spi-sun4i.c (13780B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Copyright (C) 2012 - 2014 Allwinner Tech 4 * Pan Nan <pannan@allwinnertech.com> 5 * 6 * Copyright (C) 2014 Maxime Ripard 7 * Maxime Ripard <maxime.ripard@free-electrons.com> 8 */ 9 10#include <linux/clk.h> 11#include <linux/delay.h> 12#include <linux/device.h> 13#include <linux/interrupt.h> 14#include <linux/io.h> 15#include <linux/module.h> 16#include <linux/platform_device.h> 17#include <linux/pm_runtime.h> 18 19#include <linux/spi/spi.h> 20 21#define SUN4I_FIFO_DEPTH 64 22 23#define SUN4I_RXDATA_REG 0x00 24 25#define SUN4I_TXDATA_REG 0x04 26 27#define SUN4I_CTL_REG 0x08 28#define SUN4I_CTL_ENABLE BIT(0) 29#define SUN4I_CTL_MASTER BIT(1) 30#define SUN4I_CTL_CPHA BIT(2) 31#define SUN4I_CTL_CPOL BIT(3) 32#define SUN4I_CTL_CS_ACTIVE_LOW BIT(4) 33#define SUN4I_CTL_LMTF BIT(6) 34#define SUN4I_CTL_TF_RST BIT(8) 35#define SUN4I_CTL_RF_RST BIT(9) 36#define SUN4I_CTL_XCH BIT(10) 37#define SUN4I_CTL_CS_MASK 0x3000 38#define SUN4I_CTL_CS(cs) (((cs) << 12) & SUN4I_CTL_CS_MASK) 39#define SUN4I_CTL_DHB BIT(15) 40#define SUN4I_CTL_CS_MANUAL BIT(16) 41#define SUN4I_CTL_CS_LEVEL BIT(17) 42#define SUN4I_CTL_TP BIT(18) 43 44#define SUN4I_INT_CTL_REG 0x0c 45#define SUN4I_INT_CTL_RF_F34 BIT(4) 46#define SUN4I_INT_CTL_TF_E34 BIT(12) 47#define SUN4I_INT_CTL_TC BIT(16) 48 49#define SUN4I_INT_STA_REG 0x10 50 51#define SUN4I_DMA_CTL_REG 0x14 52 53#define SUN4I_WAIT_REG 0x18 54 55#define SUN4I_CLK_CTL_REG 0x1c 56#define SUN4I_CLK_CTL_CDR2_MASK 0xff 57#define SUN4I_CLK_CTL_CDR2(div) ((div) & SUN4I_CLK_CTL_CDR2_MASK) 58#define SUN4I_CLK_CTL_CDR1_MASK 0xf 59#define SUN4I_CLK_CTL_CDR1(div) (((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8) 60#define SUN4I_CLK_CTL_DRS BIT(12) 61 62#define SUN4I_MAX_XFER_SIZE 0xffffff 63 64#define SUN4I_BURST_CNT_REG 0x20 65#define SUN4I_BURST_CNT(cnt) ((cnt) & SUN4I_MAX_XFER_SIZE) 66 67#define SUN4I_XMIT_CNT_REG 0x24 68#define SUN4I_XMIT_CNT(cnt) ((cnt) & SUN4I_MAX_XFER_SIZE) 69 70 71#define SUN4I_FIFO_STA_REG 0x28 72#define SUN4I_FIFO_STA_RF_CNT_MASK 0x7f 73#define SUN4I_FIFO_STA_RF_CNT_BITS 0 74#define SUN4I_FIFO_STA_TF_CNT_MASK 0x7f 75#define SUN4I_FIFO_STA_TF_CNT_BITS 16 76 77struct sun4i_spi { 78 struct spi_master *master; 79 void __iomem *base_addr; 80 struct clk *hclk; 81 struct clk *mclk; 82 83 struct completion done; 84 85 const u8 *tx_buf; 86 u8 *rx_buf; 87 int len; 88}; 89 90static inline u32 sun4i_spi_read(struct sun4i_spi *sspi, u32 reg) 91{ 92 return readl(sspi->base_addr + reg); 93} 94 95static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value) 96{ 97 writel(value, sspi->base_addr + reg); 98} 99 100static inline u32 sun4i_spi_get_tx_fifo_count(struct sun4i_spi *sspi) 101{ 102 u32 reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG); 103 104 reg >>= SUN4I_FIFO_STA_TF_CNT_BITS; 105 106 return reg & SUN4I_FIFO_STA_TF_CNT_MASK; 107} 108 109static inline void sun4i_spi_enable_interrupt(struct sun4i_spi *sspi, u32 mask) 110{ 111 u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG); 112 113 