cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

target_core_transport.c (99955B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*******************************************************************************
      3 * Filename:  target_core_transport.c
      4 *
      5 * This file contains the Generic Target Engine Core.
      6 *
      7 * (c) Copyright 2002-2013 Datera, Inc.
      8 *
      9 * Nicholas A. Bellinger <nab@kernel.org>
     10 *
     11 ******************************************************************************/
     12
     13#include <linux/net.h>
     14#include <linux/delay.h>
     15#include <linux/string.h>
     16#include <linux/timer.h>
     17#include <linux/slab.h>
     18#include <linux/spinlock.h>
     19#include <linux/kthread.h>
     20#include <linux/in.h>
     21#include <linux/cdrom.h>
     22#include <linux/module.h>
     23#include <linux/ratelimit.h>
     24#include <linux/vmalloc.h>
     25#include <asm/unaligned.h>
     26#include <net/sock.h>
     27#include <net/tcp.h>
     28#include <scsi/scsi_proto.h>
     29#include <scsi/scsi_common.h>
     30
     31#include <target/target_core_base.h>
     32#include <target/target_core_backend.h>
     33#include <target/target_core_fabric.h>
     34
     35#include "target_core_internal.h"
     36#include "target_core_alua.h"
     37#include "target_core_pr.h"
     38#include "target_core_ua.h"
     39
     40#define CREATE_TRACE_POINTS
     41#include <trace/events/target.h>
     42
     43static struct workqueue_struct *target_completion_wq;
     44static struct workqueue_struct *target_submission_wq;
     45static struct kmem_cache *se_sess_cache;
     46struct kmem_cache *se_ua_cache;
     47struct kmem_cache *t10_pr_reg_cache;
     48struct kmem_cache *t10_alua_lu_gp_cache;
     49struct kmem_cache *t10_alua_lu_gp_mem_cache;
     50struct kmem_cache *t10_alua_tg_pt_gp_cache;
     51struct kmem_cache *t10_alua_lba_map_cache;
     52struct kmem_cache *t10_alua_lba_map_mem_cache;
     53
     54static void transport_complete_task_attr(struct se_cmd *cmd);
     55static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
     56static void transport_handle_queue_full(struct se_cmd *cmd,
     57		struct se_device *dev, int err, bool write_pending);
     58static void target_complete_ok_work(struct work_struct *work);
     59
     60int init_se_kmem_caches(void)
     61{
     62	se_sess_cache = kmem_cache_create("se_sess_cache",
     63			sizeof(struct se_session), __alignof__(struct se_session),
     64			0, NULL);
     65	if (!se_sess_cache) {
     66		pr_err("kmem_cache_create() for struct se_session"
     67				" failed\n");
     68		goto out;
     69	}
     70	se_ua_cache = kmem_cache_create("se_ua_cache",
     71			sizeof(struct se_ua), __alignof__(struct se_ua),
     72			0, NULL);
     73	if (!se_ua_cache) {
     74		pr_err("kmem_cache_create() for struct se_ua failed\n");
     75		goto out_free_sess_cache;
     76	}
     77	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
     78			sizeof(struct t10_pr_registration),
     79			__alignof__(struct t10_pr_registration), 0, NULL);
     80	if (!t10_pr_reg_cache) {
     81		pr_err("kmem_cache_create() for struct t10_pr_registration"
     82				" failed\n");
     83		goto out_free_ua_cache;
     84	}
     85	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
     86			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
     87			0, NULL);
     88	if (!t10_alua_lu_gp_cache) {
     89		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
     90				" failed\n");
     91		goto out_free_pr_reg_cache;
     92	}
     93	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
     94			sizeof(struct t10_alua_lu_gp_member),
     95			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
     96	if (!t10_alua_lu_gp_mem_cache) {
     97		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
     98				"cache failed\n");
     99		goto out_free_lu_gp_cache;
    100	}
    101	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
    102			sizeof(struct t10_alua_tg_pt_gp),
    103			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
    104	if (!t10_alua_tg_pt_gp_cache) {
    105		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
    106				"cache failed\n");
    107		goto out_free_lu_gp_mem_cache;
    108	}
    109	t10_alua_lba_map_cache = kmem_cache_create(
    110			"t10_alua_lba_map_cache",
    111			sizeof(struct t10_alua_lba_map),
    112			__alignof__(struct t10_alua_lba_map), 0, NULL);
    113	if (!t10_alua_lba_map_cache) {
    114		pr_err("kmem_cache_create() for t10_alua_lba_map_"
    115				"cache failed\n");
    116		goto out_free_tg_pt_gp_cache;
    117	}
    118	t10_alua_lba_map_mem_cache = kmem_cache_create(
    119			"t10_alua_lba_map_mem_cache",
    120			sizeof(struct t10_alua_lba_map_member),
    121			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
    122	if (!t10_alua_lba_map_mem_cache) {
    123		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
    124				"cache failed\n");
    125		goto out_free_lba_map_cache;
    126	}
    127
    128	target_completion_wq = alloc_workqueue("target_completion",
    129					       WQ_MEM_RECLAIM, 0);
    130	if (!target_completion_wq)
    131		goto out_free_lba_map_mem_cache;
    132
    133	target_submission_wq = alloc_workqueue("target_submission",
    134					       WQ_MEM_RECLAIM, 0);
    135	if (!target_submission_wq)
    136		goto out_free_completion_wq;
    137
    138	return 0;
    139
    140out_free_completion_wq:
    141	destroy_workqueue(target_completion_wq);
    142out_free_lba_map_mem_cache:
    143	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
    144out_free_lba_map_cache:
    145	kmem_cache_destroy(t10_alua_lba_map_cache);
    146out_free_tg_pt_gp_cache:
    147	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
    148out_free_lu_gp_mem_cache:
    149	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
    150out_free_lu_gp_cache:
    151	kmem_cache_destroy(t10_alua_lu_gp_cache);
    152out_free_pr_reg_cache:
    153	kmem_cache_destroy(t10_pr_reg_cache);
    154out_free_ua_cache:
    155	kmem_cache_destroy(se_ua_cache);
    156out_free_sess_cache:
    157	kmem_cache_destroy(se_sess_cache);
    158out:
    159	return -ENOMEM;
    160}
    161
    162void release_se_kmem_caches(void)
    163{
    164	destroy_workqueue(target_submission_wq);
    165	destroy_workqueue(target_completion_wq);
    166	kmem_cache_destroy(se_sess_cache);
    167	kmem_cache_destroy(se_ua_cache);
    168	kmem_cache_destroy(t10_pr_reg_cache);
    169	kmem_cache_destroy(t10_alua_lu_gp_cache);
    170	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
    171	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
    172	kmem_cache_destroy(t10_alua_lba_map_cache);
    173	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
    174}
    175
    176/* This code ensures unique mib indexes are handed out. */
    177static DEFINE_SPINLOCK(scsi_mib_index_lock);
    178static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
    179
    180/*
    181 * Allocate a new row index for the entry type specified
    182 */
    183u32 scsi_get_new_index(scsi_index_t type)
    184{
    185	u32 new_index;
    186
    187	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
    188
    189	spin_lock(&scsi_mib_index_lock);
    190	new_index = ++scsi_mib_index[type];
    191	spin_unlock(&scsi_mib_index_lock);
    192
    193	return new_index;
    194}
    195
    196void transport_subsystem_check_init(void)
    197{
    198	int ret;
    199	static int sub_api_initialized;
    200
    201	if (sub_api_initialized)
    202		return;
    203
    204	ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
    205	if (ret != 0)
    206		pr_err("Unable to load target_core_iblock\n");
    207
    208	ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
    209	if (ret != 0)
    210		pr_err("Unable to load target_core_file\n");
    211
    212	ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
    213	if (ret != 0)
    214		pr_err("Unable to load target_core_pscsi\n");
    215
    216	ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
    217	if (ret != 0)
    218		pr_err("Unable to load target_core_user\n");
    219
    220	sub_api_initialized = 1;
    221}
    222
    223static void target_release_sess_cmd_refcnt(struct percpu_ref *ref)
    224{
    225	struct se_session *sess = container_of(ref, typeof(*sess), cmd_count);
    226
    227	wake_up(&sess->cmd_count_wq);
    228}
    229
    230/**
    231 * transport_init_session - initialize a session object
    232 * @se_sess: Session object pointer.
    233 *
    234 * The caller must have zero-initialized @se_sess before calling this function.
    235 */
    236int transport_init_session(struct se_session *se_sess)
    237{
    238	INIT_LIST_HEAD(&se_sess->sess_list);
    239	INIT_LIST_HEAD(&se_sess->sess_acl_list);
    240	spin_lock_init(&se_sess->sess_cmd_lock);
    241	init_waitqueue_head(&se_sess->cmd_count_wq);
    242	init_completion(&se_sess->stop_done);
    243	atomic_set(&se_sess->stopped, 0);
    244	return percpu_ref_init(&se_sess->cmd_count,
    245			       target_release_sess_cmd_refcnt, 0, GFP_KERNEL);
    246}
    247EXPORT_SYMBOL(transport_init_session);
    248
    249void transport_uninit_session(struct se_session *se_sess)
    250{
    251	/*
    252	 * Drivers like iscsi and loop do not call target_stop_session
    253	 * during session shutdown so we have to drop the ref taken at init
    254	 * time here.
    255	 */
    256	if (!atomic_read(&se_sess->stopped))
    257		percpu_ref_put(&se_sess->cmd_count);
    258
    259	percpu_ref_exit(&se_sess->cmd_count);
    260}
    261
    262/**
    263 * transport_alloc_session - allocate a session object and initialize it
    264 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
    265 */
    266struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
    267{
    268	struct se_session *se_sess;
    269	int ret;
    270
    271	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
    272	if (!se_sess) {
    273		pr_err("Unable to allocate struct se_session from"
    274				" se_sess_cache\n");
    275		return ERR_PTR(-ENOMEM);
    276	}
    277	ret = transport_init_session(se_sess);
    278	if (ret < 0) {
    279		kmem_cache_free(se_sess_cache, se_sess);
    280		return ERR_PTR(ret);
    281	}
    282	se_sess->sup_prot_ops = sup_prot_ops;
    283
    284	return se_sess;
    285}
    286EXPORT_SYMBOL(transport_alloc_session);
    287
    288/**
    289 * transport_alloc_session_tags - allocate target driver private data
    290 * @se_sess:  Session pointer.
    291 * @tag_num:  Maximum number of in-flight commands between initiator and target.
    292 * @tag_size: Size in bytes of the private data a target driver associates with
    293 *	      each command.
    294 */
    295int transport_alloc_session_tags(struct se_session *se_sess,
    296			         unsigned int tag_num, unsigned int tag_size)
    297{
    298	int rc;
    299
    300	se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
    301					 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
    302	if (!se_sess->sess_cmd_map) {
    303		pr_err("Unable to allocate se_sess->sess_cmd_map\n");
    304		return -ENOMEM;
    305	}
    306
    307	rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
    308			false, GFP_KERNEL, NUMA_NO_NODE);
    309	if (rc < 0) {
    310		pr_err("Unable to init se_sess->sess_tag_pool,"
    311			" tag_num: %u\n", tag_num);
    312		kvfree(se_sess->sess_cmd_map);
    313		se_sess->sess_cmd_map = NULL;
    314		return -ENOMEM;
    315	}
    316
    317	return 0;
    318}
    319EXPORT_SYMBOL(transport_alloc_session_tags);
    320
    321/**
    322 * transport_init_session_tags - allocate a session and target driver private data
    323 * @tag_num:  Maximum number of in-flight commands between initiator and target.
    324 * @tag_size: Size in bytes of the private data a target driver associates with
    325 *	      each command.
    326 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
    327 */
    328static struct se_session *
    329transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
    330			    enum target_prot_op sup_prot_ops)
    331{
    332	struct se_session *se_sess;
    333	int rc;
    334
    335	if (tag_num != 0 && !tag_size) {
    336		pr_err("init_session_tags called with percpu-ida tag_num:"
    337		       " %u, but zero tag_size\n", tag_num);
    338		return ERR_PTR(-EINVAL);
    339	}
    340	if (!tag_num && tag_size) {
    341		pr_err("init_session_tags called with percpu-ida tag_size:"
    342		       " %u, but zero tag_num\n", tag_size);
    343		return ERR_PTR(-EINVAL);
    344	}
    345
    346	se_sess = transport_alloc_session(sup_prot_ops);
    347	if (IS_ERR(se_sess))
    348		return se_sess;
    349
    350	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
    351	if (rc < 0) {
    352		transport_free_session(se_sess);
    353		return ERR_PTR(-ENOMEM);
    354	}
    355
    356	return se_sess;
    357}
    358
    359/*
    360 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
    361 */
    362void __transport_register_session(
    363	struct se_portal_group *se_tpg,
    364	struct se_node_acl *se_nacl,
    365	struct se_session *se_sess,
    366	void *fabric_sess_ptr)
    367{
    368	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
    369	unsigned char buf[PR_REG_ISID_LEN];
    370	unsigned long flags;
    371
    372	se_sess->se_tpg = se_tpg;
    373	se_sess->fabric_sess_ptr = fabric_sess_ptr;
    374	/*
    375	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
    376	 *
    377	 * Only set for struct se_session's that will actually be moving I/O.
    378	 * eg: *NOT* discovery sessions.
    379	 */
    380	if (se_nacl) {
    381		/*
    382		 *
    383		 * Determine if fabric allows for T10-PI feature bits exposed to
    384		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
    385		 *
    386		 * If so, then always save prot_type on a per se_node_acl node
    387		 * basis and re-instate the previous sess_prot_type to avoid
    388		 * disabling PI from below any previously initiator side
    389		 * registered LUNs.
    390		 */
    391		if (se_nacl->saved_prot_type)
    392			se_sess->sess_prot_type = se_nacl->saved_prot_type;
    393		else if (tfo->tpg_check_prot_fabric_only)
    394			se_sess->sess_prot_type = se_nacl->saved_prot_type =
    395					tfo->tpg_check_prot_fabric_only(se_tpg);
    396		/*
    397		 * If the fabric module supports an ISID based TransportID,
    398		 * save this value in binary from the fabric I_T Nexus now.
    399		 */
    400		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
    401			memset(&buf[0], 0, PR_REG_ISID_LEN);
    402			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
    403					&buf[0], PR_REG_ISID_LEN);
    404			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
    405		}
    406
    407		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
    408		/*
    409		 * The se_nacl->nacl_sess pointer will be set to the
    410		 * last active I_T Nexus for each struct se_node_acl.
    411		 */
    412		se_nacl->nacl_sess = se_sess;
    413
    414		list_add_tail(&se_sess->sess_acl_list,
    415			      &se_nacl->acl_sess_list);
    416		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
    417	}
    418	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
    419
    420	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
    421		se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
    422}
    423EXPORT_SYMBOL(__transport_register_session);
    424
    425void transport_register_session(
    426	struct se_portal_group *se_tpg,
    427	struct se_node_acl *se_nacl,
    428	struct se_session *se_sess,
    429	void *fabric_sess_ptr)
    430{
    431	unsigned long flags;
    432
    433	spin_lock_irqsave(&se_tpg->session_lock, flags);
    434	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
    435	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
    436}
    437EXPORT_SYMBOL(transport_register_session);
    438
    439struct se_session *
    440target_setup_session(struct se_portal_group *tpg,
    441		     unsigned int tag_num, unsigned int tag_size,
    442		     enum target_prot_op prot_op,
    443		     const char *initiatorname, void *private,
    444		     int (*callback)(struct se_portal_group *,
    445				     struct se_session *, void *))
    446{
    447	struct se_session *sess;
    448
    449	/*
    450	 * If the fabric driver is using percpu-ida based pre allocation
    451	 * of I/O descriptor tags, go ahead and perform that setup now..
