mtk_thermal.c (30603B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Copyright (c) 2015 MediaTek Inc. 4 * Author: Hanyi Wu <hanyi.wu@mediatek.com> 5 * Sascha Hauer <s.hauer@pengutronix.de> 6 * Dawei Chien <dawei.chien@mediatek.com> 7 * Louis Yu <louis.yu@mediatek.com> 8 */ 9 10#include <linux/clk.h> 11#include <linux/delay.h> 12#include <linux/interrupt.h> 13#include <linux/kernel.h> 14#include <linux/module.h> 15#include <linux/nvmem-consumer.h> 16#include <linux/of.h> 17#include <linux/of_address.h> 18#include <linux/of_device.h> 19#include <linux/platform_device.h> 20#include <linux/slab.h> 21#include <linux/io.h> 22#include <linux/thermal.h> 23#include <linux/reset.h> 24#include <linux/types.h> 25 26#include "thermal_hwmon.h" 27 28/* AUXADC Registers */ 29#define AUXADC_CON1_SET_V 0x008 30#define AUXADC_CON1_CLR_V 0x00c 31#define AUXADC_CON2_V 0x010 32#define AUXADC_DATA(channel) (0x14 + (channel) * 4) 33 34#define APMIXED_SYS_TS_CON1 0x604 35 36/* Thermal Controller Registers */ 37#define TEMP_MONCTL0 0x000 38#define TEMP_MONCTL1 0x004 39#define TEMP_MONCTL2 0x008 40#define TEMP_MONIDET0 0x014 41#define TEMP_MONIDET1 0x018 42#define TEMP_MSRCTL0 0x038 43#define TEMP_MSRCTL1 0x03c 44#define TEMP_AHBPOLL 0x040 45#define TEMP_AHBTO 0x044 46#define TEMP_ADCPNP0 0x048 47#define TEMP_ADCPNP1 0x04c 48#define TEMP_ADCPNP2 0x050 49#define TEMP_ADCPNP3 0x0b4 50 51#define TEMP_ADCMUX 0x054 52#define TEMP_ADCEN 0x060 53#define TEMP_PNPMUXADDR 0x064 54#define TEMP_ADCMUXADDR 0x068 55#define TEMP_ADCENADDR 0x074 56#define TEMP_ADCVALIDADDR 0x078 57#define TEMP_ADCVOLTADDR 0x07c 58#define TEMP_RDCTRL 0x080 59#define TEMP_ADCVALIDMASK 0x084 60#define TEMP_ADCVOLTAGESHIFT 0x088 61#define TEMP_ADCWRITECTRL 0x08c 62#define TEMP_MSR0 0x090 63#define TEMP_MSR1 0x094 64#define TEMP_MSR2 0x098 65#define TEMP_MSR3 0x0B8 66 67#define TEMP_SPARE0 0x0f0 68 69#define TEMP_ADCPNP0_1 0x148 70#define TEMP_ADCPNP1_1 0x14c 71#define TEMP_ADCPNP2_1 0x150 72#define TEMP_MSR0_1 0x190 73#define TEMP_MSR1_1 0x194 74#define TEMP_MSR2_1 0x198 75#define TEMP_ADCPNP3_1 0x1b4 76#define TEMP_MSR3_1 0x1B8 77 78#define PTPCORESEL 0x400 79 80#define TEMP_MONCTL1_PERIOD_UNIT(x) ((x) & 0x3ff) 81 82#define TEMP_MONCTL2_FILTER_INTERVAL(x) (((x) & 0x3ff) << 16) 83#define TEMP_MONCTL2_SENSOR_INTERVAL(x) ((x) & 0x3ff) 84 85#define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x) (x) 86 87#define TEMP_ADCWRITECTRL_ADC_PNP_WRITE BIT(0) 88#define TEMP_ADCWRITECTRL_ADC_MUX_WRITE BIT(1) 89 90#define TEMP_ADCVALIDMASK_VALID_HIGH BIT(5) 91#define TEMP_ADCVALIDMASK_VALID_POS(bit) (bit) 92 93/* MT8173 thermal sensors */ 94#define MT8173_TS1 0 95#define MT8173_TS2 1 96#define MT8173_TS3 2 97#define MT8173_TS4 3 98#define MT8173_TSABB 4 99 100/* AUXADC channel 11 is used for the temperature sensors */ 101#define MT8173_TEMP_AUXADC_CHANNEL 11 102 103/* The total number of temperature sensors in the MT8173 */ 104#define MT8173_NUM_SENSORS 5 105 106/* The number of banks in the MT8173 */ 107#define MT8173_NUM_ZONES 4 108 109/* The number of sensing points per bank */ 110#define MT8173_NUM_SENSORS_PER_ZONE 4 111 112/* The number of controller in the MT8173 */ 113#define MT8173_NUM_CONTROLLER 1 114 115/* The calibration coefficient of sensor */ 116#define MT8173_CALIBRATION 165 117 118/* 119 * Layout of the fuses providing the calibration data 120 * These macros could be used for MT8183, MT8173, MT2701, and MT2712. 121 * MT8183 has 6 sensors and needs 6 VTS calibration data. 122 * MT8173 has 5 sensors and needs 5 VTS calibration data. 123 * MT2701 has 3 sensors and needs 3 VTS calibration data. 124 * MT2712 has 4 sensors and needs 4 VTS calibration data. 125 */ 126#define CALIB_BUF0_VALID_V1 BIT(0) 127#define CALIB_BUF1_ADC_GE_V1(x) (((x) >> 22) & 0x3ff) 128#define CALIB_BUF0_VTS_TS1_V1(x) (((x) >> 17) & 0x1ff) 129#define CALIB_BUF0_VTS_TS2_V1(x) (((x) >> 8) & 0x1ff) 130#define CALIB_BUF1_VTS_TS3_V1(x) (((x) >> 0) & 0x1ff) 131#define CALIB_BUF2_VTS_TS4_V1(x) (((x) >> 23) & 0x1ff) 132#define CALIB_BUF2_VTS_TS5_V1(x) (((x) >> 5) & 0x1ff) 133#define CALIB_BUF2_VTS_TSABB_V1(x) (((x) >> 14) & 0x1ff) 134#define CALIB_BUF0_DEGC_CALI_V1(x) (((x) >> 1) & 0x3f) 135#define CALIB_BUF0_O_SLOPE_V1(x) (((x) >> 26) & 0x3f) 136#define CALIB_BUF0_O_SLOPE_SIGN_V1(x) (((x) >> 7) & 0x1) 137#define CALIB_BUF1_ID_V1(x) (((x) >> 9) & 0x1) 138 139/* 140 * Layout of the fuses providing the calibration data 141 * These macros could be used for MT7622. 