cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

spi.c (118036B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2// SPI init/core code
      3//
      4// Copyright (C) 2005 David Brownell
      5// Copyright (C) 2008 Secret Lab Technologies Ltd.
      6
      7#include <linux/kernel.h>
      8#include <linux/device.h>
      9#include <linux/init.h>
     10#include <linux/cache.h>
     11#include <linux/dma-mapping.h>
     12#include <linux/dmaengine.h>
     13#include <linux/mutex.h>
     14#include <linux/of_device.h>
     15#include <linux/of_irq.h>
     16#include <linux/clk/clk-conf.h>
     17#include <linux/slab.h>
     18#include <linux/mod_devicetable.h>
     19#include <linux/spi/spi.h>
     20#include <linux/spi/spi-mem.h>
     21#include <linux/gpio/consumer.h>
     22#include <linux/pm_runtime.h>
     23#include <linux/pm_domain.h>
     24#include <linux/property.h>
     25#include <linux/export.h>
     26#include <linux/sched/rt.h>
     27#include <uapi/linux/sched/types.h>
     28#include <linux/delay.h>
     29#include <linux/kthread.h>
     30#include <linux/ioport.h>
     31#include <linux/acpi.h>
     32#include <linux/highmem.h>
     33#include <linux/idr.h>
     34#include <linux/platform_data/x86/apple.h>
     35#include <linux/ptp_clock_kernel.h>
     36
     37#define CREATE_TRACE_POINTS
     38#include <trace/events/spi.h>
     39EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
     40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
     41
     42#include "internals.h"
     43
     44static DEFINE_IDR(spi_master_idr);
     45
     46static void spidev_release(struct device *dev)
     47{
     48	struct spi_device	*spi = to_spi_device(dev);
     49
     50	spi_controller_put(spi->controller);
     51	kfree(spi->driver_override);
     52	kfree(spi);
     53}
     54
     55static ssize_t
     56modalias_show(struct device *dev, struct device_attribute *a, char *buf)
     57{
     58	const struct spi_device	*spi = to_spi_device(dev);
     59	int len;
     60
     61	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
     62	if (len != -ENODEV)
     63		return len;
     64
     65	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
     66}
     67static DEVICE_ATTR_RO(modalias);
     68
     69static ssize_t driver_override_store(struct device *dev,
     70				     struct device_attribute *a,
     71				     const char *buf, size_t count)
     72{
     73	struct spi_device *spi = to_spi_device(dev);
     74	int ret;
     75
     76	ret = driver_set_override(dev, &spi->driver_override, buf, count);
     77	if (ret)
     78		return ret;
     79
     80	return count;
     81}
     82
     83static ssize_t driver_override_show(struct device *dev,
     84				    struct device_attribute *a, char *buf)
     85{
     86	const struct spi_device *spi = to_spi_device(dev);
     87	ssize_t len;
     88
     89	device_lock(dev);
     90	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
     91	device_unlock(dev);
     92	return len;
     93}
     94static DEVICE_ATTR_RW(driver_override);
     95
     96#define SPI_STATISTICS_ATTRS(field, file)				\
     97static ssize_t spi_controller_##field##_show(struct device *dev,	\
     98					     struct device_attribute *attr, \
     99					     char *buf)			\
    100{									\
    101	struct spi_controller *ctlr = container_of(dev,			\
    102					 struct spi_controller, dev);	\
    103	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
    104}									\
    105static struct device_attribute dev_attr_spi_controller_##field = {	\
    106	.attr = { .name = file, .mode = 0444 },				\
    107	.show = spi_controller_##field##_show,				\
    108};									\
    109static ssize_t spi_device_##field##_show(struct device *dev,		\
    110					 struct device_attribute *attr,	\
    111					char *buf)			\
    112{									\
    113	struct spi_device *spi = to_spi_device(dev);			\
    114	return spi_statistics_##field##_show(&spi->statistics, buf);	\
    115}									\
    116static struct device_attribute dev_attr_spi_device_##field = {		\
    117	.attr = { .name = file, .mode = 0444 },				\
    118	.show = spi_device_##field##_show,				\
    119}
    120
    121#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
    122static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
    123					    char *buf)			\
    124{									\
    125	unsigned long flags;						\
    126	ssize_t len;							\
    127	spin_lock_irqsave(&stat->lock, flags);				\
    128	len = sysfs_emit(buf, format_string "\n", stat->field);		\
    129	spin_unlock_irqrestore(&stat->lock, flags);			\
    130	return len;							\
    131}									\
    132SPI_STATISTICS_ATTRS(name, file)
    133
    134#define SPI_STATISTICS_SHOW(field, format_string)			\
    135	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
    136				 field, format_string)
    137
    138SPI_STATISTICS_SHOW(messages, "%lu");
    139SPI_STATISTICS_SHOW(transfers, "%lu");
    140SPI_STATISTICS_SHOW(errors, "%lu");
    141SPI_STATISTICS_SHOW(timedout, "%lu");
    142
    143SPI_STATISTICS_SHOW(spi_sync, "%lu");
    144SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
    145SPI_STATISTICS_SHOW(spi_async, "%lu");
    146
    147SPI_STATISTICS_SHOW(bytes, "%llu");
    148SPI_STATISTICS_SHOW(bytes_rx, "%llu");
    149SPI_STATISTICS_SHOW(bytes_tx, "%llu");
    150
    151#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
    152	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
    153				 "transfer_bytes_histo_" number,	\
    154				 transfer_bytes_histo[index],  "%lu")
    155SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
    156SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
    157SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
    158SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
    159SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
    160SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
    161SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
    162SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
    163SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
    164SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
    165SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
    166SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
    167SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
    168SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
    169SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
    170SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
    171SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
    172
    173SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
    174
    175static struct attribute *spi_dev_attrs[] = {
    176	&dev_attr_modalias.attr,
    177	&dev_attr_driver_override.attr,
    178	NULL,
    179};
    180
    181static const struct attribute_group spi_dev_group = {
    182	.attrs  = spi_dev_attrs,
    183};
    184
    185static struct attribute *spi_device_statistics_attrs[] = {
    186	&dev_attr_spi_device_messages.attr,
    187	&dev_attr_spi_device_transfers.attr,
    188	&dev_attr_spi_device_errors.attr,
    189	&dev_attr_spi_device_timedout.attr,
    190	&dev_attr_spi_device_spi_sync.attr,
    191	&dev_attr_spi_device_spi_sync_immediate.attr,
    192	&dev_attr_spi_device_spi_async.attr,
    193	&dev_attr_spi_device_bytes.attr,
    194	&dev_attr_spi_device_bytes_rx.attr,
    195	&dev_attr_spi_device_bytes_tx.attr,
    196	&dev_attr_spi_device_transfer_bytes_histo0.attr,
    197	&dev_attr_spi_device_transfer_bytes_histo1.attr,
    198	&dev_attr_spi_device_transfer_bytes_histo2.attr,
    199	&dev_attr_spi_device_transfer_bytes_histo3.attr,
    200	&dev_attr_spi_device_transfer_bytes_histo4.attr,
    201	&dev_attr_spi_device_transfer_bytes_histo5.attr,
    202	&dev_attr_spi_device_transfer_bytes_histo6.attr,
    203	&dev_attr_spi_device_transfer_bytes_histo7.attr,
    204	&dev_attr_spi_device_transfer_bytes_histo8.attr,
    205	&dev_attr_spi_device_transfer_bytes_histo9.attr,
    206	&dev_attr_spi_device_transfer_bytes_histo10.attr,
    207	&dev_attr_spi_device_transfer_bytes_histo11.attr,
    208	&dev_attr_spi_device_transfer_bytes_histo12.attr,
    209	&dev_attr_spi_device_transfer_bytes_histo13.attr,
    210	&dev_attr_spi_device_transfer_bytes_histo14.attr,
    211	&dev_attr_spi_device_transfer_bytes_histo15.attr,
    212	&dev_attr_spi_device_transfer_bytes_histo16.attr,
    213	&dev_attr_spi_device_transfers_split_maxsize.attr,
    214	NULL,
    215};
    216
    217static const struct attribute_group spi_device_statistics_group = {
    218	.name  = "statistics",
    219	.attrs  = spi_device_statistics_attrs,
    220};
    221
    222static const struct attribute_group *spi_dev_groups[] = {
    223	&spi_dev_group,
    224	&spi_device_statistics_group,
    225	NULL,
    226};
    227
    228static struct attribute *spi_controller_statistics_attrs[] = {
    229	&dev_attr_spi_controller_messages.attr,
    230	&dev_attr_spi_controller_transfers.attr,
    231	&dev_attr_spi_controller_errors.attr,
    232	&dev_attr_spi_controller_timedout.attr,
    233	&dev_attr_spi_controller_spi_sync.attr,
    234	&dev_attr_spi_controller_spi_sync_immediate.attr,
    235	&dev_attr_spi_controller_spi_async.attr,
    236	&dev_attr_spi_controller_bytes.attr,
    237	&dev_attr_spi_controller_bytes_rx.attr,
    238	&dev_attr_spi_controller_bytes_tx.attr,
    239	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
    240	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
    241	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
    242	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
    243	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
    244	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
    245	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
    246	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
    247	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
    248	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
    249	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
    250	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
    251	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
    252	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
    253	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
    254	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
    255	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
    256	&dev_attr_spi_controller_transfers_split_maxsize.attr,
    257	NULL,
    258};
    259
    260static const struct attribute_group spi_controller_statistics_group = {
    261	.name  = "statistics",
    262	.attrs  = spi_controller_statistics_attrs,
    263};
    264
    265static const struct attribute_group *spi_master_groups[] = {
    266	&spi_controller_statistics_group,
    267	NULL,
    268};
    269
    270static void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
    271					      struct spi_transfer *xfer,
    272					      struct spi_controller *ctlr)
    273{
    274	unsigned long flags;
    275	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
    276
    277	if (l2len < 0)
    278		l2len = 0;
    279
    280	spin_lock_irqsave(&stats->lock, flags);
    281
    282	stats->transfers++;
    283	stats->transfer_bytes_histo[l2len]++;
    284
    285	stats->bytes += xfer->len;
    286	if ((xfer->tx_buf) &&
    287	    (xfer->tx_buf != ctlr->dummy_tx))
    288		stats->bytes_tx += xfer->len;
    289	if ((xfer->rx_buf) &&
    290	    (xfer->rx_buf != ctlr->dummy_rx))
    291		stats->bytes_rx += xfer->len;
    292
    293	spin_unlock_irqrestore(&stats->lock, flags);
    294}
    295
    296/*
    297 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
    298 * and the sysfs version makes coldplug work too.
    299 */
    300static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
    301{
    302	while (id->name[0]) {
    303		if (!strcmp(name, id->name))
    304			return id;
    305		id++;
    306	}
    307	return NULL;
    308}
    309
    310const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
    311{
    312	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
    313
    314	return spi_match_id(sdrv->id_table, sdev->modalias);
    315}
    316EXPORT_SYMBOL_GPL(spi_get_device_id);
    317
    318static int spi_match_device(struct device *dev, struct device_driver *drv)
    319{
    320	const struct spi_device	*spi = to_spi_device(dev);
    321	const struct spi_driver	*sdrv = to_spi_driver(drv);
    322
    323	/* Check override first, and if set, only use the named driver */
    324	if (spi->driver_override)
    325		return strcmp(spi->driver_override, drv->name) == 0;
    326
    327	/* Attempt an OF style match */
    328	if (of_driver_match_device(dev, drv))
    329		return 1;
    330
    331	/* Then try ACPI */
    332	if (acpi_driver_match_device(dev, drv))
    333		return 1;
    334
    335	if (sdrv->id_table)
    336		return !!spi_match_id(sdrv->id_table, spi->modalias);
    337
    338	return strcmp(spi->modalias, drv->name) == 0;
    339}
    340
    341static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
    342{
    343	const struct spi_device		*spi = to_spi_device(dev);
    344	int rc;
    345
    346	rc = acpi_device_uevent_modalias(dev, env);
    347	if (rc != -ENODEV)
    348		return rc;
    349
    350	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
    351}
    352
    353static int spi_probe(struct device *dev)
    354{
    355	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
    356	struct spi_device		*spi = to_spi_device(dev);
    357	int ret;
    358
    359	ret = of_clk_set_defaults(dev->of_node, false);
    360	if (ret)
    361		return ret;
    362
    363	if (dev->of_node) {
    364		spi->irq = of_irq_get(dev->of_node, 0);
    365		if (spi->irq == -EPROBE_DEFER)
    366			return -EPROBE_DEFER;
    367		if (spi->irq < 0)
    368			spi->irq = 0;
    369	}
    370
    371	ret = dev_pm_domain_attach(dev, true);
    372	if (ret)
    373		return ret;
    374
    375	if (sdrv->probe) {
    376		ret = sdrv->probe(spi);
    377		if (ret)
    378			dev_pm_domain_detach(dev, true);
    379	}
    380
    381	return ret;
    382}
    383
    384static void spi_remove(struct device *dev)
    385{
    386	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
    387
    388	if (sdrv->remove)
    389		sdrv->remove(to_spi_device(dev));
    390
    391	dev_pm_domain_detach(dev, true);
    392}
    393
    394static void spi_shutdown(struct device *dev)
    395{
    396	if (dev->driver) {
    397		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
    398
    399		if (sdrv->shutdown)
    400			sdrv->shutdown(to_spi_device(dev));
    401	}
    402}
    403
    404struct bus_type spi_bus_type = {
    405	.name		= "spi",
    406	.dev_groups	= spi_dev_groups,
    407	.match		= spi_match_device,
    408	.uevent		= spi_uevent,
    409	.probe		= spi_probe,
    410	.remove		= spi_remove,
    411	.shutdown	= spi_shutdown,
    412};
    413EXPORT_SYMBOL_GPL(spi_bus_type);
    414
    415/**
    416 * __spi_register_driver - register a SPI driver
    417 * @owner: owner module of the driver to register
    418 * @sdrv: the driver to register
    419 * Context: can sleep
    420 *
    421 * Return: zero on success, else a negative error code.
    422 */
    423int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
    424{
    425	sdrv->driver.owner = owner;
    426	sdrv->driver.bus = &spi_bus_type;
    427
    428	/*
    429	 * For Really Good Reasons we use spi: modaliases not of:
    430	 * modaliases for DT so module autoloading won't work if we
    431	 * don't have a spi_device_id as well as a compatible string.
    432	 */
    433	if (sdrv->driver.of_match_table) {
    434		const struct of_device_id *of_id;
    435
    436		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
    437		     of_id++) {
    438			const char *of_name;
    439
    440			/* Strip off any vendor prefix */
    441			of_name = strnchr(of_id->compatible,
    442					  sizeof(of_id->compatible), ',');
    443			if (of_name)
    444				of_name++;
    445			else
    446				of_name = of_id->compatible;
    447
    448			if (sdrv->id_table) {
    449				const struct spi_device_id *spi_id;
    450
    451				spi_id = spi_match_id(sdrv->id_table, of_name);
    452				if (spi_id)
    453					continue;
    454			} else {
    455				if (strcmp(sdrv->driver.name, of_name) == 0)
    456					continue;
    457			}
    458
    459			pr_warn("SPI driver %s has no spi_device_id for %s\n",
    460				sdrv->driver.name, of_id->compatible);
    461		}
    462	}
    463
    464	return driver_register(&sdrv->driver);
    465}
    466EXPORT_SYMBOL_GPL(__spi_register_driver);
    467
    468/*-------------------------------------------------------------------------*/
    469
    470/*
    471 * SPI devices should normally not be created by SPI device drivers; that
    472 * would make them board-specific.  Similarly with SPI controller drivers.
    473 * Device registration normally goes into like arch/.../mach.../board-YYY.c
    474 * with other readonly (flashable) information about mainboard devices.
    475 */
    476
    477struct boardinfo {
    478	struct list_head	list;
    479	struct spi_board_info	board_info;
    480};
    481
    482static LIST_HEAD(board_list);
    483static LIST_HEAD(spi_controller_list);
    484
    485/*
    486 * Used to protect add/del operation for board_info list and
    487 * spi_controller list, and their matching process also used
    488 * to protect object of type struct idr.
    489 */
    490static DEFINE_MUTEX(board_lock);
    491
    492/**
    493 * spi_alloc_device - Allocate a new SPI device
    494 * @ctlr: Controller to which device is connected
    495 * Context: can sleep
    496 *
    497 * Allows a driver to allocate and initialize a spi_device without
    498 * registering it immediately.  This allows a driver to directly
    499 * fill the spi_device with device parameters before calling
    500 * spi_add_device() on it.
    501 *
    502 * Caller is responsible to call spi_add_device() on the returned
    503 * spi_device structure to add it to the SPI controller.  If the caller
    504 * needs to discard the spi_device without adding it, then it should
    505 * call spi_dev_put() on it.
    506 *
    507 * Return: a pointer to the new device, or NULL.
    508 */
    509struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
    510{
    511	struct spi_device	*spi;
    512
    513	if (!spi_controller_get(ctlr))
    514		return NULL;
    515
    516	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
    517	if (!spi) {
    518		spi_controller_put(ctlr);
    519		return NULL;
    520	}
    521
    522	spi->master = spi->controller = ctlr;
    523	spi->dev.parent = &ctlr->dev;
    524	spi->dev.bus = &spi_bus_type;
    525	spi->dev.release = spidev_release;
    526	spi->mode = ctlr->buswidth_override_bits;
    527
    528	spin_lock_init(&spi->statistics.lock);
    529
    530	device_initialize(&spi->dev);
    531	return spi;
    532}
    533EXPORT_SYMBOL_GPL(spi_alloc_device);
    534
    535static void spi_dev_set_name(struct spi_device *spi)
    536{
    537	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
    538
    539	if (adev) {
    540		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
    541		return;
    542	}
    543
    544	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
    545		     spi->chip_select);
    546}
    547
    548static int spi_dev_check(struct device *dev, void *data)
    549{
    550	struct spi_device *spi = to_spi_device(dev);
    551	struct spi_device *new_spi = data;
    552
    553	if (spi->controller == new_spi->controller &&
    554	    spi->chip_select == new_spi->chip_select)
    555		return -EBUSY;
    556	return 0;
    557}
    558
    559static void spi_cleanup(struct spi_device *spi)
    560{
    561	if (spi->controller->cleanup)
    562		spi->controller->cleanup(spi);
    563}
    564
    565static int __spi_add_device(struct spi_device *spi)
    566{
    567	struct spi_controller *ctlr = spi->controller;
    568	struct device *dev = ctlr->dev.parent;
    569	int status;
    570
    571	/*
    572	 * We need to make sure there's no other device with this
    573	 * chipselect **BEFORE** we call setup(), else we'll trash
    574	 * its configuration.