    452	 */
    453	if (tag_num != 0)
    454		sess = transport_init_session_tags(tag_num, tag_size, prot_op);
    455	else
    456		sess = transport_alloc_session(prot_op);
    457
    458	if (IS_ERR(sess))
    459		return sess;
    460
    461	sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
    462					(unsigned char *)initiatorname);
    463	if (!sess->se_node_acl) {
    464		transport_free_session(sess);
    465		return ERR_PTR(-EACCES);
    466	}
    467	/*
    468	 * Go ahead and perform any remaining fabric setup that is
    469	 * required before transport_register_session().
    470	 */
    471	if (callback != NULL) {
    472		int rc = callback(tpg, sess, private);
    473		if (rc) {
    474			transport_free_session(sess);
    475			return ERR_PTR(rc);
    476		}
    477	}
    478
    479	transport_register_session(tpg, sess->se_node_acl, sess, private);
    480	return sess;
    481}
    482EXPORT_SYMBOL(target_setup_session);
    483
    484ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
    485{
    486	struct se_session *se_sess;
    487	ssize_t len = 0;
    488
    489	spin_lock_bh(&se_tpg->session_lock);
    490	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
    491		if (!se_sess->se_node_acl)
    492			continue;
    493		if (!se_sess->se_node_acl->dynamic_node_acl)
    494			continue;
    495		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
    496			break;
    497
    498		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
    499				se_sess->se_node_acl->initiatorname);
    500		len += 1; /* Include NULL terminator */
    501	}
    502	spin_unlock_bh(&se_tpg->session_lock);
    503
    504	return len;
    505}
    506EXPORT_SYMBOL(target_show_dynamic_sessions);
    507
    508static void target_complete_nacl(struct kref *kref)
    509{
    510	struct se_node_acl *nacl = container_of(kref,
    511				struct se_node_acl, acl_kref);
    512	struct se_portal_group *se_tpg = nacl->se_tpg;
    513
    514	if (!nacl->dynamic_stop) {
    515		complete(&nacl->acl_free_comp);
    516		return;
    517	}
    518
    519	mutex_lock(&se_tpg->acl_node_mutex);
    520	list_del_init(&nacl->acl_list);
    521	mutex_unlock(&se_tpg->acl_node_mutex);
    522
    523	core_tpg_wait_for_nacl_pr_ref(nacl);
    524	core_free_device_list_for_node(nacl, se_tpg);
    525	kfree(nacl);
    526}
    527
    528void target_put_nacl(struct se_node_acl *nacl)
    529{
    530	kref_put(&nacl->acl_kref, target_complete_nacl);
    531}
    532EXPORT_SYMBOL(target_put_nacl);
    533
    534void transport_deregister_session_configfs(struct se_session *se_sess)
    535{
    536	struct se_node_acl *se_nacl;
    537	unsigned long flags;
    538	/*
    539	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
    540	 */
    541	se_nacl = se_sess->se_node_acl;
    542	if (se_nacl) {
    543		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
    544		if (!list_empty(&se_sess->sess_acl_list))
    545			list_del_init(&se_sess->sess_acl_list);
    546		/*
    547		 * If the session list is empty, then clear the pointer.
    548		 * Otherwise, set the struct se_session pointer from the tail
    549		 * element of the per struct se_node_acl active session list.
    550		 */
    551		if (list_empty(&se_nacl->acl_sess_list))
    552			se_nacl->nacl_sess = NULL;
    553		else {
    554			se_nacl->nacl_sess = container_of(
    555					se_nacl->acl_sess_list.prev,
    556					struct se_session, sess_acl_list);
    557		}
    558		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
    559	}
    560}
    561EXPORT_SYMBOL(transport_deregister_session_configfs);
    562
    563void transport_free_session(struct se_session *se_sess)
    564{
    565	struct se_node_acl *se_nacl = se_sess->se_node_acl;
    566
    567	/*
    568	 * Drop the se_node_acl->nacl_kref obtained from within
    569	 * core_tpg_get_initiator_node_acl().
    570	 */
    571	if (se_nacl) {
    572		struct se_portal_group *se_tpg = se_nacl->se_tpg;
    573		const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
    574		unsigned long flags;
    575
    576		se_sess->se_node_acl = NULL;
    577
    578		/*
    579		 * Also determine if we need to drop the extra ->cmd_kref if
    580		 * it had been previously dynamically generated, and
    581		 * the endpoint is not caching dynamic ACLs.
    582		 */
    583		mutex_lock(&se_tpg->acl_node_mutex);
    584		if (se_nacl->dynamic_node_acl &&
    585		    !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
    586			spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
    587			if (list_empty(&se_nacl->acl_sess_list))
    588				se_nacl->dynamic_stop = true;
    589			spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
    590
    591			if (se_nacl->dynamic_stop)
    592				list_del_init(&se_nacl->acl_list);
    593		}
    594		mutex_unlock(&se_tpg->acl_node_mutex);
    595
    596		if (se_nacl->dynamic_stop)
    597			target_put_nacl(se_nacl);
    598
    599		target_put_nacl(se_nacl);
    600	}
    601	if (se_sess->sess_cmd_map) {
    602		sbitmap_queue_free(&se_sess->sess_tag_pool);
    603		kvfree(se_sess->sess_cmd_map);
    604	}
    605	transport_uninit_session(se_sess);
    606	kmem_cache_free(se_sess_cache, se_sess);
    607}
    608EXPORT_SYMBOL(transport_free_session);
    609
    610static int target_release_res(struct se_device *dev, void *data)
    611{
    612	struct se_session *sess = data;
    613
    614	if (dev->reservation_holder == sess)
    615		target_release_reservation(dev);
    616	return 0;
    617}
    618
    619void transport_deregister_session(struct se_session *se_sess)
    620{
    621	struct se_portal_group *se_tpg = se_sess->se_tpg;
    622	unsigned long flags;
    623
    624	if (!se_tpg) {
    625		transport_free_session(se_sess);
    626		return;
    627	}
    628
    629	spin_lock_irqsave(&se_tpg->session_lock, flags);
    630	list_del(&se_sess->sess_list);
    631	se_sess->se_tpg = NULL;
    632	se_sess->fabric_sess_ptr = NULL;
    633	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
    634
    635	/*
    636	 * Since the session is being removed, release SPC-2
    637	 * reservations held by the session that is disappearing.
    638	 */
    639	target_for_each_device(target_release_res, se_sess);
    640
    641	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
    642		se_tpg->se_tpg_tfo->fabric_name);
    643	/*
    644	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
    645	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
    646	 * removal context from within transport_free_session() code.
    647	 *
    648	 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
    649	 * to release all remaining generate_node_acl=1 created ACL resources.
    650	 */
    651
    652	transport_free_session(se_sess);
    653}
    654EXPORT_SYMBOL(transport_deregister_session);
    655
    656void target_remove_session(struct se_session *se_sess)
    657{
    658	transport_deregister_session_configfs(se_sess);
    659	transport_deregister_session(se_sess);
    660}
    661EXPORT_SYMBOL(target_remove_session);
    662
    663static void target_remove_from_state_list(struct se_cmd *cmd)
    664{
    665	struct se_device *dev = cmd->se_dev;
    666	unsigned long flags;
    667
    668	if (!dev)
    669		return;
    670
    671	spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
    672	if (cmd->state_active) {
    673		list_del(&cmd->state_list);
    674		cmd->state_active = false;
    675	}
    676	spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
    677}
    678
    679static void target_remove_from_tmr_list(struct se_cmd *cmd)
    680{
    681	struct se_device *dev = NULL;
    682	unsigned long flags;
    683
    684	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
    685		dev = cmd->se_tmr_req->tmr_dev;
    686
    687	if (dev) {
    688		spin_lock_irqsave(&dev->se_tmr_lock, flags);
    689		if (cmd->se_tmr_req->tmr_dev)
    690			list_del_init(&cmd->se_tmr_req->tmr_list);
    691		spin_unlock_irqrestore(&dev->se_tmr_lock, flags);
    692	}
    693}
    694/*
    695 * This function is called by the target core after the target core has
    696 * finished processing a SCSI command or SCSI TMF. Both the regular command
    697 * processing code and the code for aborting commands can call this
    698 * function. CMD_T_STOP is set if and only if another thread is waiting
    699 * inside transport_wait_for_tasks() for t_transport_stop_comp.
    700 */
    701static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
    702{
    703	unsigned long flags;
    704
    705	spin_lock_irqsave(&cmd->t_state_lock, flags);
    706	/*
    707	 * Determine if frontend context caller is requesting the stopping of
    708	 * this command for frontend exceptions.
    709	 */
    710	if (cmd->transport_state & CMD_T_STOP) {
    711		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
    712			__func__, __LINE__, cmd->tag);
    713
    714		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
    715
    716		complete_all(&cmd->t_transport_stop_comp);
    717		return 1;
    718	}
    719	cmd->transport_state &= ~CMD_T_ACTIVE;
    720	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
    721
    722	/*
    723	 * Some fabric modules like tcm_loop can release their internally
    724	 * allocated I/O reference and struct se_cmd now.
    725	 *
    726	 * Fabric modules are expected to return '1' here if the se_cmd being
    727	 * passed is released at this point, or zero if not being released.
    728	 */
    729	return cmd->se_tfo->check_stop_free(cmd);
    730}
    731
    732static void transport_lun_remove_cmd(struct se_cmd *cmd)
    733{
    734	struct se_lun *lun = cmd->se_lun;
    735
    736	if (!lun)
    737		return;
    738
    739	target_remove_from_state_list(cmd);
    740	target_remove_from_tmr_list(cmd);
    741
    742	if (cmpxchg(&cmd->lun_ref_active, true, false))
    743		percpu_ref_put(&lun->lun_ref);
    744
    745	/*
    746	 * Clear struct se_cmd->se_lun before the handoff to FE.
    747	 */
    748	cmd->se_lun = NULL;
    749}
    750
    751static void target_complete_failure_work(struct work_struct *work)
    752{
    753	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
    754
    755	transport_generic_request_failure(cmd, cmd->sense_reason);
    756}
    757
    758/*
    759 * Used when asking transport to copy Sense Data from the underlying
    760 * Linux/SCSI struct scsi_cmnd
    761 */
    762static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
    763{
    764	struct se_device *dev = cmd->se_dev;
    765
    766	WARN_ON(!cmd->se_lun);
    767
    768	if (!dev)
    769		return NULL;
    770
    771	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
    772		return NULL;
    773
    774	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
    775
    776	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
    777		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
    778	return cmd->sense_buffer;
    779}
    780
    781void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
    782{
    783	unsigned char *cmd_sense_buf;
    784	unsigned long flags;
    785
    786	spin_lock_irqsave(&cmd->t_state_lock, flags);
    787	cmd_sense_buf = transport_get_sense_buffer(cmd);
    788	if (!cmd_sense_buf) {
    789		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
    790		return;
    791	}
    792
    793	cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
    794	memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
    795	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
    796}
    797EXPORT_SYMBOL(transport_copy_sense_to_cmd);
    798
    799static void target_handle_abort(struct se_cmd *cmd)
    800{
    801	bool tas = cmd->transport_state & CMD_T_TAS;
    802	bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
    803	int ret;
    804
    805	pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);
    806
    807	if (tas) {
    808		if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
    809			cmd->scsi_status = SAM_STAT_TASK_ABORTED;
    810			pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
    811				 cmd->t_task_cdb[0], cmd->tag);
    812			trace_target_cmd_complete(cmd);
    813			ret = cmd->se_tfo->queue_status(cmd);
    814			if (ret) {
    815				transport_handle_queue_full(cmd, cmd->se_dev,
    816							    ret, false);
    817				return;
    818			}
    819		} else {
    820			cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
    821			cmd->se_tfo->queue_tm_rsp(cmd);
    822		}
    823	} else {
    824		/*
    825		 * Allow the fabric driver to unmap any resources before
    826		 * releasing the descriptor via TFO->release_cmd().
    827		 */
    828		cmd->se_tfo->aborted_task(cmd);
    829		if (ack_kref)
    830			WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
    831		/*
    832		 * To do: establish a unit attention condition on the I_T
    833		 * nexus associated with cmd. See also the paragraph "Aborting
    834		 * commands" in SAM.
    835		 */
    836	}
    837
    838	WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);
    839
    840	transport_lun_remove_cmd(cmd);
    841
    842	transport_cmd_check_stop_to_fabric(cmd);
    843}
    844
    845static void target_abort_work(struct work_struct *work)
    846{
    847	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
    848
    849	target_handle_abort(cmd);
    850}
    851
    852static bool target_cmd_interrupted(struct se_cmd *cmd)
    853{
    854	int post_ret;
    855
    856	if (cmd->transport_state & CMD_T_ABORTED) {
    857		if (cmd->transport_complete_callback)
    858			cmd->transport_complete_callback(cmd, false, &post_ret);
    859		INIT_WORK(&cmd->work, target_abort_work);
    860		queue_work(target_completion_wq, &cmd->work);
    861		return true;
    862	} else if (cmd->transport_state & CMD_T_STOP) {
    863		if (cmd->transport_complete_callback)
    864			cmd->transport_complete_callback(cmd, false, &post_ret);
    865		complete_all(&cmd->t_transport_stop_comp);
    866		return true;
    867	}
    868
    869	return false;
    870}
    871
    872/* May be called from interrupt context so must not sleep. */
    873void target_complete_cmd_with_sense(struct se_cmd *cmd, u8 scsi_status,
    874				    sense_reason_t sense_reason)
    875{
    876	struct se_wwn *wwn = cmd->se_sess->se_tpg->se_tpg_wwn;
    877	int success, cpu;
    878	unsigned long flags;
    879
    880	if (target_cmd_interrupted(cmd))
    881		return;
    882
    883	cmd->scsi_status = scsi_status;
    884	cmd->sense_reason = sense_reason;
    885
    886	spin_lock_irqsave(&cmd->t_state_lock, flags);
    887	switch (cmd->scsi_status) {
    888	case SAM_STAT_CHECK_CONDITION:
    889		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
    890			success = 1;
    891		else
    892			success = 0;
    893		break;
    894	default:
    895		success = 1;
    896		break;
    897	}
    898
    899	cmd->t_state = TRANSPORT_COMPLETE;
    900	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
    901	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
    902
    903	INIT_WORK(&cmd->work, success ? target_complete_ok_work :
    904		  target_complete_failure_work);
    905
    906	if (!wwn || wwn->cmd_compl_affinity == SE_COMPL_AFFINITY_CPUID)
    907		cpu = cmd->cpuid;
    908	else
    909		cpu = wwn->cmd_compl_affinity;
    910
    911	queue_work_on(cpu, target_completion_wq, &cmd->work);
    912}
    913EXPORT_SYMBOL(target_complete_cmd_with_sense);
    914
    915void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
    916{
    917	target_complete_cmd_with_sense(cmd, scsi_status, scsi_status ?