142 */ 143#define CALIB_BUF0_ADC_OE_V2(x) (((x) >> 22) & 0x3ff) 144#define CALIB_BUF0_ADC_GE_V2(x) (((x) >> 12) & 0x3ff) 145#define CALIB_BUF0_DEGC_CALI_V2(x) (((x) >> 6) & 0x3f) 146#define CALIB_BUF0_O_SLOPE_V2(x) (((x) >> 0) & 0x3f) 147#define CALIB_BUF1_VTS_TS1_V2(x) (((x) >> 23) & 0x1ff) 148#define CALIB_BUF1_VTS_TS2_V2(x) (((x) >> 14) & 0x1ff) 149#define CALIB_BUF1_VTS_TSABB_V2(x) (((x) >> 5) & 0x1ff) 150#define CALIB_BUF1_VALID_V2(x) (((x) >> 4) & 0x1) 151#define CALIB_BUF1_O_SLOPE_SIGN_V2(x) (((x) >> 3) & 0x1) 152 153enum { 154 VTS1, 155 VTS2, 156 VTS3, 157 VTS4, 158 VTS5, 159 VTSABB, 160 MAX_NUM_VTS, 161}; 162 163enum mtk_thermal_version { 164 MTK_THERMAL_V1 = 1, 165 MTK_THERMAL_V2, 166}; 167 168/* MT2701 thermal sensors */ 169#define MT2701_TS1 0 170#define MT2701_TS2 1 171#define MT2701_TSABB 2 172 173/* AUXADC channel 11 is used for the temperature sensors */ 174#define MT2701_TEMP_AUXADC_CHANNEL 11 175 176/* The total number of temperature sensors in the MT2701 */ 177#define MT2701_NUM_SENSORS 3 178 179/* The number of sensing points per bank */ 180#define MT2701_NUM_SENSORS_PER_ZONE 3 181 182/* The number of controller in the MT2701 */ 183#define MT2701_NUM_CONTROLLER 1 184 185/* The calibration coefficient of sensor */ 186#define MT2701_CALIBRATION 165 187 188/* MT2712 thermal sensors */ 189#define MT2712_TS1 0 190#define MT2712_TS2 1 191#define MT2712_TS3 2 192#define MT2712_TS4 3 193 194/* AUXADC channel 11 is used for the temperature sensors */ 195#define MT2712_TEMP_AUXADC_CHANNEL 11 196 197/* The total number of temperature sensors in the MT2712 */ 198#define MT2712_NUM_SENSORS 4 199 200/* The number of sensing points per bank */ 201#define MT2712_NUM_SENSORS_PER_ZONE 4 202 203/* The number of controller in the MT2712 */ 204#define MT2712_NUM_CONTROLLER 1 205 206/* The calibration coefficient of sensor */ 207#define MT2712_CALIBRATION 165 208 209#define MT7622_TEMP_AUXADC_CHANNEL 11 210#define MT7622_NUM_SENSORS 1 211#define MT7622_NUM_ZONES 1 212#define MT7622_NUM_SENSORS_PER_ZONE 1 213#define MT7622_TS1 0 214#define MT7622_NUM_CONTROLLER 1 215 216/* The maximum number of banks */ 217#define MAX_NUM_ZONES 8 218 219/* The calibration coefficient of sensor */ 220#define MT7622_CALIBRATION 165 221 222/* MT8183 thermal sensors */ 223#define MT8183_TS1 0 224#define MT8183_TS2 1 225#define MT8183_TS3 2 226#define MT8183_TS4 3 227#define MT8183_TS5 4 228#define MT8183_TSABB 5 229 230/* AUXADC channel is used for the temperature sensors */ 231#define MT8183_TEMP_AUXADC_CHANNEL 11 232 233/* The total number of temperature sensors in the MT8183 */ 234#define MT8183_NUM_SENSORS 6 235 236/* The number of banks in the MT8183 */ 237#define MT8183_NUM_ZONES 1 238 239/* The number of sensing points per bank */ 240#define MT8183_NUM_SENSORS_PER_ZONE 6 241 242/* The number of controller in the MT8183 */ 243#define MT8183_NUM_CONTROLLER 2 244 245/* The calibration coefficient of sensor */ 246#define MT8183_CALIBRATION 153 247 248struct mtk_thermal; 249 250struct thermal_bank_cfg { 251 unsigned int num_sensors; 252 const int *sensors; 253}; 254 255struct mtk_thermal_bank { 256 struct mtk_thermal *mt; 257 int id; 258}; 259 260struct mtk_thermal_data { 261 s32 num_banks; 262 s32 num_sensors; 263 s32 auxadc_channel; 264 const int *vts_index; 265 const int *sensor_mux_values; 266 const int *msr; 267 const int *adcpnp; 268 const int cali_val; 269 const int num_controller; 270 const int *controller_offset; 271 bool need_switch_bank; 272 struct thermal_bank_cfg bank_data[MAX_NUM_ZONES]; 273 enum mtk_thermal_version version; 274}; 275 276struct mtk_thermal { 277 struct device *dev; 278 void __iomem *thermal_base; 279 280 struct clk *clk_peri_therm; 281 struct clk *clk_auxadc; 282 /* lock: for getting and putting banks */ 283 struct mutex lock; 284 285 /* Calibration values */ 286 s32 adc_ge; 287 s32 adc_oe; 288 s32 degc_cali; 289 s32 o_slope; 290 s32 o_slope_sign; 291 s32 vts[MAX_NUM_VTS]; 292 293 const struct