    575	 */
    576	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
    577	if (status) {
    578		dev_err(dev, "chipselect %d already in use\n",
    579				spi->chip_select);
    580		return status;
    581	}
    582
    583	/* Controller may unregister concurrently */
    584	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
    585	    !device_is_registered(&ctlr->dev)) {
    586		return -ENODEV;
    587	}
    588
    589	if (ctlr->cs_gpiods)
    590		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
    591
    592	/*
    593	 * Drivers may modify this initial i/o setup, but will
    594	 * normally rely on the device being setup.  Devices
    595	 * using SPI_CS_HIGH can't coexist well otherwise...
    596	 */
    597	status = spi_setup(spi);
    598	if (status < 0) {
    599		dev_err(dev, "can't setup %s, status %d\n",
    600				dev_name(&spi->dev), status);
    601		return status;
    602	}
    603
    604	/* Device may be bound to an active driver when this returns */
    605	status = device_add(&spi->dev);
    606	if (status < 0) {
    607		dev_err(dev, "can't add %s, status %d\n",
    608				dev_name(&spi->dev), status);
    609		spi_cleanup(spi);
    610	} else {
    611		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
    612	}
    613
    614	return status;
    615}
    616
    617/**
    618 * spi_add_device - Add spi_device allocated with spi_alloc_device
    619 * @spi: spi_device to register
    620 *
    621 * Companion function to spi_alloc_device.  Devices allocated with
    622 * spi_alloc_device can be added onto the spi bus with this function.
    623 *
    624 * Return: 0 on success; negative errno on failure
    625 */
    626int spi_add_device(struct spi_device *spi)
    627{
    628	struct spi_controller *ctlr = spi->controller;
    629	struct device *dev = ctlr->dev.parent;
    630	int status;
    631
    632	/* Chipselects are numbered 0..max; validate. */
    633	if (spi->chip_select >= ctlr->num_chipselect) {
    634		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
    635			ctlr->num_chipselect);
    636		return -EINVAL;
    637	}
    638
    639	/* Set the bus ID string */
    640	spi_dev_set_name(spi);
    641
    642	mutex_lock(&ctlr->add_lock);
    643	status = __spi_add_device(spi);
    644	mutex_unlock(&ctlr->add_lock);
    645	return status;
    646}
    647EXPORT_SYMBOL_GPL(spi_add_device);
    648
    649static int spi_add_device_locked(struct spi_device *spi)
    650{
    651	struct spi_controller *ctlr = spi->controller;
    652	struct device *dev = ctlr->dev.parent;
    653
    654	/* Chipselects are numbered 0..max; validate. */
    655	if (spi->chip_select >= ctlr->num_chipselect) {
    656		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
    657			ctlr->num_chipselect);
    658		return -EINVAL;
    659	}
    660
    661	/* Set the bus ID string */
    662	spi_dev_set_name(spi);
    663
    664	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
    665	return __spi_add_device(spi);
    666}
    667
    668/**
    669 * spi_new_device - instantiate one new SPI device
    670 * @ctlr: Controller to which device is connected
    671 * @chip: Describes the SPI device
    672 * Context: can sleep
    673 *
    674 * On typical mainboards, this is purely internal; and it's not needed
    675 * after board init creates the hard-wired devices.  Some development
    676 * platforms may not be able to use spi_register_board_info though, and
    677 * this is exported so that for example a USB or parport based adapter
    678 * driver could add devices (which it would learn about out-of-band).
    679 *
    680 * Return: the new device, or NULL.
    681 */
    682struct spi_device *spi_new_device(struct spi_controller *ctlr,
    683				  struct spi_board_info *chip)
    684{
    685	struct spi_device	*proxy;
    686	int			status;
    687
    688	/*
    689	 * NOTE:  caller did any chip->bus_num checks necessary.
    690	 *
    691	 * Also, unless we change the return value convention to use
    692	 * error-or-pointer (not NULL-or-pointer), troubleshootability
    693	 * suggests syslogged diagnostics are best here (ugh).
    694	 */
    695
    696	proxy = spi_alloc_device(ctlr);
    697	if (!proxy)
    698		return NULL;
    699
    700	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
    701
    702	proxy->chip_select = chip->chip_select;
    703	proxy->max_speed_hz = chip->max_speed_hz;
    704	proxy->mode = chip->mode;
    705	proxy->irq = chip->irq;
    706	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
    707	proxy->dev.platform_data = (void *) chip->platform_data;
    708	proxy->controller_data = chip->controller_data;
    709	proxy->controller_state = NULL;
    710
    711	if (chip->swnode) {
    712		status = device_add_software_node(&proxy->dev, chip->swnode);
    713		if (status) {
    714			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
    715				chip->modalias, status);
    716			goto err_dev_put;
    717		}
    718	}
    719
    720	status = spi_add_device(proxy);
    721	if (status < 0)
    722		goto err_dev_put;
    723
    724	return proxy;
    725
    726err_dev_put:
    727	device_remove_software_node(&proxy->dev);
    728	spi_dev_put(proxy);
    729	return NULL;
    730}
    731EXPORT_SYMBOL_GPL(spi_new_device);
    732
    733/**
    734 * spi_unregister_device - unregister a single SPI device
    735 * @spi: spi_device to unregister
    736 *
    737 * Start making the passed SPI device vanish. Normally this would be handled
    738 * by spi_unregister_controller().
    739 */
    740void spi_unregister_device(struct spi_device *spi)
    741{
    742	if (!spi)
    743		return;
    744
    745	if (spi->dev.of_node) {
    746		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
    747		of_node_put(spi->dev.of_node);
    748	}
    749	if (ACPI_COMPANION(&spi->dev))
    750		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
    751	device_remove_software_node(&spi->dev);
    752	device_del(&spi->dev);
    753	spi_cleanup(spi);
    754	put_device(&spi->dev);
    755}
    756EXPORT_SYMBOL_GPL(spi_unregister_device);
    757
    758static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
    759					      struct spi_board_info *bi)
    760{
    761	struct spi_device *dev;
    762
    763	if (ctlr->bus_num != bi->bus_num)
    764		return;
    765
    766	dev = spi_new_device(ctlr, bi);
    767	if (!dev)
    768		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
    769			bi->modalias);
    770}
    771
    772/**
    773 * spi_register_board_info - register SPI devices for a given board
    774 * @info: array of chip descriptors
    775 * @n: how many descriptors are provided
    776 * Context: can sleep
    777 *
    778 * Board-specific early init code calls this (probably during arch_initcall)
    779 * with segments of the SPI device table.  Any device nodes are created later,
    780 * after the relevant parent SPI controller (bus_num) is defined.  We keep
    781 * this table of devices forever, so that reloading a controller driver will
    782 * not make Linux forget about these hard-wired devices.
    783 *
    784 * Other code can also call this, e.g. a particular add-on board might provide
    785 * SPI devices through its expansion connector, so code initializing that board
    786 * would naturally declare its SPI devices.
    787 *
    788 * The board info passed can safely be __initdata ... but be careful of
    789 * any embedded pointers (platform_data, etc), they're copied as-is.
    790 *
    791 * Return: zero on success, else a negative error code.
    792 */
    793int spi_register_board_info(struct spi_board_info const *info, unsigned n)
    794{
    795	struct boardinfo *bi;
    796	int i;
    797
    798	if (!n)
    799		return 0;
    800
    801	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
    802	if (!bi)
    803		return -ENOMEM;
    804
    805	for (i = 0; i < n; i++, bi++, info++) {
    806		struct spi_controller *ctlr;
    807
    808		memcpy(&bi->board_info, info, sizeof(*info));
    809
    810		mutex_lock(&board_lock);
    811		list_add_tail(&bi->list, &board_list);
    812		list_for_each_entry(ctlr, &spi_controller_list, list)
    813			spi_match_controller_to_boardinfo(ctlr,
    814							  &bi->board_info);
    815		mutex_unlock(&board_lock);
    816	}
    817
    818	return 0;
    819}
    820
    821/*-------------------------------------------------------------------------*/
    822
    823/* Core methods for SPI resource management */
    824
    825/**
    826 * spi_res_alloc - allocate a spi resource that is life-cycle managed
    827 *                 during the processing of a spi_message while using
    828 *                 spi_transfer_one
    829 * @spi:     the spi device for which we allocate memory
    830 * @release: the release code to execute for this resource
    831 * @size:    size to alloc and return
    832 * @gfp:     GFP allocation flags
    833 *
    834 * Return: the pointer to the allocated data
    835 *
    836 * This may get enhanced in the future to allocate from a memory pool
    837 * of the @spi_device or @spi_controller to avoid repeated allocations.
    838 */
    839static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
    840			   size_t size, gfp_t gfp)
    841{
    842	struct spi_res *sres;
    843
    844	sres = kzalloc(sizeof(*sres) + size, gfp);
    845	if (!sres)
    846		return NULL;
    847
    848	INIT_LIST_HEAD(&sres->entry);
    849	sres->release = release;
    850
    851	return sres->data;
    852}
    853
    854/**
    855 * spi_res_free - free an spi resource
    856 * @res: pointer to the custom data of a resource
    857 */
    858static void spi_res_free(void *res)
    859{
    860	struct spi_res *sres = container_of(res, struct spi_res, data);
    861
    862	if (!res)
    863		return;
    864
    865	WARN_ON(!list_empty(&sres->entry));
    866	kfree(sres);
    867}
    868
    869/**
    870 * spi_res_add - add a spi_res to the spi_message
    871 * @message: the spi message
    872 * @res:     the spi_resource
    873 */
    874static void spi_res_add(struct spi_message *message, void *res)
    875{
    876	struct spi_res *sres = container_of(res, struct spi_res, data);
    877
    878	WARN_ON(!list_empty(&sres->entry));
    879	list_add_tail(&sres->entry, &message->resources);
    880}
    881
    882/**
    883 * spi_res_release - release all spi resources for this message
    884 * @ctlr:  the @spi_controller
    885 * @message: the @spi_message
    886 */
    887static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
    888{
    889	struct spi_res *res, *tmp;
    890
    891	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
    892		if (res->release)
    893			res->release(ctlr, message, res->data);
    894
    895		list_del(&res->entry);
    896
    897		kfree(res);
    898	}
    899}
    900
    901/*-------------------------------------------------------------------------*/
    902
    903static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
    904{
    905	bool activate = enable;
    906
    907	/*
    908	 * Avoid calling into the driver (or doing delays) if the chip select
    909	 * isn't actually changing from the last time this was called.
    910	 */
    911	if (!force && ((enable && spi->controller->last_cs == spi->chip_select) ||
    912				(!enable && spi->controller->last_cs != spi->chip_select)) &&
    913	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
    914		return;
    915
    916	trace_spi_set_cs(spi, activate);
    917
    918	spi->controller->last_cs = enable ? spi->chip_select : -1;
    919	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
    920
    921	if ((spi->cs_gpiod || !spi->controller->set_cs_timing) && !activate) {
    922		spi_delay_exec(&spi->cs_hold, NULL);
    923	}
    924
    925	if (spi->mode & SPI_CS_HIGH)
    926		enable = !enable;
    927
    928	if (spi->cs_gpiod) {
    929		if (!(spi->mode & SPI_NO_CS)) {
    930			/*
    931			 * Historically ACPI has no means of the GPIO polarity and
    932			 * thus the SPISerialBus() resource defines it on the per-chip
    933			 * basis. In order to avoid a chain of negations, the GPIO
    934			 * polarity is considered being Active High. Even for the cases
    935			 * when _DSD() is involved (in the updated versions of ACPI)
    936			 * the GPIO CS polarity must be defined Active High to avoid
    937			 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
    938			 * into account.
    939			 */
    940			if (has_acpi_companion(&spi->dev))
    941				gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
    942			else
    943				/* Polarity handled by GPIO library */
    944				gpiod_set_value_cansleep(spi->cs_gpiod, activate);
    945		}
    946		/* Some SPI masters need both GPIO CS & slave_select */
    947		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
    948		    spi->controller->set_cs)
    949			spi->controller->set_cs(spi, !enable);
    950	} else if (spi->controller->set_cs) {
    951		spi->controller->set_cs(spi, !enable);
    952	}
    953
    954	if (spi->cs_gpiod || !spi->controller->set_cs_timing) {
    955		if (activate)
    956			spi_delay_exec(&spi->cs_setup, NULL);
    957		else
    958			spi_delay_exec(&spi->cs_inactive, NULL);
    959	}
    960}
    961
    962#ifdef CONFIG_HAS_DMA
    963int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
    964		struct sg_table *sgt, void *buf, size_t len,
    965		enum dma_data_direction dir)
    966{
    967	const bool vmalloced_buf = is_vmalloc_addr(buf);
    968	unsigned int max_seg_size = dma_get_max_seg_size(dev);
    969#ifdef CONFIG_HIGHMEM
    970	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
    971				(unsigned long)buf < (PKMAP_BASE +
    972					(LAST_PKMAP * PAGE_SIZE)));
    973#else
    974	const bool kmap_buf = false;
    975#endif
    976	int desc_len;
    977	int sgs;
    978	struct page *vm_page;
    979	struct scatterlist *sg;
    980	void *sg_buf;
    981	size_t min;
    982	int i, ret;
    983
    984	if (vmalloced_buf || kmap_buf) {
    985		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
    986		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
    987	} else if (virt_addr_valid(buf)) {
    988		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
    989		sgs = DIV_ROUND_UP(len, desc_len);
    990	} else {
    991		return -EINVAL;
    992	}
    993
    994	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
    995	if (ret != 0)
    996		return ret;
    997
    998	sg = &sgt->sgl[0];
    999	for (i = 0; i < sgs; i++) {
   1000
   1001		if (vmalloced_buf || kmap_buf) {
   1002			/*
   1003			 * Next scatterlist entry size is the minimum between
   1004			 * the desc_len and the remaining buffer length that
   1005			 * fits in a page.
   1006			 */
   1007			min = min_t(size_t, desc_len,
   1008				    min_t(size_t, len,
   1009					  PAGE_SIZE - offset_in_page(buf)));
   1010			if (vmalloced_buf)
   1011				vm_page = vmalloc_to_page(buf);
   1012			else
   1013				vm_page = kmap_to_page(buf);
   1014			if (!vm_page) {
   1015				sg_free_table(sgt);
   1016				return -ENOMEM;
   1017			}
   1018			sg_set_page(sg, vm_page,
   1019				    min, offset_in_page(buf));
   1020		} else {
   1021			min = min_t(size_t, len, desc_len);
   1022			sg_buf = buf;
   1023			sg_set_buf(sg, sg_buf, min);
   1024		}
   1025
   1026		buf += min;
   1027		len -= min;
   1028		sg = sg_next(sg);
   1029	}
   1030
   1031	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
   1032	if (!ret)
   1033		ret = -ENOMEM;
   1034	if (ret < 0) {
   1035		sg_free_table(sgt);
   1036		return ret;
   1037	}
   1038
   1039	sgt->nents = ret;
   1040
   1041	return 0;
   1042}
   1043
   1044void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
   1045		   struct sg_table *sgt, enum dma_data_direction dir)
   1046{
   1047	if (sgt->orig_nents) {
   1048		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
   1049		sg_free_table(sgt);
   1050	}
   1051}
   1052
   1053static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
   1054{
   1055	struct device *tx_dev, *rx_dev;
   1056	struct spi_transfer *xfer;
   1057	int ret;
   1058
   1059	if (!ctlr->can_dma)
   1060		return 0;
   1061
   1062	if (ctlr->dma_tx)
   1063		tx_dev = ctlr->dma_tx->device->dev;
   1064	else if (ctlr->dma_map_dev)
   1065		tx_dev = ctlr->dma_map_dev;
   1066	else
   1067		tx_dev = ctlr->dev.parent;
   1068
   1069	if (ctlr->dma_rx)
   1070		rx_dev = ctlr->dma_rx->device->dev;
   1071	else if (ctlr->dma_map_dev)
   1072		rx_dev = ctlr->dma_map_dev;
   1073	else
   1074		rx_dev = ctlr->dev.parent;
   1075
   1076	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
   1077		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
   1078			continue;
   1079
   1080		if (xfer->tx_buf != NULL) {
   1081			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
   1082					  (void *)xfer->tx_buf, xfer->len,
   1083					  DMA_TO_DEVICE);
   1084			if (ret != 0)
   1085				return ret;
   1086		}
   1087
   1088		if (xfer->rx_buf != NULL) {
   1089			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
   1090					  xfer->rx_buf, xfer->len,
   1091					  DMA_FROM_DEVICE);
   1092			if (ret != 0) {
   1093				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
   1094					      DMA_TO_DEVICE);
   1095				return ret;
   1096			}
   1097		}
   1098	}
   1099
   1100	ctlr->cur_msg_mapped = true;
   1101
   1102	return 0;
   1103}
   1104
   1105static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
   1106{
   1107	struct spi_transfer *xfer;
   1108	struct device *tx_dev, *rx_dev;
   1109
   1110	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
   1111		return 0;
   1112
   1113	if (ctlr->dma_tx)
   1114		tx_dev = ctlr->dma_tx->device->dev;
   1115	else if (ctlr->dma_map_dev)
   1116		tx_dev = ctlr->dma_map_dev;
   1117	else
   1118		tx_dev = ctlr->dev.parent;
   1119
   1120	if (ctlr->dma_rx)
   1121		rx_dev = ctlr->dma_rx->device->dev;
   1122	else if (ctlr->dma_map_dev)
   1123		rx_dev = ctlr->dma_map_dev;
   1124	else
   1125		rx_dev = ctlr->dev.parent;
   1126
   1127	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
   1128		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
   1129			continue;
   1130
   1131		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
   1132		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
   1133	}
   1134
   1135	ctlr->cur_msg_mapped = false;
   1136
   1137	return 0;
   1138}
   1139#else /* !CONFIG_HAS_DMA */
   1140static inline int __spi_map_msg(struct spi_controller *ctlr,
   1141				struct spi_message *msg)
   1142{
   1143	return 0;
   1144}
   1145
   1146static inline int __spi_unmap_msg(struct spi_controller *ctlr,
   1147				  struct spi_message *msg)
   1148{
   1149	return 0;
   1150}
   1151#endif /* !CONFIG_HAS_DMA */
   1152
   1153static inline int spi_unmap_msg(struct spi_controller *ctlr,
   1154				struct spi_message *msg)
   1155{
   1156	struct spi_transfer *xfer;
   1157
   1158	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
   1159		/*
   1160		 * Restore the original value of tx_buf or rx_buf if they are
   1161		 * NULL.
