cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mtk_thermal.c (30603B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (c) 2015 MediaTek Inc.
      4 * Author: Hanyi Wu <hanyi.wu@mediatek.com>
      5 *         Sascha Hauer <s.hauer@pengutronix.de>
      6 *         Dawei Chien <dawei.chien@mediatek.com>
      7 *         Louis Yu <louis.yu@mediatek.com>
      8 */
      9
     10#include <linux/clk.h>
     11#include <linux/delay.h>
     12#include <linux/interrupt.h>
     13#include <linux/kernel.h>
     14#include <linux/module.h>
     15#include <linux/nvmem-consumer.h>
     16#include <linux/of.h>
     17#include <linux/of_address.h>
     18#include <linux/of_device.h>
     19#include <linux/platform_device.h>
     20#include <linux/slab.h>
     21#include <linux/io.h>
     22#include <linux/thermal.h>
     23#include <linux/reset.h>
     24#include <linux/types.h>
     25
     26#include "thermal_hwmon.h"
     27
     28/* AUXADC Registers */
     29#define AUXADC_CON1_SET_V	0x008
     30#define AUXADC_CON1_CLR_V	0x00c
     31#define AUXADC_CON2_V		0x010
     32#define AUXADC_DATA(channel)	(0x14 + (channel) * 4)
     33
     34#define APMIXED_SYS_TS_CON1	0x604
     35
     36/* Thermal Controller Registers */
     37#define TEMP_MONCTL0		0x000
     38#define TEMP_MONCTL1		0x004
     39#define TEMP_MONCTL2		0x008
     40#define TEMP_MONIDET0		0x014
     41#define TEMP_MONIDET1		0x018
     42#define TEMP_MSRCTL0		0x038
     43#define TEMP_MSRCTL1		0x03c
     44#define TEMP_AHBPOLL		0x040
     45#define TEMP_AHBTO		0x044
     46#define TEMP_ADCPNP0		0x048
     47#define TEMP_ADCPNP1		0x04c
     48#define TEMP_ADCPNP2		0x050
     49#define TEMP_ADCPNP3		0x0b4
     50
     51#define TEMP_ADCMUX		0x054
     52#define TEMP_ADCEN		0x060
     53#define TEMP_PNPMUXADDR		0x064
     54#define TEMP_ADCMUXADDR		0x068
     55#define TEMP_ADCENADDR		0x074
     56#define TEMP_ADCVALIDADDR	0x078
     57#define TEMP_ADCVOLTADDR	0x07c
     58#define TEMP_RDCTRL		0x080
     59#define TEMP_ADCVALIDMASK	0x084
     60#define TEMP_ADCVOLTAGESHIFT	0x088
     61#define TEMP_ADCWRITECTRL	0x08c
     62#define TEMP_MSR0		0x090
     63#define TEMP_MSR1		0x094
     64#define TEMP_MSR2		0x098
     65#define TEMP_MSR3		0x0B8
     66
     67#define TEMP_SPARE0		0x0f0
     68
     69#define TEMP_ADCPNP0_1          0x148
     70#define TEMP_ADCPNP1_1          0x14c
     71#define TEMP_ADCPNP2_1          0x150
     72#define TEMP_MSR0_1             0x190
     73#define TEMP_MSR1_1             0x194
     74#define TEMP_MSR2_1             0x198
     75#define TEMP_ADCPNP3_1          0x1b4
     76#define TEMP_MSR3_1             0x1B8
