spi-sun6i.c (18727B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Copyright (C) 2012 - 2014 Allwinner Tech 4 * Pan Nan <pannan@allwinnertech.com> 5 * 6 * Copyright (C) 2014 Maxime Ripard 7 * Maxime Ripard <maxime.ripard@free-electrons.com> 8 */ 9 10#include <linux/bitfield.h> 11#include <linux/clk.h> 12#include <linux/delay.h> 13#include <linux/device.h> 14#include <linux/interrupt.h> 15#include <linux/io.h> 16#include <linux/module.h> 17#include <linux/of_device.h> 18#include <linux/platform_device.h> 19#include <linux/pm_runtime.h> 20#include <linux/reset.h> 21#include <linux/dmaengine.h> 22 23#include <linux/spi/spi.h> 24 25#define SUN6I_AUTOSUSPEND_TIMEOUT 2000 26 27#define SUN6I_FIFO_DEPTH 128 28#define SUN8I_FIFO_DEPTH 64 29 30#define SUN6I_GBL_CTL_REG 0x04 31#define SUN6I_GBL_CTL_BUS_ENABLE BIT(0) 32#define SUN6I_GBL_CTL_MASTER BIT(1) 33#define SUN6I_GBL_CTL_TP BIT(7) 34#define SUN6I_GBL_CTL_RST BIT(31) 35 36#define SUN6I_TFR_CTL_REG 0x08 37#define SUN6I_TFR_CTL_CPHA BIT(0) 38#define SUN6I_TFR_CTL_CPOL BIT(1) 39#define SUN6I_TFR_CTL_SPOL BIT(2) 40#define SUN6I_TFR_CTL_CS_MASK 0x30 41#define SUN6I_TFR_CTL_CS(cs) (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK) 42#define SUN6I_TFR_CTL_CS_MANUAL BIT(6) 43#define SUN6I_TFR_CTL_CS_LEVEL BIT(7) 44#define SUN6I_TFR_CTL_DHB BIT(8) 45#define SUN6I_TFR_CTL_FBS BIT(12) 46#define SUN6I_TFR_CTL_XCH BIT(31) 47 48#define SUN6I_INT_CTL_REG 0x10 49#define SUN6I_INT_CTL_RF_RDY BIT(0) 50#define SUN6I_INT_CTL_TF_ERQ BIT(4) 51#define SUN6I_INT_CTL_RF_OVF BIT(8) 52#define SUN6I_INT_CTL_TC BIT(12) 53 54#define SUN6I_INT_STA_REG 0x14 55 56#define SUN6I_FIFO_CTL_REG 0x18 57#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK 0xff 58#define SUN6I_FIFO_CTL_RF_DRQ_EN BIT(8) 59#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS 0 60#define SUN6I_FIFO_CTL_RF_RST BIT(15) 61#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK 0xff 62#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS 16 63#define SUN6I_FIFO_CTL_TF_DRQ_EN BIT(24) 64#define SUN6I_FIFO_CTL_TF_RST BIT(31) 65 66#define SUN6I_FIFO_STA_REG 0x1c 67#define SUN6I_FIFO_STA_RF_CNT_MASK GENMASK(7, 0) 68#define SUN6I_FIFO_STA_TF_CNT_MASK GENMASK(23, 16) 69 70#define SUN6I_CLK_CTL_REG 0x24 71#define SUN6I_CLK_CTL_CDR2_MASK 0xff 72#define SUN6I_CLK_CTL_CDR2(div) (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0) 73#define SUN6I_CLK_CTL_CDR1_MASK 0xf 74#define SUN6I_CLK_CTL_CDR1(div) (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8) 75#define SUN6I_CLK_CTL_DRS BIT(12) 76 77#define SUN6I_MAX_XFER_SIZE 0xffffff 78 79#define SUN6I_BURST_CNT_REG 0x30 80 81#define SUN6I_XMIT_CNT_REG 0x34 82 83#define SUN6I_BURST_CTL_CNT_REG 0x38 84 85#define SUN6I_TXDATA_REG 0x200 86#define SUN6I_RXDATA_REG 0x300 87 88struct sun6i_spi { 89 struct spi_master *master; 90 void __iomem *base_addr; 91 dma_addr_t dma_addr_rx; 92 dma_addr_t dma_addr_tx; 93 struct clk *hclk; 94 struct clk *mclk; 95 struct reset_control *rstc; 96 97 struct completion done; 98 99 const u8 *tx_buf; 100 u8 *rx_buf; 101 int len; 102 unsigned long fifo_depth; 103}; 104 105static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg) 106{ 107 return readl(sspi->base_addr + reg); 108} 109 110static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value) 111{ 112 writel(value, sspi->base_addr + reg); 113} 114 115static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi) 116{ 117 u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG); 