
     27	 * just gets DMA completion. Calling pump_transfers() twice for the
     28	 * same transfer leads to problems thus we prevent concurrent calls
     29	 * by using dma_running.
     30	 */
     31	if (atomic_dec_and_test(&drv_data->dma_running)) {
     32		/*
     33		 * If the other CPU is still handling the ROR interrupt we
     34		 * might not know about the error yet. So we re-check the
     35		 * ROR bit here before we clear the status register.
     36		 */
     37		if (!error)
     38			error = read_SSSR_bits(drv_data, drv_data->mask_sr) & SSSR_ROR;
     39
     40		/* Clear status & disable interrupts */
     41		clear_SSCR1_bits(drv_data, drv_data->dma_cr1);
     42		write_SSSR_CS(drv_data, drv_data->clear_sr);
     43		if (!pxa25x_ssp_comp(drv_data))
     44			pxa2xx_spi_write(drv_data, SSTO, 0);
     45
     46		if (error) {
     47			/* In case we got an error we disable the SSP now */
     48			pxa_ssp_disable(drv_data->ssp);
     49			msg->status = -EIO;
     50		}
     51
     52		spi_finalize_current_transfer(drv_data->controller);
     53	}
     54}
     55
     56static void pxa2xx_spi_dma_callback(void *data)
     57{
     58	pxa2xx_spi_dma_transfer_complete(data, false);
     59}
     60
     61static struct dma_async_tx_descriptor *
     62pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
     63			   enum dma_transfer_direction dir,
     64			   struct spi_transfer *xfer)
     65{
     66	struct chip_data *chip =
     67		spi_get_ctldata(drv_data->controller->cur_msg->spi);
     68	enum dma_slave_buswidth width;
     69	struct dma_slave_config cfg;
     70	struct dma_chan *chan;
     71	struct sg_table *sgt;
     72	int ret;
     73
     74	switch (drv_data->n_bytes) {
     75	case 1:
     76		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
     77		break;
     78	case 2:
     79		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
     80		break;
     81	default:
     82		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
     83		break;
     84	}
     85
     86	memset(&cfg, 0, sizeof(cfg));
     87	cfg.direction = dir;
     88
     89	if (dir == DMA_MEM_TO_DEV) {
     90		cfg.dst_addr = drv_data->ssp->phys_base + SSDR;
     91		cfg.dst_addr_width = width;
     92		cfg.dst_maxburst = chip->dma_burst_size;
     93
     94		sgt = &xfer->tx_sg;
     95		chan = drv_data->controller->dma_tx;
     96	} else {
     97		cfg.src_addr = drv_data->ssp->phys_base + SSDR;
     98		cfg.src_addr_width = width;
     99		cfg.src_maxburst = chip->dma_burst_size;
    100
    101		sgt = &xfer->rx_sg;
    102		chan = drv_data->controller->dma_rx;
    103	}
    104
    105	ret = dmaengine_slave_config(chan, &cfg);
    106	if (ret) {
    107		dev_warn(drv_data->ssp->dev, "DMA slave config failed\n");
    108		return NULL;
    109	}
    110
    111	return dmaengine_prep_slave_sg(chan, sgt->sgl, sgt->nents, dir,
    112				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
    113}
    114
    115irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
    116{
    117	u32 status;
    118
    119	status = read_SSSR_bits(drv_data, drv_data->mask_sr);
    120	if (status & SSSR_ROR) {
    121		dev_err(drv_data->ssp->dev, "FIFO overrun\n");
    122
    123		dmaengine_terminate_async(drv_data->controller->dma_rx);
    124		dmaengine_terminate_async(drv_data->controller->dma_tx);
    125
    126		pxa2xx_spi_dma_transfer_complete(drv_data, true);
    127		return IRQ_HANDLED;
    128	}
    129
    130	return IRQ_NONE;
    131}
    132
    133int pxa2xx_spi_dma_prepare(struct driver_data *drv_data,
    134			   struct spi_transfer *xfer)
    135{
    136	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
