cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

spi-rspi.c (37997B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * SH RSPI driver
      4 *
      5 * Copyright (C) 2012, 2013  Renesas Solutions Corp.
      6 * Copyright (C) 2014 Glider bvba
      7 *
      8 * Based on spi-sh.c:
      9 * Copyright (C) 2011 Renesas Solutions Corp.
     10 */
     11
     12#include <linux/module.h>
     13#include <linux/kernel.h>
     14#include <linux/sched.h>
     15#include <linux/errno.h>
     16#include <linux/interrupt.h>
     17#include <linux/platform_device.h>
     18#include <linux/io.h>
     19#include <linux/clk.h>
     20#include <linux/dmaengine.h>
     21#include <linux/dma-mapping.h>
     22#include <linux/of_device.h>
     23#include <linux/pm_runtime.h>
     24#include <linux/reset.h>
     25#include <linux/sh_dma.h>
     26#include <linux/spi/spi.h>
     27#include <linux/spi/rspi.h>
     28#include <linux/spinlock.h>
     29
     30#define RSPI_SPCR		0x00	/* Control Register */
     31#define RSPI_SSLP		0x01	/* Slave Select Polarity Register */
     32#define RSPI_SPPCR		0x02	/* Pin Control Register */
     33#define RSPI_SPSR		0x03	/* Status Register */
     34#define RSPI_SPDR		0x04	/* Data Register */
     35#define RSPI_SPSCR		0x08	/* Sequence Control Register */
     36#define RSPI_SPSSR		0x09	/* Sequence Status Register */
     37#define RSPI_SPBR		0x0a	/* Bit Rate Register */
     38#define RSPI_SPDCR		0x0b	/* Data Control Register */
     39#define RSPI_SPCKD		0x0c	/* Clock Delay Register */
     40#define RSPI_SSLND		0x0d	/* Slave Select Negation Delay Register */
     41#define RSPI_SPND		0x0e	/* Next-Access Delay Register */
     42#define RSPI_SPCR2		0x0f	/* Control Register 2 (SH only) */
     43#define RSPI_SPCMD0		0x10	/* Command Register 0 */
     44#define RSPI_SPCMD1		0x12	/* Command Register 1 */
     45#define RSPI_SPCMD2		0x14	/* Command Register 2 */
     46#define RSPI_SPCMD3		0x16	/* Command Register 3 */
     47#define RSPI_SPCMD4		0x18	/* Command Register 4 */
     48#define RSPI_SPCMD5		0x1a	/* Command Register 5 */
     49#define RSPI_SPCMD6		0x1c	/* Command Register 6 */
     50#define RSPI_SPCMD7		0x1e	/* Command Register 7 */
     51#define RSPI_SPCMD(i)		(RSPI_SPCMD0 + (i) * 2)
     52#define RSPI_NUM_SPCMD		8
     53#define RSPI_RZ_NUM_SPCMD	4
     54#define QSPI_NUM_SPCMD		4
     55
     56/* RSPI on RZ only */
     57#define RSPI_SPBFCR		0x20	/* Buffer Control Register */
     58#define RSPI_SPBFDR		0x22	/* Buffer Data Count Setting Register */
     59
     60/* QSPI only */
     61#define QSPI_SPBFCR		0x18	/* Buffer Control Register */
     62#define QSPI_SPBDCR		0x1a	/* Buffer Data Count Register */
     63#define QSPI_SPBMUL0		0x1c	/* Transfer Data Length Multiplier Setting Register 0 */
     64#define QSPI_SPBMUL1		0x20	/* Transfer Data Length Multiplier Setting Register 1 */
     65#define QSPI_SPBMUL2		0x24	/* Transfer Data Length Multiplier Setting Register 2 */
     66#define QSPI_SPBMUL3		0x28	/* Transfer Data Length Multiplier Setting Register 3 */
     67#define QSPI_SPBMUL(i)		(QSPI_SPBMUL0 + (i) * 4)
     68
     69/* SPCR - Control Register */
     70#define SPCR_SPRIE		0x80	/* Receive Interrupt Enable */
     71#define SPCR_SPE		0x40	/* Function Enable */
     72#define SPCR_SPTIE		0x20	/* Transmit Interrupt Enable */
     73#define SPCR_SPEIE		0x10	/* Error Interrupt Enable */
     74#define SPCR_MSTR		0x08	/* Master/Slave Mode Select */
     75#define SPCR_MODFEN		0x04	/* Mode Fault Error Detection Enable */
     76/* RSPI on SH only */
     77#define SPCR_TXMD		0x02	/* TX Only Mode (vs. Full Duplex) */
     78#define SPCR_SPMS		0x01	/* 3-wire Mode (vs. 4-wire) */
     79/* QSPI on R-Car Gen2 only */
     80#define SPCR_WSWAP		0x02	/* Word Swap of read-data for DMAC */
     81#define SPCR_BSWAP		0x01	/* Byte Swap of read-data for DMAC */
     82
     83/* SSLP - Slave Select Polarity Register */
     84#define SSLP_SSLP(i)		BIT(i)	/* SSLi Signal Polarity Setting */
     85
     86/* SPPCR - Pin Control Register */
     87#define SPPCR_MOIFE		0x20	/* MOSI Idle Value Fixing Enable */
     88#define SPPCR_MOIFV		0x10	/* MOSI Idle Fixed Value */
     89#define SPPCR_SPOM		0x04
     90#define SPPCR_SPLP2		0x02	/* Loopback Mode 2 (non-inverting) */
     91#define SPPCR_SPLP		0x01	/* Loopback Mode (inverting) */
     92
     93#define SPPCR_IO3FV		0x04	/* Single-/Dual-SPI Mode IO3 Output Fixed Value */
     94#define SPPCR_IO2FV		0x04	/* Single-/Dual-SPI Mode IO2 Output Fixed Value */
     95
     96/* SPSR - Status Register */
     97#define SPSR_SPRF		0x80	/* Receive Buffer Full Flag */
     98#define SPSR_TEND		0x40	/* Transmit End */
     99#define SPSR_SPTEF		0x20	/* Transmit Buffer Empty Flag */
    100#define SPSR_PERF		0x08	/* Parity Error Flag */
    101#define SPSR_MODF		0x04	/* Mode Fault Error Flag */
    102#define SPSR_IDLNF		0x02	/* RSPI Idle Flag */
    103#define SPSR_OVRF		0x01	/* Overrun Error Flag (RSPI only) */
    104
    105/* SPSCR - Sequence Control Register */
    106#define SPSCR_SPSLN_MASK	0x07	/* Sequence Length Specification */
    107
    108/* SPSSR - Sequence Status Register */
    109#define SPSSR_SPECM_MASK	0x70	/* Command Error Mask */
    110#define SPSSR_SPCP_MASK		0x07	/* Command Pointer Mask */
    111
    112/* SPDCR - Data Control Register */
    113#define SPDCR_TXDMY		0x80	/* Dummy Data Transmission Enable */
    114#define SPDCR_SPLW1		0x40	/* Access Width Specification (RZ) */
    115#define SPDCR_SPLW0		0x20	/* Access Width Specification (RZ) */
    116#define SPDCR_SPLLWORD		(SPDCR_SPLW1 | SPDCR_SPLW0)
    117#define SPDCR_SPLWORD		SPDCR_SPLW1
    118#define SPDCR_SPLBYTE		SPDCR_SPLW0
    119#define SPDCR_SPLW		0x20	/* Access Width Specification (SH) */
    120#define SPDCR_SPRDTD		0x10	/* Receive Transmit Data Select (SH) */
    121#define SPDCR_SLSEL1		0x08
    122#define SPDCR_SLSEL0		0x04
    123#define SPDCR_SLSEL_MASK	0x0c	/* SSL1 Output Select (SH) */
