rtllib_tx.c (26906B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved. 4 * 5 * Contact Information: 6 * James P. Ketrenos <ipw2100-admin@linux.intel.com> 7 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 8 * 9 * Few modifications for Realtek's Wi-Fi drivers by 10 * Andrea Merello <andrea.merello@gmail.com> 11 * 12 * A special thanks goes to Realtek for their support ! 13 */ 14#include <linux/compiler.h> 15#include <linux/errno.h> 16#include <linux/if_arp.h> 17#include <linux/in6.h> 18#include <linux/in.h> 19#include <linux/ip.h> 20#include <linux/kernel.h> 21#include <linux/module.h> 22#include <linux/netdevice.h> 23#include <linux/pci.h> 24#include <linux/proc_fs.h> 25#include <linux/skbuff.h> 26#include <linux/slab.h> 27#include <linux/tcp.h> 28#include <linux/types.h> 29#include <linux/wireless.h> 30#include <linux/etherdevice.h> 31#include <linux/uaccess.h> 32#include <linux/if_vlan.h> 33 34#include "rtllib.h" 35 36/* 802.11 Data Frame 37 * 38 * 39 * 802.11 frame_control for data frames - 2 bytes 40 * ,--------------------------------------------------------------------. 41 * bits | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e | 42 * |---|---|---|---|---|---|---|---|---|----|----|-----|-----|-----|----| 43 * val | 0 | 0 | 0 | 1 | x | 0 | 0 | 0 | 1 | 0 | x | x | x | x | x | 44 * |---|---|---|---|---|---|---|---|---|----|----|-----|-----|-----|----| 45 * desc | ver | type | ^-subtype-^ |to |from|more|retry| pwr |more |wep | 46 * | | | x=0 data |DS | DS |frag| | mgm |data | | 47 * | | | x=1 data+ack | | | | | | | | 48 * '--------------------------------------------------------------------' 49 * /\ 50 * | 51 * 802.11 Data Frame | 52 * ,--------- 'ctrl' expands to >---' 53 * | 54 * ,--'---,-------------------------------------------------------------. 55 * Bytes | 2 | 2 | 6 | 6 | 6 | 2 | 0..2312 | 4 | 56 * |------|------|---------|---------|---------|------|---------|------| 57 * Desc. | ctrl | dura | DA/RA | TA | SA | Sequ | Frame | fcs | 58 * | | tion | (BSSID) | | | ence | data | | 59 * `--------------------------------------------------| |------' 60 * Total: 28 non-data bytes `----.----' 61 * | 62 * .- 'Frame data' expands to <---------------------------' 63 * | 64 * V 65 * ,---------------------------------------------------. 66 * Bytes | 1 | 1 | 1 | 3 | 2 | 0-2304 | 67 * |------|------|---------|----------|------|---------| 68 * Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP | 69 * | DSAP | SSAP | | | | Packet | 70 * | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8| | | 71 * `-----------------------------------------| | 72 * Total: 8 non-data bytes `----.----' 73 * | 74 * .- 'IP Packet' expands, if WEP enabled, to <--' 75 * | 76 * V 77 * ,-----------------------. 78 * Bytes | 4 | 0-2296 | 4 | 79 * |-----|-----------|-----| 80 * Desc. | IV | Encrypted | ICV | 81 * | | IP Packet | | 82 * `-----------------------' 83 * Total: 8 non-data bytes 84 * 85 * 86 * 802.3 Ethernet Data Frame 87 * 88 * ,-----------------------------------------. 