mtk_thermal_data *conf; 294 struct mtk_thermal_bank banks[MAX_NUM_ZONES]; 295}; 296 297/* MT8183 thermal sensor data */ 298static const int mt8183_bank_data[MT8183_NUM_SENSORS] = { 299 MT8183_TS1, MT8183_TS2, MT8183_TS3, MT8183_TS4, MT8183_TS5, MT8183_TSABB 300}; 301 302static const int mt8183_msr[MT8183_NUM_SENSORS_PER_ZONE] = { 303 TEMP_MSR0_1, TEMP_MSR1_1, TEMP_MSR2_1, TEMP_MSR1, TEMP_MSR0, TEMP_MSR3_1 304}; 305 306static const int mt8183_adcpnp[MT8183_NUM_SENSORS_PER_ZONE] = { 307 TEMP_ADCPNP0_1, TEMP_ADCPNP1_1, TEMP_ADCPNP2_1, 308 TEMP_ADCPNP1, TEMP_ADCPNP0, TEMP_ADCPNP3_1 309}; 310 311static const int mt8183_mux_values[MT8183_NUM_SENSORS] = { 0, 1, 2, 3, 4, 0 }; 312static const int mt8183_tc_offset[MT8183_NUM_CONTROLLER] = {0x0, 0x100}; 313 314static const int mt8183_vts_index[MT8183_NUM_SENSORS] = { 315 VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB 316}; 317 318/* MT8173 thermal sensor data */ 319static const int mt8173_bank_data[MT8173_NUM_ZONES][3] = { 320 { MT8173_TS2, MT8173_TS3 }, 321 { MT8173_TS2, MT8173_TS4 }, 322 { MT8173_TS1, MT8173_TS2, MT8173_TSABB }, 323 { MT8173_TS2 }, 324}; 325 326static const int mt8173_msr[MT8173_NUM_SENSORS_PER_ZONE] = { 327 TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3 328}; 329 330static const int mt8173_adcpnp[MT8173_NUM_SENSORS_PER_ZONE] = { 331 TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3 332}; 333 334static const int mt8173_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 }; 335static const int mt8173_tc_offset[MT8173_NUM_CONTROLLER] = { 0x0, }; 336 337static const int mt8173_vts_index[MT8173_NUM_SENSORS] = { 338 VTS1, VTS2, VTS3, VTS4, VTSABB 339}; 340 341/* MT2701 thermal sensor data */ 342static const int mt2701_bank_data[MT2701_NUM_SENSORS] = { 343 MT2701_TS1, MT2701_TS2, MT2701_TSABB 344}; 345 346static const int mt2701_msr[MT2701_NUM_SENSORS_PER_ZONE] = { 347 TEMP_MSR0, TEMP_MSR1, TEMP_MSR2 348}; 349 350static const int mt2701_adcpnp[MT2701_NUM_SENSORS_PER_ZONE] = { 351 TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2 352}; 353 354static const int mt2701_mux_values[MT2701_NUM_SENSORS] = { 0, 1, 16 }; 355static const int mt2701_tc_offset[MT2701_NUM_CONTROLLER] = { 0x0, }; 356 357static const int mt2701_vts_index[MT2701_NUM_SENSORS] = { 358 VTS1, VTS2, VTS3 359}; 360 361/* MT2712 thermal sensor data */ 362static const int mt2712_bank_data[MT2712_NUM_SENSORS] = { 363 MT2712_TS1, MT2712_TS2, MT2712_TS3, MT2712_TS4 364}; 365 366static const int mt2712_msr[MT2712_NUM_SENSORS_PER_ZONE] = { 367 TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3 368}; 369 370static const int mt2712_adcpnp[MT2712_NUM_SENSORS_PER_ZONE] = { 371 TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3 372}; 373 374static const int mt2712_mux_values[MT2712_NUM_SENSORS] = { 0, 1, 2, 3 }; 375static const int mt2712_tc_offset[MT2712_NUM_CONTROLLER] = { 0x0, }; 376 377static const int mt2712_vts_index[MT2712_NUM_SENSORS] = { 378 VTS1, VTS2, VTS3, VTS4 379}; 380 381/* MT7622 thermal sensor data */ 382static const int mt7622_bank_data[MT7622_NUM_SENSORS] = { MT7622_TS1, }; 383static const int mt7622_msr[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, }; 384static const int mt7622_adcpnp[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, }; 385static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, }; 386static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 }; 387static const int mt7622_tc_offset[MT7622_NUM_CONTROLLER] = { 0x0, }; 388 389/* 390 * The MT8173 thermal controller has four banks. Each bank can read up to 391 * four temperature sensors simultaneously. The MT8173 has a total of 5 392 * temperature sensors. We use each bank to measure a certain area of the 393 * SoC. Since TS2 is located centrally in the SoC it is influenced by multiple 394 * areas, hence is used in different banks. 395 * 396 * The thermal core only gets the maximum temperature of all banks, so 397 * the bank concept wouldn't be necessary here. However, the SVS (Smart 398 * Voltage Scaling) unit makes its decisions based on the same bank 399 * data, and this indeed needs the temperatures of the individual banks 400 * for making better decisions. 