clk-xlnx-clock-wizard.c (16857B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Xilinx 'Clocking Wizard' driver 4 * 5 * Copyright (C) 2013 - 2014 Xilinx 6 * 7 * Sören Brinkmann <soren.brinkmann@xilinx.com> 8 */ 9 10#include <linux/platform_device.h> 11#include <linux/clk.h> 12#include <linux/clk-provider.h> 13#include <linux/slab.h> 14#include <linux/io.h> 15#include <linux/of.h> 16#include <linux/module.h> 17#include <linux/err.h> 18#include <linux/iopoll.h> 19 20#define WZRD_NUM_OUTPUTS 7 21#define WZRD_ACLK_MAX_FREQ 250000000UL 22 23#define WZRD_CLK_CFG_REG(n) (0x200 + 4 * (n)) 24 25#define WZRD_CLKOUT0_FRAC_EN BIT(18) 26#define WZRD_CLKFBOUT_FRAC_EN BIT(26) 27 28#define WZRD_CLKFBOUT_MULT_SHIFT 8 29#define WZRD_CLKFBOUT_MULT_MASK (0xff << WZRD_CLKFBOUT_MULT_SHIFT) 30#define WZRD_CLKFBOUT_FRAC_SHIFT 16 31#define WZRD_CLKFBOUT_FRAC_MASK (0x3ff << WZRD_CLKFBOUT_FRAC_SHIFT) 32#define WZRD_DIVCLK_DIVIDE_SHIFT 0 33#define WZRD_DIVCLK_DIVIDE_MASK (0xff << WZRD_DIVCLK_DIVIDE_SHIFT) 34#define WZRD_CLKOUT_DIVIDE_SHIFT 0 35#define WZRD_CLKOUT_DIVIDE_WIDTH 8 36#define WZRD_CLKOUT_DIVIDE_MASK (0xff << WZRD_DIVCLK_DIVIDE_SHIFT) 37#define WZRD_CLKOUT_FRAC_SHIFT 8 38#define WZRD_CLKOUT_FRAC_MASK 0x3ff 39 40#define WZRD_DR_MAX_INT_DIV_VALUE 255 41#define WZRD_DR_STATUS_REG_OFFSET 0x04 42#define WZRD_DR_LOCK_BIT_MASK 0x00000001 43#define WZRD_DR_INIT_REG_OFFSET 0x25C 44#define WZRD_DR_DIV_TO_PHASE_OFFSET 4 45#define WZRD_DR_BEGIN_DYNA_RECONF 0x03 46 47#define WZRD_USEC_POLL 10 48#define WZRD_TIMEOUT_POLL 1000 49/* Get the mask from width */ 50#define div_mask(width) ((1 << (width)) - 1) 51 52/* Extract divider instance from clock hardware instance */ 53#define to_clk_wzrd_divider(_hw) container_of(_hw, struct clk_wzrd_divider, hw) 54 55enum clk_wzrd_int_clks { 56 wzrd_clk_mul, 57 wzrd_clk_mul_div, 58 wzrd_clk_mul_frac, 59 wzrd_clk_int_max 60}; 61 62/** 63 * struct clk_wzrd - Clock wizard private data structure 64 * 65 * @clk_data: Clock data 66 * @nb: Notifier block 67 * @base: Memory base 68 * @clk_in1: Handle to input clock 'clk_in1' 69 * @axi_clk: Handle to input clock 's_axi_aclk' 70 * @clks_internal: Internal clocks 71 * @clkout: Output clocks 72 * @speed_grade: Speed grade of the device 73 * @suspended: Flag indicating power state of the device 74 */ 75struct clk_wzrd { 76 struct clk_onecell_data clk_data; 77 struct notifier_block nb; 78 void __iomem *base; 79 struct clk *clk_in1; 80 struct clk *axi_clk; 81 struct clk *clks_internal[wzrd_clk_int_max]; 82 struct clk *clkout[WZRD_NUM_OUTPUTS]; 83 unsigned int speed_grade; 84 bool suspended; 85}; 86 87/** 88 * struct clk_wzrd_divider - clock divider specific to clk_wzrd 89 * 90 * @hw: handle between common and hardware-specific interfaces 91 * @base: base address of register containing the divider 92 * @offset: offset address of register containing the divider 93 * @shift: shift to the divider bit field 94 * @width: width of the divider bit field 95 * @flags: clk_wzrd divider flags 96 * @table: array of value/divider pairs, last entry should have div = 0 97 * @lock: register lock 98 */ 99struct clk_wzrd_divider { 100 struct clk_hw hw; 101 void __iomem *base; 102 u16 offset; 103 u8 shift; 104 u8 width; 105 u8 flags; 106 const struct clk_div_table *table; 107 spinlock_t *lock; /* divider lock */ 108}; 109 110#define to_clk_wzrd(_nb) container_of(_nb, struct clk_wzrd, nb) 111 112/* maximum frequencies for input/output clocks per speed grade */ 113static const unsigned long clk_wzrd_max_freq[] = { 114 800000000UL, 115 933000000UL, 116 1066000000UL 117}; 118 119/* spin lock variable for clk_wzrd */ 120static DEFINE_SPINLOCK(clkwzrd_lock); 121 122static unsigned long clk_wzrd_recalc_rate(struct clk_hw *hw, 123 unsigned long parent_rate) 124{ 125 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw); 126 void __iomem *div_addr = divider->base + divider->offset; 127 unsigned int val; 128 129 val = readl(div_addr) >> divider->shift; 130 val &= div_mask(divider->width); 131 132 return divider_recalc_rate(hw, parent_rate, val, divider->table, 133 divider->flags, divider->width); 134} 135 136static int clk_wzrd_dynamic_reconfig(struct clk_hw *hw, unsigned long rate, 137 unsigned long parent_rate) 138{ 139 int err; 140 u32 value; 141 unsigned long flags = 0; 142 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw); 143 void __iomem *div_addr = divider->base + divider->offset; 144 145 if (divider->lock) 146 spin_lock_irqsave(divider->lock, flags); 147 else 148 __acquire(divider->lock); 149 150 value = DIV_ROUND_CLOSEST(parent_rate, rate); 151 152 /* Cap the value to max */ 153 min_t(u32, value, WZRD_DR_MAX_INT_DIV_VALUE); 154 155 /* Set divisor and clear phase offset */ 156 writel(value, div_addr); 157 writel(0x00, div_addr + WZRD_DR_DIV_TO_PHASE_OFFSET); 158 159 /* Check status register */ 160 err = readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, 161 value, value & WZRD_DR_LOCK_BIT_MASK, 162 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL); 163 if (err) 164 goto err_reconfig; 165 166 /* Initiate reconfiguration */ 167 writel(WZRD_DR_BEGIN_DYNA_RECONF, 168 divider->base + WZRD_DR_INIT_REG_OFFSET); 169 170 /* Check status register */ 171 err = readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, 172 value, value & WZRD_DR_LOCK_BIT_MASK, 173 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL); 174err_reconfig: 175 if (divider->lock) 176 spin_unlock_irqrestore(divider->lock, flags); 177 else 178 __release(divider->lock); 179 return err; 180} 181 182static long clk_wzrd_round_rate(struct clk_hw *hw, unsigned long rate, 183 unsigned long *prate) 184{ 185 u8 div; 186 187 /* 188 * since we don't change parent rate we just round rate to closest 189 * achievable 190 */ 191 div = DIV_ROUND_CLOSEST(*prate, rate); 192 193 return *prate / div; 194} 195 196static const struct clk_ops clk_wzrd_clk_divider_ops = { 197 .round_rate = clk_wzrd_round_rate, 198 .set_rate = clk_wzrd_dynamic_reconfig, 199 .recalc_rate = clk_wzrd_recalc_rate, 200}; 201 202static unsigned long clk_wzrd_recalc_ratef(struct clk_hw *hw, 203 unsigned long parent_rate) 204{ 205 unsigned