89 * Bytes | 6 | 6 | 2 | Variable | 4 | 90 * |-------|-------|------|-----------|------| 91 * Desc. | Dest. | Source| Type | IP Packet | fcs | 92 * | MAC | MAC | | | | 93 * `-----------------------------------------' 94 * Total: 18 non-data bytes 95 * 96 * In the event that fragmentation is required, the incoming payload is split 97 * into N parts of size ieee->fts. The first fragment contains the SNAP header 98 * and the remaining packets are just data. 99 * 100 * If encryption is enabled, each fragment payload size is reduced by enough 101 * space to add the prefix and postfix (IV and ICV totalling 8 bytes in 102 * the case of WEP) So if you have 1500 bytes of payload with ieee->fts set to 103 * 500 without encryption it will take 3 frames. With WEP it will take 4 frames 104 * as the payload of each frame is reduced to 492 bytes. 105 * 106 * SKB visualization 107 * 108 * ,- skb->data 109 * | 110 * | ETHERNET HEADER ,-<-- PAYLOAD 111 * | | 14 bytes from skb->data 112 * | 2 bytes for Type --> ,T. | (sizeof ethhdr) 113 * | | | | 114 * |,-Dest.--. ,--Src.---. | | | 115 * | 6 bytes| | 6 bytes | | | | 116 * v | | | | | | 117 * 0 | v 1 | v | v 2 118 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 119 * ^ | ^ | ^ | 120 * | | | | | | 121 * | | | | `T' <---- 2 bytes for Type 122 * | | | | 123 * | | '---SNAP--' <-------- 6 bytes for SNAP 124 * | | 125 * `-IV--' <-------------------- 4 bytes for IV (WEP) 126 * 127 * SNAP HEADER 128 * 129 */ 130 131static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 }; 132static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 }; 133 134static int rtllib_put_snap(u8 *data, u16 h_proto) 135{ 136 struct rtllib_snap_hdr *snap; 137 u8 *oui; 138 139 snap = (struct rtllib_snap_hdr *)data; 140 snap->dsap = 0xaa; 141 snap->ssap = 0xaa; 142 snap->ctrl = 0x03; 143 144 if (h_proto == 0x8137 || h_proto == 0x80f3) 145 oui = P802_1H_OUI; 146 else 147 oui = RFC1042_OUI; 148 snap->oui[0] = oui[0]; 149 snap->oui[1] = oui[1]; 150 snap->oui[2] = oui[2]; 151 152 *(__be16 *)(data + SNAP_SIZE) = htons(h_proto); 153 154 return SNAP_SIZE + sizeof(u16); 155} 156 157int rtllib_encrypt_fragment(struct rtllib_device *ieee, struct sk_buff *frag, 158 int hdr_len) 159{ 160 struct lib80211_crypt_data *crypt = NULL; 161 int res; 162 163 crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx]; 164 165 if (!(crypt && crypt->ops)) { 166 netdev_info(ieee->dev, "=========>%s(), crypt is null\n", 167 __func__); 168 return -1; 169 } 170 /* To encrypt, frame format is: 171 * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes) 172 */ 173 174 /* Host-based IEEE 802.11 fragmentation for TX is not yet supported, so 175 * call both MSDU and MPDU encryption functions from here. 176 */ 177 atomic_inc(&crypt->refcnt); 178 res = 0; 179 if (crypt->ops->encrypt_msdu) 180 res = crypt->ops->encrypt_msdu(frag, hdr_len, crypt->priv); 181 if (res == 0 && crypt->ops->encrypt_mpdu) 182 res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv); 183 184 atomic_dec(&crypt->refcnt); 185 if (res < 0) { 186 netdev_info(ieee->dev, "%s: Encryption failed: len=%d.\n", 187 ieee->dev->name, frag->len); 188 return -1; 189 } 190 191 return 0; 192} 193 194 195void rtllib_txb_free(struct rtllib_txb *txb) 196{ 197 if (unlikely(!txb)) 198 return; 199 kfree(txb); 200} 201 202static struct rtllib_txb *rtllib_alloc_txb(int nr_frags, int txb_size, 203 gfp_t gfp_mask) 204{ 205 struct rtllib_txb *txb; 206 int i; 207 208 txb = kmalloc(sizeof(struct rtllib_txb) + (sizeof(u8 *) * nr_frags), 209 gfp_mask); 210 if (!txb) 211 return NULL; 212 213 memset(txb, 0, sizeof(struct rtllib_txb)); 214 txb->nr_frags = nr_frags; 215 txb->frag_size = cpu_to_le16(txb_size); 216 217 for (i = 0; i < nr_frags; i++) { 218 txb->fragments[i] = dev_alloc_skb(txb_size); 219 if (unlikely(!txb->fragments[i])) { 220 i--; 221 break; 222 } 