cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

spi-sun6i.c (18727B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Copyright (C) 2012 - 2014 Allwinner Tech
      4 * Pan Nan <pannan@allwinnertech.com>
      5 *
      6 * Copyright (C) 2014 Maxime Ripard
      7 * Maxime Ripard <maxime.ripard@free-electrons.com>
      8 */
      9
     10#include <linux/bitfield.h>
     11#include <linux/clk.h>
     12#include <linux/delay.h>
     13#include <linux/device.h>
     14#include <linux/interrupt.h>
     15#include <linux/io.h>
     16#include <linux/module.h>
     17#include <linux/of_device.h>
     18#include <linux/platform_device.h>
     19#include <linux/pm_runtime.h>
     20#include <linux/reset.h>
     21#include <linux/dmaengine.h>
     22
     23#include <linux/spi/spi.h>
     24
     25#define SUN6I_AUTOSUSPEND_TIMEOUT	2000
     26
     27#define SUN6I_FIFO_DEPTH		128
     28#define SUN8I_FIFO_DEPTH		64
     29
     30#define SUN6I_GBL_CTL_REG		0x04
     31#define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
     32#define SUN6I_GBL_CTL_MASTER			BIT(1)
     33#define SUN6I_GBL_CTL_TP			BIT(7)
     34#define SUN6I_GBL_CTL_RST			BIT(31)
     35
     36#define SUN6I_TFR_CTL_REG		0x08
     37#define SUN6I_TFR_CTL_CPHA			BIT(0)
     38#define SUN6I_TFR_CTL_CPOL			BIT(1)
     39#define SUN6I_TFR_CTL_SPOL			BIT(2)
     40#define SUN6I_TFR_CTL_CS_MASK			0x30
     41#define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
     42#define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
     43#define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
     44#define SUN6I_TFR_CTL_DHB			BIT(8)
     45#define SUN6I_TFR_CTL_FBS			BIT(12)
     46#define SUN6I_TFR_CTL_XCH			BIT(31)
     47
     48#define SUN6I_INT_CTL_REG		0x10
     49#define SUN6I_INT_CTL_RF_RDY			BIT(0)
     50#define SUN6I_INT_CTL_TF_ERQ			BIT(4)
     51#define SUN6I_INT_CTL_RF_OVF			BIT(8)
     52#define SUN6I_INT_CTL_TC			BIT(12)
     53
     54#define SUN6I_INT_STA_REG		0x14
     55
     56#define SUN6I_FIFO_CTL_REG		0x18
     57#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK	0xff
     58#define SUN6I_FIFO_CTL_RF_DRQ_EN		BIT(8)
     59#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS	0
     60#define SUN6I_FIFO_CTL_RF_RST			BIT(15)
     61#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK	0xff
     62#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS	16
     63#define SUN6I_FIFO_CTL_TF_DRQ_EN		BIT(24)
     64#define SUN6I_FIFO_CTL_TF_RST			BIT(31)
     65
     66#define SUN6I_FIFO_STA_REG		0x1c
     67#define SUN6I_FIFO_STA_RF_CNT_MASK		GENMASK(7, 0)
     68#define SUN6I_FIFO_STA_TF_CNT_MASK		GENMASK(23, 16)
     69
     70#define SUN6I_CLK_CTL_REG		0x24
     71#define SUN6I_CLK_CTL_CDR2_MASK			0xff
     72#define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
     73#define SUN6I_CLK_CTL_CDR1_MASK			0xf
     74#define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
     75#define SUN6I_CLK_CTL_DRS			BIT(12)
     76
     77#define SUN6I_MAX_XFER_SIZE		0xffffff
     78
     79#define SUN6I_BURST_CNT_REG		0x30
     80
     81#define SUN6I_XMIT_CNT_REG		0x34
     82
     83#define SUN6I_BURST_CTL_CNT_REG		0x38
     84
     85#define SUN6I_TXDATA_REG		0x200
     86#define SUN6I_RXDATA_REG		0x300
     87
     88struct sun6i_spi {
     89	struct spi_master	*master;
     90	void __iomem		*base_addr;
     91	dma_addr_t		dma_addr_rx;
     92	dma_addr_t		dma_addr_tx;
     93	struct clk		*hclk;
     94	struct clk		*mclk;
     95	struct reset_control	*rstc;
     96
     97	struct completion	done;
     98
     99	const u8		*tx_buf;
    100	u8			*rx_buf;
    101	int			len;
    102	unsigned long		fifo_depth;
    103};
    104
    105static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
    106{
    107	return readl(sspi->base_addr + reg);
    108}
    109
    110static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
    111{
    112	writel(value, sspi->base_addr + reg);