   1162		 */
   1163		if (xfer->tx_buf == ctlr->dummy_tx)
   1164			xfer->tx_buf = NULL;
   1165		if (xfer->rx_buf == ctlr->dummy_rx)
   1166			xfer->rx_buf = NULL;
   1167	}
   1168
   1169	return __spi_unmap_msg(ctlr, msg);
   1170}
   1171
   1172static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
   1173{
   1174	struct spi_transfer *xfer;
   1175	void *tmp;
   1176	unsigned int max_tx, max_rx;
   1177
   1178	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
   1179		&& !(msg->spi->mode & SPI_3WIRE)) {
   1180		max_tx = 0;
   1181		max_rx = 0;
   1182
   1183		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
   1184			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
   1185			    !xfer->tx_buf)
   1186				max_tx = max(xfer->len, max_tx);
   1187			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
   1188			    !xfer->rx_buf)
   1189				max_rx = max(xfer->len, max_rx);
   1190		}
   1191
   1192		if (max_tx) {
   1193			tmp = krealloc(ctlr->dummy_tx, max_tx,
   1194				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
   1195			if (!tmp)
   1196				return -ENOMEM;
   1197			ctlr->dummy_tx = tmp;
   1198		}
   1199
   1200		if (max_rx) {
   1201			tmp = krealloc(ctlr->dummy_rx, max_rx,
   1202				       GFP_KERNEL | GFP_DMA);
   1203			if (!tmp)
   1204				return -ENOMEM;
   1205			ctlr->dummy_rx = tmp;
   1206		}
   1207
   1208		if (max_tx || max_rx) {
   1209			list_for_each_entry(xfer, &msg->transfers,
   1210					    transfer_list) {
   1211				if (!xfer->len)
   1212					continue;
   1213				if (!xfer->tx_buf)
   1214					xfer->tx_buf = ctlr->dummy_tx;
   1215				if (!xfer->rx_buf)
   1216					xfer->rx_buf = ctlr->dummy_rx;
   1217			}
   1218		}
   1219	}
   1220
   1221	return __spi_map_msg(ctlr, msg);
   1222}
   1223
   1224static int spi_transfer_wait(struct spi_controller *ctlr,
   1225			     struct spi_message *msg,
   1226			     struct spi_transfer *xfer)
   1227{
   1228	struct spi_statistics *statm = &ctlr->statistics;
   1229	struct spi_statistics *stats = &msg->spi->statistics;
   1230	u32 speed_hz = xfer->speed_hz;
   1231	unsigned long long ms;
   1232
   1233	if (spi_controller_is_slave(ctlr)) {
   1234		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
   1235			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
   1236			return -EINTR;
   1237		}
   1238	} else {
   1239		if (!speed_hz)
   1240			speed_hz = 100000;
   1241
   1242		/*
   1243		 * For each byte we wait for 8 cycles of the SPI clock.
   1244		 * Since speed is defined in Hz and we want milliseconds,
   1245		 * use respective multiplier, but before the division,
   1246		 * otherwise we may get 0 for short transfers.
   1247		 */
   1248		ms = 8LL * MSEC_PER_SEC * xfer->len;
   1249		do_div(ms, speed_hz);
   1250
   1251		/*
   1252		 * Increase it twice and add 200 ms tolerance, use
   1253		 * predefined maximum in case of overflow.
   1254		 */
   1255		ms += ms + 200;
   1256		if (ms > UINT_MAX)
   1257			ms = UINT_MAX;
   1258
   1259		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
   1260						 msecs_to_jiffies(ms));
   1261
   1262		if (ms == 0) {
   1263			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
   1264			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
   1265			dev_err(&msg->spi->dev,
   1266				"SPI transfer timed out\n");
   1267			return -ETIMEDOUT;
   1268		}
   1269	}
   1270
   1271	return 0;
   1272}
   1273
   1274static void _spi_transfer_delay_ns(u32 ns)
   1275{
   1276	if (!ns)
   1277		return;
   1278	if (ns <= NSEC_PER_USEC) {
   1279		ndelay(ns);
   1280	} else {
   1281		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
   1282
   1283		if (us <= 10)
   1284			udelay(us);
   1285		else
   1286			usleep_range(us, us + DIV_ROUND_UP(us, 10));
   1287	}
   1288}
   1289
   1290int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
   1291{
   1292	u32 delay = _delay->value;
   1293	u32 unit = _delay->unit;
   1294	u32 hz;
   1295
   1296	if (!delay)
   1297		return 0;
   1298
   1299	switch (unit) {
   1300	case SPI_DELAY_UNIT_USECS:
   1301		delay *= NSEC_PER_USEC;
   1302		break;
   1303	case SPI_DELAY_UNIT_NSECS:
   1304		/* Nothing to do here */
   1305		break;
   1306	case SPI_DELAY_UNIT_SCK:
   1307		/* clock cycles need to be obtained from spi_transfer */
   1308		if (!xfer)
   1309			return -EINVAL;
   1310		/*
   1311		 * If there is unknown effective speed, approximate it
   1312		 * by underestimating with half of the requested hz.
   1313		 */
   1314		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
   1315		if (!hz)
   1316			return -EINVAL;
   1317
   1318		/* Convert delay to nanoseconds */
   1319		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
   1320		break;
   1321	default:
   1322		return -EINVAL;
   1323	}
   1324
   1325	return delay;
   1326}
   1327EXPORT_SYMBOL_GPL(spi_delay_to_ns);
   1328
   1329int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
   1330{
   1331	int delay;
   1332
   1333	might_sleep();
   1334
   1335	if (!_delay)
   1336		return -EINVAL;
   1337
   1338	delay = spi_delay_to_ns(_delay, xfer);
   1339	if (delay < 0)
   1340		return delay;
   1341
   1342	_spi_transfer_delay_ns(delay);
   1343
   1344	return 0;
   1345}
   1346EXPORT_SYMBOL_GPL(spi_delay_exec);
   1347
   1348static void _spi_transfer_cs_change_delay(struct spi_message *msg,
   1349					  struct spi_transfer *xfer)
   1350{
   1351	u32 default_delay_ns = 10 * NSEC_PER_USEC;
   1352	u32 delay = xfer->cs_change_delay.value;
   1353	u32 unit = xfer->cs_change_delay.unit;
   1354	int ret;
   1355
   1356	/* return early on "fast" mode - for everything but USECS */
   1357	if (!delay) {
   1358		if (unit == SPI_DELAY_UNIT_USECS)
   1359			_spi_transfer_delay_ns(default_delay_ns);
   1360		return;
   1361	}
   1362
   1363	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
   1364	if (ret) {
   1365		dev_err_once(&msg->spi->dev,
   1366			     "Use of unsupported delay unit %i, using default of %luus\n",
   1367			     unit, default_delay_ns / NSEC_PER_USEC);
   1368		_spi_transfer_delay_ns(default_delay_ns);
   1369	}
   1370}
   1371
   1372/*
   1373 * spi_transfer_one_message - Default implementation of transfer_one_message()
   1374 *
   1375 * This is a standard implementation of transfer_one_message() for
   1376 * drivers which implement a transfer_one() operation.  It provides
   1377 * standard handling of delays and chip select management.
   1378 */
   1379static int spi_transfer_one_message(struct spi_controller *ctlr,
   1380				    struct spi_message *msg)
   1381{
   1382	struct spi_transfer *xfer;
   1383	bool keep_cs = false;
   1384	int ret = 0;
   1385	struct spi_statistics *statm = &ctlr->statistics;
   1386	struct spi_statistics *stats = &msg->spi->statistics;
   1387
   1388	spi_set_cs(msg->spi, true, false);
   1389
   1390	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
   1391	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
   1392
   1393	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
   1394		trace_spi_transfer_start(msg, xfer);
   1395
   1396		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
   1397		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
   1398
   1399		if (!ctlr->ptp_sts_supported) {
   1400			xfer->ptp_sts_word_pre = 0;
   1401			ptp_read_system_prets(xfer->ptp_sts);
   1402		}
   1403
   1404		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
   1405			reinit_completion(&ctlr->xfer_completion);
   1406
   1407fallback_pio:
   1408			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
   1409			if (ret < 0) {
   1410				if (ctlr->cur_msg_mapped &&
   1411				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
   1412					__spi_unmap_msg(ctlr, msg);
   1413					ctlr->fallback = true;
   1414					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
   1415					goto fallback_pio;
   1416				}
   1417
   1418				SPI_STATISTICS_INCREMENT_FIELD(statm,
   1419							       errors);
   1420				SPI_STATISTICS_INCREMENT_FIELD(stats,
   1421							       errors);
   1422				dev_err(&msg->spi->dev,
   1423					"SPI transfer failed: %d\n", ret);
   1424				goto out;
   1425			}
   1426
   1427			if (ret > 0) {
   1428				ret = spi_transfer_wait(ctlr, msg, xfer);
   1429				if (ret < 0)
   1430					msg->status = ret;
   1431			}
   1432		} else {
   1433			if (xfer->len)
   1434				dev_err(&msg->spi->dev,
   1435					"Bufferless transfer has length %u\n",
   1436					xfer->len);
   1437		}
   1438
   1439		if (!ctlr->ptp_sts_supported) {
   1440			ptp_read_system_postts(xfer->ptp_sts);
   1441			xfer->ptp_sts_word_post = xfer->len;
   1442		}
   1443
   1444		trace_spi_transfer_stop(msg, xfer);
   1445
   1446		if (msg->status != -EINPROGRESS)
   1447			goto out;
   1448
   1449		spi_transfer_delay_exec(xfer);
   1450
   1451		if (xfer->cs_change) {
   1452			if (list_is_last(&xfer->transfer_list,
   1453					 &msg->transfers)) {
   1454				keep_cs = true;
   1455			} else {
   1456				spi_set_cs(msg->spi, false, false);
   1457				_spi_transfer_cs_change_delay(msg, xfer);
   1458				spi_set_cs(msg->spi, true, false);
   1459			}
   1460		}
   1461
   1462		msg->actual_length += xfer->len;
   1463	}
   1464
   1465out:
   1466	if (ret != 0 || !keep_cs)
   1467		spi_set_cs(msg->spi, false, false);
   1468
   1469	if (msg->status == -EINPROGRESS)
   1470		msg->status = ret;
   1471
   1472	if (msg->status && ctlr->handle_err)
   1473		ctlr->handle_err(ctlr, msg);
   1474
   1475	spi_finalize_current_message(ctlr);
   1476
   1477	return ret;
   1478}
   1479
   1480/**
   1481 * spi_finalize_current_transfer - report completion of a transfer
   1482 * @ctlr: the controller reporting completion
   1483 *
   1484 * Called by SPI drivers using the core transfer_one_message()
   1485 * implementation to notify it that the current interrupt driven
   1486 * transfer has finished and the next one may be scheduled.
   1487 */
   1488void spi_finalize_current_transfer(struct spi_controller *ctlr)
   1489{
   1490	complete(&ctlr->xfer_completion);
   1491}
   1492EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
   1493
   1494static void spi_idle_runtime_pm(struct spi_controller *ctlr)
   1495{
   1496	if (ctlr->auto_runtime_pm) {
   1497		pm_runtime_mark_last_busy(ctlr->dev.parent);
   1498		pm_runtime_put_autosuspend(ctlr->dev.parent);
   1499	}
   1500}
   1501
   1502/**
   1503 * __spi_pump_messages - function which processes spi message queue
   1504 * @ctlr: controller to process queue for
   1505 * @in_kthread: true if we are in the context of the message pump thread
   1506 *
   1507 * This function checks if there is any spi message in the queue that
   1508 * needs processing and if so call out to the driver to initialize hardware
   1509 * and transfer each message.
   1510 *
   1511 * Note that it is called both from the kthread itself and also from
   1512 * inside spi_sync(); the queue extraction handling at the top of the
   1513 * function should deal with this safely.
   1514 */
   1515static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
   1516{
   1517	struct spi_transfer *xfer;
   1518	struct spi_message *msg;
   1519	bool was_busy = false;
   1520	unsigned long flags;
   1521	int ret;
   1522
   1523	/* Lock queue */
   1524	spin_lock_irqsave(&ctlr->queue_lock, flags);
   1525
   1526	/* Make sure we are not already running a message */
   1527	if (ctlr->cur_msg) {
   1528		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
   1529		return;
   1530	}
   1531
   1532	/* If another context is idling the device then defer */
   1533	if (ctlr->idling) {
   1534		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
   1535		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
   1536		return;
   1537	}
   1538
   1539	/* Check if the queue is idle */
   1540	if (list_empty(&ctlr->queue) || !ctlr->running) {
   1541		if (!ctlr->busy) {
   1542			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
   1543			return;
   1544		}
   1545
   1546		/* Defer any non-atomic teardown to the thread */
   1547		if (!in_kthread) {
   1548			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
   1549			    !ctlr->unprepare_transfer_hardware) {
   1550				spi_idle_runtime_pm(ctlr);
   1551				ctlr->busy = false;
   1552				trace_spi_controller_idle(ctlr);
   1553			} else {
   1554				kthread_queue_work(ctlr->kworker,
   1555						   &ctlr->pump_messages);
   1556			}
   1557			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
   1558			return;
   1559		}
   1560
   1561		ctlr->busy = false;
   1562		ctlr->idling = true;
   1563		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
   1564
   1565		kfree(ctlr->dummy_rx);
   1566		ctlr->dummy_rx = NULL;
   1567		kfree(ctlr->dummy_tx);
   1568		ctlr->dummy_tx = NULL;
   1569		if (ctlr->unprepare_transfer_hardware &&
   1570		    ctlr->unprepare_transfer_hardware(ctlr))
   1571			dev_err(&ctlr->dev,
   1572				"failed to unprepare transfer hardware\n");
   1573		spi_idle_runtime_pm(ctlr);
   1574		trace_spi_controller_idle(ctlr);
   1575
   1576		spin_lock_irqsave(&ctlr->queue_lock, flags);
   1577		ctlr->idling = false;
   1578		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
   1579		return;
   1580	}
   1581
   1582	/* Extract head of queue */
   1583	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
   1584	ctlr->cur_msg = msg;
   1585
   1586	list_del_init(&msg->queue);
   1587	if (ctlr->busy)
   1588		was_busy = true;
   1589	else
   1590		ctlr->busy = true;
   1591	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
   1592
   1593	mutex_lock(&ctlr->io_mutex);
   1594
   1595	if (!was_busy && ctlr->auto_runtime_pm) {
   1596		ret = pm_runtime_resume_and_get(ctlr->dev.parent);
   1597		if (ret < 0) {
   1598			dev_err(&ctlr->dev, "Failed to power device: %d\n",
   1599				ret);
   1600			mutex_unlock(&ctlr->io_mutex);
   1601			return;
   1602		}
   1603	}
   1604
   1605	if (!was_busy)
   1606		trace_spi_controller_busy(ctlr);
   1607
   1608	if (!was_busy && ctlr->prepare_transfer_hardware) {
   1609		ret = ctlr->prepare_transfer_hardware(ctlr);
   1610		if (ret) {
   1611			dev_err(&ctlr->dev,
   1612				"failed to prepare transfer hardware: %d\n",
   1613				ret);
   1614
   1615			if (ctlr->auto_runtime_pm)
   1616				pm_runtime_put(ctlr->dev.parent);
   1617
   1618			msg->status = ret;
   1619			spi_finalize_current_message(ctlr);
   1620
   1621			mutex_unlock(&ctlr->io_mutex);
   1622			return;
   1623		}
   1624	}
   1625
   1626	trace_spi_message_start(msg);
   1627
   1628	if (ctlr->prepare_message) {
   1629		ret = ctlr->prepare_message(ctlr, msg);
   1630		if (ret) {
   1631			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
   1632				ret);
   1633			msg->status = ret;
   1634			spi_finalize_current_message(ctlr);
   1635			goto out;
   1636		}
   1637		ctlr->cur_msg_prepared = true;
   1638	}
   1639
   1640	ret = spi_map_msg(ctlr, msg);
   1641	if (ret) {
   1642		msg->status = ret;
   1643		spi_finalize_current_message(ctlr);
   1644		goto out;
   1645	}
   1646
   1647	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
   1648		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
   1649			xfer->ptp_sts_word_pre = 0;
   1650			ptp_read_system_prets(xfer->ptp_sts);
   1651		}
   1652	}
   1653
   1654	ret = ctlr->transfer_one_message(ctlr, msg);
   1655	if (ret) {
   1656		dev_err(&ctlr->dev,
   1657			"failed to transfer one message from queue: %d\n",
   1658			ret);
   1659		goto out;
   1660	}
   1661
   1662out:
   1663	mutex_unlock(&ctlr->io_mutex);
   1664
   1665	/* Prod the scheduler in case transfer_one() was busy waiting */
   1666	if (!ret)
   1667		cond_resched();
   1668}
   1669
   1670/**
   1671 * spi_pump_messages - kthread work function which processes spi message queue
   1672 * @work: pointer to kthread work struct contained in the controller struct
   1673 */
   1674static void spi_pump_messages(struct kthread_work *work)
   1675{
   1676	struct spi_controller *ctlr =
   1677		container_of(work, struct spi_controller, pump_messages);
   1678
   1679	__spi_pump_messages(ctlr, true);
   1680}
   1681
   1682/**
   1683 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
   1684 * @ctlr: Pointer to the spi_controller structure of the driver
   1685 * @xfer: Pointer to the transfer being timestamped
   1686 * @progress: How many words (not bytes) have been transferred so far
   1687 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
   1688 *	      transfer, for less jitter in time measurement. Only compatible
   1689 *	      with PIO drivers. If true, must follow up with
   1690 *	      spi_take_timestamp_post or otherwise system will crash.
