spilib.c (14224B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Greybus SPI library 4 * 5 * Copyright 2014-2016 Google Inc. 6 * Copyright 2014-2016 Linaro Ltd. 7 */ 8 9#include <linux/bitops.h> 10#include <linux/kernel.h> 11#include <linux/module.h> 12#include <linux/slab.h> 13#include <linux/greybus.h> 14#include <linux/spi/spi.h> 15 16#include "spilib.h" 17 18struct gb_spilib { 19 struct gb_connection *connection; 20 struct device *parent; 21 struct spi_transfer *first_xfer; 22 struct spi_transfer *last_xfer; 23 struct spilib_ops *ops; 24 u32 rx_xfer_offset; 25 u32 tx_xfer_offset; 26 u32 last_xfer_size; 27 unsigned int op_timeout; 28 u16 mode; 29 u16 flags; 30 u32 bits_per_word_mask; 31 u8 num_chipselect; 32 u32 min_speed_hz; 33 u32 max_speed_hz; 34}; 35 36#define GB_SPI_STATE_MSG_DONE ((void *)0) 37#define GB_SPI_STATE_MSG_IDLE ((void *)1) 38#define GB_SPI_STATE_MSG_RUNNING ((void *)2) 39#define GB_SPI_STATE_OP_READY ((void *)3) 40#define GB_SPI_STATE_OP_DONE ((void *)4) 41#define GB_SPI_STATE_MSG_ERROR ((void *)-1) 42 43#define XFER_TIMEOUT_TOLERANCE 200 44 45static struct spi_master *get_master_from_spi(struct gb_spilib *spi) 46{ 47 return gb_connection_get_data(spi->connection); 48} 49 50static int tx_header_fit_operation(u32 tx_size, u32 count, size_t data_max) 51{ 52 size_t headers_size; 53 54 data_max -= sizeof(struct gb_spi_transfer_request); 55 headers_size = (count + 1) * sizeof(struct gb_spi_transfer); 56 57 return tx_size + headers_size > data_max ? 0 : 1; 58} 59 60static size_t calc_rx_xfer_size(u32 rx_size, u32 *tx_xfer_size, u32 len, 61 size_t data_max) 62{ 63 size_t rx_xfer_size; 64 65 data_max -= sizeof(struct gb_spi_transfer_response); 66 67 if (rx_size + len > data_max) 68 rx_xfer_size = data_max - rx_size; 69 else 70 rx_xfer_size = len; 71 72 /* if this is a write_read, for symmetry read the same as write */ 73 if (*tx_xfer_size && rx_xfer_size > *tx_xfer_size) 74 rx_xfer_size = *tx_xfer_size; 75 if (*tx_xfer_size && rx_xfer_size < *tx_xfer_size) 76 *tx_xfer_size = rx_xfer_size; 77 78 return rx_xfer_size; 79} 80 81static size_t calc_tx_xfer_size(u32 tx_size, u32 count, size_t len, 82 size_t data_max) 83{ 84 size_t headers_size; 85 86 data_max -= sizeof(struct gb_spi_transfer_request); 87 headers_size = (count + 1) * sizeof(struct gb_spi_transfer); 88 89 if (tx_size + headers_size + len > data_max) 90 return data_max - (tx_size + sizeof(struct gb_spi_transfer)); 91 92 return len; 93} 94 95static void clean_xfer_state(struct gb_spilib *spi) 96{ 97 spi->first_xfer = NULL; 98 spi->last_xfer = NULL; 99 spi->rx_xfer_offset = 0; 100 spi->tx_xfer_offset = 0; 101 spi->last_xfer_size = 0; 102 spi->op_timeout = 0; 103} 104 105static bool is_last_xfer_done(struct gb_spilib *spi) 106{ 107 struct spi_transfer *last_xfer = spi->last_xfer; 108 109 if ((spi->tx_xfer_offset + spi->last_xfer_size == last_xfer->len) || 110 (spi->rx_xfer_offset + spi->last_xfer_size == last_xfer->len)) 111 return true; 112 113 return false; 114} 115 116static int setup_next_xfer(struct gb_spilib *spi, struct spi_message *msg) 117{ 118 struct