118 119 return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg); 120} 121 122static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi) 123{ 124 u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG); 125 126 return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg); 127} 128 129static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask) 130{ 131 u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG); 132 133 reg &= ~mask; 134 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg); 135} 136 137static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi) 138{ 139 u32 len; 140 u8 byte; 141 142 /* See how much data is available */ 143 len = sun6i_spi_get_rx_fifo_count(sspi); 144 145 while (len--) { 146 byte = readb(sspi->base_addr + SUN6I_RXDATA_REG); 147 if (sspi->rx_buf) 148 *sspi->rx_buf++ = byte; 149 } 150} 151 152static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi) 153{ 154 u32 cnt; 155 int len; 156 u8 byte; 157 158 /* See how much data we can fit */ 159 cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi); 160 161 len = min((int)cnt, sspi->len); 162 163 while (len--) { 164 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0; 165 writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG); 166 sspi->len--; 167 } 168} 169 170static void sun6i_spi_set_cs(struct spi_device *spi, bool enable) 171{ 172 struct sun6i_spi *sspi = spi_master_get_devdata(spi->master); 173 u32 reg; 174 175 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG); 176 reg &= ~SUN6I_TFR_CTL_CS_MASK; 177 reg |= SUN6I_TFR_CTL_CS(spi->chip_select); 178 179 if (enable) 180 reg |= SUN6I_TFR_CTL_CS_LEVEL; 181 else 182 reg &= ~SUN6I_TFR_CTL_CS_LEVEL; 183 184 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg); 185} 186 187static size_t sun6i_spi_max_transfer_size(struct spi_device *spi) 188{ 189 return SUN6I_MAX_XFER_SIZE - 1; 190} 191 192static int sun6i_spi_prepare_dma(struct sun6i_spi *sspi, 193 struct spi_transfer *tfr) 194{ 195 struct dma_async_tx_descriptor *rxdesc, *txdesc; 196 struct spi_master *master = sspi->master; 197 198 rxdesc = NULL; 199 if (tfr->rx_buf) { 200 struct dma_slave_config rxconf = { 201 .direction = DMA_DEV_TO_MEM, 202 .src_addr = sspi->dma_addr_rx, 203 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, 204 .src_maxburst = 8, 205 }; 206 207 dmaengine_slave_config(master->dma_rx, &rxconf); 208 209 rxdesc = dmaengine_prep_slave_sg(master->dma_rx, 210 tfr->rx_sg.sgl, 211 tfr->rx_sg.nents, 212 DMA_DEV_TO_MEM, 213 DMA_PREP_INTERRUPT); 214 if (!rxdesc) 215 return -EINVAL; 216 } 217 218 txdesc = NULL; 219 if (tfr->tx_buf) { 220 struct dma_slave_config txconf = { 221 .direction = DMA_MEM_TO_DEV, 222 .dst_addr = sspi->dma_addr_tx, 223 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, 224 .dst_maxburst = 8, 225 }; 226 227 dmaengine_slave_config(master->dma_tx, &txconf); 228 229 txdesc = dmaengine_prep_slave_sg(master->dma_tx, 230 tfr->tx_sg.sgl, 231 tfr->tx_sg.nents, 232 DMA_MEM_TO_DEV, 233 DMA_PREP_INTERRUPT); 234 if (!txdesc) { 235 if (rxdesc) 236 dmaengine_terminate_sync(master->dma_rx); 237 return -EINVAL; 238 } 239 } 240 241 if (tfr->rx_buf) { 242 dmaengine_submit(rxdesc); 243 dma_async_issue_pending(master->dma_rx); 244 } 245 246 if (tfr->tx_buf) { 247 dmaengine_submit(txdesc); 248 dma_async_issue_pending(master->dma_tx); 249 } 250 251 return 0; 252} 253 254static int sun6i_spi_transfer_one(struct spi_master *master, 255 struct