   1691 *	      WARNING: for fully predictable results, the CPU frequency must
   1692 *	      also be under control (governor).
   1693 *
   1694 * This is a helper for drivers to collect the beginning of the TX timestamp
   1695 * for the requested byte from the SPI transfer. The frequency with which this
   1696 * function must be called (once per word, once for the whole transfer, once
   1697 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
   1698 * greater than or equal to the requested byte at the time of the call. The
   1699 * timestamp is only taken once, at the first such call. It is assumed that
   1700 * the driver advances its @tx buffer pointer monotonically.
   1701 */
   1702void spi_take_timestamp_pre(struct spi_controller *ctlr,
   1703			    struct spi_transfer *xfer,
   1704			    size_t progress, bool irqs_off)
   1705{
   1706	if (!xfer->ptp_sts)
   1707		return;
   1708
   1709	if (xfer->timestamped)
   1710		return;
   1711
   1712	if (progress > xfer->ptp_sts_word_pre)
   1713		return;
   1714
   1715	/* Capture the resolution of the timestamp */
   1716	xfer->ptp_sts_word_pre = progress;
   1717
   1718	if (irqs_off) {
   1719		local_irq_save(ctlr->irq_flags);
   1720		preempt_disable();
   1721	}
   1722
   1723	ptp_read_system_prets(xfer->ptp_sts);
   1724}
   1725EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
   1726
   1727/**
   1728 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
   1729 * @ctlr: Pointer to the spi_controller structure of the driver
   1730 * @xfer: Pointer to the transfer being timestamped
   1731 * @progress: How many words (not bytes) have been transferred so far
   1732 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
   1733 *
   1734 * This is a helper for drivers to collect the end of the TX timestamp for
   1735 * the requested byte from the SPI transfer. Can be called with an arbitrary
   1736 * frequency: only the first call where @tx exceeds or is equal to the
   1737 * requested word will be timestamped.
   1738 */
   1739void spi_take_timestamp_post(struct spi_controller *ctlr,
   1740			     struct spi_transfer *xfer,
   1741			     size_t progress, bool irqs_off)
   1742{
   1743	if (!xfer->ptp_sts)
   1744		return;
   1745
   1746	if (xfer->timestamped)
   1747		return;
   1748
   1749	if (progress < xfer->ptp_sts_word_post)
   1750		return;
   1751
   1752	ptp_read_system_postts(xfer->ptp_sts);
   1753
   1754	if (irqs_off) {
   1755		local_irq_restore(ctlr->irq_flags);
   1756		preempt_enable();
   1757	}
   1758
   1759	/* Capture the resolution of the timestamp */
   1760	xfer->ptp_sts_word_post = progress;
   1761
   1762	xfer->timestamped = true;
   1763}
   1764EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
   1765
   1766/**
   1767 * spi_set_thread_rt - set the controller to pump at realtime priority
   1768 * @ctlr: controller to boost priority of
   1769 *
   1770 * This can be called because the controller requested realtime priority
   1771 * (by setting the ->rt value before calling spi_register_controller()) or
   1772 * because a device on the bus said that its transfers needed realtime
   1773 * priority.
   1774 *
   1775 * NOTE: at the moment if any device on a bus says it needs realtime then
   1776 * the thread will be at realtime priority for all transfers on that
   1777 * controller.  If this eventually becomes a problem we may see if we can
   1778 * find a way to boost the priority only temporarily during relevant
   1779 * transfers.
   1780 */
   1781static void spi_set_thread_rt(struct spi_controller *ctlr)
   1782{
   1783	dev_info(&ctlr->dev,
   1784		"will run message pump with realtime priority\n");
   1785	sched_set_fifo(ctlr->kworker->task);
   1786}
   1787
   1788static int spi_init_queue(struct spi_controller *ctlr)
   1789{
   1790	ctlr->running = false;
   1791	ctlr->busy = false;
   1792
   1793	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
   1794	if (IS_ERR(ctlr->kworker)) {
   1795		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
   1796		return PTR_ERR(ctlr->kworker);
   1797	}
   1798
   1799	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
   1800
   1801	/*
   1802	 * Controller config will indicate if this controller should run the
   1803	 * message pump with high (realtime) priority to reduce the transfer
   1804	 * latency on the bus by minimising the delay between a transfer
   1805	 * request and the scheduling of the message pump thread. Without this
   1806	 * setting the message pump thread will remain at default priority.
   1807	 */
   1808	if (ctlr->rt)
   1809		spi_set_thread_rt(ctlr);
   1810
   1811	return 0;
   1812}
   1813
   1814/**
   1815 * spi_get_next_queued_message() - called by driver to check for queued
   1816 * messages
   1817 * @ctlr: the controller to check for queued messages
   1818 *
   1819 * If there are more messages in the queue, the next message is returned from
   1820 * this call.
   1821 *
   1822 * Return: the next message in the queue, else NULL if the queue is empty.
   1823 */
   1824struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
   1825{
   1826	struct spi_message *next;
   1827	unsigned long flags;
   1828
   1829	/* get a pointer to the next message, if any */
   1830	spin_lock_irqsave(&ctlr->queue_lock, flags);
   1831	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
   1832					queue);
   1833	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
   1834
   1835	return next;
   1836}
   1837EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
   1838
   1839/**
   1840 * spi_finalize_current_message() - the current message is complete
   1841 * @ctlr: the controller to return the message to
   1842 *
   1843 * Called by the driver to notify the core that the message in the front of the
   1844 * queue is complete and can be removed from the queue.
   1845 */
   1846void spi_finalize_current_message(struct spi_controller *ctlr)
   1847{
   1848	struct spi_transfer *xfer;
   1849	struct spi_message *mesg;
   1850	unsigned long flags;
   1851	int ret;
   1852
   1853	spin_lock_irqsave(&ctlr->queue_lock, flags);
   1854	mesg = ctlr->cur_msg;
   1855	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
   1856
   1857	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
   1858		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
   1859			ptp_read_system_postts(xfer->ptp_sts);
   1860			xfer->ptp_sts_word_post = xfer->len;
   1861		}
   1862	}
   1863
   1864	if (unlikely(ctlr->ptp_sts_supported))
   1865		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
   1866			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
   1867
   1868	spi_unmap_msg(ctlr, mesg);
   1869
   1870	/*
   1871	 * In the prepare_messages callback the SPI bus has the opportunity
   1872	 * to split a transfer to smaller chunks.
   1873	 *
   1874	 * Release the split transfers here since spi_map_msg() is done on
   1875	 * the split transfers.
   1876	 */
   1877	spi_res_release(ctlr, mesg);
   1878
   1879	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
   1880		ret = ctlr->unprepare_message(ctlr, mesg);
   1881		if (ret) {
   1882			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
   1883				ret);
   1884		}
   1885	}
   1886
   1887	spin_lock_irqsave(&ctlr->queue_lock, flags);
   1888	ctlr->cur_msg = NULL;
   1889	ctlr->cur_msg_prepared = false;
   1890	ctlr->fallback = false;
   1891	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
   1892	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
   1893
   1894	trace_spi_message_done(mesg);
   1895
   1896	mesg->state = NULL;
   1897	if (mesg->complete)
   1898		mesg->complete(mesg->context);
   1899}
   1900EXPORT_SYMBOL_GPL(spi_finalize_current_message);
   1901
   1902static int spi_start_queue(struct spi_controller *ctlr)
   1903{
   1904	unsigned long flags;
   1905
   1906	spin_lock_irqsave(&ctlr->queue_lock, flags);
   1907
   1908	if (ctlr->running || ctlr->busy) {
   1909		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
   1910		return -EBUSY;
   1911	}
   1912
   1913	ctlr->running = true;
   1914	ctlr->cur_msg = NULL;
   1915	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
   1916
   1917	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
   1918
   1919	return 0;
   1920}
   1921
   1922static int spi_stop_queue(struct spi_controller *ctlr)
   1923{
   1924	unsigned long flags;
   1925	unsigned limit = 500;
   1926	int ret = 0;
   1927
   1928	spin_lock_irqsave(&ctlr->queue_lock, flags);
   1929
   1930	/*
   1931	 * This is a bit lame, but is optimized for the common execution path.
   1932	 * A wait_queue on the ctlr->busy could be used, but then the common
   1933	 * execution path (pump_messages) would be required to call wake_up or
   1934	 * friends on every SPI message. Do this instead.
   1935	 */
   1936	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
   1937		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
   1938		usleep_range(10000, 11000);
   1939		spin_lock_irqsave(&ctlr->queue_lock, flags);
   1940	}
   1941
   1942	if (!list_empty(&ctlr->queue) || ctlr->busy)
   1943		ret = -EBUSY;
   1944	else
   1945		ctlr->running = false;
   1946
   1947	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
   1948
   1949	if (ret) {
   1950		dev_warn(&ctlr->dev, "could not stop message queue\n");
   1951		return ret;
   1952	}
   1953	return ret;
   1954}
   1955
   1956static int spi_destroy_queue(struct spi_controller *ctlr)
   1957{
   1958	int ret;
   1959
   1960	ret = spi_stop_queue(ctlr);
   1961
   1962	/*
   1963	 * kthread_flush_worker will block until all work is done.
   1964	 * If the reason that stop_queue timed out is that the work will never
   1965	 * finish, then it does no good to call flush/stop thread, so
   1966	 * return anyway.
   1967	 */
   1968	if (ret) {
   1969		dev_err(&ctlr->dev, "problem destroying queue\n");
   1970		return ret;
   1971	}
   1972
   1973	kthread_destroy_worker(ctlr->kworker);
   1974
   1975	return 0;
   1976}
   1977
   1978static int __spi_queued_transfer(struct spi_device *spi,
   1979				 struct spi_message *msg,
   1980				 bool need_pump)
   1981{
   1982	struct spi_controller *ctlr = spi->controller;
   1983	unsigned long flags;
   1984
   1985	spin_lock_irqsave(&ctlr->queue_lock, flags);
   1986
   1987	if (!ctlr->running) {
   1988		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
   1989		return -ESHUTDOWN;
   1990	}
   1991	msg->actual_length = 0;
   1992	msg->status = -EINPROGRESS;
   1993
   1994	list_add_tail(&msg->queue, &ctlr->queue);
   1995	if (!ctlr->busy && need_pump)
   1996		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
   1997
   1998	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
   1999	return 0;
   2000}
   2001
   2002/**
   2003 * spi_queued_transfer - transfer function for queued transfers
   2004 * @spi: spi device which is requesting transfer
   2005 * @msg: spi message which is to handled is queued to driver queue
   2006 *
   2007 * Return: zero on success, else a negative error code.
   2008 */
   2009static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
   2010{
   2011	return __spi_queued_transfer(spi, msg, true);
   2012}
   2013
   2014static int spi_controller_initialize_queue(struct spi_controller *ctlr)
   2015{
   2016	int ret;
   2017
   2018	ctlr->transfer = spi_queued_transfer;
   2019	if (!ctlr->transfer_one_message)
   2020		ctlr->transfer_one_message = spi_transfer_one_message;
   2021
   2022	/* Initialize and start queue */
   2023	ret = spi_init_queue(ctlr);
   2024	if (ret) {
   2025		dev_err(&ctlr->dev, "problem initializing queue\n");
   2026		goto err_init_queue;
   2027	}
   2028	ctlr->queued = true;
   2029	ret = spi_start_queue(ctlr);
   2030	if (ret) {
   2031		dev_err(&ctlr->dev, "problem starting queue\n");
   2032		goto err_start_queue;
   2033	}
   2034
   2035	return 0;
   2036
   2037err_start_queue:
   2038	spi_destroy_queue(ctlr);
   2039err_init_queue:
   2040	return ret;
   2041}
   2042
   2043/**
   2044 * spi_flush_queue - Send all pending messages in the queue from the callers'
   2045 *		     context
   2046 * @ctlr: controller to process queue for
   2047 *
   2048 * This should be used when one wants to ensure all pending messages have been
   2049 * sent before doing something. Is used by the spi-mem code to make sure SPI
   2050 * memory operations do not preempt regular SPI transfers that have been queued
   2051 * before the spi-mem operation.
   2052 */
   2053void spi_flush_queue(struct spi_controller *ctlr)
   2054{
   2055	if (ctlr->transfer == spi_queued_transfer)
   2056		__spi_pump_messages(ctlr, false);
   2057}
   2058
   2059/*-------------------------------------------------------------------------*/
   2060
   2061#if defined(CONFIG_OF)
   2062static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
   2063			   struct device_node *nc)
   2064{
   2065	u32 value;
   2066	int rc;
   2067
   2068	/* Mode (clock phase/polarity/etc.) */
   2069	if (of_property_read_bool(nc, "spi-cpha"))
   2070		spi->mode |= SPI_CPHA;
   2071	if (of_property_read_bool(nc, "spi-cpol"))
   2072		spi->mode |= SPI_CPOL;
   2073	if (of_property_read_bool(nc, "spi-3wire"))
   2074		spi->mode |= SPI_3WIRE;
   2075	if (of_property_read_bool(nc, "spi-lsb-first"))
   2076		spi->mode |= SPI_LSB_FIRST;
   2077	if (of_property_read_bool(nc, "spi-cs-high"))
   2078		spi->mode |= SPI_CS_HIGH;
   2079
   2080	/* Device DUAL/QUAD mode */
   2081	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
   2082		switch (value) {
   2083		case 0:
   2084			spi->mode |= SPI_NO_TX;
   2085			break;
   2086		case 1:
   2087			break;
   2088		case 2:
   2089			spi->mode |= SPI_TX_DUAL;
   2090			break;
   2091		case 4:
   2092			spi->mode |= SPI_TX_QUAD;
   2093			break;
   2094		case 8:
   2095			spi->mode |= SPI_TX_OCTAL;
   2096			break;
   2097		default:
   2098			dev_warn(&ctlr->dev,
   2099				"spi-tx-bus-width %d not supported\n",
   2100				value);
   2101			break;
   2102		}
   2103	}
   2104
   2105	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
   2106		switch (value) {
   2107		case 0:
   2108			spi->mode |= SPI_NO_RX;
   2109			break;
   2110		case 1:
   2111			break;
   2112		case 2:
   2113			spi->mode |= SPI_RX_DUAL;
   2114			break;
   2115		case 4:
   2116			spi->mode |= SPI_RX_QUAD;
   2117			break;
   2118		case 8:
   2119			spi->mode |= SPI_RX_OCTAL;
   2120			break;
   2121		default:
   2122			dev_warn(&ctlr->dev,
   2123				"spi-rx-bus-width %d not supported\n",
   2124				value);
   2125			break;
   2126		}
   2127	}
   2128
   2129	if (spi_controller_is_slave(ctlr)) {
   2130		if (!of_node_name_eq(nc, "slave")) {
   2131			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
   2132				nc);
   2133			return -EINVAL;
   2134		}
   2135		return 0;
   2136	}
   2137
   2138	/* Device address */
   2139	rc = of_property_read_u32(nc, "reg", &value);
   2140	if (rc) {
   2141		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
   2142			nc, rc);
   2143		return rc;
   2144	}
   2145	spi->chip_select = value;
   2146
   2147	/* Device speed */
   2148	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
   2149		spi->max_speed_hz = value;
   2150
   2151	return 0;
   2152}
   2153
   2154static struct spi_device *
   2155of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
   2156{
   2157	struct spi_device *spi;
   2158	int rc;
   2159
   2160	/* Alloc an spi_device */
   2161	spi = spi_alloc_device(ctlr);
   2162	if (!spi) {
   2163		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
   2164		rc = -ENOMEM;
   2165		goto err_out;
   2166	}
   2167
   2168	/* Select device driver */
   2169	rc = of_modalias_node(nc, spi->modalias,
   2170				sizeof(spi->modalias));
   2171	if (rc < 0) {
   2172		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
   2173		goto err_out;
   2174	}
   2175
   2176	rc = of_spi_parse_dt(ctlr, spi, nc);
   2177	if (rc)
   2178		goto err_out;
   2179
   2180	/* Store a pointer to the node in the device structure */
   2181	of_node_get(nc);
   2182	spi->dev.of_node = nc;
   2183	spi->dev.fwnode = of_fwnode_handle(nc);
   2184
   2185	/* Register the new device */
   2186	rc = spi_add_device(spi);
   2187	if (rc) {
   2188		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
   2189		goto err_of_node_put;
   2190	}
   2191
   2192	return spi;
   2193
   2194err_of_node_put:
   2195	of_node_put(nc);
   2196err_out:
   2197	spi_dev_put(spi);
   2198	return ERR_PTR(rc);
   2199}
   2200
   2201/**
   2202 * of_register_spi_devices() - Register child devices onto the SPI bus
   2203 * @ctlr:	Pointer to spi_controller device
   2204 *
   2205 * Registers an spi_device for each child node of controller node which
   2206 * represents a valid SPI slave.