     77
     78#define PTPCORESEL		0x400
     79
     80#define TEMP_MONCTL1_PERIOD_UNIT(x)	((x) & 0x3ff)
     81
     82#define TEMP_MONCTL2_FILTER_INTERVAL(x)	(((x) & 0x3ff) << 16)
     83#define TEMP_MONCTL2_SENSOR_INTERVAL(x)	((x) & 0x3ff)
     84
     85#define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x)	(x)
     86
     87#define TEMP_ADCWRITECTRL_ADC_PNP_WRITE		BIT(0)
     88#define TEMP_ADCWRITECTRL_ADC_MUX_WRITE		BIT(1)
     89
     90#define TEMP_ADCVALIDMASK_VALID_HIGH		BIT(5)
     91#define TEMP_ADCVALIDMASK_VALID_POS(bit)	(bit)
     92
     93/* MT8173 thermal sensors */
     94#define MT8173_TS1	0
     95#define MT8173_TS2	1
     96#define MT8173_TS3	2
     97#define MT8173_TS4	3
     98#define MT8173_TSABB	4
     99
    100/* AUXADC channel 11 is used for the temperature sensors */
    101#define MT8173_TEMP_AUXADC_CHANNEL	11
    102
    103/* The total number of temperature sensors in the MT8173 */
    104#define MT8173_NUM_SENSORS		5
    105
    106/* The number of banks in the MT8173 */
    107#define MT8173_NUM_ZONES		4
    108
    109/* The number of sensing points per bank */
    110#define MT8173_NUM_SENSORS_PER_ZONE	4
    111
    112/* The number of controller in the MT8173 */
    113#define MT8173_NUM_CONTROLLER		1
    114
    115/* The calibration coefficient of sensor  */
    116#define MT8173_CALIBRATION	165
    117
    118/*
    119 * Layout of the fuses providing the calibration data
    120 * These macros could be used for MT8183, MT8173, MT2701, and MT2712.
    121 * MT8183 has 6 sensors and needs 6 VTS calibration data.
    122 * MT8173 has 5 sensors and needs 5 VTS calibration data.
    123 * MT2701 has 3 sensors and needs 3 VTS calibration data.
    124 * MT2712 has 4 sensors and needs 4 VTS calibration data.
    125 */
    126#define CALIB_BUF0_VALID_V1		BIT(0)
    127#define CALIB_BUF1_ADC_GE_V1(x)		(((x) >> 22) & 0x3ff)
    128#define CALIB_BUF0_VTS_TS1_V1(x)	(((x) >> 17) & 0x1ff)
    129#define CALIB_BUF0_VTS_TS2_V1(x)	(((x) >> 8) & 0x1ff)
    130#define CALIB_BUF1_VTS_TS3_V1(x)	(((x) >> 0) & 0x1ff)
    131#define CALIB_BUF2_VTS_TS4_V1(x)	(((x) >> 23) & 0x1ff)
    132#define CALIB_BUF2_VTS_TS5_V1(x)	(((x) >> 5) & 0x1ff)
    133#define CALIB_BUF2_VTS_TSABB_V1(x)	(((x) >> 14) & 0x1ff)
    134#define CALIB_BUF0_DEGC_CALI_V1(x)	(((x) >> 1) & 0x3f)
    135#define CALIB_BUF0_O_SLOPE_V1(x)	(((x) >> 26) & 0x3f)
    136#define CALIB_BUF0_O_SLOPE_SIGN_V1(x)	(((x) >> 7) & 0x1)
    137#define CALIB_BUF1_ID_V1(x)		(((x) >> 9) & 0x1)
    138
    139/*
    140 * Layout of the fuses providing the calibration data
    141 * These macros could be used for MT7622.