223 memset(txb->fragments[i]->cb, 0, sizeof(txb->fragments[i]->cb)); 224 } 225 if (unlikely(i != nr_frags)) { 226 while (i >= 0) 227 dev_kfree_skb_any(txb->fragments[i--]); 228 kfree(txb); 229 return NULL; 230 } 231 return txb; 232} 233 234static int rtllib_classify(struct sk_buff *skb, u8 bIsAmsdu) 235{ 236 struct ethhdr *eth; 237 struct iphdr *ip; 238 239 eth = (struct ethhdr *)skb->data; 240 if (eth->h_proto != htons(ETH_P_IP)) 241 return 0; 242 243#ifdef VERBOSE_DEBUG 244 print_hex_dump_bytes("%s: ", __func__, DUMP_PREFIX_NONE, skb->data, 245 skb->len); 246#endif 247 ip = ip_hdr(skb); 248 switch (ip->tos & 0xfc) { 249 case 0x20: 250 return 2; 251 case 0x40: 252 return 1; 253 case 0x60: 254 return 3; 255 case 0x80: 256 return 4; 257 case 0xa0: 258 return 5; 259 case 0xc0: 260 return 6; 261 case 0xe0: 262 return 7; 263 default: 264 return 0; 265 } 266} 267 268static void rtllib_tx_query_agg_cap(struct rtllib_device *ieee, 269 struct sk_buff *skb, 270 struct cb_desc *tcb_desc) 271{ 272 struct rt_hi_throughput *pHTInfo = ieee->pHTInfo; 273 struct tx_ts_record *pTxTs = NULL; 274 struct rtllib_hdr_1addr *hdr = (struct rtllib_hdr_1addr *)skb->data; 275 276 if (rtllib_act_scanning(ieee, false)) 277 return; 278 279 if (!pHTInfo->bCurrentHTSupport || !pHTInfo->bEnableHT) 280 return; 281 if (!IsQoSDataFrame(skb->data)) 282 return; 283 if (is_multicast_ether_addr(hdr->addr1)) 284 return; 285 286 if (tcb_desc->bdhcp || ieee->CntAfterLink < 2) 287 return; 288 289 if (pHTInfo->IOTAction & HT_IOT_ACT_TX_NO_AGGREGATION) 290 return; 291 292 if (!ieee->GetNmodeSupportBySecCfg(ieee->dev)) 293 return; 294 if (pHTInfo->bCurrentAMPDUEnable) { 295 if (!GetTs(ieee, (struct ts_common_info **)(&pTxTs), hdr->addr1, 296 skb->priority, TX_DIR, true)) { 297 netdev_info(ieee->dev, "%s: can't get TS\n", __func__); 298 return; 299 } 300 if (!pTxTs->TxAdmittedBARecord.b_valid) { 301 if (ieee->wpa_ie_len && (ieee->pairwise_key_type == 302 KEY_TYPE_NA)) { 303 ; 304 } else if (tcb_desc->bdhcp == 1) { 305 ; 306 } else if (!pTxTs->bDisable_AddBa) { 307 TsStartAddBaProcess(ieee, pTxTs); 308 } 309 goto FORCED_AGG_SETTING; 310 } else if (!pTxTs->bUsingBa) { 311 if (SN_LESS(pTxTs->TxAdmittedBARecord.ba_start_seq_ctrl.field.seq_num, 312 (pTxTs->TxCurSeq+1)%4096)) 313 pTxTs->bUsingBa = true; 314 else 315 goto FORCED_AGG_SETTING; 316 } 317 if (ieee->iw_mode == IW_MODE_INFRA) { 318 tcb_desc->bAMPDUEnable = true; 319 tcb_desc->ampdu_factor = pHTInfo->CurrentAMPDUFactor; 320 tcb_desc->ampdu_density = pHTInfo->CurrentMPDUDensity; 321 } 322 } 323FORCED_AGG_SETTING: 324 switch (pHTInfo->ForcedAMPDUMode) { 325 case HT_AGG_AUTO: 326 break; 327 328 case HT_AGG_FORCE_ENABLE: 329 tcb_desc->bAMPDUEnable = true; 330 tcb_desc->ampdu_density = pHTInfo->ForcedMPDUDensity; 331 tcb_desc->ampdu_factor = pHTInfo->ForcedAMPDUFactor; 332 break; 333 334 case HT_AGG_FORCE_DISABLE: 335 tcb_desc->bAMPDUEnable = false; 336 tcb_desc->ampdu_density = 0; 337 tcb_desc->ampdu_factor = 0; 338 break; 339 } 340} 341 342static void rtllib_query_ShortPreambleMode(struct rtllib_device *ieee, 343 struct cb_desc *tcb_desc) 344{ 345 tcb_desc->bUseShortPreamble = false; 346 if (tcb_desc->data_rate == 2) 347 return; 348 else if (ieee->current_network.capability & 349 WLAN_CAPABILITY_SHORT_PREAMBLE) 350 tcb_desc->bUseShortPreamble = true; 351} 352 353static void rtllib_query_HTCapShortGI(struct rtllib_device *ieee, 354 struct cb_desc *tcb_desc) 355{ 356 struct