   2207 */
   2208static void of_register_spi_devices(struct spi_controller *ctlr)
   2209{
   2210	struct spi_device *spi;
   2211	struct device_node *nc;
   2212
   2213	if (!ctlr->dev.of_node)
   2214		return;
   2215
   2216	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
   2217		if (of_node_test_and_set_flag(nc, OF_POPULATED))
   2218			continue;
   2219		spi = of_register_spi_device(ctlr, nc);
   2220		if (IS_ERR(spi)) {
   2221			dev_warn(&ctlr->dev,
   2222				 "Failed to create SPI device for %pOF\n", nc);
   2223			of_node_clear_flag(nc, OF_POPULATED);
   2224		}
   2225	}
   2226}
   2227#else
   2228static void of_register_spi_devices(struct spi_controller *ctlr) { }
   2229#endif
   2230
   2231/**
   2232 * spi_new_ancillary_device() - Register ancillary SPI device
   2233 * @spi:         Pointer to the main SPI device registering the ancillary device
   2234 * @chip_select: Chip Select of the ancillary device
   2235 *
   2236 * Register an ancillary SPI device; for example some chips have a chip-select
   2237 * for normal device usage and another one for setup/firmware upload.
   2238 *
   2239 * This may only be called from main SPI device's probe routine.
   2240 *
   2241 * Return: 0 on success; negative errno on failure
   2242 */
   2243struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
   2244					     u8 chip_select)
   2245{
   2246	struct spi_device *ancillary;
   2247	int rc = 0;
   2248
   2249	/* Alloc an spi_device */
   2250	ancillary = spi_alloc_device(spi->controller);
   2251	if (!ancillary) {
   2252		rc = -ENOMEM;
   2253		goto err_out;
   2254	}
   2255
   2256	strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
   2257
   2258	/* Use provided chip-select for ancillary device */
   2259	ancillary->chip_select = chip_select;
   2260
   2261	/* Take over SPI mode/speed from SPI main device */
   2262	ancillary->max_speed_hz = spi->max_speed_hz;
   2263	ancillary->mode = spi->mode;
   2264
   2265	/* Register the new device */
   2266	rc = spi_add_device_locked(ancillary);
   2267	if (rc) {
   2268		dev_err(&spi->dev, "failed to register ancillary device\n");
   2269		goto err_out;
   2270	}
   2271
   2272	return ancillary;
   2273
   2274err_out:
   2275	spi_dev_put(ancillary);
   2276	return ERR_PTR(rc);
   2277}
   2278EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
   2279
   2280#ifdef CONFIG_ACPI
   2281struct acpi_spi_lookup {
   2282	struct spi_controller 	*ctlr;
   2283	u32			max_speed_hz;
   2284	u32			mode;
   2285	int			irq;
   2286	u8			bits_per_word;
   2287	u8			chip_select;
   2288	int			n;
   2289	int			index;
   2290};
   2291
   2292static int acpi_spi_count(struct acpi_resource *ares, void *data)
   2293{
   2294	struct acpi_resource_spi_serialbus *sb;
   2295	int *count = data;
   2296
   2297	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
   2298		return 1;
   2299
   2300	sb = &ares->data.spi_serial_bus;
   2301	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
   2302		return 1;
   2303
   2304	*count = *count + 1;
   2305
   2306	return 1;
   2307}
   2308
   2309/**
   2310 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
   2311 * @adev:	ACPI device
   2312 *
   2313 * Returns the number of SpiSerialBus resources in the ACPI-device's
   2314 * resource-list; or a negative error code.
   2315 */
   2316int acpi_spi_count_resources(struct acpi_device *adev)
   2317{
   2318	LIST_HEAD(r);
   2319	int count = 0;
   2320	int ret;
   2321
   2322	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
   2323	if (ret < 0)
   2324		return ret;
   2325
   2326	acpi_dev_free_resource_list(&r);
   2327
   2328	return count;
   2329}
   2330EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
   2331
   2332static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
   2333					    struct acpi_spi_lookup *lookup)
   2334{
   2335	const union acpi_object *obj;
   2336
   2337	if (!x86_apple_machine)
   2338		return;
   2339
   2340	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
   2341	    && obj->buffer.length >= 4)
   2342		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
   2343
   2344	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
   2345	    && obj->buffer.length == 8)
   2346		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
   2347
   2348	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
   2349	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
   2350		lookup->mode |= SPI_LSB_FIRST;
   2351
   2352	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
   2353	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
   2354		lookup->mode |= SPI_CPOL;
   2355
   2356	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
   2357	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
   2358		lookup->mode |= SPI_CPHA;
   2359}
   2360
   2361static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
   2362
   2363static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
   2364{
   2365	struct acpi_spi_lookup *lookup = data;
   2366	struct spi_controller *ctlr = lookup->ctlr;
   2367
   2368	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
   2369		struct acpi_resource_spi_serialbus *sb;
   2370		acpi_handle parent_handle;
   2371		acpi_status status;
   2372
   2373		sb = &ares->data.spi_serial_bus;
   2374		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
   2375
   2376			if (lookup->index != -1 && lookup->n++ != lookup->index)
   2377				return 1;
   2378
   2379			if (lookup->index == -1 && !ctlr)
   2380				return -ENODEV;
   2381
   2382			status = acpi_get_handle(NULL,
   2383						 sb->resource_source.string_ptr,
   2384						 &parent_handle);
   2385
   2386			if (ACPI_FAILURE(status))
   2387				return -ENODEV;
   2388
   2389			if (ctlr) {
   2390				if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
   2391					return -ENODEV;
   2392			} else {
   2393				struct acpi_device *adev;
   2394
   2395				adev = acpi_fetch_acpi_dev(parent_handle);
   2396				if (!adev)
   2397					return -ENODEV;
   2398
   2399				ctlr = acpi_spi_find_controller_by_adev(adev);
   2400				if (!ctlr)
   2401					return -ENODEV;
   2402
   2403				lookup->ctlr = ctlr;
   2404			}
   2405
   2406			/*
   2407			 * ACPI DeviceSelection numbering is handled by the
   2408			 * host controller driver in Windows and can vary
   2409			 * from driver to driver. In Linux we always expect
   2410			 * 0 .. max - 1 so we need to ask the driver to
   2411			 * translate between the two schemes.
   2412			 */
   2413			if (ctlr->fw_translate_cs) {
   2414				int cs = ctlr->fw_translate_cs(ctlr,
   2415						sb->device_selection);
   2416				if (cs < 0)
   2417					return cs;
   2418				lookup->chip_select = cs;
   2419			} else {
   2420				lookup->chip_select = sb->device_selection;
   2421			}
   2422
   2423			lookup->max_speed_hz = sb->connection_speed;
   2424			lookup->bits_per_word = sb->data_bit_length;
   2425
   2426			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
   2427				lookup->mode |= SPI_CPHA;
   2428			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
   2429				lookup->mode |= SPI_CPOL;
   2430			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
   2431				lookup->mode |= SPI_CS_HIGH;
   2432		}
   2433	} else if (lookup->irq < 0) {
   2434		struct resource r;
   2435
   2436		if (acpi_dev_resource_interrupt(ares, 0, &r))
   2437			lookup->irq = r.start;
   2438	}
   2439
   2440	/* Always tell the ACPI core to skip this resource */
   2441	return 1;
   2442}
   2443
   2444/**
   2445 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
   2446 * @ctlr: controller to which the spi device belongs
   2447 * @adev: ACPI Device for the spi device
   2448 * @index: Index of the spi resource inside the ACPI Node
   2449 *
   2450 * This should be used to allocate a new spi device from and ACPI Node.
   2451 * The caller is responsible for calling spi_add_device to register the spi device.
   2452 *
   2453 * If ctlr is set to NULL, the Controller for the spi device will be looked up
   2454 * using the resource.
   2455 * If index is set to -1, index is not used.
   2456 * Note: If index is -1, ctlr must be set.
   2457 *
   2458 * Return: a pointer to the new device, or ERR_PTR on error.
   2459 */
   2460struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
   2461					 struct acpi_device *adev,
   2462					 int index)
   2463{
   2464	acpi_handle parent_handle = NULL;
   2465	struct list_head resource_list;
   2466	struct acpi_spi_lookup lookup = {};
   2467	struct spi_device *spi;
   2468	int ret;
   2469
   2470	if (!ctlr && index == -1)
   2471		return ERR_PTR(-EINVAL);
   2472
   2473	lookup.ctlr		= ctlr;
   2474	lookup.irq		= -1;
   2475	lookup.index		= index;
   2476	lookup.n		= 0;
   2477
   2478	INIT_LIST_HEAD(&resource_list);
   2479	ret = acpi_dev_get_resources(adev, &resource_list,
   2480				     acpi_spi_add_resource, &lookup);
   2481	acpi_dev_free_resource_list(&resource_list);
   2482
   2483	if (ret < 0)
   2484		/* found SPI in _CRS but it points to another controller */
   2485		return ERR_PTR(-ENODEV);
   2486
   2487	if (!lookup.max_speed_hz &&
   2488	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
   2489	    ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
   2490		/* Apple does not use _CRS but nested devices for SPI slaves */
   2491		acpi_spi_parse_apple_properties(adev, &lookup);
   2492	}
   2493
   2494	if (!lookup.max_speed_hz)
   2495		return ERR_PTR(-ENODEV);
   2496
   2497	spi = spi_alloc_device(lookup.ctlr);
   2498	if (!spi) {
   2499		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
   2500			dev_name(&adev->dev));
   2501		return ERR_PTR(-ENOMEM);
   2502	}
   2503
   2504	ACPI_COMPANION_SET(&spi->dev, adev);
   2505	spi->max_speed_hz	= lookup.max_speed_hz;
   2506	spi->mode		|= lookup.mode;
   2507	spi->irq		= lookup.irq;
   2508	spi->bits_per_word	= lookup.bits_per_word;
   2509	spi->chip_select	= lookup.chip_select;
   2510
   2511	return spi;
   2512}
   2513EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
   2514
   2515static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
   2516					    struct acpi_device *adev)
   2517{
   2518	struct spi_device *spi;
   2519
   2520	if (acpi_bus_get_status(adev) || !adev->status.present ||
   2521	    acpi_device_enumerated(adev))
   2522		return AE_OK;
   2523
   2524	spi = acpi_spi_device_alloc(ctlr, adev, -1);
   2525	if (IS_ERR(spi)) {
   2526		if (PTR_ERR(spi) == -ENOMEM)
   2527			return AE_NO_MEMORY;
   2528		else
   2529			return AE_OK;
   2530	}
   2531
   2532	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
   2533			  sizeof(spi->modalias));
   2534
   2535	if (spi->irq < 0)
   2536		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
   2537
   2538	acpi_device_set_enumerated(adev);
   2539
   2540	adev->power.flags.ignore_parent = true;
   2541	if (spi_add_device(spi)) {
   2542		adev->power.flags.ignore_parent = false;
   2543		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
   2544			dev_name(&adev->dev));
   2545		spi_dev_put(spi);
   2546	}
   2547
   2548	return AE_OK;
   2549}
   2550
   2551static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
   2552				       void *data, void **return_value)
   2553{
   2554	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
   2555	struct spi_controller *ctlr = data;
   2556
   2557	if (!adev)
   2558		return AE_OK;
   2559
   2560	return acpi_register_spi_device(ctlr, adev);
   2561}
   2562
   2563#define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
   2564
   2565static void acpi_register_spi_devices(struct spi_controller *ctlr)
   2566{
   2567	acpi_status status;
   2568	acpi_handle handle;
   2569
   2570	handle = ACPI_HANDLE(ctlr->dev.parent);
   2571	if (!handle)
   2572		return;
   2573
   2574	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
   2575				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
   2576				     acpi_spi_add_device, NULL, ctlr, NULL);
   2577	if (ACPI_FAILURE(status))
   2578		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
   2579}
   2580#else
   2581static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
   2582#endif /* CONFIG_ACPI */
   2583
   2584static void spi_controller_release(struct device *dev)
   2585{
   2586	struct spi_controller *ctlr;
   2587
   2588	ctlr = container_of(dev, struct spi_controller, dev);
   2589	kfree(ctlr);
   2590}
   2591
   2592static struct class spi_master_class = {
   2593	.name		= "spi_master",
   2594	.owner		= THIS_MODULE,
   2595	.dev_release	= spi_controller_release,
   2596	.dev_groups	= spi_master_groups,
   2597};
   2598
   2599#ifdef CONFIG_SPI_SLAVE
   2600/**
   2601 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
   2602 *		     controller
   2603 * @spi: device used for the current transfer
   2604 */
   2605int spi_slave_abort(struct spi_device *spi)
   2606{
   2607	struct spi_controller *ctlr = spi->controller;
   2608
   2609	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
   2610		return ctlr->slave_abort(ctlr);
   2611
   2612	return -ENOTSUPP;
   2613}
   2614EXPORT_SYMBOL_GPL(spi_slave_abort);
   2615
   2616static int match_true(struct device *dev, void *data)
   2617{
   2618	return 1;
   2619}
   2620
   2621static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
   2622			  char *buf)
   2623{
   2624	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
   2625						   dev);
   2626	struct device *child;
   2627
   2628	child = device_find_child(&ctlr->dev, NULL, match_true);
   2629	return sprintf(buf, "%s\n",
   2630		       child ? to_spi_device(child)->modalias : NULL);
   2631}
   2632
   2633static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
   2634			   const char *buf, size_t count)
   2635{
   2636	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
   2637						   dev);
   2638	struct spi_device *spi;
   2639	struct device *child;
   2640	char name[32];
   2641	int rc;
   2642
   2643	rc = sscanf(buf, "%31s", name);
   2644	if (rc != 1 || !name[0])
   2645		return -EINVAL;
   2646
   2647	child = device_find_child(&ctlr->dev, NULL, match_true);
   2648	if (child) {
   2649		/* Remove registered slave */
   2650		device_unregister(child);
   2651		put_device(child);
   2652	}
   2653
   2654	if (strcmp(name, "(null)")) {
   2655		/* Register new slave */
   2656		spi = spi_alloc_device(ctlr);
   2657		if (!spi)
   2658			return -ENOMEM;
   2659
   2660		strlcpy(spi->modalias, name, sizeof(spi->modalias));
   2661
   2662		rc = spi_add_device(spi);
   2663		if (rc) {
   2664			spi_dev_put(spi);
   2665			return rc;
   2666		}
   2667	}
   2668
   2669	return count;
   2670}
   2671
   2672static DEVICE_ATTR_RW(slave);
   2673
   2674static struct attribute *spi_slave_attrs[] = {
   2675	&dev_attr_slave.attr,
   2676	NULL,
   2677};
   2678
   2679static const struct attribute_group spi_slave_group = {
   2680	.attrs = spi_slave_attrs,
   2681};
   2682
   2683static const struct attribute_group *spi_slave_groups[] = {
   2684	&spi_controller_statistics_group,
   2685	&spi_slave_group,
   2686	NULL,
   2687};
   2688
   2689static struct class spi_slave_class = {
   2690	.name		= "spi_slave",
   2691	.owner		= THIS_MODULE,
   2692	.dev_release	= spi_controller_release,
   2693	.dev_groups	= spi_slave_groups,
   2694};
   2695#else
   2696extern struct class spi_slave_class;	/* dummy */
   2697#endif
   2698
   2699/**
   2700 * __spi_alloc_controller - allocate an SPI master or slave controller
   2701 * @dev: the controller, possibly using the platform_bus
   2702 * @size: how much zeroed driver-private data to allocate; the pointer to this
   2703 *	memory is in the driver_data field of the returned device, accessible
   2704 *	with spi_controller_get_devdata(); the memory is cacheline aligned;
   2705 *	drivers granting DMA access to portions of their private data need to
   2706 *	round up @size using ALIGN(size, dma_get_cache_alignment()).
   2707 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
   2708 *	slave (true) controller
   2709 * Context: can sleep
   2710 *
   2711 * This call is used only by SPI controller drivers, which are the
   2712 * only ones directly touching chip registers.  It's how they allocate
   2713 * an spi_controller structure, prior to calling spi_register_controller().
   2714 *
   2715 * This must be called from context that can sleep.
   2716 *
   2717 * The caller is responsible for assigning the bus number and initializing the
   2718 * controller's methods before calling spi_register_controller(); and (after
   2719 * errors adding the device) calling spi_controller_put() to prevent a memory
   2720 * leak.
   2721 *
   2722 * Return: the SPI controller structure on success, else NULL.
   2723 */
   2724struct spi_controller *__spi_alloc_controller(struct device *dev,
   2725					      unsigned int size, bool slave)
   2726{
   2727	struct spi_controller	*ctlr;
   2728	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
   2729
   2730	if (!dev)
   2731		return NULL;
   2732
   2733	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
   2734	if (!ctlr)
   2735		return NULL;
   2736
   2737	device_initialize(&ctlr->dev);
   2738	INIT_LIST_HEAD(&ctlr->queue);
   2739	spin_lock_init(&ctlr->queue_lock);
   2740	spin_lock_init(&ctlr->bus_lock_spinlock);
   2741	mutex_init(&ctlr->bus_lock_mutex);
   2742	mutex_init(&ctlr->io_mutex);
   2743	mutex_init(&ctlr->add_lock);
   2744	ctlr->bus_num = -1;
   2745	ctlr->num_chipselect = 1;
   2746	ctlr->slave = slave;
   2747	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
   2748		ctlr->dev.class = &spi_slave_class;
   2749	else
   2750		ctlr->dev.class = &spi_master_class;
   2751	ctlr->dev.parent = dev;
   2752	pm_suspend_ignore_children(&ctlr->dev, true);
   2753	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
   2754
   2755	return ctlr;
   2756}
   2757EXPORT_SYMBOL_GPL(__spi_alloc_controller);
   2758
   2759static void devm_spi_release_controller(struct device *dev, void *ctlr)
   2760{
   2761	spi_controller_put(*(struct spi_controller **)ctlr);
   2762}
   2763
   2764/**
   2765 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
   2766 * @dev: physical device of SPI controller
   2767 * @size: how much zeroed driver-private data to allocate
   2768 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
   2769 * Context: can sleep
   2770 *
   2771 * Allocate an SPI controller and automatically release a reference on it
   2772 * when @dev is unbound from its driver.  Drivers are thus relieved from
   2773 * having to call spi_controller_put().