    918			      TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE :
    919			      TCM_NO_SENSE);
    920}
    921EXPORT_SYMBOL(target_complete_cmd);
    922
    923void target_set_cmd_data_length(struct se_cmd *cmd, int length)
    924{
    925	if (length < cmd->data_length) {
    926		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
    927			cmd->residual_count += cmd->data_length - length;
    928		} else {
    929			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
    930			cmd->residual_count = cmd->data_length - length;
    931		}
    932
    933		cmd->data_length = length;
    934	}
    935}
    936EXPORT_SYMBOL(target_set_cmd_data_length);
    937
    938void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
    939{
    940	if (scsi_status == SAM_STAT_GOOD ||
    941	    cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) {
    942		target_set_cmd_data_length(cmd, length);
    943	}
    944
    945	target_complete_cmd(cmd, scsi_status);
    946}
    947EXPORT_SYMBOL(target_complete_cmd_with_length);
    948
    949static void target_add_to_state_list(struct se_cmd *cmd)
    950{
    951	struct se_device *dev = cmd->se_dev;
    952	unsigned long flags;
    953
    954	spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
    955	if (!cmd->state_active) {
    956		list_add_tail(&cmd->state_list,
    957			      &dev->queues[cmd->cpuid].state_list);
    958		cmd->state_active = true;
    959	}
    960	spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
    961}
    962
    963/*
    964 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
    965 */
    966static void transport_write_pending_qf(struct se_cmd *cmd);
    967static void transport_complete_qf(struct se_cmd *cmd);
    968
    969void target_qf_do_work(struct work_struct *work)
    970{
    971	struct se_device *dev = container_of(work, struct se_device,
    972					qf_work_queue);
    973	LIST_HEAD(qf_cmd_list);
    974	struct se_cmd *cmd, *cmd_tmp;
    975
    976	spin_lock_irq(&dev->qf_cmd_lock);
    977	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
    978	spin_unlock_irq(&dev->qf_cmd_lock);
    979
    980	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
    981		list_del(&cmd->se_qf_node);
    982		atomic_dec_mb(&dev->dev_qf_count);
    983
    984		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
    985			" context: %s\n", cmd->se_tfo->fabric_name, cmd,
    986			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
    987			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
    988			: "UNKNOWN");
    989
    990		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
    991			transport_write_pending_qf(cmd);
    992		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
    993			 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
    994			transport_complete_qf(cmd);
    995	}
    996}
    997
    998unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
    999{
   1000	switch (cmd->data_direction) {
   1001	case DMA_NONE:
   1002		return "NONE";
   1003	case DMA_FROM_DEVICE:
   1004		return "READ";
   1005	case DMA_TO_DEVICE:
   1006		return "WRITE";
   1007	case DMA_BIDIRECTIONAL:
   1008		return "BIDI";
   1009	default:
   1010		break;
   1011	}
   1012
   1013	return "UNKNOWN";
   1014}
   1015
   1016void transport_dump_dev_state(
   1017	struct se_device *dev,
   1018	char *b,
   1019	int *bl)
   1020{
   1021	*bl += sprintf(b + *bl, "Status: ");
   1022	if (dev->export_count)
   1023		*bl += sprintf(b + *bl, "ACTIVATED");
   1024	else
   1025		*bl += sprintf(b + *bl, "DEACTIVATED");
   1026
   1027	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
   1028	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
   1029		dev->dev_attrib.block_size,
   1030		dev->dev_attrib.hw_max_sectors);
   1031	*bl += sprintf(b + *bl, "        ");
   1032}
   1033
   1034void transport_dump_vpd_proto_id(
   1035	struct t10_vpd *vpd,
   1036	unsigned char *p_buf,
   1037	int p_buf_len)
   1038{
   1039	unsigned char buf[VPD_TMP_BUF_SIZE];
   1040	int len;
   1041
   1042	memset(buf, 0, VPD_TMP_BUF_SIZE);
   1043	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
   1044
   1045	switch (vpd->protocol_identifier) {
   1046	case 0x00:
   1047		sprintf(buf+len, "Fibre Channel\n");
   1048		break;
   1049	case 0x10:
   1050		sprintf(buf+len, "Parallel SCSI\n");
   1051		break;
   1052	case 0x20:
   1053		sprintf(buf+len, "SSA\n");
   1054		break;
   1055	case 0x30:
   1056		sprintf(buf+len, "IEEE 1394\n");
   1057		break;
   1058	case 0x40:
   1059		sprintf(buf+len, "SCSI Remote Direct Memory Access"
   1060				" Protocol\n");
   1061		break;
   1062	case 0x50:
   1063		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
   1064		break;
   1065	case 0x60:
   1066		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
   1067		break;
   1068	case 0x70:
   1069		sprintf(buf+len, "Automation/Drive Interface Transport"
   1070				" Protocol\n");
   1071		break;
   1072	case 0x80:
   1073		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
   1074		break;
   1075	default:
   1076		sprintf(buf+len, "Unknown 0x%02x\n",
   1077				vpd->protocol_identifier);
   1078		break;
   1079	}
   1080
   1081	if (p_buf)
   1082		strncpy(p_buf, buf, p_buf_len);
   1083	else
   1084		pr_debug("%s", buf);
   1085}
   1086
   1087void
   1088transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
   1089{
   1090	/*
   1091	 * Check if the Protocol Identifier Valid (PIV) bit is set..
   1092	 *
   1093	 * from spc3r23.pdf section 7.5.1
   1094	 */
   1095	 if (page_83[1] & 0x80) {
   1096		vpd->protocol_identifier = (page_83[0] & 0xf0);
   1097		vpd->protocol_identifier_set = 1;
   1098		transport_dump_vpd_proto_id(vpd, NULL, 0);
   1099	}
   1100}
   1101EXPORT_SYMBOL(transport_set_vpd_proto_id);
   1102
   1103int transport_dump_vpd_assoc(
   1104	struct t10_vpd *vpd,
   1105	unsigned char *p_buf,
   1106	int p_buf_len)
   1107{
   1108	unsigned char buf[VPD_TMP_BUF_SIZE];
   1109	int ret = 0;
   1110	int len;
   1111
   1112	memset(buf, 0, VPD_TMP_BUF_SIZE);
   1113	len = sprintf(buf, "T10 VPD Identifier Association: ");
   1114
   1115	switch (vpd->association) {
   1116	case 0x00:
   1117		sprintf(buf+len, "addressed logical unit\n");
   1118		break;
   1119	case 0x10:
   1120		sprintf(buf+len, "target port\n");
   1121		break;
   1122	case 0x20:
   1123		sprintf(buf+len, "SCSI target device\n");
   1124		break;
   1125	default:
   1126		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
   1127		ret = -EINVAL;
   1128		break;
   1129	}
   1130
   1131	if (p_buf)
   1132		strncpy(p_buf, buf, p_buf_len);
   1133	else
   1134		pr_debug("%s", buf);
   1135
   1136	return ret;
   1137}
   1138
   1139int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
   1140{
   1141	/*
   1142	 * The VPD identification association..
   1143	 *
   1144	 * from spc3r23.pdf Section 7.6.3.1 Table 297
   1145	 */
   1146	vpd->association = (page_83[1] & 0x30);
   1147	return transport_dump_vpd_assoc(vpd, NULL, 0);
   1148}
   1149EXPORT_SYMBOL(transport_set_vpd_assoc);
   1150
   1151int transport_dump_vpd_ident_type(
   1152	struct t10_vpd *vpd,
   1153	unsigned char *p_buf,
   1154	int p_buf_len)
   1155{
   1156	unsigned char buf[VPD_TMP_BUF_SIZE];
   1157	int ret = 0;
   1158	int len;
   1159
   1160	memset(buf, 0, VPD_TMP_BUF_SIZE);
   1161	len = sprintf(buf, "T10 VPD Identifier Type: ");
   1162
   1163	switch (vpd->device_identifier_type) {
   1164	case 0x00:
   1165		sprintf(buf+len, "Vendor specific\n");
   1166		break;
   1167	case 0x01:
   1168		sprintf(buf+len, "T10 Vendor ID based\n");
   1169		break;
   1170	case 0x02:
   1171		sprintf(buf+len, "EUI-64 based\n");
   1172		break;
   1173	case 0x03:
   1174		sprintf(buf+len, "NAA\n");
   1175		break;
   1176	case 0x04:
   1177		sprintf(buf+len, "Relative target port identifier\n");
   1178		break;
   1179	case 0x08:
   1180		sprintf(buf+len, "SCSI name string\n");
   1181		break;
   1182	default:
   1183		sprintf(buf+len, "Unsupported: 0x%02x\n",
   1184				vpd->device_identifier_type);
   1185		ret = -EINVAL;
   1186		break;
   1187	}
   1188
   1189	if (p_buf) {
   1190		if (p_buf_len < strlen(buf)+1)
   1191			return -EINVAL;
   1192		strncpy(p_buf, buf, p_buf_len);
   1193	} else {
   1194		pr_debug("%s", buf);
   1195	}
   1196
   1197	return ret;
   1198}
   1199
   1200int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
   1201{
   1202	/*
   1203	 * The VPD identifier type..
   1204	 *
   1205	 * from spc3r23.pdf Section 7.6.3.1 Table 298
   1206	 */
   1207	vpd->device_identifier_type = (page_83[1] & 0x0f);
   1208	return transport_dump_vpd_ident_type(vpd, NULL, 0);
   1209}
   1210EXPORT_SYMBOL(transport_set_vpd_ident_type);
   1211
   1212int transport_dump_vpd_ident(
   1213	struct t10_vpd *vpd,
   1214	unsigned char *p_buf,
   1215	int p_buf_len)
   1216{
   1217	unsigned char buf[VPD_TMP_BUF_SIZE];
   1218	int ret = 0;
   1219
   1220	memset(buf, 0, VPD_TMP_BUF_SIZE);
   1221
   1222	switch (vpd->device_identifier_code_set) {
   1223	case 0x01: /* Binary */
   1224		snprintf(buf, sizeof(buf),
   1225			"T10 VPD Binary Device Identifier: %s\n",
   1226			&vpd->device_identifier[0]);
   1227		break;
   1228	case 0x02: /* ASCII */
   1229		snprintf(buf, sizeof(buf),
   1230			"T10 VPD ASCII Device Identifier: %s\n",
   1231			&vpd->device_identifier[0]);
   1232		break;
   1233	case 0x03: /* UTF-8 */
   1234		snprintf(buf, sizeof(buf),
   1235			"T10 VPD UTF-8 Device Identifier: %s\n",
   1236			&vpd->device_identifier[0]);
   1237		break;
   1238	default:
   1239		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
   1240			" 0x%02x", vpd->device_identifier_code_set);
   1241		ret = -EINVAL;
   1242		break;
   1243	}
   1244
   1245	if (p_buf)
   1246		strncpy(p_buf, buf, p_buf_len);
   1247	else
   1248		pr_debug("%s", buf);
   1249
   1250	return ret;
   1251}
   1252
   1253int
   1254transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
   1255{
   1256	static const char hex_str[] = "0123456789abcdef";
   1257	int j = 0, i = 4; /* offset to start of the identifier */
   1258
   1259	/*
   1260	 * The VPD Code Set (encoding)
   1261	 *
   1262	 * from spc3r23.pdf Section 7.6.3.1 Table 296
   1263	 */
   1264	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
   1265	switch (vpd->device_identifier_code_set) {
   1266	case 0x01: /* Binary */
   1267		vpd->device_identifier[j++] =
   1268				hex_str[vpd->device_identifier_type];
   1269		while (i < (4 + page_83[3])) {
   1270			vpd->device_identifier[j++] =
   1271				hex_str[(page_83[i] & 0xf0) >> 4];
   1272			vpd->device_identifier[j++] =
   1273				hex_str[page_83[i] & 0x0f];
   1274			i++;
   1275		}
   1276		break;
   1277	case 0x02: /* ASCII */
   1278	case 0x03: /* UTF-8 */
   1279		while (i < (4 + page_83[3]))
   1280			vpd->device_identifier[j++] = page_83[i++];
   1281		break;
   1282	default:
   1283		break;
   1284	}
   1285
   1286	return transport_dump_vpd_ident(vpd, NULL, 0);
   1287}
   1288EXPORT_SYMBOL(transport_set_vpd_ident);
   1289
   1290static sense_reason_t
   1291target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
   1292			       unsigned int size)
   1293{
   1294	u32 mtl;
   1295
   1296	if (!cmd->se_tfo->max_data_sg_nents)
   1297		return TCM_NO_SENSE;
   1298	/*
   1299	 * Check if fabric enforced maximum SGL entries per I/O descriptor
   1300	 * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
   1301	 * residual_count and reduce original cmd->data_length to maximum
   1302	 * length based on single PAGE_SIZE entry scatter-lists.
   1303	 */
   1304	mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
   1305	if (cmd->data_length > mtl) {
   1306		/*
   1307		 * If an existing CDB overflow is present, calculate new residual
   1308		 * based on CDB size minus fabric maximum transfer length.
   1309		 *
   1310		 * If an existing CDB underflow is present, calculate new residual
   1311		 * based on original cmd->data_length minus fabric maximum transfer
   1312		 * length.
   1313		 *
   1314		 * Otherwise, set the underflow residual based on cmd->data_length
   1315		 * minus fabric maximum transfer length.
   1316		 */
   1317		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
   1318			cmd->residual_count = (size - mtl);
   1319		} else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
   1320			u32 orig_dl = size + cmd->residual_count;
   1321			cmd->residual_count = (orig_dl - mtl);
   1322		} else {
   1323			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
   1324			cmd->residual_count = (cmd->data_length - mtl);
   1325		}
   1326		cmd->data_length = mtl;
   1327		/*
   1328		 * Reset sbc_check_prot() calculated protection payload
   1329		 * length based upon the new smaller MTL.
   1330		 */
   1331		if (cmd->prot_length) {
   1332			u32 sectors = (mtl / dev->dev_attrib.block_size);
   1333			cmd->prot_length = dev->prot_length * sectors;
   1334		}
   1335	}
   1336	return TCM_NO_SENSE;
   1337}
   1338
   1339/**
   1340 * target_cmd_size_check - Check whether there will be a residual.
   1341 * @cmd: SCSI command.
   1342 * @size: Data buffer size derived from CDB. The data buffer size provided by
   1343 *   the SCSI transport driver is available in @cmd->data_length.
   1344 *
   1345 * Compare the data buffer size from the CDB with the data buffer limit from the transport
   1346 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
   1347 *
   1348 * Note: target drivers set @cmd->data_length by calling __target_init_cmd().
   1349 *
   1350 * Return: TCM_NO_SENSE
   1351 */
   1352sense_reason_t
   1353target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
   1354{
   1355	struct se_device *dev = cmd->se_dev;
   1356
   1357	if (cmd->unknown_data_length) {
   1358		cmd->data_length = size;
   1359	} else if (size != cmd->data_length) {
   1360		pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
   1361			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
   1362			" 0x%02x\n", cmd->se_tfo->fabric_name,
   1363				cmd->data_length, size, cmd->t_task_cdb[0]);
   1364		/*
   1365		 * For READ command for the overflow case keep the existing
   1366		 * fabric provided ->data_length. Otherwise for the underflow
   1367		 * case, reset ->data_length to the smaller SCSI expected data
   1368		 * transfer length.
   1369		 */
   1370		if (size > cmd->data_length) {
   1371			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
   1372			cmd->residual_count = (size - cmd->data_length);
   1373		} else {
   1374			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
   1375			cmd->residual_count = (cmd->data_length - size);
   1376			/*
   1377			 * Do not truncate ->data_length for WRITE command to
   1378			 * dump all payload
   1379			 */
   1380			if (cmd->data_direction == DMA_FROM_DEVICE) {
   1381				cmd->data_length = size;
   1382			}
   1383		}
   1384
   1385		if (cmd->data_direction == DMA_TO_DEVICE) {
   1386			if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
   1387				pr_err_ratelimited("Rejecting underflow/overflow"
   1388						   " for WRITE data CDB\n");
   1389				return TCM_INVALID_FIELD_IN_COMMAND_IU;
   1390			}
   1391			/*
   1392			 * Some fabric drivers like iscsi-target still expect to
   1393			 * always reject overflow writes.  Reject this case until
   1394			 * full fabric driver level support for overflow writes
   1395			 * is introduced tree-wide.