rt_hi_throughput *pHTInfo = ieee->pHTInfo; 357 358 tcb_desc->bUseShortGI = false; 359 360 if (!pHTInfo->bCurrentHTSupport || !pHTInfo->bEnableHT) 361 return; 362 363 if (pHTInfo->bForcedShortGI) { 364 tcb_desc->bUseShortGI = true; 365 return; 366 } 367 368 if (pHTInfo->bCurBW40MHz && pHTInfo->bCurShortGI40MHz) 369 tcb_desc->bUseShortGI = true; 370 else if (!pHTInfo->bCurBW40MHz && pHTInfo->bCurShortGI20MHz) 371 tcb_desc->bUseShortGI = true; 372} 373 374static void rtllib_query_BandwidthMode(struct rtllib_device *ieee, 375 struct cb_desc *tcb_desc) 376{ 377 struct rt_hi_throughput *pHTInfo = ieee->pHTInfo; 378 379 tcb_desc->bPacketBW = false; 380 381 if (!pHTInfo->bCurrentHTSupport || !pHTInfo->bEnableHT) 382 return; 383 384 if (tcb_desc->bMulticast || tcb_desc->bBroadcast) 385 return; 386 387 if ((tcb_desc->data_rate & 0x80) == 0) 388 return; 389 if (pHTInfo->bCurBW40MHz && pHTInfo->bCurTxBW40MHz && 390 !ieee->bandwidth_auto_switch.bforced_tx20Mhz) 391 tcb_desc->bPacketBW = true; 392} 393 394static void rtllib_query_protectionmode(struct rtllib_device *ieee, 395 struct cb_desc *tcb_desc, 396 struct sk_buff *skb) 397{ 398 struct rt_hi_throughput *pHTInfo; 399 400 tcb_desc->bRTSSTBC = false; 401 tcb_desc->bRTSUseShortGI = false; 402 tcb_desc->bCTSEnable = false; 403 tcb_desc->RTSSC = 0; 404 tcb_desc->bRTSBW = false; 405 406 if (tcb_desc->bBroadcast || tcb_desc->bMulticast) 407 return; 408 409 if (is_broadcast_ether_addr(skb->data+16)) 410 return; 411 412 if (ieee->mode < IEEE_N_24G) { 413 if (skb->len > ieee->rts) { 414 tcb_desc->bRTSEnable = true; 415 tcb_desc->rts_rate = MGN_24M; 416 } else if (ieee->current_network.buseprotection) { 417 tcb_desc->bRTSEnable = true; 418 tcb_desc->bCTSEnable = true; 419 tcb_desc->rts_rate = MGN_24M; 420 } 421 return; 422 } 423 424 pHTInfo = ieee->pHTInfo; 425 426 while (true) { 427 if (pHTInfo->IOTAction & HT_IOT_ACT_FORCED_CTS2SELF) { 428 tcb_desc->bCTSEnable = true; 429 tcb_desc->rts_rate = MGN_24M; 430 tcb_desc->bRTSEnable = true; 431 break; 432 } else if (pHTInfo->IOTAction & (HT_IOT_ACT_FORCED_RTS | 433 HT_IOT_ACT_PURE_N_MODE)) { 434 tcb_desc->bRTSEnable = true; 435 tcb_desc->rts_rate = MGN_24M; 436 break; 437 } 438 if (ieee->current_network.buseprotection) { 439 tcb_desc->bRTSEnable = true; 440 tcb_desc->bCTSEnable = true; 441 tcb_desc->rts_rate = MGN_24M; 442 break; 443 } 444 if (pHTInfo->bCurrentHTSupport && pHTInfo->bEnableHT) { 445 u8 HTOpMode = pHTInfo->CurrentOpMode; 446 447 if ((pHTInfo->bCurBW40MHz && (HTOpMode == 2 || 448 HTOpMode == 3)) || 449 (!pHTInfo->bCurBW40MHz && HTOpMode == 3)) { 450 tcb_desc->rts_rate = MGN_24M; 451 tcb_desc->bRTSEnable = true; 452 break; 453 } 454 } 455 if (skb->len > ieee->rts) { 456 tcb_desc->rts_rate = MGN_24M; 457 tcb_desc->bRTSEnable = true; 458 break; 459 } 460 if (tcb_desc->bAMPDUEnable) { 461 tcb_desc->rts_rate = MGN_24M; 462 tcb_desc->bRTSEnable = false; 463 break; 464 } 465 goto NO_PROTECTION; 466 } 467 if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE) 468 tcb_desc->bUseShortPreamble = true; 469 if (ieee->iw_mode == IW_MODE_MASTER) 470 goto NO_PROTECTION; 471 return; 472NO_PROTECTION: 473 tcb_desc->bRTSEnable = false; 474 tcb_desc->bCTSEnable = false; 475 tcb_desc->rts_rate = 0; 476 tcb_desc->RTSSC = 0; 477 tcb_desc->bRTSBW = false; 478} 479 480 481static void rtllib_txrate_selectmode(struct rtllib_device *ieee, 482 struct cb_desc *tcb_desc) 483{ 484 if (ieee->bTxDisableRateFallBack) 