cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

intel_hfi.c (15546B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Hardware Feedback Interface Driver
      4 *
      5 * Copyright (c) 2021, Intel Corporation.
      6 *
      7 * Authors: Aubrey Li <aubrey.li@linux.intel.com>
      8 *          Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
      9 *
     10 *
     11 * The Hardware Feedback Interface provides a performance and energy efficiency
     12 * capability information for each CPU in the system. Depending on the processor
     13 * model, hardware may periodically update these capabilities as a result of
     14 * changes in the operating conditions (e.g., power limits or thermal
     15 * constraints). On other processor models, there is a single HFI update
     16 * at boot.
     17 *
     18 * This file provides functionality to process HFI updates and relay these
     19 * updates to userspace.
     20 */
     21
     22#define pr_fmt(fmt)  "intel-hfi: " fmt
     23
     24#include <linux/bitops.h>
     25#include <linux/cpufeature.h>
     26#include <linux/cpumask.h>
     27#include <linux/gfp.h>
     28#include <linux/io.h>
     29#include <linux/kernel.h>
     30#include <linux/math.h>
     31#include <linux/mutex.h>
     32#include <linux/percpu-defs.h>
     33#include <linux/printk.h>
     34#include <linux/processor.h>
     35#include <linux/slab.h>
     36#include <linux/spinlock.h>
     37#include <linux/string.h>
     38#include <linux/topology.h>
     39#include <linux/workqueue.h>
     40
     41#include <asm/msr.h>
     42
     43#include "../thermal_core.h"
     44#include "intel_hfi.h"
     45
     46#define THERM_STATUS_CLEAR_PKG_MASK (BIT(1) | BIT(3) | BIT(5) | BIT(7) | \
     47				     BIT(9) | BIT(11) | BIT(26))
     48
     49/* Hardware Feedback Interface MSR configuration bits */
     50#define HW_FEEDBACK_PTR_VALID_BIT		BIT(0)
     51#define HW_FEEDBACK_CONFIG_HFI_ENABLE_BIT	BIT(0)
     52
     53/* CPUID detection and enumeration definitions for HFI */
     54
     55#define CPUID_HFI_LEAF 6
     56
     57union hfi_capabilities {
     58	struct {
     59		u8	performance:1;
     60		u8	energy_efficiency:1;
     61		u8	__reserved:6;
     62	} split;
     63	u8 bits;
     64};
     65
     66union cpuid6_edx {
     67	struct {
     68		union hfi_capabilities	capabilities;
     69		u32			table_pages:4;
     70		u32			__reserved:4;
     71		s32			index:16;
     72	} split;
     73	u32 full;
     74};
     75
     76/**
     77 * struct hfi_cpu_data - HFI capabilities per CPU
     78 * @perf_cap:		Performance capability
     79 * @ee_cap:		Energy efficiency capability
     80 *
     81 * Capabilities of a logical processor in the HFI table. These capabilities are
     82 * unitless.
     83 */
     84struct hfi_cpu_data {
     85	u8	perf_cap;
     86	u8	ee_cap;
     87} __packed;
     88
     89/**
     90 * struct hfi_hdr - Header of the HFI table
     91 * @perf_updated:	Hardware updated performance capabilities
     92 * @ee_updated:		Hardware updated energy efficiency capabilities
     93 *
     94 * Properties of the data in an HFI table.
     95 */
     96struct hfi_hdr {
     97	u8	perf_updated;
     98	u8	ee_updated;
     99} __packed;
    100
    101/**
    102 * struct hfi_instance - Representation of an HFI instance (i.e., a table)
    103 * @local_table:	Base of the local copy of the HFI table
    104 * @timestamp:		Timestamp of the last update of the local table.
    105 *			Located at the base of the local table.
    106 * @hdr:		Base address of the header of the local table
    107 * @data:		Base address of the data of the local table
    108 * @cpus:		CPUs represented in this HFI table instance
    109 * @hw_table:		Pointer to the HFI table of this instance
    110 * @update_work:	Delayed work to process HFI updates
    111 * @table_lock:		Lock to protect acceses to the table of this instance
    112 * @event_lock:		Lock to process HFI interrupts
    113 *
    114 * A set of parameters to parse and navigate a specific HFI table.