   1396			 */
   1397			if (size > cmd->data_length) {
   1398				pr_err_ratelimited("Rejecting overflow for"
   1399						   " WRITE control CDB\n");
   1400				return TCM_INVALID_CDB_FIELD;
   1401			}
   1402		}
   1403	}
   1404
   1405	return target_check_max_data_sg_nents(cmd, dev, size);
   1406
   1407}
   1408
   1409/*
   1410 * Used by fabric modules containing a local struct se_cmd within their
   1411 * fabric dependent per I/O descriptor.
   1412 *
   1413 * Preserves the value of @cmd->tag.
   1414 */
   1415void __target_init_cmd(
   1416	struct se_cmd *cmd,
   1417	const struct target_core_fabric_ops *tfo,
   1418	struct se_session *se_sess,
   1419	u32 data_length,
   1420	int data_direction,
   1421	int task_attr,
   1422	unsigned char *sense_buffer, u64 unpacked_lun)
   1423{
   1424	INIT_LIST_HEAD(&cmd->se_delayed_node);
   1425	INIT_LIST_HEAD(&cmd->se_qf_node);
   1426	INIT_LIST_HEAD(&cmd->state_list);
   1427	init_completion(&cmd->t_transport_stop_comp);
   1428	cmd->free_compl = NULL;
   1429	cmd->abrt_compl = NULL;
   1430	spin_lock_init(&cmd->t_state_lock);
   1431	INIT_WORK(&cmd->work, NULL);
   1432	kref_init(&cmd->cmd_kref);
   1433
   1434	cmd->t_task_cdb = &cmd->__t_task_cdb[0];
   1435	cmd->se_tfo = tfo;
   1436	cmd->se_sess = se_sess;
   1437	cmd->data_length = data_length;
   1438	cmd->data_direction = data_direction;
   1439	cmd->sam_task_attr = task_attr;
   1440	cmd->sense_buffer = sense_buffer;
   1441	cmd->orig_fe_lun = unpacked_lun;
   1442
   1443	if (!(cmd->se_cmd_flags & SCF_USE_CPUID))
   1444		cmd->cpuid = raw_smp_processor_id();
   1445
   1446	cmd->state_active = false;
   1447}
   1448EXPORT_SYMBOL(__target_init_cmd);
   1449
   1450static sense_reason_t
   1451transport_check_alloc_task_attr(struct se_cmd *cmd)
   1452{
   1453	struct se_device *dev = cmd->se_dev;
   1454
   1455	/*
   1456	 * Check if SAM Task Attribute emulation is enabled for this
   1457	 * struct se_device storage object
   1458	 */
   1459	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
   1460		return 0;
   1461
   1462	if (cmd->sam_task_attr == TCM_ACA_TAG) {
   1463		pr_debug("SAM Task Attribute ACA"
   1464			" emulation is not supported\n");
   1465		return TCM_INVALID_CDB_FIELD;
   1466	}
   1467
   1468	return 0;
   1469}
   1470
   1471sense_reason_t
   1472target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb, gfp_t gfp)
   1473{
   1474	sense_reason_t ret;
   1475
   1476	/*
   1477	 * Ensure that the received CDB is less than the max (252 + 8) bytes
   1478	 * for VARIABLE_LENGTH_CMD
   1479	 */
   1480	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
   1481		pr_err("Received SCSI CDB with command_size: %d that"
   1482			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
   1483			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
   1484		ret = TCM_INVALID_CDB_FIELD;
   1485		goto err;
   1486	}
   1487	/*
   1488	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
   1489	 * allocate the additional extended CDB buffer now..  Otherwise
   1490	 * setup the pointer from __t_task_cdb to t_task_cdb.
   1491	 */
   1492	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
   1493		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), gfp);
   1494		if (!cmd->t_task_cdb) {
   1495			pr_err("Unable to allocate cmd->t_task_cdb"
   1496				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
   1497				scsi_command_size(cdb),
   1498				(unsigned long)sizeof(cmd->__t_task_cdb));
   1499			ret = TCM_OUT_OF_RESOURCES;
   1500			goto err;
   1501		}
   1502	}
   1503	/*
   1504	 * Copy the original CDB into cmd->
   1505	 */
   1506	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
   1507
   1508	trace_target_sequencer_start(cmd);
   1509	return 0;
   1510
   1511err:
   1512	/*
   1513	 * Copy the CDB here to allow trace_target_cmd_complete() to
   1514	 * print the cdb to the trace buffers.
   1515	 */
   1516	memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb),
   1517					 (unsigned int)TCM_MAX_COMMAND_SIZE));
   1518	return ret;
   1519}
   1520EXPORT_SYMBOL(target_cmd_init_cdb);
   1521
   1522sense_reason_t
   1523target_cmd_parse_cdb(struct se_cmd *cmd)
   1524{
   1525	struct se_device *dev = cmd->se_dev;
   1526	sense_reason_t ret;
   1527
   1528	ret = dev->transport->parse_cdb(cmd);
   1529	if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
   1530		pr_debug_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
   1531				     cmd->se_tfo->fabric_name,
   1532				     cmd->se_sess->se_node_acl->initiatorname,
   1533				     cmd->t_task_cdb[0]);
   1534	if (ret)
   1535		return ret;
   1536
   1537	ret = transport_check_alloc_task_attr(cmd);
   1538	if (ret)
   1539		return ret;
   1540
   1541	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
   1542	atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
   1543	return 0;
   1544}
   1545EXPORT_SYMBOL(target_cmd_parse_cdb);
   1546
   1547/*
   1548 * Used by fabric module frontends to queue tasks directly.
   1549 * May only be used from process context.
   1550 */
   1551int transport_handle_cdb_direct(
   1552	struct se_cmd *cmd)
   1553{
   1554	sense_reason_t ret;
   1555
   1556	might_sleep();
   1557
   1558	if (!cmd->se_lun) {
   1559		dump_stack();
   1560		pr_err("cmd->se_lun is NULL\n");
   1561		return -EINVAL;
   1562	}
   1563
   1564	/*
   1565	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
   1566	 * outstanding descriptors are handled correctly during shutdown via
   1567	 * transport_wait_for_tasks()
   1568	 *
   1569	 * Also, we don't take cmd->t_state_lock here as we only expect
   1570	 * this to be called for initial descriptor submission.
   1571	 */
   1572	cmd->t_state = TRANSPORT_NEW_CMD;
   1573	cmd->transport_state |= CMD_T_ACTIVE;
   1574
   1575	/*
   1576	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
   1577	 * so follow TRANSPORT_NEW_CMD processing thread context usage
   1578	 * and call transport_generic_request_failure() if necessary..
   1579	 */
   1580	ret = transport_generic_new_cmd(cmd);
   1581	if (ret)
   1582		transport_generic_request_failure(cmd, ret);
   1583	return 0;
   1584}
   1585EXPORT_SYMBOL(transport_handle_cdb_direct);
   1586
   1587sense_reason_t
   1588transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
   1589		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
   1590{
   1591	if (!sgl || !sgl_count)
   1592		return 0;
   1593
   1594	/*
   1595	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
   1596	 * scatterlists already have been set to follow what the fabric
   1597	 * passes for the original expected data transfer length.
   1598	 */
   1599	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
   1600		pr_warn("Rejecting SCSI DATA overflow for fabric using"
   1601			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
   1602		return TCM_INVALID_CDB_FIELD;
   1603	}
   1604
   1605	cmd->t_data_sg = sgl;
   1606	cmd->t_data_nents = sgl_count;
   1607	cmd->t_bidi_data_sg = sgl_bidi;
   1608	cmd->t_bidi_data_nents = sgl_bidi_count;
   1609
   1610	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
   1611	return 0;
   1612}
   1613
   1614/**
   1615 * target_init_cmd - initialize se_cmd
   1616 * @se_cmd: command descriptor to init
   1617 * @se_sess: associated se_sess for endpoint
   1618 * @sense: pointer to SCSI sense buffer
   1619 * @unpacked_lun: unpacked LUN to reference for struct se_lun
   1620 * @data_length: fabric expected data transfer length
   1621 * @task_attr: SAM task attribute
   1622 * @data_dir: DMA data direction
   1623 * @flags: flags for command submission from target_sc_flags_tables
   1624 *
   1625 * Task tags are supported if the caller has set @se_cmd->tag.
   1626 *
   1627 * Returns:
   1628 *	- less than zero to signal active I/O shutdown failure.
   1629 *	- zero on success.
   1630 *
   1631 * If the fabric driver calls target_stop_session, then it must check the
   1632 * return code and handle failures. This will never fail for other drivers,
   1633 * and the return code can be ignored.
   1634 */
   1635int target_init_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
   1636		    unsigned char *sense, u64 unpacked_lun,
   1637		    u32 data_length, int task_attr, int data_dir, int flags)
   1638{
   1639	struct se_portal_group *se_tpg;
   1640
   1641	se_tpg = se_sess->se_tpg;
   1642	BUG_ON(!se_tpg);
   1643	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
   1644
   1645	if (flags & TARGET_SCF_USE_CPUID)
   1646		se_cmd->se_cmd_flags |= SCF_USE_CPUID;
   1647	/*
   1648	 * Signal bidirectional data payloads to target-core
   1649	 */
   1650	if (flags & TARGET_SCF_BIDI_OP)
   1651		se_cmd->se_cmd_flags |= SCF_BIDI;
   1652
   1653	if (flags & TARGET_SCF_UNKNOWN_SIZE)
   1654		se_cmd->unknown_data_length = 1;
   1655	/*
   1656	 * Initialize se_cmd for target operation.  From this point
   1657	 * exceptions are handled by sending exception status via
   1658	 * target_core_fabric_ops->queue_status() callback
   1659	 */
   1660	__target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, data_length,
   1661			  data_dir, task_attr, sense, unpacked_lun);
   1662
   1663	/*
   1664	 * Obtain struct se_cmd->cmd_kref reference. A second kref_get here is
   1665	 * necessary for fabrics using TARGET_SCF_ACK_KREF that expect a second
   1666	 * kref_put() to happen during fabric packet acknowledgement.
   1667	 */
   1668	return target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
   1669}
   1670EXPORT_SYMBOL_GPL(target_init_cmd);
   1671
   1672/**
   1673 * target_submit_prep - prepare cmd for submission
   1674 * @se_cmd: command descriptor to prep
   1675 * @cdb: pointer to SCSI CDB
   1676 * @sgl: struct scatterlist memory for unidirectional mapping
   1677 * @sgl_count: scatterlist count for unidirectional mapping
   1678 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
   1679 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
   1680 * @sgl_prot: struct scatterlist memory protection information
   1681 * @sgl_prot_count: scatterlist count for protection information
   1682 * @gfp: gfp allocation type
   1683 *
   1684 * Returns:
   1685 *	- less than zero to signal failure.
   1686 *	- zero on success.
   1687 *
   1688 * If failure is returned, lio will the callers queue_status to complete
   1689 * the cmd.
   1690 */
   1691int target_submit_prep(struct se_cmd *se_cmd, unsigned char *cdb,
   1692		       struct scatterlist *sgl, u32 sgl_count,
   1693		       struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
   1694		       struct scatterlist *sgl_prot, u32 sgl_prot_count,
   1695		       gfp_t gfp)
   1696{
   1697	sense_reason_t rc;
   1698
   1699	rc = target_cmd_init_cdb(se_cmd, cdb, gfp);
   1700	if (rc)
   1701		goto send_cc_direct;
   1702
   1703	/*
   1704	 * Locate se_lun pointer and attach it to struct se_cmd
   1705	 */
   1706	rc = transport_lookup_cmd_lun(se_cmd);
   1707	if (rc)
   1708		goto send_cc_direct;
   1709
   1710	rc = target_cmd_parse_cdb(se_cmd);
   1711	if (rc != 0)
   1712		goto generic_fail;
   1713
   1714	/*
   1715	 * Save pointers for SGLs containing protection information,
   1716	 * if present.
   1717	 */
   1718	if (sgl_prot_count) {
   1719		se_cmd->t_prot_sg = sgl_prot;
   1720		se_cmd->t_prot_nents = sgl_prot_count;
   1721		se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
   1722	}
   1723
   1724	/*
   1725	 * When a non zero sgl_count has been passed perform SGL passthrough
   1726	 * mapping for pre-allocated fabric memory instead of having target
   1727	 * core perform an internal SGL allocation..
   1728	 */
   1729	if (sgl_count != 0) {
   1730		BUG_ON(!sgl);
   1731
   1732		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
   1733				sgl_bidi, sgl_bidi_count);
   1734		if (rc != 0)
   1735			goto generic_fail;
   1736	}
   1737
   1738	return 0;
   1739
   1740send_cc_direct:
   1741	transport_send_check_condition_and_sense(se_cmd, rc, 0);
   1742	target_put_sess_cmd(se_cmd);
   1743	return -EIO;
   1744
   1745generic_fail:
   1746	transport_generic_request_failure(se_cmd, rc);
   1747	return -EIO;
   1748}
   1749EXPORT_SYMBOL_GPL(target_submit_prep);
   1750
   1751/**
   1752 * target_submit - perform final initialization and submit cmd to LIO core
   1753 * @se_cmd: command descriptor to submit
   1754 *
   1755 * target_submit_prep must have been called on the cmd, and this must be
   1756 * called from process context.
   1757 */
   1758void target_submit(struct se_cmd *se_cmd)
   1759{
   1760	struct scatterlist *sgl = se_cmd->t_data_sg;
   1761	unsigned char *buf = NULL;
   1762
   1763	might_sleep();
   1764
   1765	if (se_cmd->t_data_nents != 0) {
   1766		BUG_ON(!sgl);
   1767		/*
   1768		 * A work-around for tcm_loop as some userspace code via
   1769		 * scsi-generic do not memset their associated read buffers,
   1770		 * so go ahead and do that here for type non-data CDBs.  Also
   1771		 * note that this is currently guaranteed to be a single SGL
   1772		 * for this case by target core in target_setup_cmd_from_cdb()
   1773		 * -> transport_generic_cmd_sequencer().
   1774		 */
   1775		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
   1776		     se_cmd->data_direction == DMA_FROM_DEVICE) {
   1777			if (sgl)
   1778				buf = kmap(sg_page(sgl)) + sgl->offset;
   1779
   1780			if (buf) {
   1781				memset(buf, 0, sgl->length);
   1782				kunmap(sg_page(sgl));
   1783			}
   1784		}
   1785
   1786	}
   1787
   1788	/*
   1789	 * Check if we need to delay processing because of ALUA
   1790	 * Active/NonOptimized primary access state..
   1791	 */
   1792	core_alua_check_nonop_delay(se_cmd);
   1793
   1794	transport_handle_cdb_direct(se_cmd);
   1795}
   1796EXPORT_SYMBOL_GPL(target_submit);
   1797
   1798/**
   1799 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
   1800 *
   1801 * @se_cmd: command descriptor to submit
   1802 * @se_sess: associated se_sess for endpoint
   1803 * @cdb: pointer to SCSI CDB
   1804 * @sense: pointer to SCSI sense buffer
   1805 * @unpacked_lun: unpacked LUN to reference for struct se_lun
   1806 * @data_length: fabric expected data transfer length
   1807 * @task_attr: SAM task attribute
   1808 * @data_dir: DMA data direction
   1809 * @flags: flags for command submission from target_sc_flags_tables
   1810 *
   1811 * Task tags are supported if the caller has set @se_cmd->tag.
   1812 *
   1813 * This may only be called from process context, and also currently
   1814 * assumes internal allocation of fabric payload buffer by target-core.
