cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

spilib.c (14224B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Greybus SPI library
      4 *
      5 * Copyright 2014-2016 Google Inc.
      6 * Copyright 2014-2016 Linaro Ltd.
      7 */
      8
      9#include <linux/bitops.h>
     10#include <linux/kernel.h>
     11#include <linux/module.h>
     12#include <linux/slab.h>
     13#include <linux/greybus.h>
     14#include <linux/spi/spi.h>
     15
     16#include "spilib.h"
     17
     18struct gb_spilib {
     19	struct gb_connection	*connection;
     20	struct device		*parent;
     21	struct spi_transfer	*first_xfer;
     22	struct spi_transfer	*last_xfer;
     23	struct spilib_ops	*ops;
     24	u32			rx_xfer_offset;
     25	u32			tx_xfer_offset;
     26	u32			last_xfer_size;
     27	unsigned int		op_timeout;
     28	u16			mode;
     29	u16			flags;
     30	u32			bits_per_word_mask;
     31	u8			num_chipselect;
     32	u32			min_speed_hz;
     33	u32			max_speed_hz;
     34};
     35
     36#define GB_SPI_STATE_MSG_DONE		((void *)0)
     37#define GB_SPI_STATE_MSG_IDLE		((void *)1)
     38#define GB_SPI_STATE_MSG_RUNNING	((void *)2)
     39#define GB_SPI_STATE_OP_READY		((void *)3)
     40#define GB_SPI_STATE_OP_DONE		((void *)4)
     41#define GB_SPI_STATE_MSG_ERROR		((void *)-1)
     42
     43#define XFER_TIMEOUT_TOLERANCE		200
     44
     45static struct spi_master *get_master_from_spi(struct gb_spilib *spi)
     46{
     47	return gb_connection_get_data(spi->connection);
     48}
     49
     50static int tx_header_fit_operation(u32 tx_size, u32 count, size_t data_max)
     51{
     52	size_t headers_size;
     53
     54	data_max -= sizeof(struct gb_spi_transfer_request);
     55	headers_size = (count + 1) * sizeof(struct gb_spi_transfer);
     56
     57	return tx_size + headers_size > data_max ? 0 : 1;
     58}
     59
     60static size_t calc_rx_xfer_size(u32 rx_size, u32 *tx_xfer_size, u32 len,
     61				size_t data_max)
     62{
     63	size_t rx_xfer_size;
     64
     65	data_max -= sizeof(struct gb_spi_transfer_response);
     66
     67	if (rx_size + len > data_max)
     68		rx_xfer_size = data_max - rx_size;
     69	else
     70		rx_xfer_size = len;
     71
     72	/* if this is a write_read, for symmetry read the same as write */
     73	if (*tx_xfer_size && rx_xfer_size > *tx_xfer_size)
     74		rx_xfer_size = *tx_xfer_size;
     75	if (*tx_xfer_size && rx_xfer_size < *tx_xfer_size)
     76		*tx_xfer_size = rx_xfer_size;
     77
     78	return rx_xfer_size;
     79}
     80
     81static size_t calc_tx_xfer_size(u32 tx_size, u32 count, size_t len,
     82				size_t data_max)
     83{
     84	size_t headers_size;
     85
     86	data_max -= sizeof(struct gb_spi_transfer_request);
     87	headers_size = (count + 1) * sizeof(struct gb_spi_transfer);
     88
     89	if (tx_size + headers_size + len > data_max)
     90		return data_max - (tx_size + sizeof(struct gb_spi_transfer));
     91
     92	return len;
     93}
     94
     95static void clean_xfer_state(struct gb_spilib *spi)
     96{
     97	spi->first_xfer = NULL;
     98	spi->last_xfer = NULL;
     99	spi->rx_xfer_offset = 0;
    100	spi->tx_xfer_offset = 0;
    101	spi->last_xfer_size = 0;
    102	spi->op_timeout = 0;
    103}
    104
    105static bool is_last_xfer_done(struct gb_spilib *spi)
    106{
    107	struct spi_transfer *last_xfer = spi->last_xfer;
    108
    109	if ((spi->tx_xfer_offset + spi->last_xfer_size == last_xfer->len) ||
    110	    (spi->rx_xfer_offset + spi->last_xfer_size == last_xfer->len))
    111		return true;
    112
    113	return false;
    114}
    115