    115 */
    116struct hfi_instance {
    117	union {
    118		void			*local_table;
    119		u64			*timestamp;
    120	};
    121	void			*hdr;
    122	void			*data;
    123	cpumask_var_t		cpus;
    124	void			*hw_table;
    125	struct delayed_work	update_work;
    126	raw_spinlock_t		table_lock;
    127	raw_spinlock_t		event_lock;
    128};
    129
    130/**
    131 * struct hfi_features - Supported HFI features
    132 * @nr_table_pages:	Size of the HFI table in 4KB pages
    133 * @cpu_stride:		Stride size to locate the capability data of a logical
    134 *			processor within the table (i.e., row stride)
    135 * @hdr_size:		Size of the table header
    136 *
    137 * Parameters and supported features that are common to all HFI instances
    138 */
    139struct hfi_features {
    140	unsigned int	nr_table_pages;
    141	unsigned int	cpu_stride;
    142	unsigned int	hdr_size;
    143};
    144
    145/**
    146 * struct hfi_cpu_info - Per-CPU attributes to consume HFI data
    147 * @index:		Row of this CPU in its HFI table
    148 * @hfi_instance:	Attributes of the HFI table to which this CPU belongs
    149 *
    150 * Parameters to link a logical processor to an HFI table and a row within it.
    151 */
    152struct hfi_cpu_info {
    153	s16			index;
    154	struct hfi_instance	*hfi_instance;
    155};
    156
    157static DEFINE_PER_CPU(struct hfi_cpu_info, hfi_cpu_info) = { .index = -1 };
    158
    159static int max_hfi_instances;
    160static struct hfi_instance *hfi_instances;
    161
    162static struct hfi_features hfi_features;
    163static DEFINE_MUTEX(hfi_instance_lock);
    164
    165static struct workqueue_struct *hfi_updates_wq;
    166#define HFI_UPDATE_INTERVAL		HZ
    167#define HFI_MAX_THERM_NOTIFY_COUNT	16
    168
    169static void get_hfi_caps(struct hfi_instance *hfi_instance,
    170			 struct thermal_genl_cpu_caps *cpu_caps)
    171{
    172	int cpu, i = 0;
    173
    174	raw_spin_lock_irq(&hfi_instance->table_lock);
    175	for_each_cpu(cpu, hfi_instance->cpus) {
    176		struct hfi_cpu_data *caps;
    177		s16 index;
    178
    179		index = per_cpu(hfi_cpu_info, cpu).index;
    180		caps = hfi_instance->data + index * hfi_features.cpu_stride;
    181		cpu_caps[i].cpu = cpu;
    182
    183		/*
    184		 * Scale performance and energy efficiency to
    185		 * the [0, 1023] interval that thermal netlink uses.
    186		 */
    187		cpu_caps[i].performance = caps->perf_cap << 2;
    188		cpu_caps[i].efficiency = caps->ee_cap << 2;
    189
    190		++i;
    191	}
    192	raw_spin_unlock_irq(&hfi_instance->table_lock);
    193}
    194
    195/*
    196 * Call update_capabilities() when there are changes in the HFI table.
    197 */
    198static void update_capabilities(struct hfi_instance *hfi_instance)
    199{
    200	struct thermal_genl_cpu_caps *cpu_caps;
    201	int i = 0, cpu_count;
    202
    203	/* CPUs may come online/offline while processing an HFI update. */
    204	mutex_lock(&hfi_instance_lock);
    205
    206	cpu_count = cpumask_weight(hfi_instance->cpus);
    207
    208	/* No CPUs to report in this hfi_instance. */
    209	if (!cpu_count)
    210		goto out;
    211
    212	cpu_caps = kcalloc(cpu_count, sizeof(*cpu_caps), GFP_KERNEL);
    213	if (!cpu_caps)
    214		goto out;
    215
    216	get_hfi_caps(hfi_instance, cpu_caps);
    217
    218	if (cpu_count < HFI_MAX_THERM_NOTIFY_COUNT)
    219		goto last_cmd;
    220
    221	/* Process complete chunks of HFI_MAX_THERM_NOTIFY_COUNT capabilities. */
    222	for (i = 0;
    223	     (i + HFI_MAX_THERM_NOTIFY_COUNT) <= cpu_count;
    224	     i += HFI_MAX_THERM_NOTIFY_COUNT)
    225		thermal_genl_cpu_capability_event(HFI_MAX_THERM_NOTIFY_COUNT,
    226						  &cpu_caps[i]);
    227
    228	cpu_count = cpu_count - i;
    229
    230last_cmd:
    231	/* Process the remaining capabilities if any. */
    232	if (cpu_count)
    233		thermal_genl_cpu_capability_event(cpu_count, &cpu_caps[i]);
    234
    235	kfree(cpu_caps);
    236out:
    237	mutex_unlock(&hfi_instance_lock);
    238}
    239
    240static void hfi_update_work_fn(struct work_struct *work)
    241{
    242	struct hfi_instance *hfi_instance;
    243
    244	hfi_instance = container_of(to_delayed_work(work), struct hfi_instance,
    245				    update_work);
    246
    247	update_capabilities(hfi_instance);
    248}
    249
    250void intel_hfi_process_event(__u64 pkg_therm_status_msr_val)
    251{
    252	struct hfi_instance *hfi_instance;
    253	int cpu = smp_processor_id();
    254	struct hfi_cpu_info *info;
    255	u64 new_timestamp;
    256
    257	if (!pkg_therm_status_msr_val)
    258		return;
    259
    260	info = &per_cpu(hfi_cpu_info, cpu);
    261	if (!info)
    262		return;
    263
    264	/*
    265	 * A CPU is linked to its HFI instance before the thermal vector in the
    266	 * local APIC is unmasked. Hence, info->hfi_instance cannot be NULL
    267	 * when receiving an HFI event.