    113}
    114
    115static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
    116{
    117	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
    118
    119	return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
    120}
    121
    122static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
    123{
    124	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
    125
    126	return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
    127}
    128
    129static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
    130{
    131	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
    132
    133	reg &= ~mask;
    134	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
    135}
    136
    137static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
    138{
    139	u32 len;
    140	u8 byte;
    141
    142	/* See how much data is available */
    143	len = sun6i_spi_get_rx_fifo_count(sspi);
    144
    145	while (len--) {
    146		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
    147		if (sspi->rx_buf)
    148			*sspi->rx_buf++ = byte;
    149	}
    150}
    151
    152static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
    153{
    154	u32 cnt;
    155	int len;
    156	u8 byte;
    157
    158	/* See how much data we can fit */
    159	cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
    160
    161	len = min((int)cnt, sspi->len);
    162
    163	while (len--) {
    164		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
    165		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
    166		sspi->len--;
    167	}
    168}
    169
    170static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
    171{
    172	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
    173	u32 reg;
    174
    175	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
    176	reg &= ~SUN6I_TFR_CTL_CS_MASK;
    177	reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
    178
    179	if (enable)
    180		reg |= SUN6I_TFR_CTL_CS_LEVEL;
    181	else
    182		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
    183
    184	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
    185}
    186
    187static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
    188{
    189	return SUN6I_MAX_XFER_SIZE - 1;
    190}
    191
    192static int sun6i_spi_prepare_dma(struct sun6i_spi *sspi,
    193				 struct spi_transfer *tfr)
    194{
    195	struct dma_async_tx_descriptor *rxdesc, *txdesc;
    196	struct spi_master *master = sspi->master;
    197
    198	rxdesc = NULL;
    199	if (tfr->rx_buf) {
    200		struct dma_slave_config rxconf = {
    201			.direction = DMA_DEV_TO_MEM,
    202			.src_addr = sspi->dma_addr_rx,
    203			.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
    204			.src_maxburst = 8,
    205		};
    206
    207		dmaengine_slave_config(master->dma_rx, &rxconf);
    208
    209		rxdesc = dmaengine_prep_slave_sg(master->dma_rx,
    210						 tfr->rx_sg.sgl,
    211						 tfr->rx_sg.nents,
    212						 DMA_DEV_TO_MEM,
    213						 DMA_PREP_INTERRUPT);
    214		if (!rxdesc)
    215			return -EINVAL;
    216	}
    217
    218	txdesc = NULL;
    219	if (tfr->tx_buf) {
    220		struct dma_slave_config txconf = {
    221			.direction = DMA_MEM_TO_DEV,
    222			.dst_addr = sspi->dma_addr_tx,
    223			.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
    224			.dst_maxburst = 8,
    225		};
    226
    227		dmaengine_slave_config(master->dma_tx, &txconf);
    228
    229		txdesc = dmaengine_prep_slave_sg(master->dma_tx,
    230						 tfr->tx_sg.sgl,
    231						 tfr->tx_sg.nents,
    232						 DMA_MEM_TO_DEV,
    233						 DMA_PREP_INTERRUPT);
    234		if (!txdesc) {
    235			if (rxdesc)
    236				dmaengine_terminate_sync(master->dma_rx);
    237			return -EINVAL;
    238		}
    239	}
    240
    241	if (tfr->rx_buf) {
    242		dmaengine_submit(rxdesc);
    243		dma_async_issue_pending(master->dma_rx);
    244	}
    245