   2774 *
   2775 * The arguments to this function are identical to __spi_alloc_controller().
   2776 *
   2777 * Return: the SPI controller structure on success, else NULL.
   2778 */
   2779struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
   2780						   unsigned int size,
   2781						   bool slave)
   2782{
   2783	struct spi_controller **ptr, *ctlr;
   2784
   2785	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
   2786			   GFP_KERNEL);
   2787	if (!ptr)
   2788		return NULL;
   2789
   2790	ctlr = __spi_alloc_controller(dev, size, slave);
   2791	if (ctlr) {
   2792		ctlr->devm_allocated = true;
   2793		*ptr = ctlr;
   2794		devres_add(dev, ptr);
   2795	} else {
   2796		devres_free(ptr);
   2797	}
   2798
   2799	return ctlr;
   2800}
   2801EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
   2802
   2803/**
   2804 * spi_get_gpio_descs() - grab chip select GPIOs for the master
   2805 * @ctlr: The SPI master to grab GPIO descriptors for
   2806 */
   2807static int spi_get_gpio_descs(struct spi_controller *ctlr)
   2808{
   2809	int nb, i;
   2810	struct gpio_desc **cs;
   2811	struct device *dev = &ctlr->dev;
   2812	unsigned long native_cs_mask = 0;
   2813	unsigned int num_cs_gpios = 0;
   2814
   2815	nb = gpiod_count(dev, "cs");
   2816	if (nb < 0) {
   2817		/* No GPIOs at all is fine, else return the error */
   2818		if (nb == -ENOENT)
   2819			return 0;
   2820		return nb;
   2821	}
   2822
   2823	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
   2824
   2825	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
   2826			  GFP_KERNEL);
   2827	if (!cs)
   2828		return -ENOMEM;
   2829	ctlr->cs_gpiods = cs;
   2830
   2831	for (i = 0; i < nb; i++) {
   2832		/*
   2833		 * Most chipselects are active low, the inverted
   2834		 * semantics are handled by special quirks in gpiolib,
   2835		 * so initializing them GPIOD_OUT_LOW here means
   2836		 * "unasserted", in most cases this will drive the physical
   2837		 * line high.
   2838		 */
   2839		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
   2840						      GPIOD_OUT_LOW);
   2841		if (IS_ERR(cs[i]))
   2842			return PTR_ERR(cs[i]);
   2843
   2844		if (cs[i]) {
   2845			/*
   2846			 * If we find a CS GPIO, name it after the device and
   2847			 * chip select line.
   2848			 */
   2849			char *gpioname;
   2850
   2851			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
   2852						  dev_name(dev), i);
   2853			if (!gpioname)
   2854				return -ENOMEM;
   2855			gpiod_set_consumer_name(cs[i], gpioname);
   2856			num_cs_gpios++;
   2857			continue;
   2858		}
   2859
   2860		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
   2861			dev_err(dev, "Invalid native chip select %d\n", i);
   2862			return -EINVAL;
   2863		}
   2864		native_cs_mask |= BIT(i);
   2865	}
   2866
   2867	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
   2868
   2869	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
   2870	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
   2871		dev_err(dev, "No unused native chip select available\n");
   2872		return -EINVAL;
   2873	}
   2874
   2875	return 0;
   2876}
   2877
   2878static int spi_controller_check_ops(struct spi_controller *ctlr)
   2879{
   2880	/*
   2881	 * The controller may implement only the high-level SPI-memory like
   2882	 * operations if it does not support regular SPI transfers, and this is
   2883	 * valid use case.
   2884	 * If ->mem_ops is NULL, we request that at least one of the
   2885	 * ->transfer_xxx() method be implemented.
   2886	 */
   2887	if (ctlr->mem_ops) {
   2888		if (!ctlr->mem_ops->exec_op)
   2889			return -EINVAL;
   2890	} else if (!ctlr->transfer && !ctlr->transfer_one &&
   2891		   !ctlr->transfer_one_message) {
   2892		return -EINVAL;
   2893	}
   2894
   2895	return 0;
   2896}
   2897
   2898/**
   2899 * spi_register_controller - register SPI master or slave controller
   2900 * @ctlr: initialized master, originally from spi_alloc_master() or
   2901 *	spi_alloc_slave()
   2902 * Context: can sleep
   2903 *
   2904 * SPI controllers connect to their drivers using some non-SPI bus,
   2905 * such as the platform bus.  The final stage of probe() in that code
   2906 * includes calling spi_register_controller() to hook up to this SPI bus glue.
   2907 *
   2908 * SPI controllers use board specific (often SOC specific) bus numbers,
   2909 * and board-specific addressing for SPI devices combines those numbers
   2910 * with chip select numbers.  Since SPI does not directly support dynamic
   2911 * device identification, boards need configuration tables telling which
   2912 * chip is at which address.
   2913 *
   2914 * This must be called from context that can sleep.  It returns zero on
   2915 * success, else a negative error code (dropping the controller's refcount).
   2916 * After a successful return, the caller is responsible for calling
   2917 * spi_unregister_controller().
   2918 *
   2919 * Return: zero on success, else a negative error code.
   2920 */
   2921int spi_register_controller(struct spi_controller *ctlr)
   2922{
   2923	struct device		*dev = ctlr->dev.parent;
   2924	struct boardinfo	*bi;
   2925	int			status;
   2926	int			id, first_dynamic;
   2927
   2928	if (!dev)
   2929		return -ENODEV;
   2930
   2931	/*
   2932	 * Make sure all necessary hooks are implemented before registering
   2933	 * the SPI controller.
   2934	 */
   2935	status = spi_controller_check_ops(ctlr);
   2936	if (status)
   2937		return status;
   2938
   2939	if (ctlr->bus_num >= 0) {
   2940		/* devices with a fixed bus num must check-in with the num */
   2941		mutex_lock(&board_lock);
   2942		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
   2943			ctlr->bus_num + 1, GFP_KERNEL);
   2944		mutex_unlock(&board_lock);
   2945		if (WARN(id < 0, "couldn't get idr"))
   2946			return id == -ENOSPC ? -EBUSY : id;
   2947		ctlr->bus_num = id;
   2948	} else if (ctlr->dev.of_node) {
   2949		/* allocate dynamic bus number using Linux idr */
   2950		id = of_alias_get_id(ctlr->dev.of_node, "spi");
   2951		if (id >= 0) {
   2952			ctlr->bus_num = id;
   2953			mutex_lock(&board_lock);
   2954			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
   2955				       ctlr->bus_num + 1, GFP_KERNEL);
   2956			mutex_unlock(&board_lock);
   2957			if (WARN(id < 0, "couldn't get idr"))
   2958				return id == -ENOSPC ? -EBUSY : id;
   2959		}
   2960	}
   2961	if (ctlr->bus_num < 0) {
   2962		first_dynamic = of_alias_get_highest_id("spi");
   2963		if (first_dynamic < 0)
   2964			first_dynamic = 0;
   2965		else
   2966			first_dynamic++;
   2967
   2968		mutex_lock(&board_lock);
   2969		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
   2970			       0, GFP_KERNEL);
   2971		mutex_unlock(&board_lock);
   2972		if (WARN(id < 0, "couldn't get idr"))
   2973			return id;
   2974		ctlr->bus_num = id;
   2975	}
   2976	ctlr->bus_lock_flag = 0;
   2977	init_completion(&ctlr->xfer_completion);
   2978	if (!ctlr->max_dma_len)
   2979		ctlr->max_dma_len = INT_MAX;
   2980
   2981	/*
   2982	 * Register the device, then userspace will see it.
   2983	 * Registration fails if the bus ID is in use.
   2984	 */
   2985	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
   2986
   2987	if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
   2988		status = spi_get_gpio_descs(ctlr);
   2989		if (status)
   2990			goto free_bus_id;
   2991		/*
   2992		 * A controller using GPIO descriptors always
   2993		 * supports SPI_CS_HIGH if need be.
   2994		 */
   2995		ctlr->mode_bits |= SPI_CS_HIGH;
   2996	}
   2997
   2998	/*
   2999	 * Even if it's just one always-selected device, there must
   3000	 * be at least one chipselect.
   3001	 */
   3002	if (!ctlr->num_chipselect) {
   3003		status = -EINVAL;
   3004		goto free_bus_id;
   3005	}
   3006
   3007	/* setting last_cs to -1 means no chip selected */
   3008	ctlr->last_cs = -1;
   3009
   3010	status = device_add(&ctlr->dev);
   3011	if (status < 0)
   3012		goto free_bus_id;
   3013	dev_dbg(dev, "registered %s %s\n",
   3014			spi_controller_is_slave(ctlr) ? "slave" : "master",
   3015			dev_name(&ctlr->dev));
   3016
   3017	/*
   3018	 * If we're using a queued driver, start the queue. Note that we don't
   3019	 * need the queueing logic if the driver is only supporting high-level
   3020	 * memory operations.
   3021	 */
   3022	if (ctlr->transfer) {
   3023		dev_info(dev, "controller is unqueued, this is deprecated\n");
   3024	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
   3025		status = spi_controller_initialize_queue(ctlr);
   3026		if (status) {
   3027			device_del(&ctlr->dev);
   3028			goto free_bus_id;
   3029		}
   3030	}
   3031	/* add statistics */
   3032	spin_lock_init(&ctlr->statistics.lock);
   3033
   3034	mutex_lock(&board_lock);
   3035	list_add_tail(&ctlr->list, &spi_controller_list);
   3036	list_for_each_entry(bi, &board_list, list)
   3037		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
   3038	mutex_unlock(&board_lock);
   3039
   3040	/* Register devices from the device tree and ACPI */
   3041	of_register_spi_devices(ctlr);
   3042	acpi_register_spi_devices(ctlr);
   3043	return status;
   3044
   3045free_bus_id:
   3046	mutex_lock(&board_lock);
   3047	idr_remove(&spi_master_idr, ctlr->bus_num);
   3048	mutex_unlock(&board_lock);
   3049	return status;
   3050}
   3051EXPORT_SYMBOL_GPL(spi_register_controller);
   3052
   3053static void devm_spi_unregister(void *ctlr)
   3054{
   3055	spi_unregister_controller(ctlr);
   3056}
   3057
   3058/**
   3059 * devm_spi_register_controller - register managed SPI master or slave
   3060 *	controller
   3061 * @dev:    device managing SPI controller
   3062 * @ctlr: initialized controller, originally from spi_alloc_master() or
   3063 *	spi_alloc_slave()
   3064 * Context: can sleep
   3065 *
   3066 * Register a SPI device as with spi_register_controller() which will
   3067 * automatically be unregistered and freed.
   3068 *
   3069 * Return: zero on success, else a negative error code.
   3070 */
   3071int devm_spi_register_controller(struct device *dev,
   3072				 struct spi_controller *ctlr)
   3073{
   3074	int ret;
   3075
   3076	ret = spi_register_controller(ctlr);
   3077	if (ret)
   3078		return ret;
   3079
   3080	return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr);
   3081}
   3082EXPORT_SYMBOL_GPL(devm_spi_register_controller);
   3083
   3084static int __unregister(struct device *dev, void *null)
   3085{
   3086	spi_unregister_device(to_spi_device(dev));
   3087	return 0;
   3088}
   3089
   3090/**
   3091 * spi_unregister_controller - unregister SPI master or slave controller
   3092 * @ctlr: the controller being unregistered
   3093 * Context: can sleep
   3094 *
   3095 * This call is used only by SPI controller drivers, which are the
   3096 * only ones directly touching chip registers.
   3097 *
   3098 * This must be called from context that can sleep.
   3099 *
   3100 * Note that this function also drops a reference to the controller.
   3101 */
   3102void spi_unregister_controller(struct spi_controller *ctlr)
   3103{
   3104	struct spi_controller *found;
   3105	int id = ctlr->bus_num;
   3106
   3107	/* Prevent addition of new devices, unregister existing ones */
   3108	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
   3109		mutex_lock(&ctlr->add_lock);
   3110
   3111	device_for_each_child(&ctlr->dev, NULL, __unregister);
   3112
   3113	/* First make sure that this controller was ever added */
   3114	mutex_lock(&board_lock);
   3115	found = idr_find(&spi_master_idr, id);
   3116	mutex_unlock(&board_lock);
   3117	if (ctlr->queued) {
   3118		if (spi_destroy_queue(ctlr))
   3119			dev_err(&ctlr->dev, "queue remove failed\n");
   3120	}
   3121	mutex_lock(&board_lock);
   3122	list_del(&ctlr->list);
   3123	mutex_unlock(&board_lock);
   3124
   3125	device_del(&ctlr->dev);
   3126
   3127	/* free bus id */
   3128	mutex_lock(&board_lock);
   3129	if (found == ctlr)
   3130		idr_remove(&spi_master_idr, id);
   3131	mutex_unlock(&board_lock);
   3132
   3133	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
   3134		mutex_unlock(&ctlr->add_lock);
   3135
   3136	/* Release the last reference on the controller if its driver
   3137	 * has not yet been converted to devm_spi_alloc_master/slave().
   3138	 */
   3139	if (!ctlr->devm_allocated)
   3140		put_device(&ctlr->dev);
   3141}
   3142EXPORT_SYMBOL_GPL(spi_unregister_controller);
   3143
   3144int spi_controller_suspend(struct spi_controller *ctlr)
   3145{
   3146	int ret;
   3147
   3148	/* Basically no-ops for non-queued controllers */
   3149	if (!ctlr->queued)
   3150		return 0;
   3151
   3152	ret = spi_stop_queue(ctlr);
   3153	if (ret)
   3154		dev_err(&ctlr->dev, "queue stop failed\n");
   3155
   3156	return ret;
   3157}
   3158EXPORT_SYMBOL_GPL(spi_controller_suspend);
   3159
   3160int spi_controller_resume(struct spi_controller *ctlr)
   3161{
   3162	int ret;
   3163
   3164	if (!ctlr->queued)
   3165		return 0;
   3166
   3167	ret = spi_start_queue(ctlr);
   3168	if (ret)
   3169		dev_err(&ctlr->dev, "queue restart failed\n");
   3170
   3171	return ret;
   3172}
   3173EXPORT_SYMBOL_GPL(spi_controller_resume);
   3174
   3175/*-------------------------------------------------------------------------*/
   3176
   3177/* Core methods for spi_message alterations */
   3178
   3179static void __spi_replace_transfers_release(struct spi_controller *ctlr,
   3180					    struct spi_message *msg,
   3181					    void *res)
   3182{
   3183	struct spi_replaced_transfers *rxfer = res;
   3184	size_t i;
   3185
   3186	/* call extra callback if requested */
   3187	if (rxfer->release)
   3188		rxfer->release(ctlr, msg, res);
   3189
   3190	/* insert replaced transfers back into the message */
   3191	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
   3192
   3193	/* remove the formerly inserted entries */
   3194	for (i = 0; i < rxfer->inserted; i++)
   3195		list_del(&rxfer->inserted_transfers[i].transfer_list);
   3196}
   3197
   3198/**
   3199 * spi_replace_transfers - replace transfers with several transfers
   3200 *                         and register change with spi_message.resources
   3201 * @msg:           the spi_message we work upon
   3202 * @xfer_first:    the first spi_transfer we want to replace
   3203 * @remove:        number of transfers to remove
   3204 * @insert:        the number of transfers we want to insert instead
   3205 * @release:       extra release code necessary in some circumstances
   3206 * @extradatasize: extra data to allocate (with alignment guarantees
   3207 *                 of struct @spi_transfer)
   3208 * @gfp:           gfp flags
   3209 *
   3210 * Returns: pointer to @spi_replaced_transfers,
   3211 *          PTR_ERR(...) in case of errors.
   3212 */
   3213static struct spi_replaced_transfers *spi_replace_transfers(
   3214	struct spi_message *msg,
   3215	struct spi_transfer *xfer_first,
   3216	size_t remove,
   3217	size_t insert,
   3218	spi_replaced_release_t release,
   3219	size_t extradatasize,
   3220	gfp_t gfp)
   3221{
   3222	struct spi_replaced_transfers *rxfer;
   3223	struct spi_transfer *xfer;
   3224	size_t i;
   3225
   3226	/* allocate the structure using spi_res */
   3227	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
   3228			      struct_size(rxfer, inserted_transfers, insert)
   3229			      + extradatasize,
   3230			      gfp);
   3231	if (!rxfer)
   3232		return ERR_PTR(-ENOMEM);
   3233
   3234	/* the release code to invoke before running the generic release */
   3235	rxfer->release = release;
   3236
   3237	/* assign extradata */
   3238	if (extradatasize)
   3239		rxfer->extradata =
   3240			&rxfer->inserted_transfers[insert];
   3241
   3242	/* init the replaced_transfers list */
   3243	INIT_LIST_HEAD(&rxfer->replaced_transfers);
   3244
   3245	/*
   3246	 * Assign the list_entry after which we should reinsert
   3247	 * the @replaced_transfers - it may be spi_message.messages!
   3248	 */
   3249	rxfer->replaced_after = xfer_first->transfer_list.prev;
   3250
   3251	/* remove the requested number of transfers */
   3252	for (i = 0; i < remove; i++) {
   3253		/*
   3254		 * If the entry after replaced_after it is msg->transfers
   3255		 * then we have been requested to remove more transfers
   3256		 * than are in the list.
   3257		 */
   3258		if (rxfer->replaced_after->next == &msg->transfers) {
   3259			dev_err(&msg->spi->dev,
   3260				"requested to remove more spi_transfers than are available\n");
   3261			/* insert replaced transfers back into the message */
   3262			list_splice(&rxfer->replaced_transfers,
   3263				    rxfer->replaced_after);
   3264
   3265			/* free the spi_replace_transfer structure */
   3266			spi_res_free(rxfer);
   3267
   3268			/* and return with an error */
   3269			return ERR_PTR(-EINVAL);
   3270		}
   3271
   3272		/*
   3273		 * Remove the entry after replaced_after from list of
   3274		 * transfers and add it to list of replaced_transfers.