   1815 *
   1816 * It also assumes interal target core SGL memory allocation.
   1817 *
   1818 * This function must only be used by drivers that do their own
   1819 * sync during shutdown and does not use target_stop_session. If there
   1820 * is a failure this function will call into the fabric driver's
   1821 * queue_status with a CHECK_CONDITION.
   1822 */
   1823void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
   1824		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
   1825		u32 data_length, int task_attr, int data_dir, int flags)
   1826{
   1827	int rc;
   1828
   1829	rc = target_init_cmd(se_cmd, se_sess, sense, unpacked_lun, data_length,
   1830			     task_attr, data_dir, flags);
   1831	WARN(rc, "Invalid target_submit_cmd use. Driver must not use target_stop_session or call target_init_cmd directly.\n");
   1832	if (rc)
   1833		return;
   1834
   1835	if (target_submit_prep(se_cmd, cdb, NULL, 0, NULL, 0, NULL, 0,
   1836			       GFP_KERNEL))
   1837		return;
   1838
   1839	target_submit(se_cmd);
   1840}
   1841EXPORT_SYMBOL(target_submit_cmd);
   1842
   1843
   1844static struct se_dev_plug *target_plug_device(struct se_device *se_dev)
   1845{
   1846	struct se_dev_plug *se_plug;
   1847
   1848	if (!se_dev->transport->plug_device)
   1849		return NULL;
   1850
   1851	se_plug = se_dev->transport->plug_device(se_dev);
   1852	if (!se_plug)
   1853		return NULL;
   1854
   1855	se_plug->se_dev = se_dev;
   1856	/*
   1857	 * We have a ref to the lun at this point, but the cmds could
   1858	 * complete before we unplug, so grab a ref to the se_device so we
   1859	 * can call back into the backend.
   1860	 */
   1861	config_group_get(&se_dev->dev_group);
   1862	return se_plug;
   1863}
   1864
   1865static void target_unplug_device(struct se_dev_plug *se_plug)
   1866{
   1867	struct se_device *se_dev = se_plug->se_dev;
   1868
   1869	se_dev->transport->unplug_device(se_plug);
   1870	config_group_put(&se_dev->dev_group);
   1871}
   1872
   1873void target_queued_submit_work(struct work_struct *work)
   1874{
   1875	struct se_cmd_queue *sq = container_of(work, struct se_cmd_queue, work);
   1876	struct se_cmd *se_cmd, *next_cmd;
   1877	struct se_dev_plug *se_plug = NULL;
   1878	struct se_device *se_dev = NULL;
   1879	struct llist_node *cmd_list;
   1880
   1881	cmd_list = llist_del_all(&sq->cmd_list);
   1882	if (!cmd_list)
   1883		/* Previous call took what we were queued to submit */
   1884		return;
   1885
   1886	cmd_list = llist_reverse_order(cmd_list);
   1887	llist_for_each_entry_safe(se_cmd, next_cmd, cmd_list, se_cmd_list) {
   1888		if (!se_dev) {
   1889			se_dev = se_cmd->se_dev;
   1890			se_plug = target_plug_device(se_dev);
   1891		}
   1892
   1893		target_submit(se_cmd);
   1894	}
   1895
   1896	if (se_plug)
   1897		target_unplug_device(se_plug);
   1898}
   1899
   1900/**
   1901 * target_queue_submission - queue the cmd to run on the LIO workqueue
   1902 * @se_cmd: command descriptor to submit
   1903 */
   1904void target_queue_submission(struct se_cmd *se_cmd)
   1905{
   1906	struct se_device *se_dev = se_cmd->se_dev;
   1907	int cpu = se_cmd->cpuid;
   1908	struct se_cmd_queue *sq;
   1909
   1910	sq = &se_dev->queues[cpu].sq;
   1911	llist_add(&se_cmd->se_cmd_list, &sq->cmd_list);
   1912	queue_work_on(cpu, target_submission_wq, &sq->work);
   1913}
   1914EXPORT_SYMBOL_GPL(target_queue_submission);
   1915
   1916static void target_complete_tmr_failure(struct work_struct *work)
   1917{
   1918	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
   1919
   1920	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
   1921	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
   1922
   1923	transport_lun_remove_cmd(se_cmd);
   1924	transport_cmd_check_stop_to_fabric(se_cmd);
   1925}
   1926
   1927/**
   1928 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
   1929 *                     for TMR CDBs
   1930 *
   1931 * @se_cmd: command descriptor to submit
   1932 * @se_sess: associated se_sess for endpoint
   1933 * @sense: pointer to SCSI sense buffer
   1934 * @unpacked_lun: unpacked LUN to reference for struct se_lun
   1935 * @fabric_tmr_ptr: fabric context for TMR req
   1936 * @tm_type: Type of TM request
   1937 * @gfp: gfp type for caller
   1938 * @tag: referenced task tag for TMR_ABORT_TASK
   1939 * @flags: submit cmd flags
   1940 *
   1941 * Callable from all contexts.
   1942 **/
   1943
   1944int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
   1945		unsigned char *sense, u64 unpacked_lun,
   1946		void *fabric_tmr_ptr, unsigned char tm_type,
   1947		gfp_t gfp, u64 tag, int flags)
   1948{
   1949	struct se_portal_group *se_tpg;
   1950	int ret;
   1951
   1952	se_tpg = se_sess->se_tpg;
   1953	BUG_ON(!se_tpg);
   1954
   1955	__target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
   1956			  0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun);
   1957	/*
   1958	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
   1959	 * allocation failure.
   1960	 */
   1961	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
   1962	if (ret < 0)
   1963		return -ENOMEM;
   1964
   1965	if (tm_type == TMR_ABORT_TASK)
   1966		se_cmd->se_tmr_req->ref_task_tag = tag;
   1967
   1968	/* See target_submit_cmd for commentary */
   1969	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
   1970	if (ret) {
   1971		core_tmr_release_req(se_cmd->se_tmr_req);
   1972		return ret;
   1973	}
   1974
   1975	ret = transport_lookup_tmr_lun(se_cmd);
   1976	if (ret)
   1977		goto failure;
   1978
   1979	transport_generic_handle_tmr(se_cmd);
   1980	return 0;
   1981
   1982	/*
   1983	 * For callback during failure handling, push this work off
   1984	 * to process context with TMR_LUN_DOES_NOT_EXIST status.
   1985	 */
   1986failure:
   1987	INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
   1988	schedule_work(&se_cmd->work);
   1989	return 0;
   1990}
   1991EXPORT_SYMBOL(target_submit_tmr);
   1992
   1993/*
   1994 * Handle SAM-esque emulation for generic transport request failures.
   1995 */
   1996void transport_generic_request_failure(struct se_cmd *cmd,
   1997		sense_reason_t sense_reason)
   1998{
   1999	int ret = 0, post_ret;
   2000
   2001	pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
   2002		 sense_reason);
   2003	target_show_cmd("-----[ ", cmd);
   2004
   2005	/*
   2006	 * For SAM Task Attribute emulation for failed struct se_cmd
   2007	 */
   2008	transport_complete_task_attr(cmd);
   2009
   2010	if (cmd->transport_complete_callback)
   2011		cmd->transport_complete_callback(cmd, false, &post_ret);
   2012
   2013	if (cmd->transport_state & CMD_T_ABORTED) {
   2014		INIT_WORK(&cmd->work, target_abort_work);
   2015		queue_work(target_completion_wq, &cmd->work);
   2016		return;
   2017	}
   2018
   2019	switch (sense_reason) {
   2020	case TCM_NON_EXISTENT_LUN:
   2021	case TCM_UNSUPPORTED_SCSI_OPCODE:
   2022	case TCM_INVALID_CDB_FIELD:
   2023	case TCM_INVALID_PARAMETER_LIST:
   2024	case TCM_PARAMETER_LIST_LENGTH_ERROR:
   2025	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
   2026	case TCM_UNKNOWN_MODE_PAGE:
   2027	case TCM_WRITE_PROTECTED:
   2028	case TCM_ADDRESS_OUT_OF_RANGE:
   2029	case TCM_CHECK_CONDITION_ABORT_CMD:
   2030	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
   2031	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
   2032	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
   2033	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
   2034	case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
   2035	case TCM_TOO_MANY_TARGET_DESCS:
   2036	case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
   2037	case TCM_TOO_MANY_SEGMENT_DESCS:
   2038	case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
   2039	case TCM_INVALID_FIELD_IN_COMMAND_IU:
   2040	case TCM_ALUA_TG_PT_STANDBY:
   2041	case TCM_ALUA_TG_PT_UNAVAILABLE:
   2042	case TCM_ALUA_STATE_TRANSITION:
   2043	case TCM_ALUA_OFFLINE:
   2044		break;
   2045	case TCM_OUT_OF_RESOURCES:
   2046		cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
   2047		goto queue_status;
   2048	case TCM_LUN_BUSY:
   2049		cmd->scsi_status = SAM_STAT_BUSY;
   2050		goto queue_status;
   2051	case TCM_RESERVATION_CONFLICT:
   2052		/*
   2053		 * No SENSE Data payload for this case, set SCSI Status
   2054		 * and queue the response to $FABRIC_MOD.
   2055		 *
   2056		 * Uses linux/include/scsi/scsi.h SAM status codes defs
   2057		 */
   2058		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
   2059		/*
   2060		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
   2061		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
   2062		 * CONFLICT STATUS.
   2063		 *
   2064		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
   2065		 */
   2066		if (cmd->se_sess &&
   2067		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl
   2068					== TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) {
   2069			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
   2070					       cmd->orig_fe_lun, 0x2C,
   2071					ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
   2072		}
   2073
   2074		goto queue_status;
   2075	default:
   2076		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
   2077			cmd->t_task_cdb[0], sense_reason);
   2078		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
   2079		break;
   2080	}
   2081
   2082	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
   2083	if (ret)
   2084		goto queue_full;
   2085
   2086check_stop:
   2087	transport_lun_remove_cmd(cmd);
   2088	transport_cmd_check_stop_to_fabric(cmd);
   2089	return;
   2090
   2091queue_status:
   2092	trace_target_cmd_complete(cmd);
   2093	ret = cmd->se_tfo->queue_status(cmd);
   2094	if (!ret)
   2095		goto check_stop;
   2096queue_full:
   2097	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
   2098}
   2099EXPORT_SYMBOL(transport_generic_request_failure);
   2100
   2101void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
   2102{
   2103	sense_reason_t ret;
   2104
   2105	if (!cmd->execute_cmd) {
   2106		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
   2107		goto err;
   2108	}
   2109	if (do_checks) {
   2110		/*
   2111		 * Check for an existing UNIT ATTENTION condition after
   2112		 * target_handle_task_attr() has done SAM task attr
   2113		 * checking, and possibly have already defered execution
   2114		 * out to target_restart_delayed_cmds() context.
   2115		 */
   2116		ret = target_scsi3_ua_check(cmd);
   2117		if (ret)
   2118			goto err;
   2119
   2120		ret = target_alua_state_check(cmd);
   2121		if (ret)
   2122			goto err;
   2123
   2124		ret = target_check_reservation(cmd);
   2125		if (ret) {
   2126			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
   2127			goto err;
   2128		}
   2129	}
   2130
   2131	ret = cmd->execute_cmd(cmd);
   2132	if (!ret)
   2133		return;
   2134err:
   2135	spin_lock_irq(&cmd->t_state_lock);
   2136	cmd->transport_state &= ~CMD_T_SENT;
   2137	spin_unlock_irq(&cmd->t_state_lock);
   2138
   2139	transport_generic_request_failure(cmd, ret);
   2140}
   2141
   2142static int target_write_prot_action(struct se_cmd *cmd)
   2143{
   2144	u32 sectors;
   2145	/*
   2146	 * Perform WRITE_INSERT of PI using software emulation when backend
   2147	 * device has PI enabled, if the transport has not already generated
   2148	 * PI using hardware WRITE_INSERT offload.
   2149	 */
   2150	switch (cmd->prot_op) {
   2151	case TARGET_PROT_DOUT_INSERT:
   2152		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
   2153			sbc_dif_generate(cmd);
   2154		break;
   2155	case TARGET_PROT_DOUT_STRIP:
   2156		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
   2157			break;
   2158
   2159		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
   2160		cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
   2161					     sectors, 0, cmd->t_prot_sg, 0);
   2162		if (unlikely(cmd->pi_err)) {
   2163			spin_lock_irq(&cmd->t_state_lock);
   2164			cmd->transport_state &= ~CMD_T_SENT;
   2165			spin_unlock_irq(&cmd->t_state_lock);
   2166			transport_generic_request_failure(cmd, cmd->pi_err);
   2167			return -1;
   2168		}
   2169		break;
   2170	default:
   2171		break;
   2172	}
   2173
   2174	return 0;
   2175}
   2176
   2177static bool target_handle_task_attr(struct se_cmd *cmd)
   2178{
   2179	struct se_device *dev = cmd->se_dev;
   2180
   2181	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
   2182		return false;
   2183
   2184	cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
   2185
   2186	/*
   2187	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
   2188	 * to allow the passed struct se_cmd list of tasks to the front of the list.
   2189	 */
   2190	switch (cmd->sam_task_attr) {
   2191	case TCM_HEAD_TAG:
   2192		atomic_inc_mb(&dev->non_ordered);
   2193		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
   2194			 cmd->t_task_cdb[0]);
   2195		return false;
   2196	case TCM_ORDERED_TAG:
   2197		atomic_inc_mb(&dev->delayed_cmd_count);
   2198
   2199		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
   2200			 cmd->t_task_cdb[0]);
   2201		break;
   2202	default:
   2203		/*
   2204		 * For SIMPLE and UNTAGGED Task Attribute commands
   2205		 */
   2206		atomic_inc_mb(&dev->non_ordered);
   2207
   2208		if (atomic_read(&dev->delayed_cmd_count) == 0)
   2209			return false;
   2210		break;
   2211	}
   2212
   2213	if (cmd->sam_task_attr != TCM_ORDERED_TAG) {
   2214		atomic_inc_mb(&dev->delayed_cmd_count);
   2215		/*
   2216		 * We will account for this when we dequeue from the delayed
   2217		 * list.
   2218		 */
   2219		atomic_dec_mb(&dev->non_ordered);
   2220	}
   2221
   2222	spin_lock_irq(&cmd->t_state_lock);
   2223	cmd->transport_state &= ~CMD_T_SENT;
   2224	spin_unlock_irq(&cmd->t_state_lock);
   2225
   2226	spin_lock(&dev->delayed_cmd_lock);
   2227	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
   2228	spin_unlock(&dev->delayed_cmd_lock);
   2229
   2230	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
   2231		cmd->t_task_cdb[0], cmd->sam_task_attr);
   2232	/*
   2233	 * We may have no non ordered cmds when this function started or we
   2234	 * could have raced with the last simple/head cmd completing, so kick
   2235	 * the delayed handler here.
   2236	 */
   2237	schedule_work(&dev->delayed_cmd_work);
   2238	return true;
   2239}
   2240
   2241void target_execute_cmd(struct se_cmd *cmd)
   2242{
   2243	/*
   2244	 * Determine if frontend context caller is requesting the stopping of
   2245	 * this command for frontend exceptions.
   2246	 *
   2247	 * If the received CDB has already been aborted stop processing it here.