spi_transfer *last_xfer = spi->last_xfer; 119 120 if (msg->state != GB_SPI_STATE_OP_DONE) 121 return 0; 122 123 /* 124 * if we transferred all content of the last transfer, reset values and 125 * check if this was the last transfer in the message 126 */ 127 if (is_last_xfer_done(spi)) { 128 spi->tx_xfer_offset = 0; 129 spi->rx_xfer_offset = 0; 130 spi->op_timeout = 0; 131 if (last_xfer == list_last_entry(&msg->transfers, 132 struct spi_transfer, 133 transfer_list)) 134 msg->state = GB_SPI_STATE_MSG_DONE; 135 else 136 spi->first_xfer = list_next_entry(last_xfer, 137 transfer_list); 138 return 0; 139 } 140 141 spi->first_xfer = last_xfer; 142 if (last_xfer->tx_buf) 143 spi->tx_xfer_offset += spi->last_xfer_size; 144 145 if (last_xfer->rx_buf) 146 spi->rx_xfer_offset += spi->last_xfer_size; 147 148 return 0; 149} 150 151static struct spi_transfer *get_next_xfer(struct spi_transfer *xfer, 152 struct spi_message *msg) 153{ 154 if (xfer == list_last_entry(&msg->transfers, struct spi_transfer, 155 transfer_list)) 156 return NULL; 157 158 return list_next_entry(xfer, transfer_list); 159} 160 161/* Routines to transfer data */ 162static struct gb_operation *gb_spi_operation_create(struct gb_spilib *spi, 163 struct gb_connection *connection, struct spi_message *msg) 164{ 165 struct gb_spi_transfer_request *request; 166 struct spi_device *dev = msg->spi; 167 struct spi_transfer *xfer; 168 struct gb_spi_transfer *gb_xfer; 169 struct gb_operation *operation; 170 u32 tx_size = 0, rx_size = 0, count = 0, xfer_len = 0, request_size; 171 u32 tx_xfer_size = 0, rx_xfer_size = 0, len; 172 u32 total_len = 0; 173 unsigned int xfer_timeout; 174 size_t data_max; 175 void *tx_data; 176 177 data_max = gb_operation_get_payload_size_max(connection); 178 xfer = spi->first_xfer; 179 180 /* Find number of transfers queued and tx/rx length in the message */ 181 182 while (msg->state != GB_SPI_STATE_OP_READY) { 183 msg->state = GB_SPI_STATE_MSG_RUNNING; 184 spi->last_xfer = xfer; 185 186 if (!xfer->tx_buf && !xfer->rx_buf) { 187 dev_err(spi->parent, 188 "bufferless transfer, length %u\n", xfer->len); 189 msg->state = GB_SPI_STATE_MSG_ERROR; 190 return NULL; 191 } 192 193 tx_xfer_size = 0; 194 rx_xfer_size = 0; 195 196 if (xfer->tx_buf) { 197 len = xfer->len - spi->tx_xfer_offset; 198 if (!tx_header_fit_operation(tx_size, count, data_max)) 199 break; 200 tx_xfer_size = calc_tx_xfer_size(tx_size, count, 201 len, data_max); 202 spi->last_xfer_size = tx_xfer_size; 203 } 204 205 if (xfer->rx_buf) { 206 len = xfer->len - spi->rx_xfer_offset; 207 rx_xfer_size = calc_rx_xfer_size(rx_size, &tx_xfer_size, 208 len, data_max); 209 spi->last_xfer_size = rx_xfer_size; 210 } 211 212 tx_size += tx_xfer_size; 213 rx_size += rx_xfer_size; 214 215 total_len += spi->last_xfer_size; 216 count++; 217 218 xfer = get_next_xfer(xfer, msg); 219 if (!xfer || total_len >= data_max) 220 msg->state = GB_SPI_STATE_OP_READY; 221 } 222 223 /* 224 * In addition to space for all message descriptors we need 225 * to have enough to hold all tx data. 226 */ 227 request_size = sizeof(*request); 228 request_size += count * sizeof(*gb_xfer); 229 request_size += tx_size; 230 231 /* Response consists only of incoming data */ 232 operation = gb_operation_create(connection, GB_SPI_TYPE_TRANSFER, 233 request_size, rx_size, GFP_KERNEL); 234 if (!operation) 235 return NULL; 236 237 request = operation->request->payload; 238 request->count = cpu_to_le16(count); 239 request->mode = dev->mode; 240 request->chip_select = dev->chip_select; 241 242 gb_xfer = &request->transfers[0]; 243 tx_data = gb_xfer + count; /* place tx data after last gb_xfer */ 244 245 /* Fill in the transfers array */ 246 xfer = spi->first_xfer; 247 while (msg->state != GB_SPI_STATE_OP_DONE) { 248 int xfer_delay; 249 250 if (xfer == spi->last_xfer) 251 xfer_len = spi->last_xfer_size; 252 else 253 xfer_len = xfer->len; 254 255 /* make sure we do not timeout in a slow transfer */ 256 xfer_timeout = xfer_len * 8 * MSEC_PER_SEC / xfer->speed_hz; 257 xfer_timeout += GB_OPERATION_TIMEOUT_DEFAULT; 258 259 if (xfer_timeout > spi->op_timeout) 260 spi->op_timeout = xfer_timeout; 261 262 gb_xfer->speed_hz = cpu_to_le32(xfer->speed_hz); 263 gb_xfer->len = cpu_to_le32(xfer_len); 264 xfer_delay = spi_delay_to_ns(&xfer->delay, xfer) / 1000; 265 xfer_delay = clamp_t(u16, xfer_delay, 0, U16_MAX); 266 gb_xfer->delay_usecs = cpu_to_le16(xfer_delay); 267 gb_xfer->cs_change = xfer->cs_change; 268 gb_xfer->bits_per_word = xfer->bits_per_word; 269 270 /* Copy tx data */ 271 if (xfer->tx_buf) { 272 gb_xfer->xfer_flags |= GB_SPI_XFER_WRITE; 273 memcpy(tx_data, xfer->tx_buf + spi->tx_xfer_offset, 274 xfer_len); 275 tx_data += xfer_len; 276 } 277 278 if (xfer->rx_buf) 279 gb_xfer->xfer_flags |= GB_SPI_XFER_READ; 280 281 if (xfer == spi->last_xfer) { 282 if (!is_last_xfer_done(spi)) 283 gb_xfer->xfer_flags |= GB_SPI_XFER_INPROGRESS; 284 msg->state = GB_SPI_STATE_OP_DONE; 285 continue; 286 } 287 288 gb_xfer++; 289 xfer = get_next_xfer(xfer, msg); 290 } 291 292 msg->actual_length += total_len; 293 294 return operation; 295} 296 297static void gb_spi_decode_response(struct gb_spilib *spi, 298 struct spi_message *msg, 299 struct gb_spi_transfer_response *response) 300{ 301 struct spi_transfer *xfer = spi->first_xfer; 302 void *rx_data = response->data; 303 u32 xfer_len; 304 305 while (xfer) { 306 /* Copy rx data */ 307 if (xfer->rx_buf) { 308 if (xfer == spi->first_xfer) 309 xfer_len = xfer->len - spi->rx_xfer_offset; 310 else if (xfer == spi->last_xfer) 311 xfer_len = spi->last_xfer_size; 312 else 313 xfer_len = xfer->len; 314 315 memcpy(xfer->rx_buf + spi->rx_xfer_offset, rx_data, 316 xfer_len); 317 rx_data += xfer_len; 318 } 319 320 if (xfer == spi->last_xfer) 321 break; 322 323 xfer = list_next_entry(xfer, transfer_list); 324 } 325} 326 327static int gb_spi_transfer_one_message(struct spi_master *master, 328 struct spi_message *msg) 329{ 330 struct gb_spilib *spi = spi_master_get_devdata(master); 331 struct gb_connection *connection = spi->connection; 332 struct gb_spi_transfer_response *response; 333 struct gb_operation *operation; 334 int ret = 0; 335 336 spi->first_xfer = list_first_entry_or_null(&msg->transfers, 