    246	if (tfr->tx_buf) {
    247		dmaengine_submit(txdesc);
    248		dma_async_issue_pending(master->dma_tx);
    249	}
    250
    251	return 0;
    252}
    253
    254static int sun6i_spi_transfer_one(struct spi_master *master,
    255				  struct spi_device *spi,
    256				  struct spi_transfer *tfr)
    257{
    258	struct sun6i_spi *sspi = spi_master_get_devdata(master);
    259	unsigned int mclk_rate, div, div_cdr1, div_cdr2, timeout;
    260	unsigned int start, end, tx_time;
    261	unsigned int trig_level;
    262	unsigned int tx_len = 0, rx_len = 0;
    263	bool use_dma;
    264	int ret = 0;
    265	u32 reg;
    266
    267	if (tfr->len > SUN6I_MAX_XFER_SIZE)
    268		return -EINVAL;
    269
    270	reinit_completion(&sspi->done);
    271	sspi->tx_buf = tfr->tx_buf;
    272	sspi->rx_buf = tfr->rx_buf;
    273	sspi->len = tfr->len;
    274	use_dma = master->can_dma ? master->can_dma(master, spi, tfr) : false;
    275
    276	/* Clear pending interrupts */
    277	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
    278
    279	/* Reset FIFO */
    280	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
    281			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
    282
    283	reg = 0;
    284
    285	if (!use_dma) {
    286		/*
    287		 * Setup FIFO interrupt trigger level
    288		 * Here we choose 3/4 of the full fifo depth, as it's
    289		 * the hardcoded value used in old generation of Allwinner
    290		 * SPI controller. (See spi-sun4i.c)
    291		 */
    292		trig_level = sspi->fifo_depth / 4 * 3;
    293	} else {
    294		/*
    295		 * Setup FIFO DMA request trigger level
    296		 * We choose 1/2 of the full fifo depth, that value will
    297		 * be used as DMA burst length.
    298		 */
    299		trig_level = sspi->fifo_depth / 2;
    300
    301		if (tfr->tx_buf)
    302			reg |= SUN6I_FIFO_CTL_TF_DRQ_EN;
    303		if (tfr->rx_buf)
    304			reg |= SUN6I_FIFO_CTL_RF_DRQ_EN;
    305	}
    306
    307	reg |= (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
    308	       (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS);
    309
    310	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, reg);
    311
    312	/*
    313	 * Setup the transfer control register: Chip Select,
    314	 * polarities, etc.
    315	 */
    316	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
    317
    318	if (spi->mode & SPI_CPOL)
    319		reg |= SUN6I_TFR_CTL_CPOL;
    320	else
    321		reg &= ~SUN6I_TFR_CTL_CPOL;
    322
    323	if (spi->mode & SPI_CPHA)
    324		reg |= SUN6I_TFR_CTL_CPHA;
    325	else
    326		reg &= ~SUN6I_TFR_CTL_CPHA;
    327
    328	if (spi->mode & SPI_LSB_FIRST)
    329		reg |= SUN6I_TFR_CTL_FBS;
    330	else
    331		reg &= ~SUN6I_TFR_CTL_FBS;
    332
    333	/*
    334	 * If it's a TX only transfer, we don't want to fill the RX
    335	 * FIFO with bogus data
    336	 */
    337	if (sspi->rx_buf) {
    338		reg &= ~SUN6I_TFR_CTL_DHB;
    339		rx_len = tfr->len;
    340	} else {
    341		reg |= SUN6I_TFR_CTL_DHB;
    342	}
    343
    344	/* We want to control the chip select manually */
    345	reg |= SUN6I_TFR_CTL_CS_MANUAL;
    346
    347	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
    348
    349	/* Ensure that we have a parent clock fast enough */
    350	mclk_rate = clk_get_rate(sspi->mclk);
    351	if (mclk_rate < (2 * tfr->speed_hz)) {
    352		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
    353		mclk_rate = clk_get_rate(sspi->mclk);
    354	}
    355
    356	/*
    357	 * Setup clock divider.
    358	 *
    359	 * We have two choices there. Either we can use the clock
    360	 * divide rate 1, which is calculated thanks to this formula:
    361	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
    362	 * Or we can use CDR2, which is calculated with the formula:
    363	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
    364	 * Wether we use the former or the latter is set through the
    365	 * DRS bit.