    124#define SPDCR_SPFC1		0x02
    125#define SPDCR_SPFC0		0x01
    126#define SPDCR_SPFC_MASK		0x03	/* Frame Count Setting (1-4) (SH) */
    127
    128/* SPCKD - Clock Delay Register */
    129#define SPCKD_SCKDL_MASK	0x07	/* Clock Delay Setting (1-8) */
    130
    131/* SSLND - Slave Select Negation Delay Register */
    132#define SSLND_SLNDL_MASK	0x07	/* SSL Negation Delay Setting (1-8) */
    133
    134/* SPND - Next-Access Delay Register */
    135#define SPND_SPNDL_MASK		0x07	/* Next-Access Delay Setting (1-8) */
    136
    137/* SPCR2 - Control Register 2 */
    138#define SPCR2_PTE		0x08	/* Parity Self-Test Enable */
    139#define SPCR2_SPIE		0x04	/* Idle Interrupt Enable */
    140#define SPCR2_SPOE		0x02	/* Odd Parity Enable (vs. Even) */
    141#define SPCR2_SPPE		0x01	/* Parity Enable */
    142
    143/* SPCMDn - Command Registers */
    144#define SPCMD_SCKDEN		0x8000	/* Clock Delay Setting Enable */
    145#define SPCMD_SLNDEN		0x4000	/* SSL Negation Delay Setting Enable */
    146#define SPCMD_SPNDEN		0x2000	/* Next-Access Delay Enable */
    147#define SPCMD_LSBF		0x1000	/* LSB First */
    148#define SPCMD_SPB_MASK		0x0f00	/* Data Length Setting */
    149#define SPCMD_SPB_8_TO_16(bit)	(((bit - 1) << 8) & SPCMD_SPB_MASK)
    150#define SPCMD_SPB_8BIT		0x0000	/* QSPI only */
    151#define SPCMD_SPB_16BIT		0x0100
    152#define SPCMD_SPB_20BIT		0x0000
    153#define SPCMD_SPB_24BIT		0x0100
    154#define SPCMD_SPB_32BIT		0x0200
    155#define SPCMD_SSLKP		0x0080	/* SSL Signal Level Keeping */
    156#define SPCMD_SPIMOD_MASK	0x0060	/* SPI Operating Mode (QSPI only) */
    157#define SPCMD_SPIMOD1		0x0040
    158#define SPCMD_SPIMOD0		0x0020
    159#define SPCMD_SPIMOD_SINGLE	0
    160#define SPCMD_SPIMOD_DUAL	SPCMD_SPIMOD0
    161#define SPCMD_SPIMOD_QUAD	SPCMD_SPIMOD1
    162#define SPCMD_SPRW		0x0010	/* SPI Read/Write Access (Dual/Quad) */
    163#define SPCMD_SSLA(i)		((i) << 4)	/* SSL Assert Signal Setting */
    164#define SPCMD_BRDV_MASK		0x000c	/* Bit Rate Division Setting */
    165#define SPCMD_BRDV(brdv)	((brdv) << 2)
    166#define SPCMD_CPOL		0x0002	/* Clock Polarity Setting */
    167#define SPCMD_CPHA		0x0001	/* Clock Phase Setting */
    168
    169/* SPBFCR - Buffer Control Register */
    170#define SPBFCR_TXRST		0x80	/* Transmit Buffer Data Reset */
    171#define SPBFCR_RXRST		0x40	/* Receive Buffer Data Reset */
    172#define SPBFCR_TXTRG_MASK	0x30	/* Transmit Buffer Data Triggering Number */
    173#define SPBFCR_RXTRG_MASK	0x07	/* Receive Buffer Data Triggering Number */
    174/* QSPI on R-Car Gen2 */
    175#define SPBFCR_TXTRG_1B		0x00	/* 31 bytes (1 byte available) */
    176#define SPBFCR_TXTRG_32B	0x30	/* 0 byte (32 bytes available) */
    177#define SPBFCR_RXTRG_1B		0x00	/* 1 byte (31 bytes available) */
    178#define SPBFCR_RXTRG_32B	0x07	/* 32 bytes (0 byte available) */
    179
    180#define QSPI_BUFFER_SIZE        32u
    181
    182struct rspi_data {
    183	void __iomem *addr;
    184	u32 speed_hz;
    185	struct spi_controller *ctlr;
    186	struct platform_device *pdev;
    187	wait_queue_head_t wait;
    188	spinlock_t lock;		/* Protects RMW-access to RSPI_SSLP */
    189	struct clk *clk;
    190	u16 spcmd;
    191	u8 spsr;
    192	u8 sppcr;
    193	int rx_irq, tx_irq;
    194	const struct spi_ops *ops;
    195
    196	unsigned dma_callbacked:1;
    197	unsigned byte_access:1;
    198};
    199
    200static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
    201{
    202	iowrite8(data, rspi->addr + offset);
    203}
    204
    205static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
    206{
    207	iowrite16(data, rspi->addr + offset);
    208}
    209
    210static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
    211{
    212	iowrite32(data, rspi->addr + offset);
    213}
    214
    215static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
    216{
    217	return ioread8(rspi->addr + offset);
    218}
    219
    220static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
    221{
    222	return ioread16(rspi->addr + offset);
    223}
    224
    225static void rspi_write_data(const struct rspi_data *rspi, u16 data)
    226{
    227	if (rspi->byte_access)
    228		rspi_write8(rspi, data, RSPI_SPDR);
    229	else /* 16 bit */
    230		rspi_write16(rspi, data, RSPI_SPDR);
    231}
    232
    233static u16 rspi_read_data(const struct rspi_data *rspi)
    234{
    235	if (rspi->byte_access)
    236		return rspi_read8(rspi, RSPI_SPDR);
    237	else /* 16 bit */
    238		return rspi_read16(rspi, RSPI_SPDR);
    239}
    240
    241/* optional functions */
    242struct spi_ops {
    243	int (*set_config_register)(struct rspi_data *rspi, int access_size);
    244	int (*transfer_one)(struct spi_controller *ctlr,
    245			    struct spi_device *spi, struct spi_transfer *xfer);
    246	u16 extra_mode_bits;
    247	u16 min_div;
    248	u16 max_div;
    249	u16 flags;
    250	u16 fifo_size;
    251	u8 num_hw_ss;
    252};
    253
    254static void rspi_set_rate(struct rspi_data *rspi)
    255{
    256	unsigned long clksrc;
    257	int brdv = 0, spbr;
    258
    259	clksrc = clk_get_rate(rspi->clk);
    260	spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1;
    261	while (spbr > 255 && brdv < 3) {
    262		brdv++;
    263		spbr = DIV_ROUND_UP(spbr + 1, 2) - 1;
    264	}
    265
    266	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
    267	rspi->spcmd |= SPCMD_BRDV(brdv);
    268	rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * (spbr + 1));
    269}
    270
    271/*
    272 * functions for RSPI on legacy SH
    273 */
    274static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
    275{
    276	/* Sets output mode, MOSI signal, and (optionally) loopback */
    277	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
    278
    279	/* Sets transfer bit rate */
    280	rspi_set_rate(rspi);
    281
    282	/* Disable dummy transmission, set 16-bit word access, 1 frame */