spi_device *spi, 256 struct spi_transfer *tfr) 257{ 258 struct sun6i_spi *sspi = spi_master_get_devdata(master); 259 unsigned int mclk_rate, div, div_cdr1, div_cdr2, timeout; 260 unsigned int start, end, tx_time; 261 unsigned int trig_level; 262 unsigned int tx_len = 0, rx_len = 0; 263 bool use_dma; 264 int ret = 0; 265 u32 reg; 266 267 if (tfr->len > SUN6I_MAX_XFER_SIZE) 268 return -EINVAL; 269 270 reinit_completion(&sspi->done); 271 sspi->tx_buf = tfr->tx_buf; 272 sspi->rx_buf = tfr->rx_buf; 273 sspi->len = tfr->len; 274 use_dma = master->can_dma ? master->can_dma(master, spi, tfr) : false; 275 276 /* Clear pending interrupts */ 277 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0); 278 279 /* Reset FIFO */ 280 sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, 281 SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST); 282 283 reg = 0; 284 285 if (!use_dma) { 286 /* 287 * Setup FIFO interrupt trigger level 288 * Here we choose 3/4 of the full fifo depth, as it's 289 * the hardcoded value used in old generation of Allwinner 290 * SPI controller. (See spi-sun4i.c) 291 */ 292 trig_level = sspi->fifo_depth / 4 * 3; 293 } else { 294 /* 295 * Setup FIFO DMA request trigger level 296 * We choose 1/2 of the full fifo depth, that value will 297 * be used as DMA burst length. 298 */ 299 trig_level = sspi->fifo_depth / 2; 300 301 if (tfr->tx_buf) 302 reg |= SUN6I_FIFO_CTL_TF_DRQ_EN; 303 if (tfr->rx_buf) 304 reg |= SUN6I_FIFO_CTL_RF_DRQ_EN; 305 } 306 307 reg |= (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) | 308 (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS); 309 310 sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, reg); 311 312 /* 313 * Setup the transfer control register: Chip Select, 314 * polarities, etc. 315 */ 316 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG); 317 318 if (spi->mode & SPI_CPOL) 319 reg |= SUN6I_TFR_CTL_CPOL; 320 else 321 reg &= ~SUN6I_TFR_CTL_CPOL; 322 323 if (spi->mode & SPI_CPHA) 324 reg |= SUN6I_TFR_CTL_CPHA; 325 else 326 reg &= ~SUN6I_TFR_CTL_CPHA; 327 328 if (spi->mode & SPI_LSB_FIRST) 329 reg |= SUN6I_TFR_CTL_FBS; 330 else 331 reg &= ~SUN6I_TFR_CTL_FBS; 332 333 /* 334 * If it's a TX only transfer, we don't want to fill the RX 335 * FIFO with bogus data 336 */ 337 if (sspi->rx_buf) { 338 reg &= ~SUN6I_TFR_CTL_DHB; 339 rx_len = tfr->len; 340 } else { 341 reg |= SUN6I_TFR_CTL_DHB; 342 } 343 344 /* We want to control the chip select manually */ 345 reg |= SUN6I_TFR_CTL_CS_MANUAL; 346 347 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg); 348 349 /* Ensure that we have a parent clock fast enough */ 350 mclk_rate = clk_get_rate(sspi->mclk); 351 if (mclk_rate < (2 * tfr->speed_hz)) { 352 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz); 353 mclk_rate = clk_get_rate(sspi->mclk); 354 } 355 356 /* 357 * Setup clock divider. 358 * 359 * We have two choices there. Either we can use the clock 360 * divide rate 1, which is calculated thanks to this formula: 361 * SPI_CLK = MOD_CLK / (2 ^ cdr) 362 * Or we can use CDR2, which is calculated with the formula: 363 * SPI_CLK = MOD_CLK / (2 * (cdr + 1)) 364 * Wether we use the former or the latter is set through the 365 * DRS bit. 366 * 367 * First try CDR2, and if we can't reach the expected 368 * frequency, fall back to CDR1. 