   2248	 */
   2249	if (target_cmd_interrupted(cmd))
   2250		return;
   2251
   2252	spin_lock_irq(&cmd->t_state_lock);
   2253	cmd->t_state = TRANSPORT_PROCESSING;
   2254	cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
   2255	spin_unlock_irq(&cmd->t_state_lock);
   2256
   2257	if (target_write_prot_action(cmd))
   2258		return;
   2259
   2260	if (target_handle_task_attr(cmd))
   2261		return;
   2262
   2263	__target_execute_cmd(cmd, true);
   2264}
   2265EXPORT_SYMBOL(target_execute_cmd);
   2266
   2267/*
   2268 * Process all commands up to the last received ORDERED task attribute which
   2269 * requires another blocking boundary
   2270 */
   2271void target_do_delayed_work(struct work_struct *work)
   2272{
   2273	struct se_device *dev = container_of(work, struct se_device,
   2274					     delayed_cmd_work);
   2275
   2276	spin_lock(&dev->delayed_cmd_lock);
   2277	while (!dev->ordered_sync_in_progress) {
   2278		struct se_cmd *cmd;
   2279
   2280		if (list_empty(&dev->delayed_cmd_list))
   2281			break;
   2282
   2283		cmd = list_entry(dev->delayed_cmd_list.next,
   2284				 struct se_cmd, se_delayed_node);
   2285
   2286		if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
   2287			/*
   2288			 * Check if we started with:
   2289			 * [ordered] [simple] [ordered]
   2290			 * and we are now at the last ordered so we have to wait
   2291			 * for the simple cmd.
   2292			 */
   2293			if (atomic_read(&dev->non_ordered) > 0)
   2294				break;
   2295
   2296			dev->ordered_sync_in_progress = true;
   2297		}
   2298
   2299		list_del(&cmd->se_delayed_node);
   2300		atomic_dec_mb(&dev->delayed_cmd_count);
   2301		spin_unlock(&dev->delayed_cmd_lock);
   2302
   2303		if (cmd->sam_task_attr != TCM_ORDERED_TAG)
   2304			atomic_inc_mb(&dev->non_ordered);
   2305
   2306		cmd->transport_state |= CMD_T_SENT;
   2307
   2308		__target_execute_cmd(cmd, true);
   2309
   2310		spin_lock(&dev->delayed_cmd_lock);
   2311	}
   2312	spin_unlock(&dev->delayed_cmd_lock);
   2313}
   2314
   2315/*
   2316 * Called from I/O completion to determine which dormant/delayed
   2317 * and ordered cmds need to have their tasks added to the execution queue.
   2318 */
   2319static void transport_complete_task_attr(struct se_cmd *cmd)
   2320{
   2321	struct se_device *dev = cmd->se_dev;
   2322
   2323	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
   2324		return;
   2325
   2326	if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
   2327		goto restart;
   2328
   2329	if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
   2330		atomic_dec_mb(&dev->non_ordered);
   2331		dev->dev_cur_ordered_id++;
   2332	} else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
   2333		atomic_dec_mb(&dev->non_ordered);
   2334		dev->dev_cur_ordered_id++;
   2335		pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
   2336			 dev->dev_cur_ordered_id);
   2337	} else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
   2338		spin_lock(&dev->delayed_cmd_lock);
   2339		dev->ordered_sync_in_progress = false;
   2340		spin_unlock(&dev->delayed_cmd_lock);
   2341
   2342		dev->dev_cur_ordered_id++;
   2343		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
   2344			 dev->dev_cur_ordered_id);
   2345	}
   2346	cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
   2347
   2348restart:
   2349	if (atomic_read(&dev->delayed_cmd_count) > 0)
   2350		schedule_work(&dev->delayed_cmd_work);
   2351}
   2352
   2353static void transport_complete_qf(struct se_cmd *cmd)
   2354{
   2355	int ret = 0;
   2356
   2357	transport_complete_task_attr(cmd);
   2358	/*
   2359	 * If a fabric driver ->write_pending() or ->queue_data_in() callback
   2360	 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
   2361	 * the same callbacks should not be retried.  Return CHECK_CONDITION
   2362	 * if a scsi_status is not already set.
   2363	 *
   2364	 * If a fabric driver ->queue_status() has returned non zero, always
   2365	 * keep retrying no matter what..
   2366	 */
   2367	if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
   2368		if (cmd->scsi_status)
   2369			goto queue_status;
   2370
   2371		translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
   2372		goto queue_status;
   2373	}
   2374
   2375	/*
   2376	 * Check if we need to send a sense buffer from
   2377	 * the struct se_cmd in question. We do NOT want
   2378	 * to take this path of the IO has been marked as
   2379	 * needing to be treated like a "normal read". This
   2380	 * is the case if it's a tape read, and either the
   2381	 * FM, EOM, or ILI bits are set, but there is no
   2382	 * sense data.
   2383	 */
   2384	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
   2385	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
   2386		goto queue_status;
   2387
   2388	switch (cmd->data_direction) {
   2389	case DMA_FROM_DEVICE:
   2390		/* queue status if not treating this as a normal read */
   2391		if (cmd->scsi_status &&
   2392		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
   2393			goto queue_status;
   2394
   2395		trace_target_cmd_complete(cmd);
   2396		ret = cmd->se_tfo->queue_data_in(cmd);
   2397		break;
   2398	case DMA_TO_DEVICE:
   2399		if (cmd->se_cmd_flags & SCF_BIDI) {
   2400			ret = cmd->se_tfo->queue_data_in(cmd);
   2401			break;
   2402		}
   2403		fallthrough;
   2404	case DMA_NONE:
   2405queue_status:
   2406		trace_target_cmd_complete(cmd);
   2407		ret = cmd->se_tfo->queue_status(cmd);
   2408		break;
   2409	default:
   2410		break;
   2411	}
   2412
   2413	if (ret < 0) {
   2414		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
   2415		return;
   2416	}
   2417	transport_lun_remove_cmd(cmd);
   2418	transport_cmd_check_stop_to_fabric(cmd);
   2419}
   2420
   2421static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
   2422					int err, bool write_pending)
   2423{
   2424	/*
   2425	 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
   2426	 * ->queue_data_in() callbacks from new process context.
   2427	 *
   2428	 * Otherwise for other errors, transport_complete_qf() will send
   2429	 * CHECK_CONDITION via ->queue_status() instead of attempting to
   2430	 * retry associated fabric driver data-transfer callbacks.
   2431	 */
   2432	if (err == -EAGAIN || err == -ENOMEM) {
   2433		cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
   2434						 TRANSPORT_COMPLETE_QF_OK;
   2435	} else {
   2436		pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
   2437		cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
   2438	}
   2439
   2440	spin_lock_irq(&dev->qf_cmd_lock);
   2441	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
   2442	atomic_inc_mb(&dev->dev_qf_count);
   2443	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
   2444
   2445	schedule_work(&cmd->se_dev->qf_work_queue);
   2446}
   2447
   2448static bool target_read_prot_action(struct se_cmd *cmd)
   2449{
   2450	switch (cmd->prot_op) {
   2451	case TARGET_PROT_DIN_STRIP:
   2452		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
   2453			u32 sectors = cmd->data_length >>
   2454				  ilog2(cmd->se_dev->dev_attrib.block_size);
   2455
   2456			cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
   2457						     sectors, 0, cmd->t_prot_sg,
   2458						     0);
   2459			if (cmd->pi_err)
   2460				return true;
   2461		}
   2462		break;
   2463	case TARGET_PROT_DIN_INSERT:
   2464		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
   2465			break;
   2466
   2467		sbc_dif_generate(cmd);
   2468		break;
   2469	default:
   2470		break;
   2471	}
   2472
   2473	return false;
   2474}
   2475
   2476static void target_complete_ok_work(struct work_struct *work)
   2477{
   2478	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
   2479	int ret;
   2480
   2481	/*
   2482	 * Check if we need to move delayed/dormant tasks from cmds on the
   2483	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
   2484	 * Attribute.
   2485	 */
   2486	transport_complete_task_attr(cmd);
   2487
   2488	/*
   2489	 * Check to schedule QUEUE_FULL work, or execute an existing
   2490	 * cmd->transport_qf_callback()
   2491	 */
   2492	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
   2493		schedule_work(&cmd->se_dev->qf_work_queue);
   2494
   2495	/*
   2496	 * Check if we need to send a sense buffer from
   2497	 * the struct se_cmd in question. We do NOT want
   2498	 * to take this path of the IO has been marked as
   2499	 * needing to be treated like a "normal read". This
   2500	 * is the case if it's a tape read, and either the
   2501	 * FM, EOM, or ILI bits are set, but there is no
   2502	 * sense data.
   2503	 */
   2504	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
   2505	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
   2506		WARN_ON(!cmd->scsi_status);
   2507		ret = transport_send_check_condition_and_sense(
   2508					cmd, 0, 1);
   2509		if (ret)
   2510			goto queue_full;
   2511
   2512		transport_lun_remove_cmd(cmd);
   2513		transport_cmd_check_stop_to_fabric(cmd);
   2514		return;
   2515	}
   2516	/*
   2517	 * Check for a callback, used by amongst other things
   2518	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
   2519	 */
   2520	if (cmd->transport_complete_callback) {
   2521		sense_reason_t rc;
   2522		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
   2523		bool zero_dl = !(cmd->data_length);
   2524		int post_ret = 0;
   2525
   2526		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
   2527		if (!rc && !post_ret) {
   2528			if (caw && zero_dl)
   2529				goto queue_rsp;
   2530
   2531			return;
   2532		} else if (rc) {
   2533			ret = transport_send_check_condition_and_sense(cmd,
   2534						rc, 0);
   2535			if (ret)
   2536				goto queue_full;
   2537
   2538			transport_lun_remove_cmd(cmd);
   2539			transport_cmd_check_stop_to_fabric(cmd);
   2540			return;
   2541		}
   2542	}
   2543
   2544queue_rsp:
   2545	switch (cmd->data_direction) {
   2546	case DMA_FROM_DEVICE:
   2547		/*
   2548		 * if this is a READ-type IO, but SCSI status
   2549		 * is set, then skip returning data and just
   2550		 * return the status -- unless this IO is marked
   2551		 * as needing to be treated as a normal read,
   2552		 * in which case we want to go ahead and return
   2553		 * the data. This happens, for example, for tape
   2554		 * reads with the FM, EOM, or ILI bits set, with
   2555		 * no sense data.
   2556		 */
   2557		if (cmd->scsi_status &&
   2558		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
   2559			goto queue_status;
   2560
   2561		atomic_long_add(cmd->data_length,
   2562				&cmd->se_lun->lun_stats.tx_data_octets);
   2563		/*
   2564		 * Perform READ_STRIP of PI using software emulation when
   2565		 * backend had PI enabled, if the transport will not be
   2566		 * performing hardware READ_STRIP offload.
   2567		 */
   2568		if (target_read_prot_action(cmd)) {
   2569			ret = transport_send_check_condition_and_sense(cmd,
   2570						cmd->pi_err, 0);
   2571			if (ret)
   2572				goto queue_full;
   2573
   2574			transport_lun_remove_cmd(cmd);
   2575			transport_cmd_check_stop_to_fabric(cmd);
   2576			return;
   2577		}
   2578
   2579		trace_target_cmd_complete(cmd);
   2580		ret = cmd->se_tfo->queue_data_in(cmd);
   2581		if (ret)
   2582			goto queue_full;
   2583		break;
   2584	case DMA_TO_DEVICE:
   2585		atomic_long_add(cmd->data_length,
   2586				&cmd->se_lun->lun_stats.rx_data_octets);
   2587		/*
   2588		 * Check if we need to send READ payload for BIDI-COMMAND
   2589		 */
   2590		if (cmd->se_cmd_flags & SCF_BIDI) {
   2591			atomic_long_add(cmd->data_length,
   2592					&cmd->se_lun->lun_stats.tx_data_octets);
   2593			ret = cmd->se_tfo->queue_data_in(cmd);
   2594			if (ret)
   2595				goto queue_full;
   2596			break;
   2597		}
   2598		fallthrough;
   2599	case DMA_NONE:
   2600queue_status:
   2601		trace_target_cmd_complete(cmd);
   2602		ret = cmd->se_tfo->queue_status(cmd);
   2603		if (ret)
   2604			goto queue_full;
   2605		break;
   2606	default:
   2607		break;
   2608	}
   2609
   2610	transport_lun_remove_cmd(cmd);
   2611	transport_cmd_check_stop_to_fabric(cmd);
   2612	return;
   2613
   2614queue_full:
   2615	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
   2616		" data_direction: %d\n", cmd, cmd->data_direction);
   2617
   2618	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
   2619}
   2620
   2621void target_free_sgl(struct scatterlist *sgl, int nents)
   2622{
   2623	sgl_free_n_order(sgl, nents, 0);
   2624}
   2625EXPORT_SYMBOL(target_free_sgl);
   2626
   2627static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
   2628{
   2629	/*
   2630	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
   2631	 * emulation, and free + reset pointers if necessary..
   2632	 */
   2633	if (!cmd->t_data_sg_orig)
   2634		return;
   2635
   2636	kfree(cmd->t_data_sg);
   2637	cmd->t_data_sg = cmd->t_data_sg_orig;
   2638	cmd->t_data_sg_orig = NULL;
   2639	cmd->t_data_nents = cmd->t_data_nents_orig;
   2640	cmd->t_data_nents_orig = 0;
   2641}
   2642
   2643static inline void transport_free_pages(struct se_cmd *cmd)
   2644{
   2645	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
   2646		target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
   2647		cmd->t_prot_sg = NULL;
   2648		cmd->t_prot_nents = 0;
   2649	}
   2650
   2651	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
   2652		/*
   2653		 * Release special case READ buffer payload required for
   2654		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
   2655		 */
   2656		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
   2657			target_free_sgl(cmd->t_bidi_data_sg,
   2658					   cmd->t_bidi_data_nents);
   2659			cmd->t_bidi_data_sg = NULL;
   2660			cmd->t_bidi_data_nents = 0;
   2661		}
   2662		transport_reset_sgl_orig(cmd);
   2663		return;
   2664	}
   2665	transport_reset_sgl_orig(cmd);
   2666
   2667	target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
   2668	cmd->t_data_sg = NULL;
   2669	cmd->t_data_nents = 0;
   2670
   2671	target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
   2672	cmd->t_bidi_data_sg = NULL;
   2673	cmd->t_bidi_data_nents = 0;
   2674}
   2675
   2676void *transport_kmap_data_sg(struct se_cmd *cmd)
   2677{
   2678	struct scatterlist *sg = cmd->t_data_sg;
   2679	struct page **pages;
   2680	int i;
   2681
   2682	/*
   2683	 * We need to take into account a possible offset here for fabrics like
   2684	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
   2685	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
   2686	 */
   2687	if (!cmd->t_data_nents)
   2688		return NULL;
   2689
   2690	BUG_ON(!sg);
   2691	if (cmd->t_data_nents == 1)
   2692		return kmap(sg_page(sg)) + sg->offset;
   2693
   2694	/* >1 page. use vmap */
   2695	pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
   2696	if (!pages)
   2697		return NULL;
   2698
   2699	/* convert sg[] to pages[] */
   2700	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
   2701		pages[i] = sg_page(sg);
   2702	}
   2703
   2704	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
   2705	kfree(pages);
   2706	if (!cmd->t_data_vmap)
   2707		return NULL;
   2708
   2709	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
   2710}
   2711EXPORT_SYMBOL(transport_kmap_data_sg);
   2712
   2713void transport_kunmap_data_sg(struct se_cmd *cmd)
   2714{
   2715	if (!cmd->t_data_nents) {
   2716		return;
   2717	} else if (cmd->t_data_nents == 1) {
   2718		kunmap(sg_page(cmd->t_data_sg));
   2719		return;
   2720	}
   2721
   2722	vunmap(cmd->t_data_vmap);
   2723	cmd->t_data_vmap = NULL;
   2724}
   2725EXPORT_SYMBOL(transport_kunmap_data_sg);
   2726
   2727int
   2728target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
   2729		 bool zero_page, bool chainable)
   2730{
   2731	gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
   2732
   2733	*sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
   2734	return *sgl ? 0 : -ENOMEM;
   2735}
   2736EXPORT_SYMBOL(target_alloc_sgl);
   2737
   2738/*
   2739 * Allocate any required resources to execute the command.  For writes we
   2740 * might not have the payload yet, so notify the fabric via a call to
   2741 * ->write_pending instead. Otherwise place it on the execution queue.