485 tcb_desc->bTxDisableRateFallBack = true; 486 487 if (ieee->bTxUseDriverAssingedRate) 488 tcb_desc->bTxUseDriverAssingedRate = true; 489 if (!tcb_desc->bTxDisableRateFallBack || 490 !tcb_desc->bTxUseDriverAssingedRate) { 491 if (ieee->iw_mode == IW_MODE_INFRA || 492 ieee->iw_mode == IW_MODE_ADHOC) 493 tcb_desc->RATRIndex = 0; 494 } 495} 496 497static u16 rtllib_query_seqnum(struct rtllib_device *ieee, struct sk_buff *skb, 498 u8 *dst) 499{ 500 u16 seqnum = 0; 501 502 if (is_multicast_ether_addr(dst)) 503 return 0; 504 if (IsQoSDataFrame(skb->data)) { 505 struct tx_ts_record *pTS = NULL; 506 507 if (!GetTs(ieee, (struct ts_common_info **)(&pTS), dst, 508 skb->priority, TX_DIR, true)) 509 return 0; 510 seqnum = pTS->TxCurSeq; 511 pTS->TxCurSeq = (pTS->TxCurSeq+1)%4096; 512 return seqnum; 513 } 514 return 0; 515} 516 517static int wme_downgrade_ac(struct sk_buff *skb) 518{ 519 switch (skb->priority) { 520 case 6: 521 case 7: 522 skb->priority = 5; /* VO -> VI */ 523 return 0; 524 case 4: 525 case 5: 526 skb->priority = 3; /* VI -> BE */ 527 return 0; 528 case 0: 529 case 3: 530 skb->priority = 1; /* BE -> BK */ 531 return 0; 532 default: 533 return -1; 534 } 535} 536 537static u8 rtllib_current_rate(struct rtllib_device *ieee) 538{ 539 if (ieee->mode & IEEE_MODE_MASK) 540 return ieee->rate; 541 542 if (ieee->HTCurrentOperaRate) 543 return ieee->HTCurrentOperaRate; 544 else 545 return ieee->rate & 0x7F; 546} 547 548static int rtllib_xmit_inter(struct sk_buff *skb, struct net_device *dev) 549{ 550 struct rtllib_device *ieee = (struct rtllib_device *) 551 netdev_priv_rsl(dev); 552 struct rtllib_txb *txb = NULL; 553 struct rtllib_hdr_3addrqos *frag_hdr; 554 int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size; 555 unsigned long flags; 556 struct net_device_stats *stats = &ieee->stats; 557 int ether_type = 0, encrypt; 558 int bytes, fc, qos_ctl = 0, hdr_len; 559 struct sk_buff *skb_frag; 560 struct rtllib_hdr_3addrqos header = { /* Ensure zero initialized */ 561 .duration_id = 0, 562 .seq_ctl = 0, 563 .qos_ctl = 0 564 }; 565 int qos_activated = ieee->current_network.qos_data.active; 566 u8 dest[ETH_ALEN]; 567 u8 src[ETH_ALEN]; 568 struct lib80211_crypt_data *crypt = NULL; 569 struct cb_desc *tcb_desc; 570 u8 bIsMulticast = false; 571 u8 IsAmsdu = false; 572 bool bdhcp = false; 573 574 spin_lock_irqsave(&ieee->lock, flags); 575 576 /* If there is no driver handler to take the TXB, don't bother 577 * creating it... 578 */ 579 if ((!ieee->hard_start_xmit && !(ieee->softmac_features & 580 IEEE_SOFTMAC_TX_QUEUE)) || 581 ((!ieee->softmac_data_hard_start_xmit && 582 (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE)))) { 583 netdev_warn(ieee->dev, "No xmit handler.\n"); 584 goto success; 585 } 586 587 588 if (likely(ieee->raw_tx == 0)) { 589 if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) { 590 netdev_warn(ieee->dev, "skb too small (%d).\n", 591 skb->len); 592 goto success; 593 } 594 /* Save source and destination addresses */ 595 ether_addr_copy(dest, skb->data); 596 ether_addr_copy(src, skb->data + ETH_ALEN); 597 598 memset(skb->cb, 0, sizeof(skb->cb)); 599 ether_type = ntohs(((struct ethhdr *)skb->data)->h_proto); 600 601 if (ieee->iw_mode == IW_MODE_MONITOR) { 602 txb = rtllib_alloc_txb(1, skb->len, GFP_ATOMIC); 603 if (unlikely(!txb)) { 604 netdev_warn(ieee->dev, 605 "Could not allocate TXB\n"); 606 goto failed; 607 } 608 609 txb->encrypted = 0; 610 txb->payload_size = cpu_to_le16(skb->len); 611 skb_put_data(txb->fragments[0], skb->data, skb->len); 612 613 goto success; 614 } 615 616 if (skb->len > 282) { 617 if (ether_type == ETH_P_IP) { 618 const struct iphdr *ip = (struct iphdr *) 619 ((u8 *)skb->data+14); 620 if (ip->protocol == IPPROTO_UDP) { 621 struct udphdr *udp; 622 623 udp = (struct udphdr *)((u8 *)ip + 624 (ip->ihl << 2)); 625 if (((((u8 *)udp)[1] == 68) && 626 (((u8 *)udp)[3] == 67)) || 627 ((((u8 *)udp)[1] == 67) && 628 (((u8 *)udp)[3] == 68))) { 629 bdhcp = true; 630 ieee->LPSDelayCnt = 200; 631 } 632 } 633 } else if (ether_type == ETH_P_ARP) { 634 netdev_info(ieee->dev, 635 "=================>DHCP Protocol start tx ARP pkt!!\n"); 636 bdhcp = true; 637 ieee->LPSDelayCnt = 638 ieee->current_network.tim.tim_count; 639 } 640 } 641 642 skb->priority = rtllib_classify(skb, IsAmsdu); 643 crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx]; 644 encrypt = !(ether_type == ETH_P_PAE && ieee->ieee802_1x) && 645 ieee->host_encrypt && crypt && crypt->ops; 646 if (!encrypt && ieee->ieee802_1x && 647 ieee->drop_unencrypted && ether_type != ETH_P_PAE) { 648 stats->tx_dropped++; 649 goto success; 650 } 651 if (crypt && !encrypt && ether_type == ETH_P_PAE) { 652 struct eapol *eap = (struct eapol *)(skb->data + 653 sizeof(struct ethhdr) - SNAP_SIZE - 654 sizeof(u16)); 655 netdev_dbg(ieee->dev, 656 "TX: IEEE 802.11 EAPOL frame: %s\n", 657 eap_get_type(eap->type)); 658 } 659 660 /* Advance the SKB to the start of the payload */ 661 skb_pull(skb, sizeof(struct ethhdr)); 662 663 /* Determine total amount of storage required for TXB packets */ 664 bytes = skb->len + SNAP_SIZE + sizeof(u16); 665 666 if (encrypt) 667 fc = RTLLIB_FTYPE_DATA | RTLLIB_FCTL_WEP; 668 else 669 fc = RTLLIB_FTYPE_DATA; 670 671 if (qos_activated) 672 fc |= RTLLIB_STYPE_QOS_DATA; 673 else 674 fc |= RTLLIB_STYPE_DATA; 675 676 if (ieee->iw_mode == IW_MODE_INFRA) { 677 fc |= RTLLIB_FCTL_TODS; 678 /* To DS: Addr1 = BSSID, Addr2 = SA, 679 * Addr3 = DA 680 */ 681 ether_addr_copy(header.addr1, 682 ieee->current_network.bssid); 683 ether_addr_copy(header.addr2, src); 684 if (IsAmsdu) 685 ether_addr_copy(header.addr3, 686 ieee->current_network.bssid); 687 else 688 ether_addr_copy(header.addr3, dest); 689 } else if (ieee->iw_mode == IW_MODE_ADHOC) { 690 /* not From/To DS: Addr1 = DA, Addr2 = SA, 691 * Addr3 = BSSID 692 */ 693 ether_addr_copy(header.addr1, dest); 694 ether_addr_copy(header.addr2, src); 695 ether_addr_copy(header.addr3, 696 ieee->current_network.bssid); 697 } 698 699 bIsMulticast = is_multicast_ether_addr(header.addr1); 700 701 header.frame_ctl = cpu_to_le16(fc); 702 703 /* Determine fragmentation size based on destination (multicast 704 * and broadcast are not fragmented) 705 */ 706 if (bIsMulticast) { 707 frag_size = MAX_FRAG_THRESHOLD; 708 qos_ctl |= QOS_CTL_NOTCONTAIN_ACK; 709 } else { 710 frag_size = ieee->fts; 711 qos_ctl = 0; 712 } 713 714 if (qos_activated) { 715 hdr_len = RTLLIB_3ADDR_LEN + 2; 716 717 /* in case we are a client verify acm is not set for this ac */ 718 while (unlikely(ieee->wmm_acm & (0x01 << skb->priority))) { 719 netdev_info(ieee->dev, "skb->priority = %x\n", 720 skb->priority); 721 if (wme_downgrade_ac(skb)) 722 break; 723 netdev_info(ieee->dev, "converted skb->priority = %x\n", 724 skb->priority); 725 } 726 727 qos_ctl |= skb->priority; 728 header.qos_ctl = cpu_to_le16(qos_ctl & RTLLIB_QOS_TID); 729 730 } else { 731 hdr_len = RTLLIB_3ADDR_LEN; 732 } 733 /* Determine amount of payload per fragment. Regardless of if 734 * this stack is providing the full 802.11 header, one will 735 * eventually be affixed to this fragment -- so we must account 736 * for it when determining the amount of payload space. 