369 */ 370 div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz); 371 div_cdr2 = DIV_ROUND_UP(div_cdr1, 2); 372 if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) { 373 reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS; 374 tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2); 375 } else { 376 div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1)); 377 reg = SUN6I_CLK_CTL_CDR1(div); 378 tfr->effective_speed_hz = mclk_rate / (1 << div); 379 } 380 381 sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg); 382 /* Finally enable the bus - doing so before might raise SCK to HIGH */ 383 reg = sun6i_spi_read(sspi, SUN6I_GBL_CTL_REG); 384 reg |= SUN6I_GBL_CTL_BUS_ENABLE; 385 sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, reg); 386 387 /* Setup the transfer now... */ 388 if (sspi->tx_buf) 389 tx_len = tfr->len; 390 391 /* Setup the counters */ 392 sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len); 393 sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len); 394 sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, tx_len); 395 396 if (!use_dma) { 397 /* Fill the TX FIFO */ 398 sun6i_spi_fill_fifo(sspi); 399 } else { 400 ret = sun6i_spi_prepare_dma(sspi, tfr); 401 if (ret) { 402 dev_warn(&master->dev, 403 "%s: prepare DMA failed, ret=%d", 404 dev_name(&spi->dev), ret); 405 return ret; 406 } 407 } 408 409 /* Enable the interrupts */ 410 reg = SUN6I_INT_CTL_TC; 411 412 if (!use_dma) { 413 if (rx_len > sspi->fifo_depth) 414 reg |= SUN6I_INT_CTL_RF_RDY; 415 if (tx_len > sspi->fifo_depth) 416 reg |= SUN6I_INT_CTL_TF_ERQ; 417 } 418 419 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg); 420 421 /* Start the transfer */ 422 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG); 423 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH); 424 425 tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U); 426 start = jiffies; 427 timeout = wait_for_completion_timeout(&sspi->done, 428 msecs_to_jiffies(tx_time)); 429 end = jiffies; 430 if (!timeout) { 431 dev_warn(&master->dev, 432 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms", 433 dev_name(&spi->dev), tfr->len, tfr->speed_hz, 434 jiffies_to_msecs(end - start), tx_time); 435 ret = -ETIMEDOUT; 436 } 437 438 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0); 439 440 if (ret && use_dma) { 441 dmaengine_terminate_sync(master->dma_rx); 442 dmaengine_terminate_sync(master->dma_tx); 443 } 444 445 return ret; 446} 447 448static irqreturn_t sun6i_spi_handler(int irq, void *dev_id) 449{ 450 struct sun6i_spi *sspi = dev_id; 451 u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG); 452 453 /* Transfer complete */ 454 if (status & SUN6I_INT_CTL_TC) { 455 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC); 456 sun6i_spi_drain_fifo(sspi); 457 complete(&sspi->done); 458 return IRQ_HANDLED; 459 } 460 461 /* Receive FIFO 3/4 full */ 462 if (status & SUN6I_INT_CTL_RF_RDY) { 463 sun6i_spi_drain_fifo(sspi); 464 /* Only clear the interrupt _after_ draining the FIFO */ 465 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY); 466 return IRQ_HANDLED; 467 } 468 469 /* Transmit FIFO 3/4 empty */ 470 if (status & SUN6I_INT_CTL_TF_ERQ) { 471 sun6i_spi_fill_fifo(sspi); 472 473 if (!sspi->len) 474 /* nothing left to transmit */ 475 sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ); 476 477 /* Only clear the interrupt _after_ re-seeding the FIFO */ 478 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ); 479 480 return IRQ_HANDLED; 481 } 482 483 return IRQ_NONE; 484} 485 486static int sun6i_spi_runtime_resume(struct device *dev) 487{ 