    137	int err;
    138
    139	tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV, xfer);
    140	if (!tx_desc) {
    141		dev_err(drv_data->ssp->dev, "failed to get DMA TX descriptor\n");
    142		err = -EBUSY;
    143		goto err_tx;
    144	}
    145
    146	rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM, xfer);
    147	if (!rx_desc) {
    148		dev_err(drv_data->ssp->dev, "failed to get DMA RX descriptor\n");
    149		err = -EBUSY;
    150		goto err_rx;
    151	}
    152
    153	/* We are ready when RX completes */
    154	rx_desc->callback = pxa2xx_spi_dma_callback;
    155	rx_desc->callback_param = drv_data;
    156
    157	dmaengine_submit(rx_desc);
    158	dmaengine_submit(tx_desc);
    159	return 0;
    160
    161err_rx:
    162	dmaengine_terminate_async(drv_data->controller->dma_tx);
    163err_tx:
    164	return err;
    165}
    166
    167void pxa2xx_spi_dma_start(struct driver_data *drv_data)
    168{
    169	dma_async_issue_pending(drv_data->controller->dma_rx);
    170	dma_async_issue_pending(drv_data->controller->dma_tx);
    171
    172	atomic_set(&drv_data->dma_running, 1);
    173}
    174
    175void pxa2xx_spi_dma_stop(struct driver_data *drv_data)
    176{
    177	atomic_set(&drv_data->dma_running, 0);
    178	dmaengine_terminate_sync(drv_data->controller->dma_rx);
    179	dmaengine_terminate_sync(drv_data->controller->dma_tx);
    180}
    181
    182int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
    183{
    184	struct pxa2xx_spi_controller *pdata = drv_data->controller_info;
    185	struct spi_controller *controller = drv_data->controller;
    186	struct device *dev = drv_data->ssp->dev;
    187	dma_cap_mask_t mask;
    188
    189	dma_cap_zero(mask);
    190	dma_cap_set(DMA_SLAVE, mask);
    191
    192	controller->dma_tx = dma_request_slave_channel_compat(mask,
    193				pdata->dma_filter, pdata->tx_param, dev, "tx");
    194	if (!controller->dma_tx)
    195		return -ENODEV;
    196
    197	controller->dma_rx = dma_request_slave_channel_compat(mask,
    198				pdata->dma_filter, pdata->rx_param, dev, "rx");
    199	if (!controller->dma_rx) {
    200		dma_release_channel(controller->dma_tx);
    201		controller->dma_tx = NULL;
    202		return -ENODEV;
    203	}
    204
    205	return 0;
    206}
    207
    208void pxa2xx_spi_dma_release(struct driver_data *drv_data)
    209{
    210	struct spi_controller *controller = drv_data->controller;
    211
    212	if (controller->dma_rx) {
    213		dmaengine_terminate_sync(controller->dma_rx);
    214		dma_release_channel(controller->dma_rx);
    215		controller->dma_rx = NULL;
    216	}
    217	if (controller->dma_tx) {
    218		dmaengine_terminate_sync(controller->dma_tx);
    219		dma_release_channel(controller->dma_tx);
    220		controller->dma_tx = NULL;
    221	}
    222}
    223
    224int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
    225					   struct spi_device *spi,
    226					   u8 bits_per_word, u32 *burst_code,
    227					   u32 *threshold)
    228{
    229	struct pxa2xx_spi_chip *chip_info = spi->controller_data;
    230	struct driver_data *drv_data = spi_controller_get_devdata(spi->controller);
    231	u32 dma_burst_size = drv_data->controller_info->dma_burst_size;
    232
    233	/*
    234	 * If the DMA burst size is given in chip_info we use that,
    235	 * otherwise we use the default. Also we use the default FIFO
    236	 * thresholds for now.
    237	 */
    238	*burst_code = chip_info ? chip_info->dma_burst_size : dma_burst_size;
    239	*threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
    240		   | SSCR1_TxTresh(TX_THRESH_DFLT);
    241
    242	return 0;
    243}