737 */ 738 bytes_per_frag = frag_size - hdr_len; 739 if (ieee->config & 740 (CFG_RTLLIB_COMPUTE_FCS | CFG_RTLLIB_RESERVE_FCS)) 741 bytes_per_frag -= RTLLIB_FCS_LEN; 742 743 /* Each fragment may need to have room for encrypting 744 * pre/postfix 745 */ 746 if (encrypt) { 747 bytes_per_frag -= crypt->ops->extra_mpdu_prefix_len + 748 crypt->ops->extra_mpdu_postfix_len + 749 crypt->ops->extra_msdu_prefix_len + 750 crypt->ops->extra_msdu_postfix_len; 751 } 752 /* Number of fragments is the total bytes_per_frag / 753 * payload_per_fragment 754 */ 755 nr_frags = bytes / bytes_per_frag; 756 bytes_last_frag = bytes % bytes_per_frag; 757 if (bytes_last_frag) 758 nr_frags++; 759 else 760 bytes_last_frag = bytes_per_frag; 761 762 /* When we allocate the TXB we allocate enough space for the 763 * reserve and full fragment bytes (bytes_per_frag doesn't 764 * include prefix, postfix, header, FCS, etc.) 765 */ 766 txb = rtllib_alloc_txb(nr_frags, frag_size + 767 ieee->tx_headroom, GFP_ATOMIC); 768 if (unlikely(!txb)) { 769 netdev_warn(ieee->dev, "Could not allocate TXB\n"); 770 goto failed; 771 } 772 txb->encrypted = encrypt; 773 txb->payload_size = cpu_to_le16(bytes); 774 775 if (qos_activated) 776 txb->queue_index = UP2AC(skb->priority); 777 else 778 txb->queue_index = WME_AC_BE; 779 780 for (i = 0; i < nr_frags; i++) { 781 skb_frag = txb->fragments[i]; 782 tcb_desc = (struct cb_desc *)(skb_frag->cb + 783 MAX_DEV_ADDR_SIZE); 784 if (qos_activated) { 785 skb_frag->priority = skb->priority; 786 tcb_desc->queue_index = UP2AC(skb->priority); 787 } else { 788 skb_frag->priority = WME_AC_BE; 789 tcb_desc->queue_index = WME_AC_BE; 790 } 791 skb_reserve(skb_frag, ieee->tx_headroom); 792 793 if (encrypt) { 794 if (ieee->hwsec_active) 795 tcb_desc->bHwSec = 1; 796 else 797 tcb_desc->bHwSec = 0; 798 skb_reserve(skb_frag, 799 crypt->ops->extra_mpdu_prefix_len + 800 crypt->ops->extra_msdu_prefix_len); 801 } else { 802 tcb_desc->bHwSec = 0; 803 } 804 frag_hdr = skb_put_data(skb_frag, &header, hdr_len); 805 806 /* If this is not the last fragment, then add the 807 * MOREFRAGS bit to the frame control 808 */ 809 if (i != nr_frags - 1) { 810 frag_hdr->frame_ctl = cpu_to_le16( 811 fc | RTLLIB_FCTL_MOREFRAGS); 812 bytes = bytes_per_frag; 813 814 } else { 815 /* The last fragment has the remaining length */ 816 bytes = bytes_last_frag; 817 } 818 if ((qos_activated) && (!bIsMulticast)) { 819 frag_hdr->seq_ctl = 820 cpu_to_le16(rtllib_query_seqnum(ieee, skb_frag, 821 header.addr1)); 822 frag_hdr->seq_ctl = 823 cpu_to_le16(le16_to_cpu(frag_hdr->seq_ctl)<<4 | i); 824 } else { 825 frag_hdr->seq_ctl = 826 cpu_to_le16(ieee->seq_ctrl[0]<<4 | i); 827 } 828 /* Put a SNAP header on the first fragment */ 829 if (i == 0) { 830 rtllib_put_snap( 831 skb_put(skb_frag, SNAP_SIZE + 832 sizeof(u16)), ether_type); 833 bytes -= SNAP_SIZE + sizeof(u16); 834 } 835 836 skb_put_data(skb_frag, skb->data, bytes); 837 838 /* Advance the SKB... */ 839 skb_pull(skb, bytes); 840 841 /* Encryption routine will move the header forward in 842 * order to insert the IV between the header and the 843 * payload 844 */ 845 if (encrypt) 846 rtllib_encrypt_fragment(ieee, skb_frag, 