reg |= mask; 114 sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg); 115} 116 117static inline void sun4i_spi_disable_interrupt(struct sun4i_spi *sspi, u32 mask) 118{ 119 u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG); 120 121 reg &= ~mask; 122 sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg); 123} 124 125static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len) 126{ 127 u32 reg, cnt; 128 u8 byte; 129 130 /* See how much data is available */ 131 reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG); 132 reg &= SUN4I_FIFO_STA_RF_CNT_MASK; 133 cnt = reg >> SUN4I_FIFO_STA_RF_CNT_BITS; 134 135 if (len > cnt) 136 len = cnt; 137 138 while (len--) { 139 byte = readb(sspi->base_addr + SUN4I_RXDATA_REG); 140 if (sspi->rx_buf) 141 *sspi->rx_buf++ = byte; 142 } 143} 144 145static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len) 146{ 147 u32 cnt; 148 u8 byte; 149 150 /* See how much data we can fit */ 151 cnt = SUN4I_FIFO_DEPTH - sun4i_spi_get_tx_fifo_count(sspi); 152 153 len = min3(len, (int)cnt, sspi->len); 154 155 while (len--) { 156 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0; 157 writeb(byte, sspi->base_addr + SUN4I_TXDATA_REG); 158 sspi->len--; 159 } 160} 161 162static void sun4i_spi_set_cs(struct spi_device *spi, bool enable) 163{ 164 struct sun4i_spi *sspi = spi_master_get_devdata(spi->master); 165 u32 reg; 166 167 reg = sun4i_spi_read(sspi, SUN4I_CTL_REG); 168 169 reg &= ~SUN4I_CTL_CS_MASK; 170 reg |= SUN4I_CTL_CS(spi->chip_select); 171 172 /* We want to control the chip select manually */ 173 reg |= SUN4I_CTL_CS_MANUAL; 174 175 if (enable) 176 reg |= SUN4I_CTL_CS_LEVEL; 177 else 178 reg &= ~SUN4I_CTL_CS_LEVEL; 179 180 /* 181 * Even though this looks irrelevant since we are supposed to 182 * be controlling the chip select manually, this bit also 183 * controls the levels of the chip select for inactive 184 * devices. 185 * 186 * If we don't set it, the chip select level will go low by 187 * default when the device is idle, which is not really 188 * expected in the common case where the chip select is active 189 * low. 190 */ 191 if (spi->mode & SPI_CS_HIGH) 192 reg &= ~SUN4I_CTL_CS_ACTIVE_LOW; 193 else 194 reg |= SUN4I_CTL_CS_ACTIVE_LOW; 195 196 sun4i_spi_write(sspi, SUN4I_CTL_REG, reg); 197} 198 199static size_t sun4i_spi_max_transfer_size(struct spi_device *spi) 200{ 201 return SUN4I_MAX_XFER_SIZE - 1; 202} 203 204static int sun4i_spi_transfer_one(struct spi_master *master, 205 struct spi_device *spi, 206 struct spi_transfer *tfr) 207{ 208 struct sun4i_spi *sspi = spi_master_get_devdata(master); 209 unsigned int mclk_rate, div, timeout; 210 unsigned int start, end, tx_time; 211 unsigned int tx_len = 0; 212 int ret = 0; 213 u32 reg; 214 215 /* We don't support transfer larger than the FIFO */ 216 if (tfr->len > SUN4I_MAX_XFER_SIZE) 217 return -EMSGSIZE; 218 219 if (tfr->tx_buf && tfr->len >= SUN4I_MAX_XFER_SIZE) 220 return -EMSGSIZE; 221 222 reinit_completion(&sspi->done); 223 sspi->tx_buf = tfr->tx_buf; 224 sspi->rx_buf = tfr->rx_buf; 225 sspi->len = tfr->len; 226 227 /* Clear pending interrupts */ 228 sun4i_spi_write(sspi, SUN4I_INT_STA_REG, ~0); 229 230 231 reg = sun4i_spi_read(sspi, SUN4I_CTL_REG); 232 233 /* Reset FIFOs */ 234 sun4i_spi_write(sspi, SUN4I_CTL_REG, 235 reg | SUN4I_CTL_RF_RST | SUN4I_CTL_TF_RST); 236 237 /* 238 * Setup the transfer control register: Chip Select, 239 * polarities, etc. 240 */ 241 if (spi->mode & SPI_CPOL) 242 reg |= SUN4I_CTL_CPOL; 243 else 244 reg &= ~SUN4I_CTL_CPOL; 245 246 if (spi->mode & SPI_CPHA) 247 reg |= SUN4I_CTL_CPHA; 248 else 249 reg &= ~SUN4I_CTL_CPHA; 250 251 if (spi->mode & SPI_LSB_FIRST) 252 reg |= SUN4I_CTL_LMTF; 253 else 254 reg &= ~SUN4I_CTL_LMTF; 255 256 257 /* 258 * If it's a TX only transfer, we don't want to fill the RX 259 * FIFO with bogus data 260 */ 261 if (sspi->rx_buf) 262 reg &= ~SUN4I_CTL_DHB; 263 else 264 reg |= SUN4I_CTL_DHB; 265 266 sun4i_spi_write(sspi, SUN4I_CTL_REG, reg); 267 268 /* Ensure that we have a parent clock fast enough */ 269 mclk_rate = clk_get_rate(sspi->mclk); 270 if (mclk_rate < (2 * tfr->speed_hz)) { 271 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz); 272 mclk_rate = clk_get_rate(sspi->mclk); 273 } 274 275 /* 276 * Setup clock divider. 277 * 278 * We have two choices there. Either we can use the clock 279 * divide rate 1, which is calculated thanks to this formula: 280 * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1)) 281 * Or we can use CDR2, which is calculated with the formula: 282 * SPI_CLK = MOD_CLK / (2 * (cdr + 1)) 283 * Whether we use the former or the latter is set through the 284 * DRS bit. 285 * 286 * First try CDR2, and if we can't reach the expected 287 * frequency, fall back to CDR1. 288 */ 289 div = mclk_rate / (2 * tfr->speed_hz); 290 if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) { 291 if (div > 0) 292 div--; 293 294 reg = SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS; 295 } else { 296 div = ilog2(mclk_rate) - ilog2(tfr->speed_hz); 297 reg = SUN4I_CLK_CTL_CDR1(div); 298 } 299 300 sun4i_spi_write(sspi, SUN4I_CLK_CTL_REG, reg); 301 302 /* Setup the transfer now... */ 303 if (sspi->tx_buf) 304 tx_len = tfr->len; 305 306 /* Setup the counters */ 307 sun4i_spi_write(sspi, SUN4I_BURST_CNT_REG, SUN4I_BURST_CNT(tfr->len)); 308 sun4i_spi_write(sspi, SUN4I_XMIT_CNT_REG, SUN4I_XMIT_CNT(tx_len)); 309 310 /* 311 * Fill the TX FIFO 312 * Filling the FIFO fully causes timeout for some reason 313 * at least on spi2 on A10s 314 */ 315 sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH - 1); 316 317 /* Enable the interrupts */ 318 sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TC | 319 SUN4I_INT_CTL_RF_F34); 320 /* Only enable Tx FIFO interrupt if we really need it */ 321 if (tx_len > SUN4I_FIFO_DEPTH) 322 sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TF_E34); 323 324 /* Start the transfer */ 325 reg = sun4i_spi_read(sspi, SUN4I_CTL_REG); 326 sun4i_spi_write(sspi, SUN4I_CTL_REG, reg | SUN4I_CTL_XCH); 327 328 tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U); 329 start = jiffies; 330 timeout = wait_for_completion_timeout(&sspi->done, 331 msecs_to_jiffies(tx_time)); 332 end = jiffies; 333 if (!timeout) { 334 dev_warn(&master->dev, 335 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms", 336 dev_name(&spi->dev), tfr->len, tfr->speed_hz, 337 jiffies_to_msecs(end - start), tx_time); 338 ret = -ETIMEDOUT; 339 goto out; 340 } 341 342 343out: 344 sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0); 345 346 return ret; 347} 348 349static irqreturn_t sun4i_spi_handler(int irq, void *dev_id) 350{ 351 struct sun4i_spi *sspi = dev_id; 352 u32 status = sun4i_spi_read(sspi, SUN4I_INT_STA_REG); 353 354 /* Transfer complete */ 355 if (status & SUN4I_INT_CTL_TC) { 356 sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC); 357 sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH); 358 complete(&sspi->done); 359 return IRQ_HANDLED; 360 } 361 362 /* Receive FIFO 3/4 full */ 363 if (status & SUN4I_INT_CTL_RF_F34) { 364 sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH); 365 /* Only clear the interrupt _after_ draining the FIFO */ 366 sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_RF_F34); 367 return IRQ_HANDLED; 368 } 369 370 /* Transmit FIFO 3/4 empty */ 371 if (status & SUN4I_INT_CTL_TF_E34) { 372 sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH); 373 374 if (!sspi->len) 375 /* nothing left to transmit */ 376 sun4i_spi_disable_interrupt(sspi, SUN4I_INT_CTL_TF_E34); 377 378 /* Only clear the interrupt _after_ re-seeding the FIFO */ 379 sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TF_E34); 380 381 return IRQ_HANDLED; 382 } 383 384 return IRQ_NONE; 385} 386 387static int sun4i_spi_runtime_resume(struct device *dev) 388{ 389 struct spi_master *master = dev_get_drvdata(dev); 390 struct sun4i_spi *sspi = spi_master_get_devdata(master); 391 int ret; 392 393 ret = clk_prepare_enable(sspi->hclk); 394 if (ret) { 395 dev_err(dev, "Couldn't enable AHB clock\n"); 396 goto out; 397 } 398 399 ret = clk_prepare_enable(sspi->mclk); 400 if (ret) { 401 dev_err(dev, "Couldn't enable module clock\n"); 402 goto err; 403 } 404 405 sun4i_spi_write(sspi, SUN4I_CTL_REG, 406 SUN4I_CTL_ENABLE | SUN4I_CTL_MASTER | SUN4I_CTL_TP); 407 408 return 0; 409 410err: 411 clk_disable_unprepare(sspi->hclk); 412out: 413 return ret; 414} 415 416static int sun4i_spi_runtime_suspend(struct device *dev) 417{ 418 struct spi_master *master = dev_get_drvdata(dev); 419 struct sun4i_spi *sspi = spi_master_get_devdata(master); 420 421 clk_disable_unprepare(sspi->mclk); 422 clk_disable_unprepare(sspi->hclk); 423 424 return 0; 425} 426 427static int sun4i_spi_probe(struct platform_device *pdev) 428{ 429 struct spi_master *master; 430 struct sun4i_spi *sspi; 431 int ret = 0, irq; 432 433 master = spi_alloc_master(&pdev->dev, sizeof(struct sun4i_spi)); 434 if (!master) { 435 dev_err(&pdev->dev, "Unable to allocate SPI Master\n"); 436 return -ENOMEM; 437 } 438 439 platform_set_drvdata(pdev, master); 440 sspi = spi_master_get_devdata(master); 441 442 sspi->base_addr = devm_platform_ioremap_resource(pdev, 0); 443 if (IS_ERR(sspi->base_addr)) { 444 ret = PTR_ERR(sspi->base_addr); 445 goto err_free_master; 446 } 447 448 irq = platform_get_irq(pdev, 0); 449 if (irq < 0) { 450 ret = -ENXIO; 451 goto err_free_master; 452 } 453 454 ret = devm_request_irq(&pdev->dev, irq, sun4i_spi_handler, 455 0, "sun4i-spi", sspi); 456 if (ret) { 457 dev_err(&pdev->dev, "Cannot request IRQ\n"); 458 goto err_free_master; 459 } 460 461 sspi->master = master; 462 master->max_speed_hz = 100 * 1000 * 1000; 463 master->min_speed_hz = 3 * 1000; 464 master->set_cs = sun4i_spi_set_cs; 465 master->transfer_one = sun4i_spi_transfer_one; 466 master->num_chipselect = 4; 467 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST; 468 master->bits_per_word_mask = SPI_BPW_MASK(8); 469 master->dev.of_node = pdev->dev.of_node; 470 master->auto_runtime_pm = true; 471 master->max_transfer_size = sun4i_spi_max_transfer_size; 472 473 sspi->hclk = devm_clk_get(&pdev->dev, "ahb"); 474 if (IS_ERR(sspi->hclk)) { 475 dev_err(&pdev->dev, "Unable to acquire AHB clock\n"); 476 ret = PTR_ERR(sspi->hclk); 477 goto err_free_master; 478 } 479 480 sspi->mclk = devm_clk_get(&pdev->dev, "mod"); 481 if (IS_ERR(sspi->mclk)) { 482 dev_err(&pdev->dev, "Unable to acquire module clock\n"); 483 ret = PTR_ERR(sspi->mclk); 484 goto err_free_master; 485 } 486 487 init_completion(&sspi->done); 488 489 /* 490 * This wake-up/shutdown pattern is to be able to have the 491 * device woken up, even if runtime_pm is disabled 492 */ 493 ret = sun4i_spi_runtime_resume(&pdev->dev); 494 if (ret) { 495 dev_err(&pdev->dev, "Couldn't resume the device\n"); 496 goto err_free_master; 497 } 498 499 pm_runtime_set_active(&pdev->dev); 500 pm_runtime_enable(&pdev->dev); 501 pm_runtime_idle(&pdev->dev); 502 503 ret = devm_spi_register_master(&pdev->dev, master); 504 if (ret) { 505 dev_err(&pdev->dev, "cannot register SPI master\n"); 506 goto err_pm_disable; 507 } 508 509 return 0; 510 511err_pm_disable: 512 pm_runtime_disable(&pdev->dev); 513 sun4i_spi_runtime_suspend(&pdev->dev); 514err_free_master: 515 spi_master_put(master); 516 return ret; 517} 518 519static int sun4i_spi_remove(struct platform_device *pdev) 520{ 521 pm_runtime_force_suspend(&pdev->dev); 522 523 return 0; 524} 525 526static const struct of_device_id sun4i_spi_match[] = { 527 { .compatible = "allwinner,sun4i-a10-spi", }, 528 {} 529}; 530MODULE_DEVICE_TABLE(of, sun4i_spi_match); 531 532static const struct dev_pm_ops sun4i_spi_pm_ops = { 533 .runtime_resume = sun4i_spi_runtime_resume, 534 .runtime_suspend = sun4i_spi_runtime_suspend, 535}; 536 537static struct platform_driver sun4i_spi_driver = { 538 .probe = sun4i_spi_probe, 539 .remove = sun4i_spi_remove, 540 .driver = { 541 .name = "sun4i-spi", 542 .of_match_table = sun4i_spi_match, 543 .pm = &sun4i_spi_pm_ops, 544 }, 545}; 546module_platform_driver(sun4i_spi_driver); 547 548MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>"); 549MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>"); 550MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver"); 551MODULE_LICENSE("GPL");