int val; 206 u32 div, frac; 207 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw); 208 void __iomem *div_addr = divider->base + divider->offset; 209 210 val = readl(div_addr); 211 div = val & div_mask(divider->width); 212 frac = (val >> WZRD_CLKOUT_FRAC_SHIFT) & WZRD_CLKOUT_FRAC_MASK; 213 214 return mult_frac(parent_rate, 1000, (div * 1000) + frac); 215} 216 217static int clk_wzrd_dynamic_reconfig_f(struct clk_hw *hw, unsigned long rate, 218 unsigned long parent_rate) 219{ 220 int err; 221 u32 value, pre; 222 unsigned long rate_div, f, clockout0_div; 223 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw); 224 void __iomem *div_addr = divider->base + divider->offset; 225 226 rate_div = ((parent_rate * 1000) / rate); 227 clockout0_div = rate_div / 1000; 228 229 pre = DIV_ROUND_CLOSEST((parent_rate * 1000), rate); 230 f = (u32)(pre - (clockout0_div * 1000)); 231 f = f & WZRD_CLKOUT_FRAC_MASK; 232 f = f << WZRD_CLKOUT_DIVIDE_WIDTH; 233 234 value = (f | (clockout0_div & WZRD_CLKOUT_DIVIDE_MASK)); 235 236 /* Set divisor and clear phase offset */ 237 writel(value, div_addr); 238 writel(0x0, div_addr + WZRD_DR_DIV_TO_PHASE_OFFSET); 239 240 /* Check status register */ 241 err = readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value, 242 value & WZRD_DR_LOCK_BIT_MASK, 243 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL); 244 if (err) 245 return err; 246 247 /* Initiate reconfiguration */ 248 writel(WZRD_DR_BEGIN_DYNA_RECONF, 249 divider->base + WZRD_DR_INIT_REG_OFFSET); 250 251 /* Check status register */ 252 return readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value, 253 value & WZRD_DR_LOCK_BIT_MASK, 254 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL); 255} 256 257static long clk_wzrd_round_rate_f(struct clk_hw *hw, unsigned long rate, 258 unsigned long *prate) 259{ 260 return rate; 261} 262 263static const struct clk_ops clk_wzrd_clk_divider_ops_f = { 264 .round_rate = clk_wzrd_round_rate_f, 265 .set_rate = clk_wzrd_dynamic_reconfig_f, 266 .recalc_rate = clk_wzrd_recalc_ratef, 267}; 268 269static struct clk *clk_wzrd_register_divf(struct device *dev, 270 const char *name, 271 const char *parent_name, 272 unsigned long flags, 273 void __iomem *base, u16 offset, 274 u8 shift, u8 width, 275 u8 clk_divider_flags, 276 const struct clk_div_table *table, 277 spinlock_t *lock) 278{ 279 struct clk_wzrd_divider *div; 280 struct clk_hw *hw; 281 struct clk_init_data init; 282 int ret; 283 284 div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL); 285 if (!div) 286 return ERR_PTR(-ENOMEM); 287 288 init.name = name; 289 290 init.ops = &clk_wzrd_clk_divider_ops_f; 291 292 init.flags = flags; 293 init.parent_names = &parent_name; 294 init.num_parents = 1; 295 296 div->base = base; 297 div->offset = offset; 298 div->shift = shift; 299 div->width = width; 300 div->flags = clk_divider_flags; 301 div->lock = lock; 302 div->hw.init = &init; 303 div->table = table; 304 305 hw = &div->hw; 306 ret = devm_clk_hw_register(dev, hw); 307 if (ret) 308 return ERR_PTR(ret); 309 310 return