847 hdr_len); 848 if (ieee->config & 849 (CFG_RTLLIB_COMPUTE_FCS | CFG_RTLLIB_RESERVE_FCS)) 850 skb_put(skb_frag, 4); 851 } 852 853 if ((qos_activated) && (!bIsMulticast)) { 854 if (ieee->seq_ctrl[UP2AC(skb->priority) + 1] == 0xFFF) 855 ieee->seq_ctrl[UP2AC(skb->priority) + 1] = 0; 856 else 857 ieee->seq_ctrl[UP2AC(skb->priority) + 1]++; 858 } else { 859 if (ieee->seq_ctrl[0] == 0xFFF) 860 ieee->seq_ctrl[0] = 0; 861 else 862 ieee->seq_ctrl[0]++; 863 } 864 } else { 865 if (unlikely(skb->len < sizeof(struct rtllib_hdr_3addr))) { 866 netdev_warn(ieee->dev, "skb too small (%d).\n", 867 skb->len); 868 goto success; 869 } 870 871 txb = rtllib_alloc_txb(1, skb->len, GFP_ATOMIC); 872 if (!txb) { 873 netdev_warn(ieee->dev, "Could not allocate TXB\n"); 874 goto failed; 875 } 876 877 txb->encrypted = 0; 878 txb->payload_size = cpu_to_le16(skb->len); 879 skb_put_data(txb->fragments[0], skb->data, skb->len); 880 } 881 882 success: 883 if (txb) { 884 tcb_desc = (struct cb_desc *) 885 (txb->fragments[0]->cb + MAX_DEV_ADDR_SIZE); 886 tcb_desc->bTxEnableFwCalcDur = 1; 887 tcb_desc->priority = skb->priority; 888 889 if (ether_type == ETH_P_PAE) { 890 if (ieee->pHTInfo->IOTAction & 891 HT_IOT_ACT_WA_IOT_Broadcom) { 892 tcb_desc->data_rate = 893 MgntQuery_TxRateExcludeCCKRates(ieee); 894 tcb_desc->bTxDisableRateFallBack = false; 895 } else { 896 tcb_desc->data_rate = ieee->basic_rate; 897 tcb_desc->bTxDisableRateFallBack = 1; 898 } 899 900 901 tcb_desc->RATRIndex = 7; 902 tcb_desc->bTxUseDriverAssingedRate = 1; 903 } else { 904 if (is_multicast_ether_addr(header.addr1)) 905 tcb_desc->bMulticast = 1; 906 if (is_broadcast_ether_addr(header.addr1)) 907 tcb_desc->bBroadcast = 1; 908 rtllib_txrate_selectmode(ieee, tcb_desc); 909 if (tcb_desc->bMulticast || tcb_desc->bBroadcast) 910 tcb_desc->data_rate = ieee->basic_rate; 911 else 912 tcb_desc->data_rate = rtllib_current_rate(ieee); 913 914 if (bdhcp) { 915 if (ieee->pHTInfo->IOTAction & 916 HT_IOT_ACT_WA_IOT_Broadcom) { 917 tcb_desc->data_rate = 918 MgntQuery_TxRateExcludeCCKRates(ieee); 919 tcb_desc->bTxDisableRateFallBack = false; 920 } else { 921 tcb_desc->data_rate = MGN_1M; 922 tcb_desc->bTxDisableRateFallBack = 1; 923 } 924 925 926 tcb_desc->RATRIndex = 7; 927 tcb_desc->bTxUseDriverAssingedRate = 1; 928 tcb_desc->bdhcp = 1; 929 } 930 931 rtllib_query_ShortPreambleMode(ieee, tcb_desc); 932 rtllib_tx_query_agg_cap(ieee, txb->fragments[0], 933 tcb_desc); 934 rtllib_query_HTCapShortGI(ieee, tcb_desc); 935 rtllib_query_BandwidthMode(ieee, tcb_desc); 936 rtllib_query_protectionmode(ieee, tcb_desc, 937 txb->fragments[0]); 938 } 939 } 940 spin_unlock_irqrestore(&ieee->lock, flags); 941 dev_kfree_skb_any(skb); 942 if (txb) { 943 if (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE) { 944 dev->stats.tx_packets++; 945 dev->stats.tx_bytes += le16_to_cpu(txb->payload_size); 946 rtllib_softmac_xmit(txb, ieee); 947 } else { 948 if ((*ieee->hard_start_xmit)(txb, dev) == 0) { 949 stats->tx_packets++; 950 stats->tx_bytes += le16_to_cpu(txb->payload_size); 951 return 0; 952 } 953 rtllib_txb_free(txb); 954 } 955 } 956 957 return 0; 958 959 failed: 960 spin_unlock_irqrestore(&ieee->lock, flags); 961 netif_stop_queue(dev); 962 stats->tx_errors++; 963 return 1; 964 965} 966 967int rtllib_xmit(struct sk_buff *skb, struct net_device *dev) 968{ 969 memset(skb->cb, 0, sizeof(skb->cb)); 970 return rtllib_xmit_inter(skb, dev); 971} 972EXPORT_SYMBOL(rtllib_xmit);