   3275		 */
   3276		list_move_tail(rxfer->replaced_after->next,
   3277			       &rxfer->replaced_transfers);
   3278	}
   3279
   3280	/*
   3281	 * Create copy of the given xfer with identical settings
   3282	 * based on the first transfer to get removed.
   3283	 */
   3284	for (i = 0; i < insert; i++) {
   3285		/* we need to run in reverse order */
   3286		xfer = &rxfer->inserted_transfers[insert - 1 - i];
   3287
   3288		/* copy all spi_transfer data */
   3289		memcpy(xfer, xfer_first, sizeof(*xfer));
   3290
   3291		/* add to list */
   3292		list_add(&xfer->transfer_list, rxfer->replaced_after);
   3293
   3294		/* clear cs_change and delay for all but the last */
   3295		if (i) {
   3296			xfer->cs_change = false;
   3297			xfer->delay.value = 0;
   3298		}
   3299	}
   3300
   3301	/* set up inserted */
   3302	rxfer->inserted = insert;
   3303
   3304	/* and register it with spi_res/spi_message */
   3305	spi_res_add(msg, rxfer);
   3306
   3307	return rxfer;
   3308}
   3309
   3310static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
   3311					struct spi_message *msg,
   3312					struct spi_transfer **xferp,
   3313					size_t maxsize,
   3314					gfp_t gfp)
   3315{
   3316	struct spi_transfer *xfer = *xferp, *xfers;
   3317	struct spi_replaced_transfers *srt;
   3318	size_t offset;
   3319	size_t count, i;
   3320
   3321	/* calculate how many we have to replace */
   3322	count = DIV_ROUND_UP(xfer->len, maxsize);
   3323
   3324	/* create replacement */
   3325	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
   3326	if (IS_ERR(srt))
   3327		return PTR_ERR(srt);
   3328	xfers = srt->inserted_transfers;
   3329
   3330	/*
   3331	 * Now handle each of those newly inserted spi_transfers.
   3332	 * Note that the replacements spi_transfers all are preset
   3333	 * to the same values as *xferp, so tx_buf, rx_buf and len
   3334	 * are all identical (as well as most others)
   3335	 * so we just have to fix up len and the pointers.
   3336	 *
   3337	 * This also includes support for the depreciated
   3338	 * spi_message.is_dma_mapped interface.
   3339	 */
   3340
   3341	/*
   3342	 * The first transfer just needs the length modified, so we
   3343	 * run it outside the loop.
   3344	 */
   3345	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
   3346
   3347	/* all the others need rx_buf/tx_buf also set */
   3348	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
   3349		/* update rx_buf, tx_buf and dma */
   3350		if (xfers[i].rx_buf)
   3351			xfers[i].rx_buf += offset;
   3352		if (xfers[i].rx_dma)
   3353			xfers[i].rx_dma += offset;
   3354		if (xfers[i].tx_buf)
   3355			xfers[i].tx_buf += offset;
   3356		if (xfers[i].tx_dma)
   3357			xfers[i].tx_dma += offset;
   3358
   3359		/* update length */
   3360		xfers[i].len = min(maxsize, xfers[i].len - offset);
   3361	}
   3362
   3363	/*
   3364	 * We set up xferp to the last entry we have inserted,
   3365	 * so that we skip those already split transfers.
   3366	 */
   3367	*xferp = &xfers[count - 1];
   3368
   3369	/* increment statistics counters */
   3370	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
   3371				       transfers_split_maxsize);
   3372	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
   3373				       transfers_split_maxsize);
   3374
   3375	return 0;
   3376}
   3377
   3378/**
   3379 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
   3380 *                               when an individual transfer exceeds a
   3381 *                               certain size
   3382 * @ctlr:    the @spi_controller for this transfer
   3383 * @msg:   the @spi_message to transform
   3384 * @maxsize:  the maximum when to apply this
   3385 * @gfp: GFP allocation flags
   3386 *
   3387 * Return: status of transformation
   3388 */
   3389int spi_split_transfers_maxsize(struct spi_controller *ctlr,
   3390				struct spi_message *msg,
   3391				size_t maxsize,
   3392				gfp_t gfp)
   3393{
   3394	struct spi_transfer *xfer;
   3395	int ret;
   3396
   3397	/*
   3398	 * Iterate over the transfer_list,
   3399	 * but note that xfer is advanced to the last transfer inserted
   3400	 * to avoid checking sizes again unnecessarily (also xfer does
   3401	 * potentially belong to a different list by the time the
   3402	 * replacement has happened).
   3403	 */
   3404	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
   3405		if (xfer->len > maxsize) {
   3406			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
   3407							   maxsize, gfp);
   3408			if (ret)
   3409				return ret;
   3410		}
   3411	}
   3412
   3413	return 0;
   3414}
   3415EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
   3416
   3417/*-------------------------------------------------------------------------*/
   3418
   3419/* Core methods for SPI controller protocol drivers.  Some of the
   3420 * other core methods are currently defined as inline functions.
   3421 */
   3422
   3423static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
   3424					u8 bits_per_word)
   3425{
   3426	if (ctlr->bits_per_word_mask) {
   3427		/* Only 32 bits fit in the mask */
   3428		if (bits_per_word > 32)
   3429			return -EINVAL;
   3430		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
   3431			return -EINVAL;
   3432	}
   3433
   3434	return 0;
   3435}
   3436
   3437/**
   3438 * spi_setup - setup SPI mode and clock rate
   3439 * @spi: the device whose settings are being modified
   3440 * Context: can sleep, and no requests are queued to the device
   3441 *
   3442 * SPI protocol drivers may need to update the transfer mode if the
   3443 * device doesn't work with its default.  They may likewise need
   3444 * to update clock rates or word sizes from initial values.  This function
   3445 * changes those settings, and must be called from a context that can sleep.
   3446 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
   3447 * effect the next time the device is selected and data is transferred to
   3448 * or from it.  When this function returns, the spi device is deselected.
   3449 *
   3450 * Note that this call will fail if the protocol driver specifies an option
   3451 * that the underlying controller or its driver does not support.  For
   3452 * example, not all hardware supports wire transfers using nine bit words,
   3453 * LSB-first wire encoding, or active-high chipselects.
   3454 *
   3455 * Return: zero on success, else a negative error code.
   3456 */
   3457int spi_setup(struct spi_device *spi)
   3458{
   3459	unsigned	bad_bits, ugly_bits;
   3460	int		status = 0;
   3461
   3462	/*
   3463	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
   3464	 * are set at the same time.
   3465	 */
   3466	if ((hweight_long(spi->mode &
   3467		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
   3468	    (hweight_long(spi->mode &
   3469		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
   3470		dev_err(&spi->dev,
   3471		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
   3472		return -EINVAL;
   3473	}
   3474	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
   3475	if ((spi->mode & SPI_3WIRE) && (spi->mode &
   3476		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
   3477		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
   3478		return -EINVAL;
   3479	/*
   3480	 * Help drivers fail *cleanly* when they need options
   3481	 * that aren't supported with their current controller.
   3482	 * SPI_CS_WORD has a fallback software implementation,
   3483	 * so it is ignored here.
   3484	 */
   3485	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
   3486				 SPI_NO_TX | SPI_NO_RX);
   3487	ugly_bits = bad_bits &
   3488		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
   3489		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
   3490	if (ugly_bits) {
   3491		dev_warn(&spi->dev,
   3492			 "setup: ignoring unsupported mode bits %x\n",
   3493			 ugly_bits);
   3494		spi->mode &= ~ugly_bits;
   3495		bad_bits &= ~ugly_bits;
   3496	}
   3497	if (bad_bits) {
   3498		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
   3499			bad_bits);
   3500		return -EINVAL;
   3501	}
   3502
   3503	if (!spi->bits_per_word) {
   3504		spi->bits_per_word = 8;
   3505	} else {
   3506		/*
   3507		 * Some controllers may not support the default 8 bits-per-word
   3508		 * so only perform the check when this is explicitly provided.
   3509		 */
   3510		status = __spi_validate_bits_per_word(spi->controller,
   3511						      spi->bits_per_word);
   3512		if (status)
   3513			return status;
   3514	}
   3515
   3516	if (spi->controller->max_speed_hz &&
   3517	    (!spi->max_speed_hz ||
   3518	     spi->max_speed_hz > spi->controller->max_speed_hz))
   3519		spi->max_speed_hz = spi->controller->max_speed_hz;
   3520
   3521	mutex_lock(&spi->controller->io_mutex);
   3522
   3523	if (spi->controller->setup) {
   3524		status = spi->controller->setup(spi);
   3525		if (status) {
   3526			mutex_unlock(&spi->controller->io_mutex);
   3527			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
   3528				status);
   3529			return status;
   3530		}
   3531	}
   3532
   3533	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
   3534		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
   3535		if (status < 0) {
   3536			mutex_unlock(&spi->controller->io_mutex);
   3537			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
   3538				status);
   3539			return status;
   3540		}
   3541
   3542		/*
   3543		 * We do not want to return positive value from pm_runtime_get,
   3544		 * there are many instances of devices calling spi_setup() and
   3545		 * checking for a non-zero return value instead of a negative
   3546		 * return value.
   3547		 */
   3548		status = 0;
   3549
   3550		spi_set_cs(spi, false, true);
   3551		pm_runtime_mark_last_busy(spi->controller->dev.parent);
   3552		pm_runtime_put_autosuspend(spi->controller->dev.parent);
   3553	} else {
   3554		spi_set_cs(spi, false, true);
   3555	}
   3556
   3557	mutex_unlock(&spi->controller->io_mutex);
   3558
   3559	if (spi->rt && !spi->controller->rt) {
   3560		spi->controller->rt = true;
   3561		spi_set_thread_rt(spi->controller);
   3562	}
   3563
   3564	trace_spi_setup(spi, status);
   3565
   3566	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
   3567			spi->mode & SPI_MODE_X_MASK,
   3568			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
   3569			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
   3570			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
   3571			(spi->mode & SPI_LOOP) ? "loopback, " : "",
   3572			spi->bits_per_word, spi->max_speed_hz,
   3573			status);
   3574
   3575	return status;
   3576}
   3577EXPORT_SYMBOL_GPL(spi_setup);
   3578
   3579static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
   3580				       struct spi_device *spi)
   3581{
   3582	int delay1, delay2;
   3583
   3584	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
   3585	if (delay1 < 0)
   3586		return delay1;
   3587
   3588	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
   3589	if (delay2 < 0)
   3590		return delay2;
   3591
   3592	if (delay1 < delay2)
   3593		memcpy(&xfer->word_delay, &spi->word_delay,
   3594		       sizeof(xfer->word_delay));
   3595
   3596	return 0;
   3597}
   3598
   3599static int __spi_validate(struct spi_device *spi, struct spi_message *message)
   3600{
   3601	struct spi_controller *ctlr = spi->controller;
   3602	struct spi_transfer *xfer;
   3603	int w_size;
   3604
   3605	if (list_empty(&message->transfers))
   3606		return -EINVAL;
   3607
   3608	/*
   3609	 * If an SPI controller does not support toggling the CS line on each
   3610	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
   3611	 * for the CS line, we can emulate the CS-per-word hardware function by
   3612	 * splitting transfers into one-word transfers and ensuring that
   3613	 * cs_change is set for each transfer.
   3614	 */
   3615	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
   3616					  spi->cs_gpiod)) {
   3617		size_t maxsize;
   3618		int ret;
   3619
   3620		maxsize = (spi->bits_per_word + 7) / 8;
   3621
   3622		/* spi_split_transfers_maxsize() requires message->spi */
   3623		message->spi = spi;
   3624
   3625		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
   3626						  GFP_KERNEL);
   3627		if (ret)
   3628			return ret;
   3629
   3630		list_for_each_entry(xfer, &message->transfers, transfer_list) {
   3631			/* don't change cs_change on the last entry in the list */
   3632			if (list_is_last(&xfer->transfer_list, &message->transfers))
   3633				break;
   3634			xfer->cs_change = 1;
   3635		}
   3636	}
   3637
   3638	/*
   3639	 * Half-duplex links include original MicroWire, and ones with
   3640	 * only one data pin like SPI_3WIRE (switches direction) or where
   3641	 * either MOSI or MISO is missing.  They can also be caused by
   3642	 * software limitations.
   3643	 */
   3644	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
   3645	    (spi->mode & SPI_3WIRE)) {
   3646		unsigned flags = ctlr->flags;
   3647
   3648		list_for_each_entry(xfer, &message->transfers, transfer_list) {
   3649			if (xfer->rx_buf && xfer->tx_buf)
   3650				return -EINVAL;
   3651			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
   3652				return -EINVAL;
   3653			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
   3654				return -EINVAL;
   3655		}
   3656	}
   3657
   3658	/*
   3659	 * Set transfer bits_per_word and max speed as spi device default if
   3660	 * it is not set for this transfer.
   3661	 * Set transfer tx_nbits and rx_nbits as single transfer default
   3662	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
   3663	 * Ensure transfer word_delay is at least as long as that required by
   3664	 * device itself.
   3665	 */
   3666	message->frame_length = 0;
   3667	list_for_each_entry(xfer, &message->transfers, transfer_list) {
   3668		xfer->effective_speed_hz = 0;
   3669		message->frame_length += xfer->len;
   3670		if (!xfer->bits_per_word)
   3671			xfer->bits_per_word = spi->bits_per_word;
   3672
   3673		if (!xfer->speed_hz)
   3674			xfer->speed_hz = spi->max_speed_hz;
   3675
   3676		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
   3677			xfer->speed_hz = ctlr->max_speed_hz;
   3678
   3679		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
   3680			return -EINVAL;
   3681
   3682		/*
   3683		 * SPI transfer length should be multiple of SPI word size
   3684		 * where SPI word size should be power-of-two multiple.
   3685		 */
   3686		if (xfer->bits_per_word <= 8)
   3687			w_size = 1;
   3688		else if (xfer->bits_per_word <= 16)
   3689			w_size = 2;
   3690		else
   3691			w_size = 4;
   3692
   3693		/* No partial transfers accepted */
   3694		if (xfer->len % w_size)
   3695			return -EINVAL;
   3696
   3697		if (xfer->speed_hz && ctlr->min_speed_hz &&
   3698		    xfer->speed_hz < ctlr->min_speed_hz)
   3699			return -EINVAL;
   3700
   3701		if (xfer->tx_buf && !xfer->tx_nbits)
   3702			xfer->tx_nbits = SPI_NBITS_SINGLE;
   3703		if (xfer->rx_buf && !xfer->rx_nbits)
   3704			xfer->rx_nbits = SPI_NBITS_SINGLE;
   3705		/*
   3706		 * Check transfer tx/rx_nbits:
   3707		 * 1. check the value matches one of single, dual and quad
   3708		 * 2. check tx/rx_nbits match the mode in spi_device
   3709		 */
   3710		if (xfer->tx_buf) {
   3711			if (spi->mode & SPI_NO_TX)
   3712				return -EINVAL;
   3713			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
   3714				xfer->tx_nbits != SPI_NBITS_DUAL &&
   3715				xfer->tx_nbits != SPI_NBITS_QUAD)
   3716				return -EINVAL;
   3717			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
   3718				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
   3719				return -EINVAL;
   3720			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
   3721				!(spi->mode & SPI_TX_QUAD))
   3722				return -EINVAL;
   3723		}
   3724		/* check transfer rx_nbits */
   3725		if (xfer->rx_buf) {
   3726			if (spi->mode & SPI_NO_RX)
   3727				return -EINVAL;
   3728			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
   3729				xfer->rx_nbits != SPI_NBITS_DUAL &&
   3730				xfer->rx_nbits != SPI_NBITS_QUAD)
   3731				return -EINVAL;
   3732			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
   3733				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
   3734				return -EINVAL;
   3735			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
   3736				!(spi->mode & SPI_RX_QUAD))
   3737				return -EINVAL;
   3738		}
   3739
   3740		if (_spi_xfer_word_delay_update(xfer, spi))
   3741			return -EINVAL;
   3742	}
   3743
   3744	message->status = -EINPROGRESS;
   3745
   3746	return 0;
   3747}
   3748
   3749static int __spi_async(struct spi_device *spi, struct spi_message *message)
   3750{
   3751	struct spi_controller *ctlr = spi->controller;
   3752	struct spi_transfer *xfer;
   3753
   3754	/*
   3755	 * Some controllers do not support doing regular SPI transfers. Return
   3756	 * ENOTSUPP when this is the case.
   3757	 */
   3758	if (!ctlr->transfer)
   3759		return -ENOTSUPP;
   3760
   3761	message->spi = spi;
   3762
   3763	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
   3764	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
   3765
   3766	trace_spi_message_submit(message);
   3767
   3768	if (!ctlr->ptp_sts_supported) {
   3769		list_for_each_entry(xfer, &message->transfers, transfer_list) {
   3770			xfer->ptp_sts_word_pre = 0;
   3771			ptp_read_system_prets(xfer->ptp_sts);
   3772		}
   3773	}
   3774
   3775	return ctlr->transfer(spi, message);
   3776}
   3777
   3778/**
   3779 * spi_async - asynchronous SPI transfer
   3780 * @spi: device with which data will be exchanged
   3781 * @message: describes the data transfers, including completion callback
   3782 * Context: any (irqs may be blocked, etc)
   3783 *
   3784 * This call may be used in_irq and other contexts which can't sleep,
   3785 * as well as from task contexts which can sleep.
   3786 *
   3787 * The completion callback is invoked in a context which can't sleep.
   3788 * Before that invocation, the value of message->status is undefined.
   3789 * When the callback is issued, message->status holds either zero (to
   3790 * indicate complete success) or a negative error code.  After that
   3791 * callback returns, the driver which issued the transfer request may
   3792 * deallocate the associated memory; it's no longer in use by any SPI
   3793 * core or controller driver code.
   3794 *
   3795 * Note that although all messages to a spi_device are handled in
   3796 * FIFO order, messages may go to different devices in other orders.
   3797 * Some device might be higher priority, or have various "hard" access
   3798 * time requirements, for example.
   3799 *
   3800 * On detection of any fault during the transfer, processing of
   3801 * the entire message is aborted, and the device is deselected.