401 */ 402static const struct mtk_thermal_data mt8173_thermal_data = { 403 .auxadc_channel = MT8173_TEMP_AUXADC_CHANNEL, 404 .num_banks = MT8173_NUM_ZONES, 405 .num_sensors = MT8173_NUM_SENSORS, 406 .vts_index = mt8173_vts_index, 407 .cali_val = MT8173_CALIBRATION, 408 .num_controller = MT8173_NUM_CONTROLLER, 409 .controller_offset = mt8173_tc_offset, 410 .need_switch_bank = true, 411 .bank_data = { 412 { 413 .num_sensors = 2, 414 .sensors = mt8173_bank_data[0], 415 }, { 416 .num_sensors = 2, 417 .sensors = mt8173_bank_data[1], 418 }, { 419 .num_sensors = 3, 420 .sensors = mt8173_bank_data[2], 421 }, { 422 .num_sensors = 1, 423 .sensors = mt8173_bank_data[3], 424 }, 425 }, 426 .msr = mt8173_msr, 427 .adcpnp = mt8173_adcpnp, 428 .sensor_mux_values = mt8173_mux_values, 429 .version = MTK_THERMAL_V1, 430}; 431 432/* 433 * The MT2701 thermal controller has one bank, which can read up to 434 * three temperature sensors simultaneously. The MT2701 has a total of 3 435 * temperature sensors. 436 * 437 * The thermal core only gets the maximum temperature of this one bank, 438 * so the bank concept wouldn't be necessary here. However, the SVS (Smart 439 * Voltage Scaling) unit makes its decisions based on the same bank 440 * data. 441 */ 442static const struct mtk_thermal_data mt2701_thermal_data = { 443 .auxadc_channel = MT2701_TEMP_AUXADC_CHANNEL, 444 .num_banks = 1, 445 .num_sensors = MT2701_NUM_SENSORS, 446 .vts_index = mt2701_vts_index, 447 .cali_val = MT2701_CALIBRATION, 448 .num_controller = MT2701_NUM_CONTROLLER, 449 .controller_offset = mt2701_tc_offset, 450 .need_switch_bank = true, 451 .bank_data = { 452 { 453 .num_sensors = 3, 454 .sensors = mt2701_bank_data, 455 }, 456 }, 457 .msr = mt2701_msr, 458 .adcpnp = mt2701_adcpnp, 459 .sensor_mux_values = mt2701_mux_values, 460 .version = MTK_THERMAL_V1, 461}; 462 463/* 464 * The MT2712 thermal controller has one bank, which can read up to 465 * four temperature sensors simultaneously. The MT2712 has a total of 4 466 * temperature sensors. 467 * 468 * The thermal core only gets the maximum temperature of this one bank, 469 * so the bank concept wouldn't be necessary here. However, the SVS (Smart 470 * Voltage Scaling) unit makes its decisions based on the same bank 471 * data. 472 */ 473static const struct mtk_thermal_data mt2712_thermal_data = { 474 .auxadc_channel = MT2712_TEMP_AUXADC_CHANNEL, 475 .num_banks = 1, 476 .num_sensors = MT2712_NUM_SENSORS, 477 .vts_index = mt2712_vts_index, 478 .cali_val = MT2712_CALIBRATION, 479 .num_controller = MT2712_NUM_CONTROLLER, 480 .controller_offset = mt2712_tc_offset, 481 .need_switch_bank = true, 482 .bank_data = { 483 { 484 .num_sensors = 4, 485 .sensors = mt2712_bank_data, 486 }, 487 }, 488 .msr = mt2712_msr, 489 .adcpnp = mt2712_adcpnp, 490 .sensor_mux_values = mt2712_mux_values, 491 .version = MTK_THERMAL_V1, 492}; 493 494/* 495 * MT7622 have only one sensing point which uses AUXADC Channel 11 for raw data 496 * access. 497 */ 498static const struct mtk_thermal_data mt7622_thermal_data = { 499 .auxadc_channel = MT7622_TEMP_AUXADC_CHANNEL, 500 .num_banks = MT7622_NUM_ZONES, 501 .num_sensors = MT7622_NUM_SENSORS, 502 .vts_index = mt7622_vts_index, 503 .cali_val = MT7622_CALIBRATION, 504 .num_controller = MT7622_NUM_CONTROLLER, 505 .controller_offset = mt7622_tc_offset, 506 .need_switch_bank = true, 507 .bank_data = { 508 { 509 .num_sensors = 1, 510 .sensors = mt7622_bank_data, 511 }, 512 }, 513 .msr = mt7622_msr, 514 .adcpnp = mt7622_adcpnp, 515 .sensor_mux_values = mt7622_mux_values, 516 .version = MTK_THERMAL_V2, 517}; 518 519/* 520 * The MT8183 thermal controller has one bank for the current SW framework. 521 * The MT8183 has a total of 6 temperature sensors. 522 * There are two thermal controller to control the six sensor. 523 * The first one bind 2 sensor, and the other bind 4 sensors. 524 * The thermal core only gets the maximum temperature of all sensor, so 525 * the bank concept wouldn't be necessary here. However, the SVS (Smart 526 * Voltage Scaling) unit makes its decisions based on the same bank 527 * data, and this indeed needs the temperatures of the individual banks 528 * for making better decisions. 