337 struct spi_transfer, 338 transfer_list); 339 if (!spi->first_xfer) { 340 ret = -ENOMEM; 341 goto out; 342 } 343 344 msg->state = GB_SPI_STATE_MSG_IDLE; 345 346 while (msg->state != GB_SPI_STATE_MSG_DONE && 347 msg->state != GB_SPI_STATE_MSG_ERROR) { 348 operation = gb_spi_operation_create(spi, connection, msg); 349 if (!operation) { 350 msg->state = GB_SPI_STATE_MSG_ERROR; 351 ret = -EINVAL; 352 continue; 353 } 354 355 ret = gb_operation_request_send_sync_timeout(operation, 356 spi->op_timeout); 357 if (!ret) { 358 response = operation->response->payload; 359 if (response) 360 gb_spi_decode_response(spi, msg, response); 361 } else { 362 dev_err(spi->parent, 363 "transfer operation failed: %d\n", ret); 364 msg->state = GB_SPI_STATE_MSG_ERROR; 365 } 366 367 gb_operation_put(operation); 368 setup_next_xfer(spi, msg); 369 } 370 371out: 372 msg->status = ret; 373 clean_xfer_state(spi); 374 spi_finalize_current_message(master); 375 376 return ret; 377} 378 379static int gb_spi_prepare_transfer_hardware(struct spi_master *master) 380{ 381 struct gb_spilib *spi = spi_master_get_devdata(master); 382 383 return spi->ops->prepare_transfer_hardware(spi->parent); 384} 385 386static int gb_spi_unprepare_transfer_hardware(struct spi_master *master) 387{ 388 struct gb_spilib *spi = spi_master_get_devdata(master); 389 390 spi->ops->unprepare_transfer_hardware(spi->parent); 391 392 return 0; 393} 394 395static int gb_spi_setup(struct spi_device *spi) 396{ 397 /* Nothing to do for now */ 398 return 0; 399} 400 401static void gb_spi_cleanup(struct spi_device *spi) 402{ 403 /* Nothing to do for now */ 404} 405 406/* Routines to get controller information */ 407 408/* 409 * Map Greybus spi mode bits/flags/bpw into Linux ones. 410 * All bits are same for now and so these macro's return same values. 411 */ 412#define gb_spi_mode_map(mode) mode 413#define gb_spi_flags_map(flags) flags 414 415static int gb_spi_get_master_config(struct gb_spilib *spi) 416{ 417 struct gb_spi_master_config_response response; 418 u16 mode, flags; 419 int ret; 420 421 ret = gb_operation_sync(spi->connection, GB_SPI_TYPE_MASTER_CONFIG, 422 NULL, 0, &response, sizeof(response)); 423 if (ret < 0) 424 return ret; 425 426 mode = le16_to_cpu(response.mode); 427 spi->mode = gb_spi_mode_map(mode); 428 429 flags = le16_to_cpu(response.flags); 430 spi->flags = gb_spi_flags_map(flags); 431 432 spi->bits_per_word_mask = le32_to_cpu(response.bits_per_word_mask); 433 spi->num_chipselect = response.num_chipselect; 434 435 spi->min_speed_hz = le32_to_cpu(response.min_speed_hz); 436 spi->max_speed_hz = le32_to_cpu(response.max_speed_hz); 437 438 return 0; 439} 440 441static int gb_spi_setup_device(struct gb_spilib *spi, u8 cs) 442{ 443 struct spi_master *master = get_master_from_spi(spi); 444 struct gb_spi_device_config_request request; 445 struct gb_spi_device_config_response response; 446 struct spi_board_info spi_board = { {0} }; 447 struct spi_device *spidev; 448 int ret; 449 u8 dev_type; 450 451 request.chip_select = cs; 452 453 ret = gb_operation_sync(spi->connection, GB_SPI_TYPE_DEVICE_CONFIG, 