   3802 * Until returning from the associated message completion callback,
   3803 * no other spi_message queued to that device will be processed.
   3804 * (This rule applies equally to all the synchronous transfer calls,
   3805 * which are wrappers around this core asynchronous primitive.)
   3806 *
   3807 * Return: zero on success, else a negative error code.
   3808 */
   3809int spi_async(struct spi_device *spi, struct spi_message *message)
   3810{
   3811	struct spi_controller *ctlr = spi->controller;
   3812	int ret;
   3813	unsigned long flags;
   3814
   3815	ret = __spi_validate(spi, message);
   3816	if (ret != 0)
   3817		return ret;
   3818
   3819	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
   3820
   3821	if (ctlr->bus_lock_flag)
   3822		ret = -EBUSY;
   3823	else
   3824		ret = __spi_async(spi, message);
   3825
   3826	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
   3827
   3828	return ret;
   3829}
   3830EXPORT_SYMBOL_GPL(spi_async);
   3831
   3832/**
   3833 * spi_async_locked - version of spi_async with exclusive bus usage
   3834 * @spi: device with which data will be exchanged
   3835 * @message: describes the data transfers, including completion callback
   3836 * Context: any (irqs may be blocked, etc)
   3837 *
   3838 * This call may be used in_irq and other contexts which can't sleep,
   3839 * as well as from task contexts which can sleep.
   3840 *
   3841 * The completion callback is invoked in a context which can't sleep.
   3842 * Before that invocation, the value of message->status is undefined.
   3843 * When the callback is issued, message->status holds either zero (to
   3844 * indicate complete success) or a negative error code.  After that
   3845 * callback returns, the driver which issued the transfer request may
   3846 * deallocate the associated memory; it's no longer in use by any SPI
   3847 * core or controller driver code.
   3848 *
   3849 * Note that although all messages to a spi_device are handled in
   3850 * FIFO order, messages may go to different devices in other orders.
   3851 * Some device might be higher priority, or have various "hard" access
   3852 * time requirements, for example.
   3853 *
   3854 * On detection of any fault during the transfer, processing of
   3855 * the entire message is aborted, and the device is deselected.
   3856 * Until returning from the associated message completion callback,
   3857 * no other spi_message queued to that device will be processed.
   3858 * (This rule applies equally to all the synchronous transfer calls,
   3859 * which are wrappers around this core asynchronous primitive.)
   3860 *
   3861 * Return: zero on success, else a negative error code.
   3862 */
   3863static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
   3864{
   3865	struct spi_controller *ctlr = spi->controller;
   3866	int ret;
   3867	unsigned long flags;
   3868
   3869	ret = __spi_validate(spi, message);
   3870	if (ret != 0)
   3871		return ret;
   3872
   3873	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
   3874
   3875	ret = __spi_async(spi, message);
   3876
   3877	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
   3878
   3879	return ret;
   3880
   3881}
   3882
   3883/*-------------------------------------------------------------------------*/
   3884
   3885/*
   3886 * Utility methods for SPI protocol drivers, layered on
   3887 * top of the core.  Some other utility methods are defined as
   3888 * inline functions.
   3889 */
   3890
   3891static void spi_complete(void *arg)
   3892{
   3893	complete(arg);
   3894}
   3895
   3896static int __spi_sync(struct spi_device *spi, struct spi_message *message)
   3897{
   3898	DECLARE_COMPLETION_ONSTACK(done);
   3899	int status;
   3900	struct spi_controller *ctlr = spi->controller;
   3901	unsigned long flags;
   3902
   3903	status = __spi_validate(spi, message);
   3904	if (status != 0)
   3905		return status;
   3906
   3907	message->complete = spi_complete;
   3908	message->context = &done;
   3909	message->spi = spi;
   3910
   3911	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
   3912	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
   3913
   3914	/*
   3915	 * If we're not using the legacy transfer method then we will
   3916	 * try to transfer in the calling context so special case.
   3917	 * This code would be less tricky if we could remove the
   3918	 * support for driver implemented message queues.
   3919	 */
   3920	if (ctlr->transfer == spi_queued_transfer) {
   3921		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
   3922
   3923		trace_spi_message_submit(message);
   3924
   3925		status = __spi_queued_transfer(spi, message, false);
   3926
   3927		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
   3928	} else {
   3929		status = spi_async_locked(spi, message);
   3930	}
   3931
   3932	if (status == 0) {
   3933		/* Push out the messages in the calling context if we can */
   3934		if (ctlr->transfer == spi_queued_transfer) {
   3935			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
   3936						       spi_sync_immediate);
   3937			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
   3938						       spi_sync_immediate);
   3939			__spi_pump_messages(ctlr, false);
   3940		}
   3941
   3942		wait_for_completion(&done);
   3943		status = message->status;
   3944	}
   3945	message->context = NULL;
   3946	return status;
   3947}
   3948
   3949/**
   3950 * spi_sync - blocking/synchronous SPI data transfers
   3951 * @spi: device with which data will be exchanged
   3952 * @message: describes the data transfers
   3953 * Context: can sleep
   3954 *
   3955 * This call may only be used from a context that may sleep.  The sleep
   3956 * is non-interruptible, and has no timeout.  Low-overhead controller
   3957 * drivers may DMA directly into and out of the message buffers.
   3958 *
   3959 * Note that the SPI device's chip select is active during the message,
   3960 * and then is normally disabled between messages.  Drivers for some
   3961 * frequently-used devices may want to minimize costs of selecting a chip,
   3962 * by leaving it selected in anticipation that the next message will go
   3963 * to the same chip.  (That may increase power usage.)
   3964 *
   3965 * Also, the caller is guaranteeing that the memory associated with the
   3966 * message will not be freed before this call returns.
   3967 *
   3968 * Return: zero on success, else a negative error code.
   3969 */
   3970int spi_sync(struct spi_device *spi, struct spi_message *message)
   3971{
   3972	int ret;
   3973
   3974	mutex_lock(&spi->controller->bus_lock_mutex);
   3975	ret = __spi_sync(spi, message);
   3976	mutex_unlock(&spi->controller->bus_lock_mutex);
   3977
   3978	return ret;
   3979}
   3980EXPORT_SYMBOL_GPL(spi_sync);
   3981
   3982/**
   3983 * spi_sync_locked - version of spi_sync with exclusive bus usage
   3984 * @spi: device with which data will be exchanged
   3985 * @message: describes the data transfers
   3986 * Context: can sleep
   3987 *
   3988 * This call may only be used from a context that may sleep.  The sleep
   3989 * is non-interruptible, and has no timeout.  Low-overhead controller
   3990 * drivers may DMA directly into and out of the message buffers.
   3991 *
   3992 * This call should be used by drivers that require exclusive access to the
   3993 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
   3994 * be released by a spi_bus_unlock call when the exclusive access is over.
   3995 *
   3996 * Return: zero on success, else a negative error code.
   3997 */
   3998int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
   3999{
   4000	return __spi_sync(spi, message);
   4001}
   4002EXPORT_SYMBOL_GPL(spi_sync_locked);
   4003
   4004/**
   4005 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
   4006 * @ctlr: SPI bus master that should be locked for exclusive bus access
   4007 * Context: can sleep
   4008 *
   4009 * This call may only be used from a context that may sleep.  The sleep
   4010 * is non-interruptible, and has no timeout.
   4011 *
   4012 * This call should be used by drivers that require exclusive access to the
   4013 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
   4014 * exclusive access is over. Data transfer must be done by spi_sync_locked
   4015 * and spi_async_locked calls when the SPI bus lock is held.
   4016 *
   4017 * Return: always zero.
   4018 */
   4019int spi_bus_lock(struct spi_controller *ctlr)
   4020{
   4021	unsigned long flags;
   4022
   4023	mutex_lock(&ctlr->bus_lock_mutex);
   4024
   4025	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
   4026	ctlr->bus_lock_flag = 1;
   4027	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
   4028
   4029	/* mutex remains locked until spi_bus_unlock is called */
   4030
   4031	return 0;
   4032}
   4033EXPORT_SYMBOL_GPL(spi_bus_lock);
   4034
   4035/**
   4036 * spi_bus_unlock - release the lock for exclusive SPI bus usage
   4037 * @ctlr: SPI bus master that was locked for exclusive bus access
   4038 * Context: can sleep
   4039 *
   4040 * This call may only be used from a context that may sleep.  The sleep
   4041 * is non-interruptible, and has no timeout.
   4042 *
   4043 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
   4044 * call.
   4045 *
   4046 * Return: always zero.
   4047 */
   4048int spi_bus_unlock(struct spi_controller *ctlr)
   4049{
   4050	ctlr->bus_lock_flag = 0;
   4051
   4052	mutex_unlock(&ctlr->bus_lock_mutex);
   4053
   4054	return 0;
   4055}
   4056EXPORT_SYMBOL_GPL(spi_bus_unlock);
   4057
   4058/* portable code must never pass more than 32 bytes */
   4059#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
   4060
   4061static u8	*buf;
   4062
   4063/**
   4064 * spi_write_then_read - SPI synchronous write followed by read
   4065 * @spi: device with which data will be exchanged
   4066 * @txbuf: data to be written (need not be dma-safe)
   4067 * @n_tx: size of txbuf, in bytes
   4068 * @rxbuf: buffer into which data will be read (need not be dma-safe)
   4069 * @n_rx: size of rxbuf, in bytes
   4070 * Context: can sleep
   4071 *
   4072 * This performs a half duplex MicroWire style transaction with the
   4073 * device, sending txbuf and then reading rxbuf.  The return value
   4074 * is zero for success, else a negative errno status code.
   4075 * This call may only be used from a context that may sleep.
   4076 *
   4077 * Parameters to this routine are always copied using a small buffer.
   4078 * Performance-sensitive or bulk transfer code should instead use
   4079 * spi_{async,sync}() calls with dma-safe buffers.
   4080 *
   4081 * Return: zero on success, else a negative error code.
   4082 */
   4083int spi_write_then_read(struct spi_device *spi,
   4084		const void *txbuf, unsigned n_tx,
   4085		void *rxbuf, unsigned n_rx)
   4086{
   4087	static DEFINE_MUTEX(lock);
   4088
   4089	int			status;
   4090	struct spi_message	message;
   4091	struct spi_transfer	x[2];
   4092	u8			*local_buf;
   4093
   4094	/*
   4095	 * Use preallocated DMA-safe buffer if we can. We can't avoid
   4096	 * copying here, (as a pure convenience thing), but we can
   4097	 * keep heap costs out of the hot path unless someone else is
   4098	 * using the pre-allocated buffer or the transfer is too large.
   4099	 */
   4100	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
   4101		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
   4102				    GFP_KERNEL | GFP_DMA);
   4103		if (!local_buf)
   4104			return -ENOMEM;
   4105	} else {
   4106		local_buf = buf;
   4107	}
   4108
   4109	spi_message_init(&message);
   4110	memset(x, 0, sizeof(x));
   4111	if (n_tx) {
   4112		x[0].len = n_tx;
   4113		spi_message_add_tail(&x[0], &message);
   4114	}
   4115	if (n_rx) {
   4116		x[1].len = n_rx;
   4117		spi_message_add_tail(&x[1], &message);
   4118	}
   4119
   4120	memcpy(local_buf, txbuf, n_tx);
   4121	x[0].tx_buf = local_buf;
   4122	x[1].rx_buf = local_buf + n_tx;
   4123
   4124	/* do the i/o */
   4125	status = spi_sync(spi, &message);
   4126	if (status == 0)
   4127		memcpy(rxbuf, x[1].rx_buf, n_rx);
   4128
   4129	if (x[0].tx_buf == buf)
   4130		mutex_unlock(&lock);
   4131	else
   4132		kfree(local_buf);
   4133
   4134	return status;
   4135}
   4136EXPORT_SYMBOL_GPL(spi_write_then_read);
   4137
   4138/*-------------------------------------------------------------------------*/
   4139
   4140#if IS_ENABLED(CONFIG_OF_DYNAMIC)
   4141/* must call put_device() when done with returned spi_device device */
   4142static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
   4143{
   4144	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
   4145
   4146	return dev ? to_spi_device(dev) : NULL;
   4147}
   4148
   4149/* the spi controllers are not using spi_bus, so we find it with another way */
   4150static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
   4151{
   4152	struct device *dev;
   4153
   4154	dev = class_find_device_by_of_node(&spi_master_class, node);
   4155	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
   4156		dev = class_find_device_by_of_node(&spi_slave_class, node);
   4157	if (!dev)
   4158		return NULL;
   4159
   4160	/* reference got in class_find_device */
   4161	return container_of(dev, struct spi_controller, dev);
   4162}
   4163
   4164static int of_spi_notify(struct notifier_block *nb, unsigned long action,
   4165			 void *arg)
   4166{
   4167	struct of_reconfig_data *rd = arg;
   4168	struct spi_controller *ctlr;
   4169	struct spi_device *spi;
   4170
   4171	switch (of_reconfig_get_state_change(action, arg)) {
   4172	case OF_RECONFIG_CHANGE_ADD:
   4173		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
   4174		if (ctlr == NULL)
   4175			return NOTIFY_OK;	/* not for us */
   4176
   4177		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
   4178			put_device(&ctlr->dev);
   4179			return NOTIFY_OK;
   4180		}
   4181
   4182		spi = of_register_spi_device(ctlr, rd->dn);
   4183		put_device(&ctlr->dev);
   4184
   4185		if (IS_ERR(spi)) {
   4186			pr_err("%s: failed to create for '%pOF'\n",
   4187					__func__, rd->dn);
   4188			of_node_clear_flag(rd->dn, OF_POPULATED);
   4189			return notifier_from_errno(PTR_ERR(spi));
   4190		}
   4191		break;
   4192
   4193	case OF_RECONFIG_CHANGE_REMOVE:
   4194		/* already depopulated? */
   4195		if (!of_node_check_flag(rd->dn, OF_POPULATED))
   4196			return NOTIFY_OK;
   4197
   4198		/* find our device by node */
   4199		spi = of_find_spi_device_by_node(rd->dn);
   4200		if (spi == NULL)
   4201			return NOTIFY_OK;	/* no? not meant for us */
   4202
   4203		/* unregister takes one ref away */
   4204		spi_unregister_device(spi);
   4205
   4206		/* and put the reference of the find */
   4207		put_device(&spi->dev);
   4208		break;
   4209	}
   4210
   4211	return NOTIFY_OK;
   4212}
   4213
   4214static struct notifier_block spi_of_notifier = {
   4215	.notifier_call = of_spi_notify,
   4216};
   4217#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
   4218extern struct notifier_block spi_of_notifier;
   4219#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
   4220
   4221#if IS_ENABLED(CONFIG_ACPI)
   4222static int spi_acpi_controller_match(struct device *dev, const void *data)
   4223{
   4224	return ACPI_COMPANION(dev->parent) == data;
   4225}
   4226
   4227static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
   4228{
   4229	struct device *dev;
   4230
   4231	dev = class_find_device(&spi_master_class, NULL, adev,
   4232				spi_acpi_controller_match);
   4233	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
   4234		dev = class_find_device(&spi_slave_class, NULL, adev,
   4235					spi_acpi_controller_match);
   4236	if (!dev)
   4237		return NULL;
   4238
   4239	return container_of(dev, struct spi_controller, dev);
   4240}
   4241
   4242static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
   4243{
   4244	struct device *dev;
   4245
   4246	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
   4247	return to_spi_device(dev);
   4248}
   4249
   4250static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
   4251			   void *arg)
   4252{
   4253	struct acpi_device *adev = arg;
   4254	struct spi_controller *ctlr;
   4255	struct spi_device *spi;
   4256
   4257	switch (value) {
   4258	case ACPI_RECONFIG_DEVICE_ADD:
   4259		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
   4260		if (!ctlr)
   4261			break;
   4262
   4263		acpi_register_spi_device(ctlr, adev);
   4264		put_device(&ctlr->dev);
   4265		break;
   4266	case ACPI_RECONFIG_DEVICE_REMOVE:
   4267		if (!acpi_device_enumerated(adev))
   4268			break;
   4269
   4270		spi = acpi_spi_find_device_by_adev(adev);
   4271		if (!spi)
   4272			break;
   4273
   4274		spi_unregister_device(spi);
   4275		put_device(&spi->dev);
   4276		break;
   4277	}
   4278
   4279	return NOTIFY_OK;
   4280}
   4281
   4282static struct notifier_block spi_acpi_notifier = {
   4283	.notifier_call = acpi_spi_notify,
   4284};
   4285#else
   4286extern struct notifier_block spi_acpi_notifier;
   4287#endif
   4288
   4289static int __init spi_init(void)
   4290{
   4291	int	status;
   4292
   4293	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
   4294	if (!buf) {
   4295		status = -ENOMEM;
   4296		goto err0;
   4297	}
   4298
   4299	status = bus_register(&spi_bus_type);
   4300	if (status < 0)
   4301		goto err1;
   4302
   4303	status = class_register(&spi_master_class);
   4304	if (status < 0)
   4305		goto err2;
   4306
   4307	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
   4308		status = class_register(&spi_slave_class);
   4309		if (status < 0)
   4310			goto err3;
   4311	}
   4312
   4313	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
   4314		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
   4315	if (IS_ENABLED(CONFIG_ACPI))
   4316		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
   4317
   4318	return 0;
   4319
   4320err3:
   4321	class_unregister(&spi_master_class);
   4322err2:
   4323	bus_unregister(&spi_bus_type);
   4324err1:
   4325	kfree(buf);
   4326	buf = NULL;
   4327err0:
   4328	return status;
   4329}
   4330
   4331/*
   4332 * A board_info is normally registered in arch_initcall(),
   4333 * but even essential drivers wait till later.
   4334 *
   4335 * REVISIT only boardinfo really needs static linking. The rest (device and
   4336 * driver registration) _could_ be dynamically linked (modular) ... Costs
   4337 * include needing to have boardinfo data structures be much more public.
   4338 */
   4339postcore_initcall(spi_init);