    268	 */
    269	hfi_instance = info->hfi_instance;
    270	if (unlikely(!hfi_instance)) {
    271		pr_debug("Received event on CPU %d but instance was null", cpu);
    272		return;
    273	}
    274
    275	/*
    276	 * On most systems, all CPUs in the package receive a package-level
    277	 * thermal interrupt when there is an HFI update. It is sufficient to
    278	 * let a single CPU to acknowledge the update and queue work to
    279	 * process it. The remaining CPUs can resume their work.
    280	 */
    281	if (!raw_spin_trylock(&hfi_instance->event_lock))
    282		return;
    283
    284	/* Skip duplicated updates. */
    285	new_timestamp = *(u64 *)hfi_instance->hw_table;
    286	if (*hfi_instance->timestamp == new_timestamp) {
    287		raw_spin_unlock(&hfi_instance->event_lock);
    288		return;
    289	}
    290
    291	raw_spin_lock(&hfi_instance->table_lock);
    292
    293	/*
    294	 * Copy the updated table into our local copy. This includes the new
    295	 * timestamp.
    296	 */
    297	memcpy(hfi_instance->local_table, hfi_instance->hw_table,
    298	       hfi_features.nr_table_pages << PAGE_SHIFT);
    299
    300	raw_spin_unlock(&hfi_instance->table_lock);
    301	raw_spin_unlock(&hfi_instance->event_lock);
    302
    303	/*
    304	 * Let hardware know that we are done reading the HFI table and it is
    305	 * free to update it again.
    306	 */
    307	pkg_therm_status_msr_val &= THERM_STATUS_CLEAR_PKG_MASK &
    308				    ~PACKAGE_THERM_STATUS_HFI_UPDATED;
    309	wrmsrl(MSR_IA32_PACKAGE_THERM_STATUS, pkg_therm_status_msr_val);
    310
    311	queue_delayed_work(hfi_updates_wq, &hfi_instance->update_work,
    312			   HFI_UPDATE_INTERVAL);
    313}
    314
    315static void init_hfi_cpu_index(struct hfi_cpu_info *info)
    316{
    317	union cpuid6_edx edx;
    318
    319	/* Do not re-read @cpu's index if it has already been initialized. */
    320	if (info->index > -1)
    321		return;
    322
    323	edx.full = cpuid_edx(CPUID_HFI_LEAF);
    324	info->index = edx.split.index;
    325}
    326
    327/*
    328 * The format of the HFI table depends on the number of capabilities that the
    329 * hardware supports. Keep a data structure to navigate the table.
    330 */
    331static void init_hfi_instance(struct hfi_instance *hfi_instance)
    332{
    333	/* The HFI header is below the time-stamp. */
    334	hfi_instance->hdr = hfi_instance->local_table +
    335			    sizeof(*hfi_instance->timestamp);
    336
    337	/* The HFI data starts below the header. */
    338	hfi_instance->data = hfi_instance->hdr + hfi_features.hdr_size;
    339}
    340
    341/**
    342 * intel_hfi_online() - Enable HFI on @cpu
    343 * @cpu:	CPU in which the HFI will be enabled
    344 *
    345 * Enable the HFI to be used in @cpu. The HFI is enabled at the die/package
    346 * level. The first CPU in the die/package to come online does the full HFI
    347 * initialization. Subsequent CPUs will just link themselves to the HFI
    348 * instance of their die/package.