488 struct spi_master *master = dev_get_drvdata(dev); 489 struct sun6i_spi *sspi = spi_master_get_devdata(master); 490 int ret; 491 492 ret = clk_prepare_enable(sspi->hclk); 493 if (ret) { 494 dev_err(dev, "Couldn't enable AHB clock\n"); 495 goto out; 496 } 497 498 ret = clk_prepare_enable(sspi->mclk); 499 if (ret) { 500 dev_err(dev, "Couldn't enable module clock\n"); 501 goto err; 502 } 503 504 ret = reset_control_deassert(sspi->rstc); 505 if (ret) { 506 dev_err(dev, "Couldn't deassert the device from reset\n"); 507 goto err2; 508 } 509 510 sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, 511 SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP); 512 513 return 0; 514 515err2: 516 clk_disable_unprepare(sspi->mclk); 517err: 518 clk_disable_unprepare(sspi->hclk); 519out: 520 return ret; 521} 522 523static int sun6i_spi_runtime_suspend(struct device *dev) 524{ 525 struct spi_master *master = dev_get_drvdata(dev); 526 struct sun6i_spi *sspi = spi_master_get_devdata(master); 527 528 reset_control_assert(sspi->rstc); 529 clk_disable_unprepare(sspi->mclk); 530 clk_disable_unprepare(sspi->hclk); 531 532 return 0; 533} 534 535static bool sun6i_spi_can_dma(struct spi_master *master, 536 struct spi_device *spi, 537 struct spi_transfer *xfer) 538{ 539 struct sun6i_spi *sspi = spi_master_get_devdata(master); 540 541 /* 542 * If the number of spi words to transfer is less or equal than 543 * the fifo length we can just fill the fifo and wait for a single 544 * irq, so don't bother setting up dma 545 */ 546 return xfer->len > sspi->fifo_depth; 547} 548 549static int sun6i_spi_probe(struct platform_device *pdev) 550{ 551 struct spi_master *master; 552 struct sun6i_spi *sspi; 553 struct resource *mem; 554 int ret = 0, irq; 555 556 master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi)); 557 if (!master) { 558 dev_err(&pdev->dev, "Unable to allocate SPI Master\n"); 559 return -ENOMEM; 560 } 561 562 platform_set_drvdata(pdev, master); 563 sspi = spi_master_get_devdata(master); 564 565 sspi->base_addr = devm_platform_get_and_ioremap_resource(pdev, 0, &mem); 566 if (IS_ERR(sspi->base_addr)) { 567 ret = PTR_ERR(sspi->base_addr); 568 goto err_free_master; 569 } 570 571 irq = platform_get_irq(pdev, 0); 572 if (irq < 0) { 573 ret = -ENXIO; 574 goto err_free_master; 575 } 576 577 ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler, 578 0, "sun6i-spi", sspi); 579 if (ret) { 580 dev_err(&pdev->dev, "Cannot request IRQ\n"); 581 goto err_free_master; 582 } 583 584 sspi->master = master; 585 sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev); 586 587 master->max_speed_hz = 100 * 1000 * 1000; 588 master->min_speed_hz = 3 * 1000; 589 master->use_gpio_descriptors = true; 590 master->set_cs = sun6i_spi_set_cs; 591 master->transfer_one = sun6i_spi_transfer_one; 592 master->num_chipselect = 4; 593 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST; 594 master->bits_per_word_mask = SPI_BPW_MASK(8); 595 master->dev.of_node = pdev->dev.of_node; 596 master->auto_runtime_pm = true; 597 master->max_transfer_size = sun6i_spi_max_transfer_size; 598 599 sspi->hclk = devm_clk_get(&pdev->dev, "ahb"); 600 if (IS_ERR(sspi->hclk)) { 601 dev_err(&pdev->dev, "Unable to acquire AHB clock\n"); 602 ret = PTR_ERR(sspi->hclk); 603 goto err_free_master; 604 } 605 606 sspi->mclk = devm_clk_get(&pdev->dev, "mod"); 607 if (IS_ERR(sspi->mclk)) { 608 dev_err(&pdev->dev, "Unable to acquire module clock\n"); 609 