    283	rspi_write8(rspi, 0, RSPI_SPDCR);
    284	rspi->byte_access = 0;
    285
    286	/* Sets RSPCK, SSL, next-access delay value */
    287	rspi_write8(rspi, 0x00, RSPI_SPCKD);
    288	rspi_write8(rspi, 0x00, RSPI_SSLND);
    289	rspi_write8(rspi, 0x00, RSPI_SPND);
    290
    291	/* Sets parity, interrupt mask */
    292	rspi_write8(rspi, 0x00, RSPI_SPCR2);
    293
    294	/* Resets sequencer */
    295	rspi_write8(rspi, 0, RSPI_SPSCR);
    296	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
    297	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
    298
    299	/* Sets RSPI mode */
    300	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
    301
    302	return 0;
    303}
    304
    305/*
    306 * functions for RSPI on RZ
    307 */
    308static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
    309{
    310	/* Sets output mode, MOSI signal, and (optionally) loopback */
    311	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
    312
    313	/* Sets transfer bit rate */
    314	rspi_set_rate(rspi);
    315
    316	/* Disable dummy transmission, set byte access */
    317	rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
    318	rspi->byte_access = 1;
    319
    320	/* Sets RSPCK, SSL, next-access delay value */
    321	rspi_write8(rspi, 0x00, RSPI_SPCKD);
    322	rspi_write8(rspi, 0x00, RSPI_SSLND);
    323	rspi_write8(rspi, 0x00, RSPI_SPND);
    324
    325	/* Resets sequencer */
    326	rspi_write8(rspi, 0, RSPI_SPSCR);
    327	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
    328	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
    329
    330	/* Sets RSPI mode */
    331	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
    332
    333	return 0;
    334}
    335
    336/*
    337 * functions for QSPI
    338 */
    339static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
    340{
    341	unsigned long clksrc;
    342	int brdv = 0, spbr;
    343
    344	/* Sets output mode, MOSI signal, and (optionally) loopback */
    345	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
    346
    347	/* Sets transfer bit rate */
    348	clksrc = clk_get_rate(rspi->clk);
    349	if (rspi->speed_hz >= clksrc) {
    350		spbr = 0;
    351		rspi->speed_hz = clksrc;
    352	} else {
    353		spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz);
    354		while (spbr > 255 && brdv < 3) {
    355			brdv++;
    356			spbr = DIV_ROUND_UP(spbr, 2);
    357		}
    358		spbr = clamp(spbr, 0, 255);
    359		rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * spbr);
    360	}
    361	rspi_write8(rspi, spbr, RSPI_SPBR);
    362	rspi->spcmd |= SPCMD_BRDV(brdv);
    363
    364	/* Disable dummy transmission, set byte access */
    365	rspi_write8(rspi, 0, RSPI_SPDCR);
    366	rspi->byte_access = 1;
    367
    368	/* Sets RSPCK, SSL, next-access delay value */
    369	rspi_write8(rspi, 0x00, RSPI_SPCKD);
    370	rspi_write8(rspi, 0x00, RSPI_SSLND);
    371	rspi_write8(rspi, 0x00, RSPI_SPND);
    372
    373	/* Data Length Setting */
    374	if (access_size == 8)
    375		rspi->spcmd |= SPCMD_SPB_8BIT;
    376	else if (access_size == 16)
    377		rspi->spcmd |= SPCMD_SPB_16BIT;
    378	else
    379		rspi->spcmd |= SPCMD_SPB_32BIT;
    380
    381	rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
    382
    383	/* Resets transfer data length */
    384	rspi_write32(rspi, 0, QSPI_SPBMUL0);
    385
    386	/* Resets transmit and receive buffer */
    387	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
    388	/* Sets buffer to allow normal operation */
    389	rspi_write8(rspi, 0x00, QSPI_SPBFCR);
    390
    391	/* Resets sequencer */
    392	rspi_write8(rspi, 0, RSPI_SPSCR);
    393	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
    394
    395	/* Sets RSPI mode */
    396	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
    397
    398	return 0;
    399}
    400
    401static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
    402{
    403	u8 data;
    404
    405	data = rspi_read8(rspi, reg);
    406	data &= ~mask;
    407	data |= (val & mask);
    408	rspi_write8(rspi, data, reg);
    409}
    410
    411static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
    412					  unsigned int len)
    413{
    414	unsigned int n;
    415
    416	n = min(len, QSPI_BUFFER_SIZE);
    417
    418	if (len >= QSPI_BUFFER_SIZE) {
    419		/* sets triggering number to 32 bytes */
    420		qspi_update(rspi, SPBFCR_TXTRG_MASK,
    421			     SPBFCR_TXTRG_32B, QSPI_SPBFCR);
    422	} else {
    423		/* sets triggering number to 1 byte */
    424		qspi_update(rspi, SPBFCR_TXTRG_MASK,
    425			     SPBFCR_TXTRG_1B, QSPI_SPBFCR);
    426	}
    427
    428	return n;
    429}
    430
    431static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
    432{
    433	unsigned int n;
    434
    435	n = min(len, QSPI_BUFFER_SIZE);
    436
    437	if (len >= QSPI_BUFFER_SIZE) {
    438		/* sets triggering number to 32 bytes */
    439		qspi_update(rspi, SPBFCR_RXTRG_MASK,
    440			     SPBFCR_RXTRG_32B, QSPI_SPBFCR);
    441	} else {
    442		/* sets triggering number to 1 byte */
    443		qspi_update(rspi, SPBFCR_RXTRG_MASK,
    444			     SPBFCR_RXTRG_1B, QSPI_SPBFCR);
    445	}
    446	return n;
    447}
    448
    449static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
    450{
    451	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
    452}
    453
    454static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
    455{
    456	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
    457}
    458
    459static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
    460				   u8 enable_bit)
    461{
    462	int ret;
    463
    464	rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
    465	if (rspi->spsr & wait_mask)
    466		return 0;
    467
    468	rspi_enable_irq(rspi, enable_bit);
    469	ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
    470	if (ret == 0 && !(rspi->spsr & wait_mask))