529 */ 530static const struct mtk_thermal_data mt8183_thermal_data = { 531 .auxadc_channel = MT8183_TEMP_AUXADC_CHANNEL, 532 .num_banks = MT8183_NUM_ZONES, 533 .num_sensors = MT8183_NUM_SENSORS, 534 .vts_index = mt8183_vts_index, 535 .cali_val = MT8183_CALIBRATION, 536 .num_controller = MT8183_NUM_CONTROLLER, 537 .controller_offset = mt8183_tc_offset, 538 .need_switch_bank = false, 539 .bank_data = { 540 { 541 .num_sensors = 6, 542 .sensors = mt8183_bank_data, 543 }, 544 }, 545 546 .msr = mt8183_msr, 547 .adcpnp = mt8183_adcpnp, 548 .sensor_mux_values = mt8183_mux_values, 549 .version = MTK_THERMAL_V1, 550}; 551 552/** 553 * raw_to_mcelsius - convert a raw ADC value to mcelsius 554 * @mt: The thermal controller 555 * @sensno: sensor number 556 * @raw: raw ADC value 557 * 558 * This converts the raw ADC value to mcelsius using the SoC specific 559 * calibration constants 560 */ 561static int raw_to_mcelsius_v1(struct mtk_thermal *mt, int sensno, s32 raw) 562{ 563 s32 tmp; 564 565 raw &= 0xfff; 566 567 tmp = 203450520 << 3; 568 tmp /= mt->conf->cali_val + mt->o_slope; 569 tmp /= 10000 + mt->adc_ge; 570 tmp *= raw - mt->vts[sensno] - 3350; 571 tmp >>= 3; 572 573 return mt->degc_cali * 500 - tmp; 574} 575 576static int raw_to_mcelsius_v2(struct mtk_thermal *mt, int sensno, s32 raw) 577{ 578 s32 format_1; 579 s32 format_2; 580 s32 g_oe; 581 s32 g_gain; 582 s32 g_x_roomt; 583 s32 tmp; 584 585 if (raw == 0) 586 return 0; 587 588 raw &= 0xfff; 589 g_gain = 10000 + (((mt->adc_ge - 512) * 10000) >> 12); 590 g_oe = mt->adc_oe - 512; 591 format_1 = mt->vts[VTS2] + 3105 - g_oe; 592 format_2 = (mt->degc_cali * 10) >> 1; 593 g_x_roomt = (((format_1 * 10000) >> 12) * 10000) / g_gain; 594 595 tmp = (((((raw - g_oe) * 10000) >> 12) * 10000) / g_gain) - g_x_roomt; 596 tmp = tmp * 10 * 100 / 11; 597 598 if (mt->o_slope_sign == 0) 599 tmp = tmp / (165 - mt->o_slope); 600 else 601 tmp = tmp / (165 + mt->o_slope); 602 603 return (format_2 - tmp) * 100; 604} 605 606/** 607 * mtk_thermal_get_bank - get bank 608 * @bank: The bank 609 * 610 * The bank registers are banked, we have to select a bank in the 611 * PTPCORESEL register to access it. 612 */ 613static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank) 614{ 615 struct mtk_thermal *mt = bank->mt; 616 u32 val; 617 618 if (mt->conf->need_switch_bank) { 619 mutex_lock(&mt->lock); 620 621 val = readl(mt->thermal_base + PTPCORESEL); 622 val &= ~0xf; 623 val |= bank->id; 624 writel(val, mt->thermal_base + PTPCORESEL); 625 } 626} 627 628/** 629 * mtk_thermal_put_bank - release bank 630 * @bank: The bank 631 * 632 * release a bank previously taken with mtk_thermal_get_bank, 633 */ 634static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank) 635{ 636 struct mtk_thermal *mt = bank->mt; 637 638 if (mt->conf->need_switch_bank) 639 mutex_unlock(&mt->lock); 640} 641 642/** 643 * mtk_thermal_bank_temperature - get the temperature of a bank 644 * @bank: The bank 645 * 646 * The temperature of a bank is considered the maximum temperature of 647 * the sensors associated to the bank. 648 */ 649static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank) 650{ 651 struct mtk_thermal *mt = bank->mt; 652 const struct mtk_thermal_data *conf = mt->conf; 653 int i, temp = INT_MIN, max = INT_MIN; 654 u32 raw; 655 656 for (i = 0; i < conf->bank_data[bank->id].num_sensors; i++) { 657 raw = readl(mt->thermal_base + conf->msr[i]); 658 659 if (mt->conf->version == MTK_THERMAL_V1) { 660 temp = raw_to_mcelsius_v1( 661 mt, conf->bank_data[bank->id].sensors[i], raw); 662 } else { 663 temp = raw_to_mcelsius_v2( 664 mt, conf->bank_data[bank->id].sensors[i], raw); 665 } 666 667 /* 668 * The first read of a sensor often contains very high bogus 669 * temperature value. Filter these out so that the system does 670 * not immediately shut down. 671 */ 672 if (temp > 200000) 673 temp = 0; 674 675 if (temp > max) 676 max = temp; 677 } 678 679 return max; 680} 681 682static int mtk_read_temp(void *data, int *temperature) 683{ 684 struct mtk_thermal *mt = data; 685 int i; 686 int tempmax = INT_MIN; 687 688 for (i = 0; i < mt->conf->num_banks; i++) { 689 struct mtk_thermal_bank *bank = &mt->banks[i]; 690 691 mtk_thermal_get_bank(bank); 692 693 tempmax = max(tempmax, mtk_thermal_bank_temperature(bank)); 694 695 