    349 *
    350 * This function is called before enabling the thermal vector in the local APIC
    351 * in order to ensure that @cpu has an associated HFI instance when it receives
    352 * an HFI event.
    353 */
    354void intel_hfi_online(unsigned int cpu)
    355{
    356	struct hfi_instance *hfi_instance;
    357	struct hfi_cpu_info *info;
    358	phys_addr_t hw_table_pa;
    359	u64 msr_val;
    360	u16 die_id;
    361
    362	/* Nothing to do if hfi_instances are missing. */
    363	if (!hfi_instances)
    364		return;
    365
    366	/*
    367	 * Link @cpu to the HFI instance of its package/die. It does not
    368	 * matter whether the instance has been initialized.
    369	 */
    370	info = &per_cpu(hfi_cpu_info, cpu);
    371	die_id = topology_logical_die_id(cpu);
    372	hfi_instance = info->hfi_instance;
    373	if (!hfi_instance) {
    374		if (die_id < 0 || die_id >= max_hfi_instances)
    375			return;
    376
    377		hfi_instance = &hfi_instances[die_id];
    378		info->hfi_instance = hfi_instance;
    379	}
    380
    381	init_hfi_cpu_index(info);
    382
    383	/*
    384	 * Now check if the HFI instance of the package/die of @cpu has been
    385	 * initialized (by checking its header). In such case, all we have to
    386	 * do is to add @cpu to this instance's cpumask.
    387	 */
    388	mutex_lock(&hfi_instance_lock);
    389	if (hfi_instance->hdr) {
    390		cpumask_set_cpu(cpu, hfi_instance->cpus);
    391		goto unlock;
    392	}
    393
    394	/*
    395	 * Hardware is programmed with the physical address of the first page
    396	 * frame of the table. Hence, the allocated memory must be page-aligned.
    397	 */
    398	hfi_instance->hw_table = alloc_pages_exact(hfi_features.nr_table_pages,
    399						   GFP_KERNEL | __GFP_ZERO);
    400	if (!hfi_instance->hw_table)
    401		goto unlock;
    402
    403	hw_table_pa = virt_to_phys(hfi_instance->hw_table);
    404
    405	/*
    406	 * Allocate memory to keep a local copy of the table that
    407	 * hardware generates.
    408	 */
    409	hfi_instance->local_table = kzalloc(hfi_features.nr_table_pages << PAGE_SHIFT,
    410					    GFP_KERNEL);
    411	if (!hfi_instance->local_table)
    412		goto free_hw_table;
    413
    414	/*
    415	 * Program the address of the feedback table of this die/package. On
    416	 * some processors, hardware remembers the old address of the HFI table
    417	 * even after having been reprogrammed and re-enabled. Thus, do not free
    418	 * the pages allocated for the table or reprogram the hardware with a
    419	 * new base address. Namely, program the hardware only once.
    420	 */
    421	msr_val = hw_table_pa | HW_FEEDBACK_PTR_VALID_BIT;
    422	wrmsrl(MSR_IA32_HW_FEEDBACK_PTR, msr_val);
    423
    424	init_hfi_instance(hfi_instance);
    425
    426	INIT_DELAYED_WORK(&hfi_instance->update_work, hfi_update_work_fn);
    427	raw_spin_lock_init(&hfi_instance->table_lock);
    428	raw_spin_lock_init(&hfi_instance->event_lock);
    429
    430	cpumask_set_cpu(cpu, hfi_instance->cpus);
    431
    432	/*
    433	 * Enable the hardware feedback interface and never disable it. See
    434	 * comment on programming the address of the table.
    435	 */
    436	rdmsrl(MSR_IA32_HW_FEEDBACK_CONFIG, msr_val);
    437	msr_val |= HW_FEEDBACK_CONFIG_HFI_ENABLE_BIT;
    438	wrmsrl(MSR_IA32_HW_FEEDBACK_CONFIG, msr_val);
    439
    440unlock:
    441	mutex_unlock(&hfi_instance_lock);
    442	return;
    443
    444free_hw_table:
    445	free_pages_exact(hfi_instance->hw_table, hfi_features.nr_table_pages);
    446	goto unlock;
    447}
    448
    449/**
    450 * intel_hfi_offline() - Disable HFI on @cpu
    451 * @cpu:	CPU in which the HFI will be disabled
    452 *
    453 * Remove @cpu from those covered by its HFI instance.