    471		return -ETIMEDOUT;
    472
    473	return 0;
    474}
    475
    476static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
    477{
    478	return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
    479}
    480
    481static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
    482{
    483	return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
    484}
    485
    486static int rspi_data_out(struct rspi_data *rspi, u8 data)
    487{
    488	int error = rspi_wait_for_tx_empty(rspi);
    489	if (error < 0) {
    490		dev_err(&rspi->ctlr->dev, "transmit timeout\n");
    491		return error;
    492	}
    493	rspi_write_data(rspi, data);
    494	return 0;
    495}
    496
    497static int rspi_data_in(struct rspi_data *rspi)
    498{
    499	int error;
    500	u8 data;
    501
    502	error = rspi_wait_for_rx_full(rspi);
    503	if (error < 0) {
    504		dev_err(&rspi->ctlr->dev, "receive timeout\n");
    505		return error;
    506	}
    507	data = rspi_read_data(rspi);
    508	return data;
    509}
    510
    511static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
    512			     unsigned int n)
    513{
    514	while (n-- > 0) {
    515		if (tx) {
    516			int ret = rspi_data_out(rspi, *tx++);
    517			if (ret < 0)
    518				return ret;
    519		}
    520		if (rx) {
    521			int ret = rspi_data_in(rspi);
    522			if (ret < 0)
    523				return ret;
    524			*rx++ = ret;
    525		}
    526	}
    527
    528	return 0;
    529}
    530
    531static void rspi_dma_complete(void *arg)
    532{
    533	struct rspi_data *rspi = arg;
    534
    535	rspi->dma_callbacked = 1;
    536	wake_up_interruptible(&rspi->wait);
    537}
    538
    539static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
    540			     struct sg_table *rx)
    541{
    542	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
    543	u8 irq_mask = 0;
    544	unsigned int other_irq = 0;
    545	dma_cookie_t cookie;
    546	int ret;
    547
    548	/* First prepare and submit the DMA request(s), as this may fail */
    549	if (rx) {
    550		desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
    551					rx->nents, DMA_DEV_TO_MEM,
    552					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
    553		if (!desc_rx) {
    554			ret = -EAGAIN;
    555			goto no_dma_rx;
    556		}
    557
    558		desc_rx->callback = rspi_dma_complete;
    559		desc_rx->callback_param = rspi;
    560		cookie = dmaengine_submit(desc_rx);
    561		if (dma_submit_error(cookie)) {
    562			ret = cookie;
    563			goto no_dma_rx;
    564		}
    565
    566		irq_mask |= SPCR_SPRIE;
    567	}
    568
    569	if (tx) {
    570		desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
    571					tx->nents, DMA_MEM_TO_DEV,
    572					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
    573		if (!desc_tx) {
    574			ret = -EAGAIN;
    575			goto no_dma_tx;
    576		}
    577
    578		if (rx) {
    579			/* No callback */
    580			desc_tx->callback = NULL;
    581		} else {
    582			desc_tx->callback = rspi_dma_complete;
    583			desc_tx->callback_param = rspi;
    584		}
    585		cookie = dmaengine_submit(desc_tx);
    586		if (dma_submit_error(cookie)) {
    587			ret = cookie;
    588			goto no_dma_tx;
    589		}
    590
    591		irq_mask |= SPCR_SPTIE;
    592	}
    593
    594	/*
    595	 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
    596	 * called. So, this driver disables the IRQ while DMA transfer.
    597	 */
    598	if (tx)
    599		disable_irq(other_irq = rspi->tx_irq);
    600	if (rx && rspi->rx_irq != other_irq)
    601		disable_irq(rspi->rx_irq);
    602
    603	rspi_enable_irq(rspi, irq_mask);
    604	rspi->dma_callbacked = 0;
    605
    606	/* Now start DMA */
    607	if (rx)
    608		dma_async_issue_pending(rspi->ctlr->dma_rx);
    609	if (tx)
    610		dma_async_issue_pending(rspi->ctlr->dma_tx);
    611
    612	ret = wait_event_interruptible_timeout(rspi->wait,
    613					       rspi->dma_callbacked, HZ);
    614	if (ret > 0 && rspi->dma_callbacked) {
    615		ret = 0;
    616	} else {
    617		if (!ret) {
    618			dev_err(&rspi->ctlr->dev, "DMA timeout\n");
    619			ret = -ETIMEDOUT;
    620		}
    621		if (tx)
    622			dmaengine_terminate_sync(rspi->ctlr->dma_tx);
    623		if (rx)
    624			dmaengine_terminate_sync(rspi->ctlr->dma_rx);
    625	}
    626
    627	rspi_disable_irq(rspi, irq_mask);
    628
    629	if (tx)
    630		enable_irq(rspi->tx_irq);
    631	if (rx && rspi->rx_irq != other_irq)
    632		enable_irq(rspi->rx_irq);
    633
    634	return ret;
    635
    636no_dma_tx:
    637	if (rx)
    638		dmaengine_terminate_sync(rspi->ctlr->dma_rx);
    639no_dma_rx:
    640	if (ret == -EAGAIN) {
    641		dev_warn_once(&rspi->ctlr->dev,
    642			      "DMA not available, falling back to PIO\n");
    643	}
    644	return ret;
    645}
    646
    647static void rspi_receive_init(const struct rspi_data *rspi)
    648{
    649	u8 spsr;
    650
    651	spsr = rspi_read8(rspi, RSPI_SPSR);
    652	if (spsr & SPSR_SPRF)
    653		rspi_read_data(rspi);	/* dummy read */
    654	if (spsr & SPSR_OVRF)
    655		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
    656			    RSPI_SPSR);
    657}
    658
    659static void rspi_rz_receive_init(const struct rspi_data *rspi)
    660{
    661	rspi_receive_init(rspi);
    662	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
    663	rspi_write8(rspi, 0, RSPI_SPBFCR);
    664}
    665
    666static void qspi_receive_init(const struct rspi_data *rspi)
    667{
    668	u8 spsr;
    669
    670	spsr = rspi_read8(rspi, RSPI_SPSR);
    671	if (spsr & SPSR_SPRF)
    672		rspi_read_data(rspi);   /* dummy read */
    673	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
    674	rspi_write8(rspi, 0, QSPI_SPBFCR);
    675}
    676
    677static bool __rspi_can_dma(const struct rspi_data *rspi,
    678			   const struct spi_transfer *xfer)
    679{
    680	return xfer->len > rspi->ops->fifo_size;