mtk_thermal_put_bank(bank); 696 } 697 698 *temperature = tempmax; 699 700 return 0; 701} 702 703static const struct thermal_zone_of_device_ops mtk_thermal_ops = { 704 .get_temp = mtk_read_temp, 705}; 706 707static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num, 708 u32 apmixed_phys_base, u32 auxadc_phys_base, 709 int ctrl_id) 710{ 711 struct mtk_thermal_bank *bank = &mt->banks[num]; 712 const struct mtk_thermal_data *conf = mt->conf; 713 int i; 714 715 int offset = mt->conf->controller_offset[ctrl_id]; 716 void __iomem *controller_base = mt->thermal_base + offset; 717 718 bank->id = num; 719 bank->mt = mt; 720 721 mtk_thermal_get_bank(bank); 722 723 /* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */ 724 writel(TEMP_MONCTL1_PERIOD_UNIT(12), controller_base + TEMP_MONCTL1); 725 726 /* 727 * filt interval is 1 * 46.540us = 46.54us, 728 * sen interval is 429 * 46.540us = 19.96ms 729 */ 730 writel(TEMP_MONCTL2_FILTER_INTERVAL(1) | 731 TEMP_MONCTL2_SENSOR_INTERVAL(429), 732 controller_base + TEMP_MONCTL2); 733 734 /* poll is set to 10u */ 735 writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768), 736 controller_base + TEMP_AHBPOLL); 737 738 /* temperature sampling control, 1 sample */ 739 writel(0x0, controller_base + TEMP_MSRCTL0); 740 741 /* exceed this polling time, IRQ would be inserted */ 742 writel(0xffffffff, controller_base + TEMP_AHBTO); 743 744 /* number of interrupts per event, 1 is enough */ 745 writel(0x0, controller_base + TEMP_MONIDET0); 746 writel(0x0, controller_base + TEMP_MONIDET1); 747 748 /* 749 * The MT8173 thermal controller does not have its own ADC. Instead it 750 * uses AHB bus accesses to control the AUXADC. To do this the thermal 751 * controller has to be programmed with the physical addresses of the 752 * AUXADC registers and with the various bit positions in the AUXADC. 753 * Also the thermal controller controls a mux in the APMIXEDSYS register 754 * space. 755 */ 756 757 /* 758 * this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0) 759 * automatically by hw 760 */ 761 writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCMUX); 762 763 /* AHB address for auxadc mux selection */ 764 writel(auxadc_phys_base + AUXADC_CON1_CLR_V, 765 controller_base + TEMP_ADCMUXADDR); 766 767 if (mt->conf->version == MTK_THERMAL_V1) { 768 /* AHB address for pnp sensor mux selection */ 769 writel(apmixed_phys_base + APMIXED_SYS_TS_CON1, 770 controller_base + TEMP_PNPMUXADDR); 771 } 772 773 /* AHB value for auxadc enable */ 774 writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCEN); 775 776 /* AHB address for auxadc enable (channel 0 immediate mode selected) */ 777 writel(auxadc_phys_base + AUXADC_CON1_SET_V, 778 controller_base + TEMP_ADCENADDR); 779 780 /* AHB address for auxadc valid bit */ 781 writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel), 782 controller_base + TEMP_ADCVALIDADDR); 783 784 /* AHB address for auxadc voltage output */ 785 writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel), 786 controller_base + TEMP_ADCVOLTADDR); 787 788 /* read valid & voltage are at the same register */ 789 writel(0x0, controller_base + TEMP_RDCTRL); 790 791 /* indicate where the valid bit is */ 792 writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12), 793 controller_base + TEMP_ADCVALIDMASK); 794 795 /* no shift */ 796 writel(0x0, controller_base + TEMP_ADCVOLTAGESHIFT); 797 798 /* enable auxadc mux write transaction */ 799 writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE, 800 controller_base + TEMP_ADCWRITECTRL); 801 802 for (i = 0; i < conf->bank_data[num].num_sensors; i++) 803 writel(conf->sensor_mux_values[conf->bank_data[num].sensors[i]], 804 mt->thermal_base + conf->adcpnp[i]); 805 806 writel((1 << conf->bank_data[num].num_sensors) - 1, 807 controller_base + TEMP_MONCTL0); 808 809 writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE | 810 TEMP_ADCWRITECTRL_ADC_MUX_WRITE, 811 controller_base + TEMP_ADCWRITECTRL); 812 813 mtk_thermal_put_bank(bank); 814} 815 816static u64 of_get_phys_base(struct device_node *np) 817{ 818 u64 size64; 819 const __be32 *regaddr_p; 820 821 regaddr_p = of_get_address(np, 0, &size64, NULL); 822 if (!regaddr_p) 823 return OF_BAD_ADDR; 824 825 return of_translate_address(np, regaddr_p); 826} 827 828static int mtk_thermal_extract_efuse_v1(struct mtk_thermal *mt, u32 *buf) 829{ 830 int i; 831 832 if (!