   2742 */
   2743sense_reason_t
   2744transport_generic_new_cmd(struct se_cmd *cmd)
   2745{
   2746	unsigned long flags;
   2747	int ret = 0;
   2748	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
   2749
   2750	if (cmd->prot_op != TARGET_PROT_NORMAL &&
   2751	    !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
   2752		ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
   2753				       cmd->prot_length, true, false);
   2754		if (ret < 0)
   2755			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
   2756	}
   2757
   2758	/*
   2759	 * Determine if the TCM fabric module has already allocated physical
   2760	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
   2761	 * beforehand.
   2762	 */
   2763	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
   2764	    cmd->data_length) {
   2765
   2766		if ((cmd->se_cmd_flags & SCF_BIDI) ||
   2767		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
   2768			u32 bidi_length;
   2769
   2770			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
   2771				bidi_length = cmd->t_task_nolb *
   2772					      cmd->se_dev->dev_attrib.block_size;
   2773			else
   2774				bidi_length = cmd->data_length;
   2775
   2776			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
   2777					       &cmd->t_bidi_data_nents,
   2778					       bidi_length, zero_flag, false);
   2779			if (ret < 0)
   2780				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
   2781		}
   2782
   2783		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
   2784				       cmd->data_length, zero_flag, false);
   2785		if (ret < 0)
   2786			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
   2787	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
   2788		    cmd->data_length) {
   2789		/*
   2790		 * Special case for COMPARE_AND_WRITE with fabrics
   2791		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
   2792		 */
   2793		u32 caw_length = cmd->t_task_nolb *
   2794				 cmd->se_dev->dev_attrib.block_size;
   2795
   2796		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
   2797				       &cmd->t_bidi_data_nents,
   2798				       caw_length, zero_flag, false);
   2799		if (ret < 0)
   2800			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
   2801	}
   2802	/*
   2803	 * If this command is not a write we can execute it right here,
   2804	 * for write buffers we need to notify the fabric driver first
   2805	 * and let it call back once the write buffers are ready.
   2806	 */
   2807	target_add_to_state_list(cmd);
   2808	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
   2809		target_execute_cmd(cmd);
   2810		return 0;
   2811	}
   2812
   2813	spin_lock_irqsave(&cmd->t_state_lock, flags);
   2814	cmd->t_state = TRANSPORT_WRITE_PENDING;
   2815	/*
   2816	 * Determine if frontend context caller is requesting the stopping of
   2817	 * this command for frontend exceptions.
   2818	 */
   2819	if (cmd->transport_state & CMD_T_STOP &&
   2820	    !cmd->se_tfo->write_pending_must_be_called) {
   2821		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
   2822			 __func__, __LINE__, cmd->tag);
   2823
   2824		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
   2825
   2826		complete_all(&cmd->t_transport_stop_comp);
   2827		return 0;
   2828	}
   2829	cmd->transport_state &= ~CMD_T_ACTIVE;
   2830	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
   2831
   2832	ret = cmd->se_tfo->write_pending(cmd);
   2833	if (ret)
   2834		goto queue_full;
   2835
   2836	return 0;
   2837
   2838queue_full:
   2839	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
   2840	transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
   2841	return 0;
   2842}
   2843EXPORT_SYMBOL(transport_generic_new_cmd);
   2844
   2845static void transport_write_pending_qf(struct se_cmd *cmd)
   2846{
   2847	unsigned long flags;
   2848	int ret;
   2849	bool stop;
   2850
   2851	spin_lock_irqsave(&cmd->t_state_lock, flags);
   2852	stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
   2853	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
   2854
   2855	if (stop) {
   2856		pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
   2857			__func__, __LINE__, cmd->tag);
   2858		complete_all(&cmd->t_transport_stop_comp);
   2859		return;
   2860	}
   2861
   2862	ret = cmd->se_tfo->write_pending(cmd);
   2863	if (ret) {
   2864		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
   2865			 cmd);
   2866		transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
   2867	}
   2868}
   2869
   2870static bool
   2871__transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
   2872			   unsigned long *flags);
   2873
   2874static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
   2875{
   2876	unsigned long flags;
   2877
   2878	spin_lock_irqsave(&cmd->t_state_lock, flags);
   2879	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
   2880	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
   2881}
   2882
   2883/*
   2884 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
   2885 * finished.
   2886 */
   2887void target_put_cmd_and_wait(struct se_cmd *cmd)
   2888{
   2889	DECLARE_COMPLETION_ONSTACK(compl);
   2890
   2891	WARN_ON_ONCE(cmd->abrt_compl);
   2892	cmd->abrt_compl = &compl;
   2893	target_put_sess_cmd(cmd);
   2894	wait_for_completion(&compl);
   2895}
   2896
   2897/*
   2898 * This function is called by frontend drivers after processing of a command
   2899 * has finished.
   2900 *
   2901 * The protocol for ensuring that either the regular frontend command
   2902 * processing flow or target_handle_abort() code drops one reference is as
   2903 * follows:
   2904 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
   2905 *   the frontend driver to call this function synchronously or asynchronously.
   2906 *   That will cause one reference to be dropped.
   2907 * - During regular command processing the target core sets CMD_T_COMPLETE
   2908 *   before invoking one of the .queue_*() functions.
   2909 * - The code that aborts commands skips commands and TMFs for which
   2910 *   CMD_T_COMPLETE has been set.
   2911 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
   2912 *   commands that will be aborted.
   2913 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
   2914 *   transport_generic_free_cmd() skips its call to target_put_sess_cmd().
   2915 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
   2916 *   be called and will drop a reference.
   2917 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
   2918 *   will be called. target_handle_abort() will drop the final reference.
   2919 */
   2920int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
   2921{
   2922	DECLARE_COMPLETION_ONSTACK(compl);
   2923	int ret = 0;
   2924	bool aborted = false, tas = false;
   2925
   2926	if (wait_for_tasks)
   2927		target_wait_free_cmd(cmd, &aborted, &tas);
   2928
   2929	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
   2930		/*
   2931		 * Handle WRITE failure case where transport_generic_new_cmd()
   2932		 * has already added se_cmd to state_list, but fabric has
   2933		 * failed command before I/O submission.
   2934		 */
   2935		if (cmd->state_active)
   2936			target_remove_from_state_list(cmd);
   2937
   2938		if (cmd->se_lun)
   2939			transport_lun_remove_cmd(cmd);
   2940	}
   2941	if (aborted)
   2942		cmd->free_compl = &compl;
   2943	ret = target_put_sess_cmd(cmd);
   2944	if (aborted) {
   2945		pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
   2946		wait_for_completion(&compl);
   2947		ret = 1;
   2948	}
   2949	return ret;
   2950}
   2951EXPORT_SYMBOL(transport_generic_free_cmd);
   2952
   2953/**
   2954 * target_get_sess_cmd - Verify the session is accepting cmds and take ref
   2955 * @se_cmd:	command descriptor to add
   2956 * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
   2957 */
   2958int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
   2959{
   2960	struct se_session *se_sess = se_cmd->se_sess;
   2961	int ret = 0;
   2962
   2963	/*
   2964	 * Add a second kref if the fabric caller is expecting to handle
   2965	 * fabric acknowledgement that requires two target_put_sess_cmd()
   2966	 * invocations before se_cmd descriptor release.
   2967	 */
   2968	if (ack_kref) {
   2969		kref_get(&se_cmd->cmd_kref);
   2970		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
   2971	}
   2972
   2973	if (!percpu_ref_tryget_live(&se_sess->cmd_count))
   2974		ret = -ESHUTDOWN;
   2975
   2976	if (ret && ack_kref)
   2977		target_put_sess_cmd(se_cmd);
   2978
   2979	return ret;
   2980}
   2981EXPORT_SYMBOL(target_get_sess_cmd);
   2982
   2983static void target_free_cmd_mem(struct se_cmd *cmd)
   2984{
   2985	transport_free_pages(cmd);
   2986
   2987	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
   2988		core_tmr_release_req(cmd->se_tmr_req);
   2989	if (cmd->t_task_cdb != cmd->__t_task_cdb)
   2990		kfree(cmd->t_task_cdb);
   2991}
   2992
   2993static void target_release_cmd_kref(struct kref *kref)
   2994{
   2995	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
   2996	struct se_session *se_sess = se_cmd->se_sess;
   2997	struct completion *free_compl = se_cmd->free_compl;
   2998	struct completion *abrt_compl = se_cmd->abrt_compl;
   2999
   3000	target_free_cmd_mem(se_cmd);
   3001	se_cmd->se_tfo->release_cmd(se_cmd);
   3002	if (free_compl)
   3003		complete(free_compl);
   3004	if (abrt_compl)
   3005		complete(abrt_compl);
   3006
   3007	percpu_ref_put(&se_sess->cmd_count);
   3008}
   3009
   3010/**
   3011 * target_put_sess_cmd - decrease the command reference count
   3012 * @se_cmd:	command to drop a reference from
   3013 *
   3014 * Returns 1 if and only if this target_put_sess_cmd() call caused the
   3015 * refcount to drop to zero. Returns zero otherwise.
   3016 */
   3017int target_put_sess_cmd(struct se_cmd *se_cmd)
   3018{
   3019	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
   3020}
   3021EXPORT_SYMBOL(target_put_sess_cmd);
   3022
   3023static const char *data_dir_name(enum dma_data_direction d)
   3024{
   3025	switch (d) {
   3026	case DMA_BIDIRECTIONAL:	return "BIDI";
   3027	case DMA_TO_DEVICE:	return "WRITE";
   3028	case DMA_FROM_DEVICE:	return "READ";
   3029	case DMA_NONE:		return "NONE";
   3030	}
   3031
   3032	return "(?)";
   3033}
   3034
   3035static const char *cmd_state_name(enum transport_state_table t)
   3036{
   3037	switch (t) {
   3038	case TRANSPORT_NO_STATE:	return "NO_STATE";
   3039	case TRANSPORT_NEW_CMD:		return "NEW_CMD";
   3040	case TRANSPORT_WRITE_PENDING:	return "WRITE_PENDING";
   3041	case TRANSPORT_PROCESSING:	return "PROCESSING";
   3042	case TRANSPORT_COMPLETE:	return "COMPLETE";
   3043	case TRANSPORT_ISTATE_PROCESSING:
   3044					return "ISTATE_PROCESSING";
   3045	case TRANSPORT_COMPLETE_QF_WP:	return "COMPLETE_QF_WP";
   3046	case TRANSPORT_COMPLETE_QF_OK:	return "COMPLETE_QF_OK";
   3047	case TRANSPORT_COMPLETE_QF_ERR:	return "COMPLETE_QF_ERR";
   3048	}
   3049
   3050	return "(?)";
   3051}
   3052
   3053static void target_append_str(char **str, const char *txt)
   3054{
   3055	char *prev = *str;
   3056
   3057	*str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
   3058		kstrdup(txt, GFP_ATOMIC);
   3059	kfree(prev);
   3060}
   3061
   3062/*
   3063 * Convert a transport state bitmask into a string. The caller is
   3064 * responsible for freeing the returned pointer.
   3065 */
   3066static char *target_ts_to_str(u32 ts)
   3067{
   3068	char *str = NULL;
   3069
   3070	if (ts & CMD_T_ABORTED)
   3071		target_append_str(&str, "aborted");
   3072	if (ts & CMD_T_ACTIVE)
   3073		target_append_str(&str, "active");
   3074	if (ts & CMD_T_COMPLETE)
   3075		target_append_str(&str, "complete");
   3076	if (ts & CMD_T_SENT)
   3077		target_append_str(&str, "sent");
   3078	if (ts & CMD_T_STOP)
   3079		target_append_str(&str, "stop");
   3080	if (ts & CMD_T_FABRIC_STOP)
   3081		target_append_str(&str, "fabric_stop");
   3082
   3083	return str;
   3084}
   3085
   3086static const char *target_tmf_name(enum tcm_tmreq_table tmf)
   3087{
   3088	switch (tmf) {
   3089	case TMR_ABORT_TASK:		return "ABORT_TASK";
   3090	case TMR_ABORT_TASK_SET:	return "ABORT_TASK_SET";
   3091	case TMR_CLEAR_ACA:		return "CLEAR_ACA";
   3092	case TMR_CLEAR_TASK_SET:	return "CLEAR_TASK_SET";
   3093	case TMR_LUN_RESET:		return "LUN_RESET";
   3094	case TMR_TARGET_WARM_RESET:	return "TARGET_WARM_RESET";
   3095	case TMR_TARGET_COLD_RESET:	return "TARGET_COLD_RESET";
   3096	case TMR_LUN_RESET_PRO:		return "LUN_RESET_PRO";
   3097	case TMR_UNKNOWN:		break;
   3098	}
   3099	return "(?)";
   3100}
   3101
   3102void target_show_cmd(const char *pfx, struct se_cmd *cmd)
   3103{
   3104	char *ts_str = target_ts_to_str(cmd->transport_state);
   3105	const u8 *cdb = cmd->t_task_cdb;
   3106	struct se_tmr_req *tmf = cmd->se_tmr_req;
   3107
   3108	if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
   3109		pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
   3110			 pfx, cdb[0], cdb[1], cmd->tag,
   3111			 data_dir_name(cmd->data_direction),
   3112			 cmd->se_tfo->get_cmd_state(cmd),
   3113			 cmd_state_name(cmd->t_state), cmd->data_length,
   3114			 kref_read(&cmd->cmd_kref), ts_str);
   3115	} else {
   3116		pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
   3117			 pfx, target_tmf_name(tmf->function), cmd->tag,
   3118			 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
   3119			 cmd_state_name(cmd->t_state),
   3120			 kref_read(&cmd->cmd_kref), ts_str);
   3121	}
   3122	kfree(ts_str);
   3123}
   3124EXPORT_SYMBOL(target_show_cmd);
   3125
   3126static void target_stop_session_confirm(struct percpu_ref *ref)
   3127{
   3128	struct se_session *se_sess = container_of(ref, struct se_session,
   3129						  cmd_count);
   3130	complete_all(&se_sess->stop_done);
   3131}
   3132
   3133/**
   3134 * target_stop_session - Stop new IO from being queued on the session.
   3135 * @se_sess:    session to stop
   3136 */
   3137void target_stop_session(struct se_session *se_sess)
   3138{
   3139	pr_debug("Stopping session queue.\n");
   3140	if (atomic_cmpxchg(&se_sess->stopped, 0, 1) == 0)
   3141		percpu_ref_kill_and_confirm(&se_sess->cmd_count,
   3142					    target_stop_session_confirm);
   3143}
   3144EXPORT_SYMBOL(target_stop_session);
   3145
   3146/**
   3147 * target_wait_for_sess_cmds - Wait for outstanding commands
   3148 * @se_sess:    session to wait for active I/O
   3149 */
   3150void target_wait_for_sess_cmds(struct se_session *se_sess)
   3151{
   3152	int ret;
   3153
   3154	WARN_ON_ONCE(!atomic_read(&se_sess->stopped));
   3155
   3156	do {
   3157		pr_debug("Waiting for running cmds to complete.\n");
   3158		ret = wait_event_timeout(se_sess->cmd_count_wq,
   3159				percpu_ref_is_zero(&se_sess->cmd_count),
   3160				180 * HZ);
   3161	} while (ret <= 0);
   3162
   3163	wait_for_completion(&se_sess->stop_done);
   3164	pr_debug("Waiting for cmds done.\n");
   3165}
   3166EXPORT_SYMBOL(target_wait_for_sess_cmds);
   3167
   3168/*
   3169 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
   3170 * all references to the LUN have been released. Called during LUN shutdown.