    681}
    682
    683static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
    684			 struct spi_transfer *xfer)
    685{
    686	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
    687
    688	return __rspi_can_dma(rspi, xfer);
    689}
    690
    691static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
    692					 struct spi_transfer *xfer)
    693{
    694	if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
    695		return -EAGAIN;
    696
    697	/* rx_buf can be NULL on RSPI on SH in TX-only Mode */
    698	return rspi_dma_transfer(rspi, &xfer->tx_sg,
    699				xfer->rx_buf ? &xfer->rx_sg : NULL);
    700}
    701
    702static int rspi_common_transfer(struct rspi_data *rspi,
    703				struct spi_transfer *xfer)
    704{
    705	int ret;
    706
    707	xfer->effective_speed_hz = rspi->speed_hz;
    708
    709	ret = rspi_dma_check_then_transfer(rspi, xfer);
    710	if (ret != -EAGAIN)
    711		return ret;
    712
    713	ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
    714	if (ret < 0)
    715		return ret;
    716
    717	/* Wait for the last transmission */
    718	rspi_wait_for_tx_empty(rspi);
    719
    720	return 0;
    721}
    722
    723static int rspi_transfer_one(struct spi_controller *ctlr,
    724			     struct spi_device *spi, struct spi_transfer *xfer)
    725{
    726	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
    727	u8 spcr;
    728
    729	spcr = rspi_read8(rspi, RSPI_SPCR);
    730	if (xfer->rx_buf) {
    731		rspi_receive_init(rspi);
    732		spcr &= ~SPCR_TXMD;
    733	} else {
    734		spcr |= SPCR_TXMD;
    735	}
    736	rspi_write8(rspi, spcr, RSPI_SPCR);
    737
    738	return rspi_common_transfer(rspi, xfer);
    739}
    740
    741static int rspi_rz_transfer_one(struct spi_controller *ctlr,
    742				struct spi_device *spi,
    743				struct spi_transfer *xfer)
    744{
    745	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
    746
    747	rspi_rz_receive_init(rspi);
    748
    749	return rspi_common_transfer(rspi, xfer);
    750}
    751
    752static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
    753					u8 *rx, unsigned int len)
    754{
    755	unsigned int i, n;
    756	int ret;
    757
    758	while (len > 0) {
    759		n = qspi_set_send_trigger(rspi, len);
    760		qspi_set_receive_trigger(rspi, len);
    761		ret = rspi_wait_for_tx_empty(rspi);
    762		if (ret < 0) {
    763			dev_err(&rspi->ctlr->dev, "transmit timeout\n");
    764			return ret;
    765		}
    766		for (i = 0; i < n; i++)
    767			rspi_write_data(rspi, *tx++);
    768
    769		ret = rspi_wait_for_rx_full(rspi);
    770		if (ret < 0) {
    771			dev_err(&rspi->ctlr->dev, "receive timeout\n");
    772			return ret;
    773		}
    774		for (i = 0; i < n; i++)
    775			*rx++ = rspi_read_data(rspi);
    776
    777		len -= n;
    778	}
    779
    780	return 0;
    781}
    782
    783static int qspi_transfer_out_in(struct rspi_data *rspi,
    784				struct spi_transfer *xfer)
    785{
    786	int ret;
    787
    788	qspi_receive_init(rspi);
    789
    790	ret = rspi_dma_check_then_transfer(rspi, xfer);
    791	if (ret != -EAGAIN)
    792		return ret;
    793
    794	return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
    795					    xfer->rx_buf, xfer->len);
    796}
    797
    798static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
    799{
    800	const u8 *tx = xfer->tx_buf;
    801	unsigned int n = xfer->len;
    802	unsigned int i, len;
    803	int ret;
    804
    805	if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
    806		ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
    807		if (ret != -EAGAIN)
    808			return ret;
    809	}
    810
    811	while (n > 0) {
    812		len = qspi_set_send_trigger(rspi, n);
    813		ret = rspi_wait_for_tx_empty(rspi);
    814		if (ret < 0) {
    815			dev_err(&rspi->ctlr->dev, "transmit timeout\n");
    816			return ret;
    817		}
    818		for (i = 0; i < len; i++)
    819			rspi_write_data(rspi, *tx++);
    820
    821		n -= len;
    822	}
    823
    824	/* Wait for the last transmission */
    825	rspi_wait_for_tx_empty(rspi);
    826
    827	return 0;
    828}
    829
    830static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
    831{
    832	u8 *rx = xfer->rx_buf;
    833	unsigned int n = xfer->len;
    834	unsigned int i, len;
    835	int ret;
    836
    837	if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
    838		ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
    839		if (ret != -EAGAIN)
    840			return ret;
    841	}
    842
    843	while (n > 0) {
    844		len = qspi_set_receive_trigger(rspi, n);
    845		ret = rspi_wait_for_rx_full(rspi);
    846		if (ret < 0) {
    847			dev_err(&rspi->ctlr->dev, "receive timeout\n");
    848			return ret;
    849		}
    850		for (i = 0; i < len; i++)
    851			*rx++ = rspi_read_data(rspi);
    852
    853		n -= len;
    854	}
    855
    856	return 0;
    857}
    858
    859static int qspi_transfer_one(struct spi_controller *ctlr,
    860			     struct spi_device *spi, struct spi_transfer *xfer)
    861{
    862	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
    863
    864	xfer->effective_speed_hz = rspi->speed_hz;
    865	if (spi->mode & SPI_LOOP) {
    866		return qspi_transfer_out_in(rspi, xfer);
    867	} else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
    868		/* Quad or Dual SPI Write */
    869		return qspi_transfer_out(rspi, xfer);
    870	} else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
    871		/* Quad or Dual SPI Read */
    872		return qspi_transfer_in(rspi, xfer);
    873	} else {
    874		/* Single SPI Transfer */
    875		return qspi_transfer_out_in(rspi, xfer);
    876	}
    877}
    878
    879static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
    880{
    881	if (xfer->tx_buf)
    882		switch (xfer->tx_nbits) {
    883		case SPI_NBITS_QUAD:
    884			return SPCMD_SPIMOD_QUAD;
    885		case SPI_NBITS_DUAL:
    886			return SPCMD_SPIMOD_DUAL;
    887		default:
    888			return 0;
    889		}
    890	if (xfer->rx_buf)
    891		switch (xfer->rx_nbits) {
    892		case SPI_NBITS_QUAD:
    893			return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
    894		case SPI_NBITS_DUAL:
    895			return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
    896		default:
    897			return 0;
    898		}
    899
    900	return 0;
    901}
    902
    903static int qspi_setup_sequencer(struct rspi_data *rspi,
    904				const struct spi_message *msg)
    905{
    906	const struct spi_transfer *xfer;
    907	unsigned int i = 0, len = 0;
    908	u16 current_mode = 0xffff, mode;
    909
    910	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
    911		mode = qspi_transfer_mode(xfer);
    912		if (mode == current_mode) {
    913			len += xfer->len;
    914			continue;
    915		}
    916
    917		/* Transfer mode change */
    918		if (i) {
    919			/* Set transfer data length of previous transfer */
    920			rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
    921		}
    922
    923		if (i >= QSPI_NUM_SPCMD) {
    924			dev_err(&msg->spi->dev,
    925				"Too many different transfer modes");
    926			return -EINVAL;
    927		}
    928
    929		/* Program transfer mode for this transfer */
    930		rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
    931		current_mode = mode;
    932		len = xfer->len;
    933		i++;
    934	}
    935	if (i) {
    936		/* Set final transfer data length and sequence length */
    937		rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
    938		rspi_write8(rspi, i - 1, RSPI_SPSCR);
    939	}
    940
    941	return 0;
    942}
    943
    944static int rspi_setup(struct spi_device *spi)
    945{
    946	struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
    947	u8 sslp;
    948
    949	if (spi->cs_gpiod)
    950		return 0;
    951
    952	pm_runtime_get_sync(&rspi->pdev->dev);
    953	spin_lock_irq(&rspi->lock);
    954
    955	sslp = rspi_read8(rspi, RSPI_SSLP);
    956	if (spi->mode & SPI_CS_HIGH)
    957		sslp |= SSLP_SSLP(spi->chip_select);
    958	else
    959		sslp &= ~SSLP_SSLP(spi->chip_select);
    960	rspi_write8(rspi, sslp, RSPI_SSLP);
    961
    962	spin_unlock_irq(&rspi->lock);
    963	pm_runtime_put(&rspi->pdev->dev);
    964	return 0;
    965}
    966
    967static int rspi_prepare_message(struct spi_controller *ctlr,
    968				struct spi_message *msg)
    969{
    970	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
    971	struct spi_device *spi = msg->spi;
    972	const struct spi_transfer *xfer;
    973	int ret;
    974
    975	/*
    976	 * As the Bit Rate Register must not be changed while the device is
    977	 * active, all transfers in a message must use the same bit rate.
    978	 * In theory, the sequencer could be enabled, and each Command Register
    979	 * could divide the base bit rate by a different value.
    980	 * However, most RSPI variants do not have Transfer Data Length
    981	 * Multiplier Setting Registers, so each sequence step would be limited
    982	 * to a single word, making this feature unsuitable for large
    983	 * transfers, which would gain most from it.
    984	 */
    985	rspi->speed_hz = spi->max_speed_hz;
    986	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
    987		if (xfer->speed_hz < rspi->speed_hz)
    988			rspi->speed_hz = xfer->speed_hz;
    989	}
    990
    991	rspi->spcmd = SPCMD_SSLKP;
    992	if (spi->mode & SPI_CPOL)
    993		rspi->spcmd |= SPCMD_CPOL;
    994	if (spi->mode & SPI_CPHA)
    995		rspi->spcmd |= SPCMD_CPHA;
    996	if (spi->mode & SPI_LSB_FIRST)
    997		rspi->spcmd |= SPCMD_LSBF;
    998
    999	/* Configure slave signal to assert */
   1000	rspi->spcmd |= SPCMD_SSLA(spi->cs_gpiod ? rspi->ctlr->unused_native_cs
   1001						: spi->chip_select);
   1002
   1003	/* CMOS output mode and MOSI signal from previous transfer */
   1004	rspi->sppcr = 0;
   1005	if (spi->mode & SPI_LOOP)
   1006		rspi->sppcr |= SPPCR_SPLP;
   1007
   1008	rspi->ops->set_config_register(rspi, 8);
   1009
   1010	if (msg->spi->mode &
   1011	    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
   1012		/* Setup sequencer for messages with multiple transfer modes */
   1013		ret = qspi_setup_sequencer(rspi, msg);
   1014		if (ret < 0)
   1015			return ret;
   1016	}
   1017
   1018	/* Enable SPI function in master mode */
   1019	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
   1020	return 0;
   1021}
   1022
   1023static int rspi_unprepare_message(struct spi_controller *ctlr,
   1024				  struct spi_message *msg)
   1025{
   1026	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
   1027
   1028	/* Disable SPI function */
   1029	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
   1030
   1031	/* Reset sequencer for Single SPI Transfers */
   1032	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
   1033	rspi_write8(rspi, 0, RSPI_SPSCR);
   1034	return 0;
   1035}
   1036
   1037static irqreturn_t rspi_irq_mux(int irq, void *_sr)
   1038{
   1039	struct rspi_data *rspi = _sr;
   1040	u8 spsr;
   1041	irqreturn_t ret = IRQ_NONE;
   1042	u8 disable_irq = 0;
   1043
   1044	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
   1045	if (spsr & SPSR_SPRF)
   1046		disable_irq |= SPCR_SPRIE;
   1047	if (spsr & SPSR_SPTEF)
   1048		disable_irq |= SPCR_SPTIE;
   1049
   1050	if (disable_irq) {
   1051		ret = IRQ_HANDLED;
   1052		rspi_disable_irq(rspi, disable_irq);
   1053		wake_up(&rspi->wait);
   1054	}
   1055
   1056	return ret;
   1057}
   1058
   1059static irqreturn_t rspi_irq_rx(int irq, void *_sr)
   1060{
   1061	struct rspi_data *rspi = _sr;
   1062	u8 spsr;
   1063
   1064	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
   1065	if (spsr & SPSR_SPRF) {
   1066		rspi_disable_irq(rspi, SPCR_SPRIE);
   1067		wake_up(&rspi->wait);
   1068		return IRQ_HANDLED;
   1069	}
   1070
   1071	return 0;
   1072}
   1073