    116static int setup_next_xfer(struct gb_spilib *spi, struct spi_message *msg)
    117{
    118	struct spi_transfer *last_xfer = spi->last_xfer;
    119
    120	if (msg->state != GB_SPI_STATE_OP_DONE)
    121		return 0;
    122
    123	/*
    124	 * if we transferred all content of the last transfer, reset values and
    125	 * check if this was the last transfer in the message
    126	 */
    127	if (is_last_xfer_done(spi)) {
    128		spi->tx_xfer_offset = 0;
    129		spi->rx_xfer_offset = 0;
    130		spi->op_timeout = 0;
    131		if (last_xfer == list_last_entry(&msg->transfers,
    132						 struct spi_transfer,
    133						 transfer_list))
    134			msg->state = GB_SPI_STATE_MSG_DONE;
    135		else
    136			spi->first_xfer = list_next_entry(last_xfer,
    137							  transfer_list);
    138		return 0;
    139	}
    140
    141	spi->first_xfer = last_xfer;
    142	if (last_xfer->tx_buf)
    143		spi->tx_xfer_offset += spi->last_xfer_size;
    144
    145	if (last_xfer->rx_buf)
    146		spi->rx_xfer_offset += spi->last_xfer_size;
    147
    148	return 0;
    149}
    150
    151static struct spi_transfer *get_next_xfer(struct spi_transfer *xfer,
    152					  struct spi_message *msg)
    153{
    154	if (xfer == list_last_entry(&msg->transfers, struct spi_transfer,
    155				    transfer_list))
    156		return NULL;
    157
    158	return list_next_entry(xfer, transfer_list);
    159}
    160
    161/* Routines to transfer data */
    162static struct gb_operation *gb_spi_operation_create(struct gb_spilib *spi,
    163		struct gb_connection *connection, struct spi_message *msg)
    164{
    165	struct gb_spi_transfer_request *request;
    166	struct spi_device *dev = msg->spi;
    167	struct spi_transfer *xfer;
    168	struct gb_spi_transfer *gb_xfer;
    169	struct gb_operation *operation;
    170	u32 tx_size = 0, rx_size = 0, count = 0, xfer_len = 0, request_size;
    171	u32 tx_xfer_size = 0, rx_xfer_size = 0, len;
    172	u32 total_len = 0;
    173	unsigned int xfer_timeout;
    174	size_t data_max;
    175	void *tx_data;
    176
    177	data_max = gb_operation_get_payload_size_max(connection);
    178	xfer = spi->first_xfer;
    179
    180	/* Find number of transfers queued and tx/rx length in the message */
    181
    182	while (msg->state != GB_SPI_STATE_OP_READY) {
    183		msg->state = GB_SPI_STATE_MSG_RUNNING;
    184		spi->last_xfer = xfer;
    185
    186		if (!xfer->tx_buf && !xfer->rx_buf) {
    187			dev_err(spi->parent,
    188				"bufferless transfer, length %u\n", xfer->len);
    189			msg->state = GB_SPI_STATE_MSG_ERROR;
    190			return NULL;
    191		}
    192
    193		tx_xfer_size = 0;
    194		rx_xfer_size = 0;
    195
    196		if (xfer->tx_buf) {
    197			len = xfer->len - spi->tx_xfer_offset;
    198			if (!tx_header_fit_operation(tx_size, count, data_max))
    199				break;
    200			tx_xfer_size = calc_tx_xfer_size(tx_size, count,
    201							 len, data_max);
    202			spi->last_xfer_size = tx_xfer_size;
    203		}
    204
    205		if (xfer->rx_buf) {
    206			len = xfer->len - spi->rx_xfer_offset;
    207			rx_xfer_size = calc_rx_xfer_size(rx_size, &tx_xfer_size,
    208							 len, data_max);
    209			spi->last_xfer_size = rx_xfer_size;
    210		}
    211
    212		tx_size += tx_xfer_size;
    213		rx_size += rx_xfer_size;
    214
    215		total_len += spi->last_xfer_size;
    216		count++;
    217
    218		xfer = get_next_xfer(xfer, msg);
    219		if (!xfer || total_len >= data_max)
    220			msg->state = GB_SPI_STATE_OP_READY;
    221	}
    222
    223	/*
    224	 * In addition to space for all message descriptors we need
    225	 * to have enough to hold all tx data.