(buf[0] & CALIB_BUF0_VALID_V1)) 833 return -EINVAL; 834 835 mt->adc_ge = CALIB_BUF1_ADC_GE_V1(buf[1]); 836 837 for (i = 0; i < mt->conf->num_sensors; i++) { 838 switch (mt->conf->vts_index[i]) { 839 case VTS1: 840 mt->vts[VTS1] = CALIB_BUF0_VTS_TS1_V1(buf[0]); 841 break; 842 case VTS2: 843 mt->vts[VTS2] = CALIB_BUF0_VTS_TS2_V1(buf[0]); 844 break; 845 case VTS3: 846 mt->vts[VTS3] = CALIB_BUF1_VTS_TS3_V1(buf[1]); 847 break; 848 case VTS4: 849 mt->vts[VTS4] = CALIB_BUF2_VTS_TS4_V1(buf[2]); 850 break; 851 case VTS5: 852 mt->vts[VTS5] = CALIB_BUF2_VTS_TS5_V1(buf[2]); 853 break; 854 case VTSABB: 855 mt->vts[VTSABB] = 856 CALIB_BUF2_VTS_TSABB_V1(buf[2]); 857 break; 858 default: 859 break; 860 } 861 } 862 863 mt->degc_cali = CALIB_BUF0_DEGC_CALI_V1(buf[0]); 864 if (CALIB_BUF1_ID_V1(buf[1]) & 865 CALIB_BUF0_O_SLOPE_SIGN_V1(buf[0])) 866 mt->o_slope = -CALIB_BUF0_O_SLOPE_V1(buf[0]); 867 else 868 mt->o_slope = CALIB_BUF0_O_SLOPE_V1(buf[0]); 869 870 return 0; 871} 872 873static int mtk_thermal_extract_efuse_v2(struct mtk_thermal *mt, u32 *buf) 874{ 875 if (!CALIB_BUF1_VALID_V2(buf[1])) 876 return -EINVAL; 877 878 mt->adc_oe = CALIB_BUF0_ADC_OE_V2(buf[0]); 879 mt->adc_ge = CALIB_BUF0_ADC_GE_V2(buf[0]); 880 mt->degc_cali = CALIB_BUF0_DEGC_CALI_V2(buf[0]); 881 mt->o_slope = CALIB_BUF0_O_SLOPE_V2(buf[0]); 882 mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V2(buf[1]); 883 mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V2(buf[1]); 884 mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V2(buf[1]); 885 mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V2(buf[1]); 886 887 return 0; 888} 889 890static int mtk_thermal_get_calibration_data(struct device *dev, 891 struct mtk_thermal *mt) 892{ 893 struct nvmem_cell *cell; 894 u32 *buf; 895 size_t len; 896 int i, ret = 0; 897 898 /* Start with default values */ 899 mt->adc_ge = 512; 900 for (i = 0; i < mt->conf->num_sensors; i++) 901 mt->vts[i] = 260; 902 mt->degc_cali = 40; 903 mt->o_slope = 0; 904 905 cell = nvmem_cell_get(dev, "calibration-data"); 906 if (IS_ERR(cell)) { 907 if (PTR_ERR(cell) == -EPROBE_DEFER) 908 return PTR_ERR(cell); 909 return 0; 910 } 911 912 buf = (u32 *)nvmem_cell_read(cell, &len); 913 914 nvmem_cell_put(cell); 915 916 if (IS_ERR(buf)) 917 return PTR_ERR(buf); 918 919 if (len < 3 * sizeof(u32)) { 920 dev_warn(dev, "invalid calibration data\n"); 921 ret = -EINVAL; 922 goto out; 923 } 924 925 if (mt->conf->version == MTK_THERMAL_V1) 926 ret = mtk_thermal_extract_efuse_v1(mt, buf); 927 else 928 ret = mtk_thermal_extract_efuse_v2(mt, buf); 929 930 if (ret) { 931 dev_info(dev, "Device not calibrated, using default calibration values\n"); 932 ret = 0; 933 } 934 935out: 936 kfree(buf); 937 938 return ret; 939} 940 941static const struct of_device_id mtk_thermal_of_match[] = { 942 { 943 .compatible = "mediatek,mt8173-thermal", 944 .data = (void *)&mt8173_thermal_data, 945 }, 946 { 947 .compatible = "mediatek,mt2701-thermal", 948 .data = (void *)&mt2701_thermal_data, 949 }, 950 { 951 .compatible = "mediatek,mt2712-thermal", 952 .data = (void *)&mt2712_thermal_data, 953 }, 954 { 955 .compatible = "mediatek,mt7622-thermal", 956 .data = (void *)&mt7622_thermal_data, 957 }, 958 { 959 .compatible = "mediatek,mt8183-thermal", 960 .data = (void *)&mt8183_thermal_data, 961 }, { 962 }, 963}; 964MODULE_DEVICE_TABLE(of, mtk_thermal_of_match); 965 966static void mtk_thermal_turn_on_buffer(void __iomem *apmixed_base) 967{ 968 int tmp; 969 970 tmp = readl(apmixed_base + APMIXED_SYS_TS_CON1); 971 tmp &= ~(0x37); 972 tmp |= 0x1; 973 writel(tmp, apmixed_base + APMIXED_SYS_TS_CON1); 974 udelay(200); 975} 976 977static void mtk_thermal_release_periodic_ts(struct mtk_thermal *mt, 978 void __iomem *auxadc_base) 979{ 980 int tmp; 981 982 writel(0x800, auxadc_base + AUXADC_CON1_SET_V); 983 writel(0x1, mt->thermal_base + TEMP_MONCTL0); 984 tmp = readl(mt->thermal_base + TEMP_MSRCTL1); 985 writel((tmp & (~0x10e)), mt->thermal_base + TEMP_MSRCTL1); 986} 987 988static int mtk_thermal_probe(struct platform_device *pdev) 989{ 990 int ret, i, ctrl_id; 991 struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node; 992 struct mtk_thermal *mt; 993 struct resource *res; 994 u64 auxadc_phys_base, apmixed_phys_base; 995 struct thermal_zone_device *tzdev; 996 void __iomem *apmixed_base, *auxadc_base; 997 998 mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL); 999 if (!mt) 1000 return -ENOMEM; 1001 1002 mt->conf = of_device_get_match_data(&pdev->dev); 1003 1004 mt->clk_peri_therm = devm_clk_get(&pdev->dev, "therm"); 1005 if (IS_ERR(mt->clk_peri_therm)) 1006 return PTR_ERR(mt->clk_peri_therm); 1007 1008 mt->clk_auxadc = devm_clk_get(&pdev->dev, "auxadc"); 1009 if (IS_ERR(mt->clk_auxadc)) 1010 return PTR_ERR(mt->clk_auxadc); 1011 1012 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1013 mt->thermal_base = devm_ioremap_resource(&pdev->dev, res); 1014 if (IS_ERR(mt->thermal_base)) 1015 return PTR_ERR(mt->thermal_base); 1016 1017 ret = mtk_thermal_get_calibration_data(&pdev->dev, mt); 1018 if (ret) 1019 return ret; 1020 1021 mutex_init(&mt->lock); 1022 1023 mt->dev = &pdev->dev; 1024 1025 auxadc = of_parse_phandle(np, "mediatek,auxadc", 0); 1026 if (!auxadc) { 1027 dev_err(&pdev->dev, "missing auxadc node\n"); 1028 return -ENODEV; 1029 } 1030 1031 auxadc_base = of_iomap(auxadc, 0); 1032 auxadc_phys_base = of_get_phys_base(auxadc); 1033 1034 of_node_put(auxadc); 1035 1036 if (auxadc_phys_base == OF_BAD_ADDR) { 1037 dev_err(&pdev->dev, "Can't get auxadc phys address\n"); 1038 return -EINVAL; 1039 } 1040 1041 apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0); 1042 if (!apmixedsys) { 1043 dev_err(&pdev->dev, "missing apmixedsys node\n"); 1044 return -ENODEV; 1045 } 1046 1047 apmixed_base = of_iomap(apmixedsys, 0); 1048 apmixed_phys_base = of_get_phys_base(apmixedsys); 1049 1050 of_node_put(apmixedsys); 1051 1052 if (apmixed_phys_base == OF_BAD_ADDR) { 1053 dev_err(&pdev->dev, "Can't get auxadc phys address\n"); 1054 return -EINVAL; 1055 } 1056 1057 ret = device_reset_optional(&pdev->dev); 1058 if (ret) 1059 return ret; 1060 1061 ret = clk_prepare_enable(mt->clk_auxadc); 1062 if (ret) { 1063 dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret); 1064 return ret; 1065 } 1066 1067 ret = clk_prepare_enable(mt->clk_peri_therm); 1068 if (ret) { 1069 dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret); 1070 goto err_disable_clk_auxadc; 1071 } 1072 1073 if (mt->conf->version == MTK_THERMAL_V2) { 1074 mtk_thermal_turn_on_buffer(apmixed_base); 1075 mtk_thermal_release_periodic_ts(mt, auxadc_base); 1076 } 1077 1078 for (ctrl_id = 0; ctrl_id < mt->conf->num_controller ; ctrl_id++) 1079 for (i = 0; i < mt->conf->num_banks; i++) 1080 mtk_thermal_init_bank(mt, i, apmixed_phys_base, 1081 auxadc_phys_base, ctrl_id); 1082 1083 platform_set_drvdata(pdev, mt); 1084 1085 tzdev = devm_thermal_zone_of_sensor_register(&pdev->dev, 0, mt, 1086 &mtk_thermal_ops); 1087 if (IS_ERR(tzdev)) { 1088 ret = PTR_ERR(tzdev); 1089 goto err_disable_clk_peri_therm; 1090 } 1091 1092 ret = devm_thermal_add_hwmon_sysfs(tzdev); 1093 if (ret) 1094 dev_warn(&pdev->dev, "error in thermal_add_hwmon_sysfs"); 1095 1096 return 0; 1097 1098err_disable_clk_peri_therm: 1099 clk_disable_unprepare(mt->clk_peri_therm); 1100err_disable_clk_auxadc: 1101 clk_disable_unprepare(mt->clk_auxadc); 1102 1103 return ret; 1104} 1105 1106static int mtk_thermal_remove(struct platform_device *pdev) 1107{ 1108 struct mtk_thermal *mt = platform_get_drvdata(pdev); 1109 1110 clk_disable_unprepare(mt->clk_peri_therm); 1111 clk_disable_unprepare(mt->clk_auxadc); 1112 1113 return 0; 1114} 1115 1116static struct platform_driver mtk_thermal_driver = { 1117 .probe = mtk_thermal_probe, 1118 .remove = mtk_thermal_remove, 1119 .driver = { 1120 .name = "mtk-thermal", 1121 .of_match_table = mtk_thermal_of_match, 1122 }, 1123}; 1124 1125module_platform_driver(mtk_thermal_driver); 1126 1127MODULE_AUTHOR("Michael Kao <michael.kao@mediatek.com>"); 1128MODULE_AUTHOR("Louis Yu <louis.yu@mediatek.com>"); 1129MODULE_AUTHOR("Dawei Chien <dawei.chien@mediatek.com>"); 1130MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>"); 1131MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>"); 1132MODULE_DESCRIPTION("Mediatek thermal driver"); 1133MODULE_LICENSE("GPL v2");