    366	 *
    367	 * First try CDR2, and if we can't reach the expected
    368	 * frequency, fall back to CDR1.
    369	 */
    370	div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
    371	div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
    372	if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
    373		reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
    374		tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
    375	} else {
    376		div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
    377		reg = SUN6I_CLK_CTL_CDR1(div);
    378		tfr->effective_speed_hz = mclk_rate / (1 << div);
    379	}
    380
    381	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
    382	/* Finally enable the bus - doing so before might raise SCK to HIGH */
    383	reg = sun6i_spi_read(sspi, SUN6I_GBL_CTL_REG);
    384	reg |= SUN6I_GBL_CTL_BUS_ENABLE;
    385	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, reg);
    386
    387	/* Setup the transfer now... */
    388	if (sspi->tx_buf)
    389		tx_len = tfr->len;
    390
    391	/* Setup the counters */
    392	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
    393	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
    394	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, tx_len);
    395
    396	if (!use_dma) {
    397		/* Fill the TX FIFO */
    398		sun6i_spi_fill_fifo(sspi);
    399	} else {
    400		ret = sun6i_spi_prepare_dma(sspi, tfr);
    401		if (ret) {
    402			dev_warn(&master->dev,
    403				 "%s: prepare DMA failed, ret=%d",
    404				 dev_name(&spi->dev), ret);
    405			return ret;
    406		}
    407	}
    408
    409	/* Enable the interrupts */
    410	reg = SUN6I_INT_CTL_TC;
    411
    412	if (!use_dma) {
    413		if (rx_len > sspi->fifo_depth)
    414			reg |= SUN6I_INT_CTL_RF_RDY;
    415		if (tx_len > sspi->fifo_depth)
    416			reg |= SUN6I_INT_CTL_TF_ERQ;
    417	}
    418
    419	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
    420
    421	/* Start the transfer */
    422	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
    423	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
    424
    425	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
    426	start = jiffies;
    427	timeout = wait_for_completion_timeout(&sspi->done,
    428					      msecs_to_jiffies(tx_time));
    429	end = jiffies;
    430	if (!timeout) {
    431		dev_warn(&master->dev,
    432			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
    433			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
    434			 jiffies_to_msecs(end - start), tx_time);
    435		ret = -ETIMEDOUT;
    436	}
    437
    438	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
    439
    440	if (ret && use_dma) {
    441		dmaengine_terminate_sync(master->dma_rx);
    442		dmaengine_terminate_sync(master->dma_tx);
    443	}
    444
    445	return ret;
    446}
    447
    448static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
    449{
    450	struct sun6i_spi *sspi = dev_id;
    451	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
    452
    453	/* Transfer complete */
    454	if (status & SUN6I_INT_CTL_TC) {
    455		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
    456		sun6i_spi_drain_fifo(sspi);
    457		complete(&sspi->done);
    458		return IRQ_HANDLED;
    459	}
    460
    461	/* Receive FIFO 3/4 full */
    462	if (status & SUN6I_INT_CTL_RF_RDY) {
    463		sun6i_spi_drain_fifo(sspi);
    464		/* Only clear the interrupt _after_ draining the FIFO */
    465		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
    466		return IRQ_HANDLED;
    467	}
    468
    469	/* Transmit FIFO 3/4 empty */
    470	if (status & SUN6I_INT_CTL_TF_ERQ) {
    471		sun6i_spi_fill_fifo(sspi);
    472
    473		if (!sspi->len)
    474			/* nothing left to transmit */
    475			sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
    476
    477		/* Only clear the interrupt _after_ re-seeding the FIFO */
    478		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