    226	 */
    227	request_size = sizeof(*request);
    228	request_size += count * sizeof(*gb_xfer);
    229	request_size += tx_size;
    230
    231	/* Response consists only of incoming data */
    232	operation = gb_operation_create(connection, GB_SPI_TYPE_TRANSFER,
    233					request_size, rx_size, GFP_KERNEL);
    234	if (!operation)
    235		return NULL;
    236
    237	request = operation->request->payload;
    238	request->count = cpu_to_le16(count);
    239	request->mode = dev->mode;
    240	request->chip_select = dev->chip_select;
    241
    242	gb_xfer = &request->transfers[0];
    243	tx_data = gb_xfer + count;	/* place tx data after last gb_xfer */
    244
    245	/* Fill in the transfers array */
    246	xfer = spi->first_xfer;
    247	while (msg->state != GB_SPI_STATE_OP_DONE) {
    248		int xfer_delay;
    249
    250		if (xfer == spi->last_xfer)
    251			xfer_len = spi->last_xfer_size;
    252		else
    253			xfer_len = xfer->len;
    254
    255		/* make sure we do not timeout in a slow transfer */
    256		xfer_timeout = xfer_len * 8 * MSEC_PER_SEC / xfer->speed_hz;
    257		xfer_timeout += GB_OPERATION_TIMEOUT_DEFAULT;
    258
    259		if (xfer_timeout > spi->op_timeout)
    260			spi->op_timeout = xfer_timeout;
    261
    262		gb_xfer->speed_hz = cpu_to_le32(xfer->speed_hz);
    263		gb_xfer->len = cpu_to_le32(xfer_len);
    264		xfer_delay = spi_delay_to_ns(&xfer->delay, xfer) / 1000;
    265		xfer_delay = clamp_t(u16, xfer_delay, 0, U16_MAX);
    266		gb_xfer->delay_usecs = cpu_to_le16(xfer_delay);
    267		gb_xfer->cs_change = xfer->cs_change;
    268		gb_xfer->bits_per_word = xfer->bits_per_word;
    269
    270		/* Copy tx data */
    271		if (xfer->tx_buf) {
    272			gb_xfer->xfer_flags |= GB_SPI_XFER_WRITE;
    273			memcpy(tx_data, xfer->tx_buf + spi->tx_xfer_offset,
    274			       xfer_len);
    275			tx_data += xfer_len;
    276		}
    277
    278		if (xfer->rx_buf)
    279			gb_xfer->xfer_flags |= GB_SPI_XFER_READ;
    280
    281		if (xfer == spi->last_xfer) {
    282			if (!is_last_xfer_done(spi))
    283				gb_xfer->xfer_flags |= GB_SPI_XFER_INPROGRESS;
    284			msg->state = GB_SPI_STATE_OP_DONE;
    285			continue;
    286		}
    287
    288		gb_xfer++;
    289		xfer = get_next_xfer(xfer, msg);
    290	}
    291
    292	msg->actual_length += total_len;
    293
    294	return operation;
    295}
    296
    297static void gb_spi_decode_response(struct gb_spilib *spi,
    298				   struct spi_message *msg,
    299				   struct gb_spi_transfer_response *response)
    300{
    301	struct spi_transfer *xfer = spi->first_xfer;
    302	void *rx_data = response->data;
    303	u32 xfer_len;
    304
    305	while (xfer) {
    306		/* Copy rx data */
    307		if (xfer->rx_buf) {
    308			if (xfer == spi->first_xfer)
    309				xfer_len = xfer->len - spi->rx_xfer_offset;
    310			else if (xfer == spi->last_xfer)
    311				xfer_len = spi->last_xfer_size;
    312			else
    313				xfer_len = xfer->len;
    314
    315			memcpy(xfer->rx_buf + spi->rx_xfer_offset, rx_data,
    316			       xfer_len);
    317			rx_data += xfer_len;
    318		}
    319
    320		if (xfer == spi->last_xfer)
    321			break;
    322
    323		xfer = list_next_entry(xfer, transfer_list);
    324	}
    325}
    326
    327static int gb_spi_transfer_one_message(struct spi_master *master,
    328				       struct spi_message *msg)
    329{
    330	struct gb_spilib *spi = spi_master_get_devdata(master);
    331	struct gb_connection *connection = spi->connection;
    332	struct gb_spi_transfer_response *response;
    333	struct gb_operation *operation;
    334	int ret = 0;
    335