ret = PTR_ERR(sspi->mclk); 610 goto err_free_master; 611 } 612 613 init_completion(&sspi->done); 614 615 sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL); 616 if (IS_ERR(sspi->rstc)) { 617 dev_err(&pdev->dev, "Couldn't get reset controller\n"); 618 ret = PTR_ERR(sspi->rstc); 619 goto err_free_master; 620 } 621 622 master->dma_tx = dma_request_chan(&pdev->dev, "tx"); 623 if (IS_ERR(master->dma_tx)) { 624 /* Check tx to see if we need defer probing driver */ 625 if (PTR_ERR(master->dma_tx) == -EPROBE_DEFER) { 626 ret = -EPROBE_DEFER; 627 goto err_free_master; 628 } 629 dev_warn(&pdev->dev, "Failed to request TX DMA channel\n"); 630 master->dma_tx = NULL; 631 } 632 633 master->dma_rx = dma_request_chan(&pdev->dev, "rx"); 634 if (IS_ERR(master->dma_rx)) { 635 if (PTR_ERR(master->dma_rx) == -EPROBE_DEFER) { 636 ret = -EPROBE_DEFER; 637 goto err_free_dma_tx; 638 } 639 dev_warn(&pdev->dev, "Failed to request RX DMA channel\n"); 640 master->dma_rx = NULL; 641 } 642 643 if (master->dma_tx && master->dma_rx) { 644 sspi->dma_addr_tx = mem->start + SUN6I_TXDATA_REG; 645 sspi->dma_addr_rx = mem->start + SUN6I_RXDATA_REG; 646 master->can_dma = sun6i_spi_can_dma; 647 } 648 649 /* 650 * This wake-up/shutdown pattern is to be able to have the 651 * device woken up, even if runtime_pm is disabled 652 */ 653 ret = sun6i_spi_runtime_resume(&pdev->dev); 654 if (ret) { 655 dev_err(&pdev->dev, "Couldn't resume the device\n"); 656 goto err_free_dma_rx; 657 } 658 659 pm_runtime_set_autosuspend_delay(&pdev->dev, SUN6I_AUTOSUSPEND_TIMEOUT); 660 pm_runtime_use_autosuspend(&pdev->dev); 661 pm_runtime_set_active(&pdev->dev); 662 pm_runtime_enable(&pdev->dev); 663 664 ret = devm_spi_register_master(&pdev->dev, master); 665 if (ret) { 666 dev_err(&pdev->dev, "cannot register SPI master\n"); 667 goto err_pm_disable; 668 } 669 670 return 0; 671 672err_pm_disable: 673 pm_runtime_disable(&pdev->dev); 674 sun6i_spi_runtime_suspend(&pdev->dev); 675err_free_dma_rx: 676 if (master->dma_rx) 677 dma_release_channel(master->dma_rx); 678err_free_dma_tx: 679 if (master->dma_tx) 680 dma_release_channel(master->dma_tx); 681err_free_master: 682 spi_master_put(master); 683 return ret; 684} 685 686static int sun6i_spi_remove(struct platform_device *pdev) 687{ 688 struct spi_master *master = platform_get_drvdata(pdev); 689 690 pm_runtime_force_suspend(&pdev->dev); 691 692 if (master->dma_tx) 693 dma_release_channel(master->dma_tx); 694 if (master->dma_rx) 695 dma_release_channel(master->dma_rx); 696 return 0; 697} 698 699static const struct of_device_id sun6i_spi_match[] = { 700 { .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH }, 701 { .compatible = "allwinner,sun8i-h3-spi", .data = (void *)SUN8I_FIFO_DEPTH }, 702 {} 703}; 704MODULE_DEVICE_TABLE(of, sun6i_spi_match); 705 706static const struct dev_pm_ops sun6i_spi_pm_ops = { 707 .runtime_resume = sun6i_spi_runtime_resume, 708 .runtime_suspend = sun6i_spi_runtime_suspend, 709}; 710 711static struct platform_driver sun6i_spi_driver = { 712 .probe = sun6i_spi_probe, 713 .remove = sun6i_spi_remove, 714 .driver = { 715 .name = "sun6i-spi", 716 .of_match_table = sun6i_spi_match, 717 .pm = &sun6i_spi_pm_ops, 718 }, 719}; 720module_platform_driver(sun6i_spi_driver); 721 722MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>"); 723MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>"); 724MODULE_DESCRIPTION("Allwinner A31 SPI controller driver"); 725MODULE_LICENSE("GPL");