454 &request, sizeof(request), 455 &response, sizeof(response)); 456 if (ret < 0) 457 return ret; 458 459 dev_type = response.device_type; 460 461 if (dev_type == GB_SPI_SPI_DEV) 462 strscpy(spi_board.modalias, "spidev", 463 sizeof(spi_board.modalias)); 464 else if (dev_type == GB_SPI_SPI_NOR) 465 strscpy(spi_board.modalias, "spi-nor", 466 sizeof(spi_board.modalias)); 467 else if (dev_type == GB_SPI_SPI_MODALIAS) 468 memcpy(spi_board.modalias, response.name, 469 sizeof(spi_board.modalias)); 470 else 471 return -EINVAL; 472 473 spi_board.mode = le16_to_cpu(response.mode); 474 spi_board.bus_num = master->bus_num; 475 spi_board.chip_select = cs; 476 spi_board.max_speed_hz = le32_to_cpu(response.max_speed_hz); 477 478 spidev = spi_new_device(master, &spi_board); 479 if (!spidev) 480 return -EINVAL; 481 482 return 0; 483} 484 485int gb_spilib_master_init(struct gb_connection *connection, struct device *dev, 486 struct spilib_ops *ops) 487{ 488 struct gb_spilib *spi; 489 struct spi_master *master; 490 int ret; 491 u8 i; 492 493 /* Allocate master with space for data */ 494 master = spi_alloc_master(dev, sizeof(*spi)); 495 if (!master) { 496 dev_err(dev, "cannot alloc SPI master\n"); 497 return -ENOMEM; 498 } 499 500 spi = spi_master_get_devdata(master); 501 spi->connection = connection; 502 gb_connection_set_data(connection, master); 503 spi->parent = dev; 504 spi->ops = ops; 505 506 /* get master configuration */ 507 ret = gb_spi_get_master_config(spi); 508 if (ret) 509 goto exit_spi_put; 510 511 master->bus_num = -1; /* Allow spi-core to allocate it dynamically */ 512 master->num_chipselect = spi->num_chipselect; 513 master->mode_bits = spi->mode; 514 master->flags = spi->flags; 515 master->bits_per_word_mask = spi->bits_per_word_mask; 516 517 /* Attach methods */ 518 master->cleanup = gb_spi_cleanup; 519 master->setup = gb_spi_setup; 520 master->transfer_one_message = gb_spi_transfer_one_message; 521 522 if (ops && ops->prepare_transfer_hardware) { 523 master->prepare_transfer_hardware = 524 gb_spi_prepare_transfer_hardware; 525 } 526 527 if (ops && ops->unprepare_transfer_hardware) { 528 master->unprepare_transfer_hardware = 529 gb_spi_unprepare_transfer_hardware; 530 } 531 532 master->auto_runtime_pm = true; 533 534 ret = spi_register_master(master); 535 if (ret < 0) 536 goto exit_spi_put; 537 538 /* now, fetch the devices configuration */ 539 for (i = 0; i < spi->num_chipselect; i++) { 540 ret = gb_spi_setup_device(spi, i); 541 if (ret < 0) { 542 dev_err(dev, "failed to allocate spi device %d: %d\n", 543 i, ret); 544 goto exit_spi_unregister; 545 } 546 } 547 548 return 0; 549 550exit_spi_put: 551 spi_master_put(master); 552 553 return ret; 554 555exit_spi_unregister: 556 spi_unregister_master(master); 557 558 return ret; 559} 560EXPORT_SYMBOL_GPL(gb_spilib_master_init); 561 562void gb_spilib_master_exit(struct gb_connection *connection) 563{ 564 struct spi_master *master = gb_connection_get_data(connection); 565 566 spi_unregister_master(master); 567} 568EXPORT_SYMBOL_GPL(gb_spilib_master_exit); 569 570MODULE_LICENSE("GPL v2");