    336	spi->first_xfer = list_first_entry_or_null(&msg->transfers,
    337						   struct spi_transfer,
    338						   transfer_list);
    339	if (!spi->first_xfer) {
    340		ret = -ENOMEM;
    341		goto out;
    342	}
    343
    344	msg->state = GB_SPI_STATE_MSG_IDLE;
    345
    346	while (msg->state != GB_SPI_STATE_MSG_DONE &&
    347	       msg->state != GB_SPI_STATE_MSG_ERROR) {
    348		operation = gb_spi_operation_create(spi, connection, msg);
    349		if (!operation) {
    350			msg->state = GB_SPI_STATE_MSG_ERROR;
    351			ret = -EINVAL;
    352			continue;
    353		}
    354
    355		ret = gb_operation_request_send_sync_timeout(operation,
    356							     spi->op_timeout);
    357		if (!ret) {
    358			response = operation->response->payload;
    359			if (response)
    360				gb_spi_decode_response(spi, msg, response);
    361		} else {
    362			dev_err(spi->parent,
    363				"transfer operation failed: %d\n", ret);
    364			msg->state = GB_SPI_STATE_MSG_ERROR;
    365		}
    366
    367		gb_operation_put(operation);
    368		setup_next_xfer(spi, msg);
    369	}
    370
    371out:
    372	msg->status = ret;
    373	clean_xfer_state(spi);
    374	spi_finalize_current_message(master);
    375
    376	return ret;
    377}
    378
    379static int gb_spi_prepare_transfer_hardware(struct spi_master *master)
    380{
    381	struct gb_spilib *spi = spi_master_get_devdata(master);
    382
    383	return spi->ops->prepare_transfer_hardware(spi->parent);
    384}
    385
    386static int gb_spi_unprepare_transfer_hardware(struct spi_master *master)
    387{
    388	struct gb_spilib *spi = spi_master_get_devdata(master);
    389
    390	spi->ops->unprepare_transfer_hardware(spi->parent);
    391
    392	return 0;
    393}
    394
    395static int gb_spi_setup(struct spi_device *spi)
    396{
    397	/* Nothing to do for now */
    398	return 0;
    399}
    400
    401static void gb_spi_cleanup(struct spi_device *spi)
    402{
    403	/* Nothing to do for now */
    404}
    405
    406/* Routines to get controller information */
    407
    408/*
    409 * Map Greybus spi mode bits/flags/bpw into Linux ones.
    410 * All bits are same for now and so these macro's return same values.
    411 */
    412#define gb_spi_mode_map(mode) mode
    413#define gb_spi_flags_map(flags) flags
    414
    415static int gb_spi_get_master_config(struct gb_spilib *spi)
    416{
    417	struct gb_spi_master_config_response response;
    418	u16 mode, flags;
    419	int ret;
    420
    421	ret = gb_operation_sync(spi->connection, GB_SPI_TYPE_MASTER_CONFIG,
    422				NULL, 0, &response, sizeof(response));
    423	if (ret < 0)
    424		return ret;
    425
    426	mode = le16_to_cpu(response.mode);
    427	spi->mode = gb_spi_mode_map(mode);
    428
    429	flags = le16_to_cpu(response.flags);
    430	spi->flags = gb_spi_flags_map(flags);
    431
    432	spi->bits_per_word_mask = le32_to_cpu(response.bits_per_word_mask);
    433	spi->num_chipselect = response.num_chipselect;
    434
    435	spi->min_speed_hz = le32_to_cpu(response.min_speed_hz);
    436	spi->max_speed_hz = le32_to_cpu(response.max_speed_hz);
    437
    438	return 0;
    439}
    440
    441static int gb_spi_setup_device(struct gb_spilib *spi, u8 cs)
    442{
    443	struct spi_master *master = get_master_from_spi(spi);
    444	struct gb_spi_device_config_request request;
    445	struct gb_spi_device_config_response response;
    446	struct spi_board_info spi_board = { {0} };
    447	struct spi_device *spidev;
    448	int ret;
    449	u8 dev_type;
    450
    451	request.chip_select = cs;
    452