   1074static irqreturn_t rspi_irq_tx(int irq, void *_sr)
   1075{
   1076	struct rspi_data *rspi = _sr;
   1077	u8 spsr;
   1078
   1079	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
   1080	if (spsr & SPSR_SPTEF) {
   1081		rspi_disable_irq(rspi, SPCR_SPTIE);
   1082		wake_up(&rspi->wait);
   1083		return IRQ_HANDLED;
   1084	}
   1085
   1086	return 0;
   1087}
   1088
   1089static struct dma_chan *rspi_request_dma_chan(struct device *dev,
   1090					      enum dma_transfer_direction dir,
   1091					      unsigned int id,
   1092					      dma_addr_t port_addr)
   1093{
   1094	dma_cap_mask_t mask;
   1095	struct dma_chan *chan;
   1096	struct dma_slave_config cfg;
   1097	int ret;
   1098
   1099	dma_cap_zero(mask);
   1100	dma_cap_set(DMA_SLAVE, mask);
   1101
   1102	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
   1103				(void *)(unsigned long)id, dev,
   1104				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
   1105	if (!chan) {
   1106		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
   1107		return NULL;
   1108	}
   1109
   1110	memset(&cfg, 0, sizeof(cfg));
   1111	cfg.dst_addr = port_addr + RSPI_SPDR;
   1112	cfg.src_addr = port_addr + RSPI_SPDR;
   1113	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
   1114	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
   1115	cfg.direction = dir;
   1116
   1117	ret = dmaengine_slave_config(chan, &cfg);
   1118	if (ret) {
   1119		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
   1120		dma_release_channel(chan);
   1121		return NULL;
   1122	}
   1123
   1124	return chan;
   1125}
   1126
   1127static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
   1128			    const struct resource *res)
   1129{
   1130	const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
   1131	unsigned int dma_tx_id, dma_rx_id;
   1132
   1133	if (dev->of_node) {
   1134		/* In the OF case we will get the slave IDs from the DT */
   1135		dma_tx_id = 0;
   1136		dma_rx_id = 0;
   1137	} else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
   1138		dma_tx_id = rspi_pd->dma_tx_id;
   1139		dma_rx_id = rspi_pd->dma_rx_id;
   1140	} else {
   1141		/* The driver assumes no error. */
   1142		return 0;
   1143	}
   1144
   1145	ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
   1146					     res->start);
   1147	if (!ctlr->dma_tx)
   1148		return -ENODEV;
   1149
   1150	ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
   1151					     res->start);
   1152	if (!ctlr->dma_rx) {
   1153		dma_release_channel(ctlr->dma_tx);
   1154		ctlr->dma_tx = NULL;
   1155		return -ENODEV;
   1156	}
   1157
   1158	ctlr->can_dma = rspi_can_dma;
   1159	dev_info(dev, "DMA available");
   1160	return 0;
   1161}
   1162
   1163static void rspi_release_dma(struct spi_controller *ctlr)
   1164{
   1165	if (ctlr->dma_tx)
   1166		dma_release_channel(ctlr->dma_tx);
   1167	if (ctlr->dma_rx)
   1168		dma_release_channel(ctlr->dma_rx);
   1169}
   1170
   1171static int rspi_remove(struct platform_device *pdev)
   1172{
   1173	struct rspi_data *rspi = platform_get_drvdata(pdev);
   1174
   1175	rspi_release_dma(rspi->ctlr);
   1176	pm_runtime_disable(&pdev->dev);
   1177
   1178	return 0;
   1179}
   1180
   1181static const struct spi_ops rspi_ops = {
   1182	.set_config_register =	rspi_set_config_register,
   1183	.transfer_one =		rspi_transfer_one,
   1184	.min_div =		2,
   1185	.max_div =		4096,
   1186	.flags =		SPI_CONTROLLER_MUST_TX,
   1187	.fifo_size =		8,
   1188	.num_hw_ss =		2,
   1189};
   1190
   1191static const struct spi_ops rspi_rz_ops = {
   1192	.set_config_register =	rspi_rz_set_config_register,
   1193	.transfer_one =		rspi_rz_transfer_one,
   1194	.min_div =		2,
   1195	.max_div =		4096,
   1196	.flags =		SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
   1197	.fifo_size =		8,	/* 8 for TX, 32 for RX */
   1198	.num_hw_ss =		1,
   1199};
   1200
   1201static const struct spi_ops qspi_ops = {
   1202	.set_config_register =	qspi_set_config_register,
   1203	.transfer_one =		qspi_transfer_one,
   1204	.extra_mode_bits =	SPI_TX_DUAL | SPI_TX_QUAD |
   1205				SPI_RX_DUAL | SPI_RX_QUAD,
   1206	.min_div =		1,
   1207	.max_div =		4080,
   1208	.flags =		SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
   1209	.fifo_size =		32,
   1210	.num_hw_ss =		1,
   1211};
   1212
   1213#ifdef CONFIG_OF
   1214static const struct of_device_id rspi_of_match[] = {
   1215	/* RSPI on legacy SH */
   1216	{ .compatible = "renesas,rspi", .data = &rspi_ops },
   1217	/* RSPI on RZ/A1H */
   1218	{ .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
   1219	/* QSPI on R-Car Gen2 */
   1220	{ .compatible = "renesas,qspi", .data = &qspi_ops },
   1221	{ /* sentinel */ }
   1222};
   1223
   1224MODULE_DEVICE_TABLE(of, rspi_of_match);
   1225
   1226static void rspi_reset_control_assert(void *data)
   1227{
   1228	reset_control_assert(data);
   1229}
   1230
   1231static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
   1232{
   1233	struct reset_control *rstc;
   1234	u32 num_cs;
   1235	int error;
   1236
   1237	/* Parse DT properties */
   1238	error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
   1239	if (error) {
   1240		dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
   1241		return error;
   1242	}
   1243
   1244	ctlr->num_chipselect = num_cs;
   1245
   1246	rstc = devm_reset_control_get_optional_exclusive(dev, NULL);
   1247	if (IS_ERR(rstc))
   1248		return dev_err_probe(dev, PTR_ERR(rstc),
   1249					     "failed to get reset ctrl\n");
   1250
   1251	error = reset_control_deassert(rstc);
   1252	if (error) {
   1253		dev_err(dev, "failed to deassert reset %d\n", error);
   1254		return error;
   1255	}
   1256
   1257	error = devm_add_action_or_reset(dev, rspi_reset_control_assert, rstc);
   1258	if (error) {
   1259		dev_err(dev, "failed to register assert devm action, %d\n", error);
   1260		return error;
   1261	}
   1262
   1263	return 0;
   1264}