    479
    480		return IRQ_HANDLED;
    481	}
    482
    483	return IRQ_NONE;
    484}
    485
    486static int sun6i_spi_runtime_resume(struct device *dev)
    487{
    488	struct spi_master *master = dev_get_drvdata(dev);
    489	struct sun6i_spi *sspi = spi_master_get_devdata(master);
    490	int ret;
    491
    492	ret = clk_prepare_enable(sspi->hclk);
    493	if (ret) {
    494		dev_err(dev, "Couldn't enable AHB clock\n");
    495		goto out;
    496	}
    497
    498	ret = clk_prepare_enable(sspi->mclk);
    499	if (ret) {
    500		dev_err(dev, "Couldn't enable module clock\n");
    501		goto err;
    502	}
    503
    504	ret = reset_control_deassert(sspi->rstc);
    505	if (ret) {
    506		dev_err(dev, "Couldn't deassert the device from reset\n");
    507		goto err2;
    508	}
    509
    510	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
    511			SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
    512
    513	return 0;
    514
    515err2:
    516	clk_disable_unprepare(sspi->mclk);
    517err:
    518	clk_disable_unprepare(sspi->hclk);
    519out:
    520	return ret;
    521}
    522
    523static int sun6i_spi_runtime_suspend(struct device *dev)
    524{
    525	struct spi_master *master = dev_get_drvdata(dev);
    526	struct sun6i_spi *sspi = spi_master_get_devdata(master);
    527
    528	reset_control_assert(sspi->rstc);
    529	clk_disable_unprepare(sspi->mclk);
    530	clk_disable_unprepare(sspi->hclk);
    531
    532	return 0;
    533}
    534
    535static bool sun6i_spi_can_dma(struct spi_master *master,
    536			      struct spi_device *spi,
    537			      struct spi_transfer *xfer)
    538{
    539	struct sun6i_spi *sspi = spi_master_get_devdata(master);
    540
    541	/*
    542	 * If the number of spi words to transfer is less or equal than
    543	 * the fifo length we can just fill the fifo and wait for a single
    544	 * irq, so don't bother setting up dma
    545	 */
    546	return xfer->len > sspi->fifo_depth;
    547}
    548
    549static int sun6i_spi_probe(struct platform_device *pdev)
    550{
    551	struct spi_master *master;
    552	struct sun6i_spi *sspi;
    553	struct resource *mem;
    554	int ret = 0, irq;
    555
    556	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
    557	if (!master) {
    558		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
    559		return -ENOMEM;
    560	}
    561
    562	platform_set_drvdata(pdev, master);
    563	sspi = spi_master_get_devdata(master);
    564
    565	sspi->base_addr = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
    566	if (IS_ERR(sspi->base_addr)) {
    567		ret = PTR_ERR(sspi->base_addr);
    568		goto err_free_master;
    569	}
    570
    571	irq = platform_get_irq(pdev, 0);
    572	if (irq < 0) {
    573		ret = -ENXIO;
    574		goto err_free_master;
    575	}
    576
    577	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
    578			       0, "sun6i-spi", sspi);
    579	if (ret) {
    580		dev_err(&pdev->dev, "Cannot request IRQ\n");
    581		goto err_free_master;
    582	}
    583
    584	sspi->master = master;
    585	sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
    586
    587	master->max_speed_hz = 100 * 1000 * 1000;
    588	master->min_speed_hz = 3 * 1000;
    589	master->use_gpio_descriptors = true;
    590	master->set_cs = sun6i_spi_set_cs;
    591	master->transfer_one = sun6i_spi_transfer_one;
    592	master->num_chipselect = 4;
    593	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
    594	master->bits_per_word_mask = SPI_BPW_MASK(8);
    595	master->dev.of_node = pdev->dev.of_node;
    596	master->auto_runtime_pm = true;
    597	master->max_transfer_size = sun6i_spi_max_transfer_size;
    598
    599	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
    600	if (IS_ERR(sspi->hclk)) {
    601		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
    602		ret = PTR_ERR(sspi->hclk);
    603		goto err_free_master;
    604	}
    605
    606	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