hw->clk; 311} 312 313static struct clk *clk_wzrd_register_divider(struct device *dev, 314 const char *name, 315 const char *parent_name, 316 unsigned long flags, 317 void __iomem *base, u16 offset, 318 u8 shift, u8 width, 319 u8 clk_divider_flags, 320 const struct clk_div_table *table, 321 spinlock_t *lock) 322{ 323 struct clk_wzrd_divider *div; 324 struct clk_hw *hw; 325 struct clk_init_data init; 326 int ret; 327 328 div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL); 329 if (!div) 330 return ERR_PTR(-ENOMEM); 331 332 init.name = name; 333 init.ops = &clk_wzrd_clk_divider_ops; 334 init.flags = flags; 335 init.parent_names = &parent_name; 336 init.num_parents = 1; 337 338 div->base = base; 339 div->offset = offset; 340 div->shift = shift; 341 div->width = width; 342 div->flags = clk_divider_flags; 343 div->lock = lock; 344 div->hw.init = &init; 345 div->table = table; 346 347 hw = &div->hw; 348 ret = devm_clk_hw_register(dev, hw); 349 if (ret) 350 hw = ERR_PTR(ret); 351 352 return hw->clk; 353} 354 355static int clk_wzrd_clk_notifier(struct notifier_block *nb, unsigned long event, 356 void *data) 357{ 358 unsigned long max; 359 struct clk_notifier_data *ndata = data; 360 struct clk_wzrd *clk_wzrd = to_clk_wzrd(nb); 361 362 if (clk_wzrd->suspended) 363 return NOTIFY_OK; 364 365 if (ndata->clk == clk_wzrd->clk_in1) 366 max = clk_wzrd_max_freq[clk_wzrd->speed_grade - 1]; 367 else if (ndata->clk == clk_wzrd->axi_clk) 368 max = WZRD_ACLK_MAX_FREQ; 369 else 370 return NOTIFY_DONE; /* should never happen */ 371 372 switch (event) { 373 case PRE_RATE_CHANGE: 374 if (ndata->new_rate > max) 375 return NOTIFY_BAD; 376 return NOTIFY_OK; 377 case POST_RATE_CHANGE: 378 case ABORT_RATE_CHANGE: 379 default: 380 return NOTIFY_DONE; 381 } 382} 383 384static int __maybe_unused clk_wzrd_suspend(struct device *dev) 385{ 386 struct clk_wzrd *clk_wzrd = dev_get_drvdata(dev); 387 388 clk_disable_unprepare(clk_wzrd->axi_clk); 389 clk_wzrd->suspended = true; 390 391 return 0; 392} 393 394static int __maybe_unused clk_wzrd_resume(struct device *dev) 395{ 396 int ret; 397 struct clk_wzrd *clk_wzrd = dev_get_drvdata(dev); 398 399 ret = clk_prepare_enable(clk_wzrd->axi_clk); 400 if (ret) { 401 dev_err(dev, "unable to enable s_axi_aclk\n"); 402 return ret; 403 } 404 405 clk_wzrd->suspended = false; 406 407 return 0; 408} 409 410static SIMPLE_DEV_PM_OPS(clk_wzrd_dev_pm_ops, clk_wzrd_suspend, 411 clk_wzrd_resume); 412 413static int clk_wzrd_probe(struct platform_device *pdev) 414{ 415 int i, ret; 416 u32 reg, reg_f, mult; 417 unsigned long rate; 418 const char *clk_name; 419 void __iomem *ctrl_reg; 420 struct clk_wzrd *clk_wzrd; 421 struct device_node *np = pdev->dev.of_node; 422 int nr_outputs; 423 unsigned long flags = 0; 424 425 clk_wzrd = devm_kzalloc(&pdev->dev, sizeof(*clk_wzrd), GFP_KERNEL); 426 if (!clk_wzrd) 427 return -ENOMEM; 428 platform_set_drvdata(pdev, clk_wzrd); 429 430 clk_wzrd->base = devm_platform_ioremap_resource(pdev, 0); 431 if (IS_ERR(clk_wzrd->base)) 432 return PTR_ERR(clk_wzrd->base); 433 434 ret = of_property_read_u32(np, "xlnx,speed-grade", &clk_wzrd->speed_grade); 435 if (!ret) { 436 if (clk_wzrd->speed_grade < 1 || clk_wzrd->speed_grade > 3) { 437 dev_warn(&pdev->dev, "invalid speed grade '%d'\n", 438 clk_wzrd->speed_grade); 439 clk_wzrd->speed_grade = 0; 440 } 441 } 442 443 clk_wzrd->clk_in1 = devm_clk_get(&pdev->dev, "clk_in1"); 444 if (IS_ERR(clk_wzrd->clk_in1)) { 445 if (clk_wzrd->clk_in1 != ERR_PTR(-EPROBE_DEFER)) 446 dev_err(&pdev->dev, "clk_in1 not found\n"); 447 return PTR_ERR(clk_wzrd->clk_in1); 448 } 449 450 clk_wzrd->axi_clk = devm_clk_get(&pdev->dev, "s_axi_aclk"); 451 if (IS_ERR(clk_wzrd->axi_clk)) { 452 if (clk_wzrd->axi_clk != ERR_PTR(-EPROBE_DEFER)) 453 dev_err(&pdev->dev, "s_axi_aclk not found\n"); 454 return PTR_ERR(clk_wzrd->axi_clk); 455 } 456 ret = clk_prepare_enable(clk_wzrd->axi_clk); 457 if (ret) { 458 dev_err(&pdev->dev, "enabling s_axi_aclk failed\n"); 459 return ret; 460 } 461 rate = clk_get_rate(clk_wzrd->axi_clk); 462 if (rate > WZRD_ACLK_MAX_FREQ) { 463 dev_err(&pdev->dev, "s_axi_aclk frequency (%lu) too high\n", 464 rate); 465 ret = -EINVAL; 466 goto err_disable_clk; 467 } 468 469 reg = readl(clk_wzrd->base + WZRD_CLK_CFG_REG(0)); 470 reg_f = reg & WZRD_CLKFBOUT_FRAC_MASK; 471 reg_f = reg_f >> WZRD_CLKFBOUT_FRAC_SHIFT; 472 473 reg = reg & WZRD_CLKFBOUT_MULT_MASK; 474 reg = reg >> WZRD_CLKFBOUT_MULT_SHIFT; 475 mult = (reg * 1000) + reg_f; 476 clk_name = kasprintf(GFP_KERNEL, "%s_mul", dev_name(&pdev->dev)); 477 if (!clk_name) { 478 ret = -ENOMEM; 479 goto err_disable_clk; 480 } 481 482 ret = of_property_read_u32(np, "nr-outputs", &nr_outputs); 483 if (ret || nr_outputs > WZRD_NUM_OUTPUTS) { 484 ret = -EINVAL; 485 goto err_disable_clk; 486 } 487 if (nr_outputs == 1) 488 flags = CLK_SET_RATE_PARENT; 489 490 clk_wzrd->clks_internal[wzrd_clk_mul] = clk_register_fixed_factor 491 (&pdev->dev, clk_name, 492 __clk_get_name(clk_wzrd->clk_in1), 493 0, mult, 1000); 494 if (IS_ERR(clk_wzrd->clks_internal[wzrd_clk_mul])) { 495 dev_err(&pdev->dev, "unable to register fixed-factor clock\n"); 496 ret = PTR_ERR(clk_wzrd->clks_internal[wzrd_clk_mul]); 497 goto err_disable_clk; 498 } 499 500 clk_name = kasprintf(GFP_KERNEL, "%s_mul_div", dev_name(&pdev->dev)); 501 if (!clk_name) { 502 ret = -ENOMEM; 503 goto err_rm_int_clk; 504 } 505 506 ctrl_reg = clk_wzrd->base + WZRD_CLK_CFG_REG(0); 507 /* register div */ 508 clk_wzrd->clks_internal[wzrd_clk_mul_div] = clk_register_divider 509 (&pdev->dev, clk_name, 510 __clk_get_name(clk_wzrd->clks_internal[wzrd_clk_mul]), 511 flags, ctrl_reg, 0, 8, CLK_DIVIDER_ONE_BASED | 512 CLK_DIVIDER_ALLOW_ZERO, &clkwzrd_lock); 513 if (IS_ERR(clk_wzrd->clks_internal[wzrd_clk_mul_div])) { 514 dev_err(&pdev->dev, "unable to register divider clock\n"); 515 ret = PTR_ERR(clk_wzrd->clks_internal[wzrd_clk_mul_div]); 516 goto err_rm_int_clk; 517 } 518 519 /* register div per output */ 520 for (i = nr_outputs - 1; i >= 0 ; i--) { 521 const char *clkout_name; 522 523 clkout_name = kasprintf(GFP_KERNEL, "%s_out%d", dev_name(&pdev->dev), i); 524 if (!clkout_name) { 525 ret = -ENOMEM; 526 goto err_rm_int_clk; 527 } 528 529 if (!i) 530 clk_wzrd->clkout[i] = clk_wzrd_register_divf 531 (&pdev->dev, clkout_name, 532 clk_name, flags, 533 clk_wzrd->base, (WZRD_CLK_CFG_REG(2) + i * 12), 534 WZRD_CLKOUT_DIVIDE_SHIFT, 535 WZRD_CLKOUT_DIVIDE_WIDTH, 536 CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, 537 NULL, &clkwzrd_lock); 538 else 539 clk_wzrd->clkout[i] = clk_wzrd_register_divider 540 (&pdev->dev, clkout_name, 541 clk_name, 0, 542 clk_wzrd->base, (WZRD_CLK_CFG_REG(2) + i * 12), 543 WZRD_CLKOUT_DIVIDE_SHIFT, 544 WZRD_CLKOUT_DIVIDE_WIDTH, 545 CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, 546 NULL, &clkwzrd_lock); 547 if (IS_ERR(clk_wzrd->clkout[i])) { 548 int j; 549 550 for (j = i + 1; j < nr_outputs; j++) 551 clk_unregister(clk_wzrd->clkout[j]); 552 dev_err(&pdev->dev, 553 "unable to register divider clock\n"); 554 ret = PTR_ERR(clk_wzrd->clkout[i]); 555 goto err_rm_int_clks; 556 } 557 } 558 559 kfree(clk_name); 560 561 clk_wzrd->clk_data.clks = clk_wzrd->clkout; 562 clk_wzrd->clk_data.clk_num = ARRAY_SIZE(clk_wzrd->clkout); 563 of_clk_add_provider(np, of_clk_src_onecell_get, &clk_wzrd->clk_data); 564 565 if (clk_wzrd->speed_grade) { 566 clk_wzrd->nb.notifier_call = clk_wzrd_clk_notifier; 567 568 ret = clk_notifier_register(clk_wzrd->clk_in1, 569 &clk_wzrd->nb); 570 if (ret) 571 dev_warn(&pdev->dev, 572 "unable to register clock notifier\n"); 573 574 ret = clk_notifier_register(clk_wzrd->axi_clk, &clk_wzrd->nb); 575 if (ret) 576 dev_warn(&pdev->dev, 577 "unable to register clock notifier\n"); 578 } 579 580 return 0; 581 582err_rm_int_clks: 583 clk_unregister(clk_wzrd->clks_internal[1]); 584err_rm_int_clk: 585 kfree(clk_name); 586 clk_unregister(clk_wzrd->clks_internal[0]); 587err_disable_clk: 588 clk_disable_unprepare(clk_wzrd->axi_clk); 589 590 return ret; 591} 592 593static int clk_wzrd_remove(struct platform_device *pdev) 594{ 595 int i; 596 struct clk_wzrd *clk_wzrd = platform_get_drvdata(pdev); 597 598 of_clk_del_provider(pdev->dev.of_node); 599 600 for (i = 0; i < WZRD_NUM_OUTPUTS; i++) 601 clk_unregister(clk_wzrd->clkout[i]); 602 for (i = 0; i < wzrd_clk_int_max; i++) 603 clk_unregister(clk_wzrd->clks_internal[i]); 604 605 if (clk_wzrd->speed_grade) { 606 clk_notifier_unregister(clk_wzrd->axi_clk, &clk_wzrd->nb); 607 clk_notifier_unregister(clk_wzrd->clk_in1, &clk_wzrd->nb); 608 } 609 610 clk_disable_unprepare(clk_wzrd->axi_clk); 611 612 return 0; 613} 614 615static const struct of_device_id clk_wzrd_ids[] = { 616 { .compatible = "xlnx,clocking-wizard" }, 617 { }, 618}; 619MODULE_DEVICE_TABLE(of, clk_wzrd_ids); 620 621static struct platform_driver clk_wzrd_driver = { 622 .driver = { 623 .name = "clk-wizard", 624 .of_match_table = clk_wzrd_ids, 625 .pm = &clk_wzrd_dev_pm_ops, 626 }, 627 .probe = clk_wzrd_probe, 628 .remove = clk_wzrd_remove, 629}; 630module_platform_driver(clk_wzrd_driver); 631 632MODULE_LICENSE("GPL"); 633MODULE_AUTHOR("Soeren Brinkmann <soren.brinkmann@xilinx.com"); 634MODULE_DESCRIPTION("Driver for the Xilinx Clocking Wizard IP core");