    453	ret = gb_operation_sync(spi->connection, GB_SPI_TYPE_DEVICE_CONFIG,
    454				&request, sizeof(request),
    455				&response, sizeof(response));
    456	if (ret < 0)
    457		return ret;
    458
    459	dev_type = response.device_type;
    460
    461	if (dev_type == GB_SPI_SPI_DEV)
    462		strscpy(spi_board.modalias, "spidev",
    463			sizeof(spi_board.modalias));
    464	else if (dev_type == GB_SPI_SPI_NOR)
    465		strscpy(spi_board.modalias, "spi-nor",
    466			sizeof(spi_board.modalias));
    467	else if (dev_type == GB_SPI_SPI_MODALIAS)
    468		memcpy(spi_board.modalias, response.name,
    469		       sizeof(spi_board.modalias));
    470	else
    471		return -EINVAL;
    472
    473	spi_board.mode		= le16_to_cpu(response.mode);
    474	spi_board.bus_num	= master->bus_num;
    475	spi_board.chip_select	= cs;
    476	spi_board.max_speed_hz	= le32_to_cpu(response.max_speed_hz);
    477
    478	spidev = spi_new_device(master, &spi_board);
    479	if (!spidev)
    480		return -EINVAL;
    481
    482	return 0;
    483}
    484
    485int gb_spilib_master_init(struct gb_connection *connection, struct device *dev,
    486			  struct spilib_ops *ops)
    487{
    488	struct gb_spilib *spi;
    489	struct spi_master *master;
    490	int ret;
    491	u8 i;
    492
    493	/* Allocate master with space for data */
    494	master = spi_alloc_master(dev, sizeof(*spi));
    495	if (!master) {
    496		dev_err(dev, "cannot alloc SPI master\n");
    497		return -ENOMEM;
    498	}
    499
    500	spi = spi_master_get_devdata(master);
    501	spi->connection = connection;
    502	gb_connection_set_data(connection, master);
    503	spi->parent = dev;
    504	spi->ops = ops;
    505
    506	/* get master configuration */
    507	ret = gb_spi_get_master_config(spi);
    508	if (ret)
    509		goto exit_spi_put;
    510
    511	master->bus_num = -1; /* Allow spi-core to allocate it dynamically */
    512	master->num_chipselect = spi->num_chipselect;
    513	master->mode_bits = spi->mode;
    514	master->flags = spi->flags;
    515	master->bits_per_word_mask = spi->bits_per_word_mask;
    516
    517	/* Attach methods */
    518	master->cleanup = gb_spi_cleanup;
    519	master->setup = gb_spi_setup;
    520	master->transfer_one_message = gb_spi_transfer_one_message;
    521
    522	if (ops && ops->prepare_transfer_hardware) {
    523		master->prepare_transfer_hardware =
    524			gb_spi_prepare_transfer_hardware;
    525	}
    526
    527	if (ops && ops->unprepare_transfer_hardware) {
    528		master->unprepare_transfer_hardware =
    529			gb_spi_unprepare_transfer_hardware;
    530	}
    531
    532	master->auto_runtime_pm = true;
    533
    534	ret = spi_register_master(master);
    535	if (ret < 0)
    536		goto exit_spi_put;
    537
    538	/* now, fetch the devices configuration */
    539	for (i = 0; i < spi->num_chipselect; i++) {
    540		ret = gb_spi_setup_device(spi, i);
    541		if (ret < 0) {
    542			dev_err(dev, "failed to allocate spi device %d: %d\n",
    543				i, ret);
    544			goto exit_spi_unregister;
    545		}
    546	}
    547
    548	return 0;
    549
    550exit_spi_put:
    551	spi_master_put(master);
    552
    553	return ret;
    554
    555exit_spi_unregister:
    556	spi_unregister_master(master);
    557
    558	return ret;
    559}
    560EXPORT_SYMBOL_GPL(gb_spilib_master_init);
    561
    562void gb_spilib_master_exit(struct gb_connection *connection)
    563{
    564	struct spi_master *master = gb_connection_get_data(connection);
    565
    566	spi_unregister_master(master);
    567}
    568EXPORT_SYMBOL_GPL(gb_spilib_master_exit);
    569
    570MODULE_LICENSE("GPL v2");