    607	if (IS_ERR(sspi->mclk)) {
    608		dev_err(&pdev->dev, "Unable to acquire module clock\n");
    609		ret = PTR_ERR(sspi->mclk);
    610		goto err_free_master;
    611	}
    612
    613	init_completion(&sspi->done);
    614
    615	sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
    616	if (IS_ERR(sspi->rstc)) {
    617		dev_err(&pdev->dev, "Couldn't get reset controller\n");
    618		ret = PTR_ERR(sspi->rstc);
    619		goto err_free_master;
    620	}
    621
    622	master->dma_tx = dma_request_chan(&pdev->dev, "tx");
    623	if (IS_ERR(master->dma_tx)) {
    624		/* Check tx to see if we need defer probing driver */
    625		if (PTR_ERR(master->dma_tx) == -EPROBE_DEFER) {
    626			ret = -EPROBE_DEFER;
    627			goto err_free_master;
    628		}
    629		dev_warn(&pdev->dev, "Failed to request TX DMA channel\n");
    630		master->dma_tx = NULL;
    631	}
    632
    633	master->dma_rx = dma_request_chan(&pdev->dev, "rx");
    634	if (IS_ERR(master->dma_rx)) {
    635		if (PTR_ERR(master->dma_rx) == -EPROBE_DEFER) {
    636			ret = -EPROBE_DEFER;
    637			goto err_free_dma_tx;
    638		}
    639		dev_warn(&pdev->dev, "Failed to request RX DMA channel\n");
    640		master->dma_rx = NULL;
    641	}
    642
    643	if (master->dma_tx && master->dma_rx) {
    644		sspi->dma_addr_tx = mem->start + SUN6I_TXDATA_REG;
    645		sspi->dma_addr_rx = mem->start + SUN6I_RXDATA_REG;
    646		master->can_dma = sun6i_spi_can_dma;
    647	}
    648
    649	/*
    650	 * This wake-up/shutdown pattern is to be able to have the
    651	 * device woken up, even if runtime_pm is disabled
    652	 */
    653	ret = sun6i_spi_runtime_resume(&pdev->dev);
    654	if (ret) {
    655		dev_err(&pdev->dev, "Couldn't resume the device\n");
    656		goto err_free_dma_rx;
    657	}
    658
    659	pm_runtime_set_autosuspend_delay(&pdev->dev, SUN6I_AUTOSUSPEND_TIMEOUT);
    660	pm_runtime_use_autosuspend(&pdev->dev);
    661	pm_runtime_set_active(&pdev->dev);
    662	pm_runtime_enable(&pdev->dev);
    663
    664	ret = devm_spi_register_master(&pdev->dev, master);
    665	if (ret) {
    666		dev_err(&pdev->dev, "cannot register SPI master\n");
    667		goto err_pm_disable;
    668	}
    669
    670	return 0;
    671
    672err_pm_disable:
    673	pm_runtime_disable(&pdev->dev);
    674	sun6i_spi_runtime_suspend(&pdev->dev);
    675err_free_dma_rx:
    676	if (master->dma_rx)
    677		dma_release_channel(master->dma_rx);
    678err_free_dma_tx:
    679	if (master->dma_tx)
    680		dma_release_channel(master->dma_tx);
    681err_free_master:
    682	spi_master_put(master);
    683	return ret;
    684}
    685
    686static int sun6i_spi_remove(struct platform_device *pdev)
    687{
    688	struct spi_master *master = platform_get_drvdata(pdev);
    689
    690	pm_runtime_force_suspend(&pdev->dev);
    691
    692	if (master->dma_tx)
    693		dma_release_channel(master->dma_tx);
    694	if (master->dma_rx)
    695		dma_release_channel(master->dma_rx);
    696	return 0;
    697}
    698
    699static const struct of_device_id sun6i_spi_match[] = {
    700	{ .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
    701	{ .compatible = "allwinner,sun8i-h3-spi",  .data = (void *)SUN8I_FIFO_DEPTH },
    702	{}
    703};
    704MODULE_DEVICE_TABLE(of, sun6i_spi_match);
    705
    706static const struct dev_pm_ops sun6i_spi_pm_ops = {
    707	.runtime_resume		= sun6i_spi_runtime_resume,
    708	.runtime_suspend	= sun6i_spi_runtime_suspend,
    709};
    710
    711static struct platform_driver sun6i_spi_driver = {
    712	.probe	= sun6i_spi_probe,
    713	.remove	= sun6i_spi_remove,
    714	.driver	= {
    715		.name		= "sun6i-spi",
    716		.of_match_table	= sun6i_spi_match,
    717		.pm		= &sun6i_spi_pm_ops,
    718	},
    719};
    720module_platform_driver(sun6i_spi_driver);
    721
    722MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
    723MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
    724MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
    725MODULE_LICENSE("GPL");