   1265#else
   1266#define rspi_of_match	NULL
   1267static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
   1268{
   1269	return -EINVAL;
   1270}
   1271#endif /* CONFIG_OF */
   1272
   1273static int rspi_request_irq(struct device *dev, unsigned int irq,
   1274			    irq_handler_t handler, const char *suffix,
   1275			    void *dev_id)
   1276{
   1277	const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
   1278					  dev_name(dev), suffix);
   1279	if (!name)
   1280		return -ENOMEM;
   1281
   1282	return devm_request_irq(dev, irq, handler, 0, name, dev_id);
   1283}
   1284
   1285static int rspi_probe(struct platform_device *pdev)
   1286{
   1287	struct resource *res;
   1288	struct spi_controller *ctlr;
   1289	struct rspi_data *rspi;
   1290	int ret;
   1291	const struct rspi_plat_data *rspi_pd;
   1292	const struct spi_ops *ops;
   1293	unsigned long clksrc;
   1294
   1295	ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
   1296	if (ctlr == NULL)
   1297		return -ENOMEM;
   1298
   1299	ops = of_device_get_match_data(&pdev->dev);
   1300	if (ops) {
   1301		ret = rspi_parse_dt(&pdev->dev, ctlr);
   1302		if (ret)
   1303			goto error1;
   1304	} else {
   1305		ops = (struct spi_ops *)pdev->id_entry->driver_data;
   1306		rspi_pd = dev_get_platdata(&pdev->dev);
   1307		if (rspi_pd && rspi_pd->num_chipselect)
   1308			ctlr->num_chipselect = rspi_pd->num_chipselect;
   1309		else
   1310			ctlr->num_chipselect = 2; /* default */
   1311	}
   1312
   1313	rspi = spi_controller_get_devdata(ctlr);
   1314	platform_set_drvdata(pdev, rspi);
   1315	rspi->ops = ops;
   1316	rspi->ctlr = ctlr;
   1317
   1318	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
   1319	rspi->addr = devm_ioremap_resource(&pdev->dev, res);
   1320	if (IS_ERR(rspi->addr)) {
   1321		ret = PTR_ERR(rspi->addr);
   1322		goto error1;
   1323	}
   1324
   1325	rspi->clk = devm_clk_get(&pdev->dev, NULL);
   1326	if (IS_ERR(rspi->clk)) {
   1327		dev_err(&pdev->dev, "cannot get clock\n");
   1328		ret = PTR_ERR(rspi->clk);
   1329		goto error1;
   1330	}
   1331
   1332	rspi->pdev = pdev;
   1333	pm_runtime_enable(&pdev->dev);
   1334
   1335	init_waitqueue_head(&rspi->wait);
   1336	spin_lock_init(&rspi->lock);
   1337
   1338	ctlr->bus_num = pdev->id;
   1339	ctlr->setup = rspi_setup;
   1340	ctlr->auto_runtime_pm = true;
   1341	ctlr->transfer_one = ops->transfer_one;
   1342	ctlr->prepare_message = rspi_prepare_message;
   1343	ctlr->unprepare_message = rspi_unprepare_message;
   1344	ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
   1345			  SPI_LOOP | ops->extra_mode_bits;
   1346	clksrc = clk_get_rate(rspi->clk);
   1347	ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, ops->max_div);
   1348	ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, ops->min_div);
   1349	ctlr->flags = ops->flags;
   1350	ctlr->dev.of_node = pdev->dev.of_node;
   1351	ctlr->use_gpio_descriptors = true;
   1352	ctlr->max_native_cs = rspi->ops->num_hw_ss;
   1353
   1354	ret = platform_get_irq_byname_optional(pdev, "rx");
   1355	if (ret < 0) {
   1356		ret = platform_get_irq_byname_optional(pdev, "mux");
   1357		if (ret < 0)
   1358			ret = platform_get_irq(pdev, 0);
   1359		if (ret >= 0)
   1360			rspi->rx_irq = rspi->tx_irq = ret;
   1361	} else {
   1362		rspi->rx_irq = ret;
   1363		ret = platform_get_irq_byname(pdev, "tx");
   1364		if (ret >= 0)
   1365			rspi->tx_irq = ret;
   1366	}
   1367
   1368	if (rspi->rx_irq == rspi->tx_irq) {
   1369		/* Single multiplexed interrupt */
   1370		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
   1371				       "mux", rspi);
   1372	} else {
   1373		/* Multi-interrupt mode, only SPRI and SPTI are used */
   1374		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
   1375				       "rx", rspi);
   1376		if (!ret)
   1377			ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
   1378					       rspi_irq_tx, "tx", rspi);
   1379	}
   1380	if (ret < 0) {
   1381		dev_err(&pdev->dev, "request_irq error\n");
   1382		goto error2;
   1383	}
   1384
   1385	ret = rspi_request_dma(&pdev->dev, ctlr, res);
   1386	if (ret < 0)
   1387		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
   1388
   1389	ret = devm_spi_register_controller(&pdev->dev, ctlr);
   1390	if (ret < 0) {
   1391		dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
   1392		goto error3;
   1393	}
   1394
   1395	dev_info(&pdev->dev, "probed\n");
   1396
   1397	return 0;
   1398
   1399error3:
   1400	rspi_release_dma(ctlr);
   1401error2:
   1402	pm_runtime_disable(&pdev->dev);
   1403error1:
   1404	spi_controller_put(ctlr);
   1405
   1406	return ret;
   1407}
   1408
   1409static const struct platform_device_id spi_driver_ids[] = {
   1410	{ "rspi",	(kernel_ulong_t)&rspi_ops },
   1411	{},
   1412};
   1413
   1414MODULE_DEVICE_TABLE(platform, spi_driver_ids);
   1415
   1416#ifdef CONFIG_PM_SLEEP
   1417static int rspi_suspend(struct device *dev)
   1418{
   1419	struct rspi_data *rspi = dev_get_drvdata(dev);
   1420
   1421	return spi_controller_suspend(rspi->ctlr);
   1422}
   1423
   1424static int rspi_resume(struct device *dev)
   1425{
   1426	struct rspi_data *rspi = dev_get_drvdata(dev);
   1427
   1428	return spi_controller_resume(rspi->ctlr);
   1429}
   1430
   1431static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
   1432#define DEV_PM_OPS	&rspi_pm_ops
   1433#else
   1434#define DEV_PM_OPS	NULL
   1435#endif /* CONFIG_PM_SLEEP */
   1436
   1437static struct platform_driver rspi_driver = {
   1438	.probe =	rspi_probe,
   1439	.remove =	rspi_remove,
   1440	.id_table =	spi_driver_ids,
   1441	.driver		= {
   1442		.name = "renesas_spi",
   1443		.pm = DEV_PM_OPS,
   1444		.of_match_table = of_match_ptr(rspi_of_match),
   1445	},
   1446};
   1447module_platform_driver(rspi_driver);
   1448
   1449MODULE_DESCRIPTION("Renesas RSPI bus driver");
   1450MODULE_LICENSE("GPL v2");
   1451MODULE_AUTHOR("Yoshihiro Shimoda");