   3171 */
   3172void transport_clear_lun_ref(struct se_lun *lun)
   3173{
   3174	percpu_ref_kill(&lun->lun_ref);
   3175	wait_for_completion(&lun->lun_shutdown_comp);
   3176}
   3177
   3178static bool
   3179__transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
   3180			   bool *aborted, bool *tas, unsigned long *flags)
   3181	__releases(&cmd->t_state_lock)
   3182	__acquires(&cmd->t_state_lock)
   3183{
   3184	lockdep_assert_held(&cmd->t_state_lock);
   3185
   3186	if (fabric_stop)
   3187		cmd->transport_state |= CMD_T_FABRIC_STOP;
   3188
   3189	if (cmd->transport_state & CMD_T_ABORTED)
   3190		*aborted = true;
   3191
   3192	if (cmd->transport_state & CMD_T_TAS)
   3193		*tas = true;
   3194
   3195	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
   3196	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
   3197		return false;
   3198
   3199	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
   3200	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
   3201		return false;
   3202
   3203	if (!(cmd->transport_state & CMD_T_ACTIVE))
   3204		return false;
   3205
   3206	if (fabric_stop && *aborted)
   3207		return false;
   3208
   3209	cmd->transport_state |= CMD_T_STOP;
   3210
   3211	target_show_cmd("wait_for_tasks: Stopping ", cmd);
   3212
   3213	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
   3214
   3215	while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
   3216					    180 * HZ))
   3217		target_show_cmd("wait for tasks: ", cmd);
   3218
   3219	spin_lock_irqsave(&cmd->t_state_lock, *flags);
   3220	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
   3221
   3222	pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
   3223		 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
   3224
   3225	return true;
   3226}
   3227
   3228/**
   3229 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
   3230 * @cmd: command to wait on
   3231 */
   3232bool transport_wait_for_tasks(struct se_cmd *cmd)
   3233{
   3234	unsigned long flags;
   3235	bool ret, aborted = false, tas = false;
   3236
   3237	spin_lock_irqsave(&cmd->t_state_lock, flags);
   3238	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
   3239	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
   3240
   3241	return ret;
   3242}
   3243EXPORT_SYMBOL(transport_wait_for_tasks);
   3244
   3245struct sense_detail {
   3246	u8 key;
   3247	u8 asc;
   3248	u8 ascq;
   3249	bool add_sense_info;
   3250};
   3251
   3252static const struct sense_detail sense_detail_table[] = {
   3253	[TCM_NO_SENSE] = {
   3254		.key = NOT_READY
   3255	},
   3256	[TCM_NON_EXISTENT_LUN] = {
   3257		.key = ILLEGAL_REQUEST,
   3258		.asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
   3259	},
   3260	[TCM_UNSUPPORTED_SCSI_OPCODE] = {
   3261		.key = ILLEGAL_REQUEST,
   3262		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
   3263	},
   3264	[TCM_SECTOR_COUNT_TOO_MANY] = {
   3265		.key = ILLEGAL_REQUEST,
   3266		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
   3267	},
   3268	[TCM_UNKNOWN_MODE_PAGE] = {
   3269		.key = ILLEGAL_REQUEST,
   3270		.asc = 0x24, /* INVALID FIELD IN CDB */
   3271	},
   3272	[TCM_CHECK_CONDITION_ABORT_CMD] = {
   3273		.key = ABORTED_COMMAND,
   3274		.asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
   3275		.ascq = 0x03,
   3276	},
   3277	[TCM_INCORRECT_AMOUNT_OF_DATA] = {
   3278		.key = ABORTED_COMMAND,
   3279		.asc = 0x0c, /* WRITE ERROR */
   3280		.ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
   3281	},
   3282	[TCM_INVALID_CDB_FIELD] = {
   3283		.key = ILLEGAL_REQUEST,
   3284		.asc = 0x24, /* INVALID FIELD IN CDB */
   3285	},
   3286	[TCM_INVALID_PARAMETER_LIST] = {
   3287		.key = ILLEGAL_REQUEST,
   3288		.asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
   3289	},
   3290	[TCM_TOO_MANY_TARGET_DESCS] = {
   3291		.key = ILLEGAL_REQUEST,
   3292		.asc = 0x26,
   3293		.ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
   3294	},
   3295	[TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
   3296		.key = ILLEGAL_REQUEST,
   3297		.asc = 0x26,
   3298		.ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
   3299	},
   3300	[TCM_TOO_MANY_SEGMENT_DESCS] = {
   3301		.key = ILLEGAL_REQUEST,
   3302		.asc = 0x26,
   3303		.ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
   3304	},
   3305	[TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
   3306		.key = ILLEGAL_REQUEST,
   3307		.asc = 0x26,
   3308		.ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
   3309	},
   3310	[TCM_PARAMETER_LIST_LENGTH_ERROR] = {
   3311		.key = ILLEGAL_REQUEST,
   3312		.asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
   3313	},
   3314	[TCM_UNEXPECTED_UNSOLICITED_DATA] = {
   3315		.key = ILLEGAL_REQUEST,
   3316		.asc = 0x0c, /* WRITE ERROR */
   3317		.ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
   3318	},
   3319	[TCM_SERVICE_CRC_ERROR] = {
   3320		.key = ABORTED_COMMAND,
   3321		.asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
   3322		.ascq = 0x05, /* N/A */
   3323	},
   3324	[TCM_SNACK_REJECTED] = {
   3325		.key = ABORTED_COMMAND,
   3326		.asc = 0x11, /* READ ERROR */
   3327		.ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
   3328	},
   3329	[TCM_WRITE_PROTECTED] = {
   3330		.key = DATA_PROTECT,
   3331		.asc = 0x27, /* WRITE PROTECTED */
   3332	},
   3333	[TCM_ADDRESS_OUT_OF_RANGE] = {
   3334		.key = ILLEGAL_REQUEST,
   3335		.asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
   3336	},
   3337	[TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
   3338		.key = UNIT_ATTENTION,
   3339	},
   3340	[TCM_MISCOMPARE_VERIFY] = {
   3341		.key = MISCOMPARE,
   3342		.asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
   3343		.ascq = 0x00,
   3344		.add_sense_info = true,
   3345	},
   3346	[TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
   3347		.key = ABORTED_COMMAND,
   3348		.asc = 0x10,
   3349		.ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
   3350		.add_sense_info = true,
   3351	},
   3352	[TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
   3353		.key = ABORTED_COMMAND,
   3354		.asc = 0x10,
   3355		.ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
   3356		.add_sense_info = true,
   3357	},
   3358	[TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
   3359		.key = ABORTED_COMMAND,
   3360		.asc = 0x10,
   3361		.ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
   3362		.add_sense_info = true,
   3363	},
   3364	[TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
   3365		.key = COPY_ABORTED,
   3366		.asc = 0x0d,
   3367		.ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
   3368
   3369	},
   3370	[TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
   3371		/*
   3372		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
   3373		 * Solaris initiators.  Returning NOT READY instead means the
   3374		 * operations will be retried a finite number of times and we
   3375		 * can survive intermittent errors.
   3376		 */
   3377		.key = NOT_READY,
   3378		.asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
   3379	},
   3380	[TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
   3381		/*
   3382		 * From spc4r22 section5.7.7,5.7.8
   3383		 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
   3384		 * or a REGISTER AND IGNORE EXISTING KEY service action or
   3385		 * REGISTER AND MOVE service actionis attempted,
   3386		 * but there are insufficient device server resources to complete the
   3387		 * operation, then the command shall be terminated with CHECK CONDITION
   3388		 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
   3389		 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
   3390		 */
   3391		.key = ILLEGAL_REQUEST,
   3392		.asc = 0x55,
   3393		.ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
   3394	},
   3395	[TCM_INVALID_FIELD_IN_COMMAND_IU] = {
   3396		.key = ILLEGAL_REQUEST,
   3397		.asc = 0x0e,
   3398		.ascq = 0x03, /* INVALID FIELD IN COMMAND INFORMATION UNIT */
   3399	},
   3400	[TCM_ALUA_TG_PT_STANDBY] = {
   3401		.key = NOT_READY,
   3402		.asc = 0x04,
   3403		.ascq = ASCQ_04H_ALUA_TG_PT_STANDBY,
   3404	},
   3405	[TCM_ALUA_TG_PT_UNAVAILABLE] = {
   3406		.key = NOT_READY,
   3407		.asc = 0x04,
   3408		.ascq = ASCQ_04H_ALUA_TG_PT_UNAVAILABLE,
   3409	},
   3410	[TCM_ALUA_STATE_TRANSITION] = {
   3411		.key = NOT_READY,
   3412		.asc = 0x04,
   3413		.ascq = ASCQ_04H_ALUA_STATE_TRANSITION,
   3414	},
   3415	[TCM_ALUA_OFFLINE] = {
   3416		.key = NOT_READY,
   3417		.asc = 0x04,
   3418		.ascq = ASCQ_04H_ALUA_OFFLINE,
   3419	},
   3420};
   3421
   3422/**
   3423 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
   3424 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
   3425 *   be stored.
   3426 * @reason: LIO sense reason code. If this argument has the value
   3427 *   TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
   3428 *   dequeuing a unit attention fails due to multiple commands being processed
   3429 *   concurrently, set the command status to BUSY.
   3430 *
   3431 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
   3432 */
   3433static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
   3434{
   3435	const struct sense_detail *sd;
   3436	u8 *buffer = cmd->sense_buffer;
   3437	int r = (__force int)reason;
   3438	u8 key, asc, ascq;
   3439	bool desc_format = target_sense_desc_format(cmd->se_dev);
   3440
   3441	if (r < ARRAY_SIZE(sense_detail_table) && sense_detail_table[r].key)
   3442		sd = &sense_detail_table[r];
   3443	else
   3444		sd = &sense_detail_table[(__force int)
   3445				       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
   3446
   3447	key = sd->key;
   3448	if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
   3449		if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
   3450						       &ascq)) {
   3451			cmd->scsi_status = SAM_STAT_BUSY;
   3452			return;
   3453		}
   3454	} else {
   3455		WARN_ON_ONCE(sd->asc == 0);
   3456		asc = sd->asc;
   3457		ascq = sd->ascq;
   3458	}
   3459
   3460	cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
   3461	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
   3462	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
   3463	scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
   3464	if (sd->add_sense_info)
   3465		WARN_ON_ONCE(scsi_set_sense_information(buffer,
   3466							cmd->scsi_sense_length,
   3467							cmd->sense_info) < 0);
   3468}
   3469
   3470int
   3471transport_send_check_condition_and_sense(struct se_cmd *cmd,
   3472		sense_reason_t reason, int from_transport)
   3473{
   3474	unsigned long flags;
   3475
   3476	WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
   3477
   3478	spin_lock_irqsave(&cmd->t_state_lock, flags);
   3479	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
   3480		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
   3481		return 0;
   3482	}
   3483	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
   3484	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
   3485
   3486	if (!from_transport)
   3487		translate_sense_reason(cmd, reason);
   3488
   3489	trace_target_cmd_complete(cmd);
   3490	return cmd->se_tfo->queue_status(cmd);
   3491}
   3492EXPORT_SYMBOL(transport_send_check_condition_and_sense);
   3493
   3494/**
   3495 * target_send_busy - Send SCSI BUSY status back to the initiator
   3496 * @cmd: SCSI command for which to send a BUSY reply.
   3497 *
   3498 * Note: Only call this function if target_submit_cmd*() failed.
   3499 */
   3500int target_send_busy(struct se_cmd *cmd)
   3501{
   3502	WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
   3503
   3504	cmd->scsi_status = SAM_STAT_BUSY;
   3505	trace_target_cmd_complete(cmd);
   3506	return cmd->se_tfo->queue_status(cmd);
   3507}
   3508EXPORT_SYMBOL(target_send_busy);
   3509
   3510static void target_tmr_work(struct work_struct *work)
   3511{
   3512	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
   3513	struct se_device *dev = cmd->se_dev;
   3514	struct se_tmr_req *tmr = cmd->se_tmr_req;
   3515	int ret;
   3516
   3517	if (cmd->transport_state & CMD_T_ABORTED)
   3518		goto aborted;
   3519
   3520	switch (tmr->function) {
   3521	case TMR_ABORT_TASK:
   3522		core_tmr_abort_task(dev, tmr, cmd->se_sess);
   3523		break;
   3524	case TMR_ABORT_TASK_SET:
   3525	case TMR_CLEAR_ACA:
   3526	case TMR_CLEAR_TASK_SET:
   3527		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
   3528		break;
   3529	case TMR_LUN_RESET:
   3530		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
   3531		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
   3532					 TMR_FUNCTION_REJECTED;
   3533		if (tmr->response == TMR_FUNCTION_COMPLETE) {
   3534			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
   3535					       cmd->orig_fe_lun, 0x29,
   3536					       ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
   3537		}
   3538		break;
   3539	case TMR_TARGET_WARM_RESET:
   3540		tmr->response = TMR_FUNCTION_REJECTED;
   3541		break;
   3542	case TMR_TARGET_COLD_RESET:
   3543		tmr->response = TMR_FUNCTION_REJECTED;
   3544		break;
   3545	default:
   3546		pr_err("Unknown TMR function: 0x%02x.\n",
   3547				tmr->function);
   3548		tmr->response = TMR_FUNCTION_REJECTED;
   3549		break;
   3550	}
   3551
   3552	if (cmd->transport_state & CMD_T_ABORTED)
   3553		goto aborted;
   3554
   3555	cmd->se_tfo->queue_tm_rsp(cmd);
   3556
   3557	transport_lun_remove_cmd(cmd);
   3558	transport_cmd_check_stop_to_fabric(cmd);
   3559	return;
   3560
   3561aborted:
   3562	target_handle_abort(cmd);
   3563}
   3564
   3565int transport_generic_handle_tmr(
   3566	struct se_cmd *cmd)
   3567{
   3568	unsigned long flags;
   3569	bool aborted = false;
   3570
   3571	spin_lock_irqsave(&cmd->t_state_lock, flags);
   3572	if (cmd->transport_state & CMD_T_ABORTED) {
   3573		aborted = true;
   3574	} else {
   3575		cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
   3576		cmd->transport_state |= CMD_T_ACTIVE;
   3577	}
   3578	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
   3579
   3580	if (aborted) {
   3581		pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
   3582				    cmd->se_tmr_req->function,
   3583				    cmd->se_tmr_req->ref_task_tag, cmd->tag);
   3584		target_handle_abort(cmd);
   3585		return 0;
   3586	}
   3587
   3588	INIT_WORK(&cmd->work, target_tmr_work);
   3589	schedule_work(&cmd->work);
   3590	return 0;
   3591}
   3592EXPORT_SYMBOL(transport_generic_handle_tmr);
   3593
   3594bool
   3595target_check_wce(struct se_device *dev)
   3596{
   3597	bool wce = false;
   3598
   3599	if (dev->transport->get_write_cache)
   3600		wce = dev->transport->get_write_cache(dev);
   3601	else if (dev->dev_attrib.emulate_write_cache > 0)
   3602		wce = true;
   3603
   3604	return wce;
   3605}
   3606
   3607bool
   3608target_check_fua(struct se_device *dev)
   3609{
   3610	return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
   3611}