    454 *
    455 * On some processors, hardware remembers previous programming settings even
    456 * after being reprogrammed. Thus, keep HFI enabled even if all CPUs in the
    457 * die/package of @cpu are offline. See note in intel_hfi_online().
    458 */
    459void intel_hfi_offline(unsigned int cpu)
    460{
    461	struct hfi_cpu_info *info = &per_cpu(hfi_cpu_info, cpu);
    462	struct hfi_instance *hfi_instance;
    463
    464	/*
    465	 * Check if @cpu as an associated, initialized (i.e., with a non-NULL
    466	 * header). Also, HFI instances are only initialized if X86_FEATURE_HFI
    467	 * is present.
    468	 */
    469	hfi_instance = info->hfi_instance;
    470	if (!hfi_instance)
    471		return;
    472
    473	if (!hfi_instance->hdr)
    474		return;
    475
    476	mutex_lock(&hfi_instance_lock);
    477	cpumask_clear_cpu(cpu, hfi_instance->cpus);
    478	mutex_unlock(&hfi_instance_lock);
    479}
    480
    481static __init int hfi_parse_features(void)
    482{
    483	unsigned int nr_capabilities;
    484	union cpuid6_edx edx;
    485
    486	if (!boot_cpu_has(X86_FEATURE_HFI))
    487		return -ENODEV;
    488
    489	/*
    490	 * If we are here we know that CPUID_HFI_LEAF exists. Parse the
    491	 * supported capabilities and the size of the HFI table.
    492	 */
    493	edx.full = cpuid_edx(CPUID_HFI_LEAF);
    494
    495	if (!edx.split.capabilities.split.performance) {
    496		pr_debug("Performance reporting not supported! Not using HFI\n");
    497		return -ENODEV;
    498	}
    499
    500	/*
    501	 * The number of supported capabilities determines the number of
    502	 * columns in the HFI table. Exclude the reserved bits.
    503	 */
    504	edx.split.capabilities.split.__reserved = 0;
    505	nr_capabilities = hweight8(edx.split.capabilities.bits);
    506
    507	/* The number of 4KB pages required by the table */
    508	hfi_features.nr_table_pages = edx.split.table_pages + 1;
    509
    510	/*
    511	 * The header contains change indications for each supported feature.
    512	 * The size of the table header is rounded up to be a multiple of 8
    513	 * bytes.
    514	 */
    515	hfi_features.hdr_size = DIV_ROUND_UP(nr_capabilities, 8) * 8;
    516
    517	/*
    518	 * Data of each logical processor is also rounded up to be a multiple
    519	 * of 8 bytes.
    520	 */
    521	hfi_features.cpu_stride = DIV_ROUND_UP(nr_capabilities, 8) * 8;
    522
    523	return 0;
    524}
    525
    526void __init intel_hfi_init(void)
    527{
    528	struct hfi_instance *hfi_instance;
    529	int i, j;
    530
    531	if (hfi_parse_features())
    532		return;
    533
    534	/* There is one HFI instance per die/package. */
    535	max_hfi_instances = topology_max_packages() *
    536			    topology_max_die_per_package();
    537
    538	/*
    539	 * This allocation may fail. CPU hotplug callbacks must check
    540	 * for a null pointer.
    541	 */
    542	hfi_instances = kcalloc(max_hfi_instances, sizeof(*hfi_instances),
    543				GFP_KERNEL);
    544	if (!hfi_instances)
    545		return;
    546
    547	for (i = 0; i < max_hfi_instances; i++) {
    548		hfi_instance = &hfi_instances[i];
    549		if (!zalloc_cpumask_var(&hfi_instance->cpus, GFP_KERNEL))
    550			goto err_nomem;
    551	}
    552
    553	hfi_updates_wq = create_singlethread_workqueue("hfi-updates");
    554	if (!hfi_updates_wq)
    555		goto err_nomem;
    556
    557	return;
    558
    559err_nomem:
    560	for (j = 0; j < i; ++j) {
    561		hfi_instance = &hfi_instances[j];
    562		free_cpumask_var(hfi_instance->cpus);
    563	}
    564
    565	kfree(hfi_instances);
    566	hfi_instances = NULL;
    567}