    142 */
    143#define CALIB_BUF0_ADC_OE_V2(x)		(((x) >> 22) & 0x3ff)
    144#define CALIB_BUF0_ADC_GE_V2(x)		(((x) >> 12) & 0x3ff)
    145#define CALIB_BUF0_DEGC_CALI_V2(x)	(((x) >> 6) & 0x3f)
    146#define CALIB_BUF0_O_SLOPE_V2(x)	(((x) >> 0) & 0x3f)
    147#define CALIB_BUF1_VTS_TS1_V2(x)	(((x) >> 23) & 0x1ff)
    148#define CALIB_BUF1_VTS_TS2_V2(x)	(((x) >> 14) & 0x1ff)
    149#define CALIB_BUF1_VTS_TSABB_V2(x)	(((x) >> 5) & 0x1ff)
    150#define CALIB_BUF1_VALID_V2(x)		(((x) >> 4) & 0x1)
    151#define CALIB_BUF1_O_SLOPE_SIGN_V2(x)	(((x) >> 3) & 0x1)
    152
    153enum {
    154	VTS1,
    155	VTS2,
    156	VTS3,
    157	VTS4,
    158	VTS5,
    159	VTSABB,
    160	MAX_NUM_VTS,
    161};
    162
    163enum mtk_thermal_version {
    164	MTK_THERMAL_V1 = 1,
    165	MTK_THERMAL_V2,
    166};
    167
    168/* MT2701 thermal sensors */
    169#define MT2701_TS1	0
    170#define MT2701_TS2	1
    171#define MT2701_TSABB	2
    172
    173/* AUXADC channel 11 is used for the temperature sensors */
    174#define MT2701_TEMP_AUXADC_CHANNEL	11
    175
    176/* The total number of temperature sensors in the MT2701 */
    177#define MT2701_NUM_SENSORS	3
    178
    179/* The number of sensing points per bank */
    180#define MT2701_NUM_SENSORS_PER_ZONE	3
    181
    182/* The number of controller in the MT2701 */
    183#define MT2701_NUM_CONTROLLER		1
    184
    185/* The calibration coefficient of sensor  */
    186#define MT2701_CALIBRATION	165
    187
    188/* MT2712 thermal sensors */
    189#define MT2712_TS1	0
    190#define MT2712_TS2	1
    191#define MT2712_TS3	2
    192#define MT2712_TS4	3
    193
    194/* AUXADC channel 11 is used for the temperature sensors */
    195#define MT2712_TEMP_AUXADC_CHANNEL	11
    196
    197/* The total number of temperature sensors in the MT2712 */
    198#define MT2712_NUM_SENSORS	4
    199
    200/* The number of sensing points per bank */
    201#define MT2712_NUM_SENSORS_PER_ZONE	4
    202
    203/* The number of controller in the MT2712 */
    204#define MT2712_NUM_CONTROLLER		1
    205
    206/* The calibration coefficient of sensor  */
    207#define MT2712_CALIBRATION	165
    208
    209#define MT7622_TEMP_AUXADC_CHANNEL	11
    210#define MT7622_NUM_SENSORS		1
    211#define MT7622_NUM_ZONES		1
    212#define MT7622_NUM_SENSORS_PER_ZONE	1
    213#define MT7622_TS1	0
    214#define MT7622_NUM_CONTROLLER		1
    215
    216/* The maximum number of banks */
    217#define MAX_NUM_ZONES		8
    218
    219/* The calibration coefficient of sensor  */
    220#define MT7622_CALIBRATION	165
    221
    222/* MT8183 thermal sensors */
    223#define MT8183_TS1	0
    224#define MT8183_TS2	1
    225#define MT8183_TS3	2
    226#define MT8183_TS4	3
    227#define MT8183_TS5	4
    228#define MT8183_TSABB	5
    229
    230/* AUXADC channel  is used for the temperature sensors */
    231#define MT8183_TEMP_AUXADC_CHANNEL	11
    232
    233/* The total number of temperature sensors in the MT8183 */
    234#define MT8183_NUM_SENSORS	6
    235
    236/* The number of banks in the MT8183 */
    237#define MT8183_NUM_ZONES               1
    238
    239/* The number of sensing points per bank */
    240#define MT8183_NUM_SENSORS_PER_ZONE	 6
    241
    242/* The number of controller in the MT8183 */
    243#define MT8183_NUM_CONTROLLER		2
    244
    245/* The calibration coefficient of sensor  */
    246#define MT8183_CALIBRATION	153
    247
    248struct mtk_thermal;
    249
    250struct thermal_bank_cfg {
    251	unsigned int num_sensors;
    252	const int *sensors;
    253};
    254
    255struct mtk_thermal_bank {
    256	struct mtk_thermal *mt;
    257	int id;
    258};
    259
    260struct mtk_thermal_data {
    261	s32 num_banks;
    262	s32 num_sensors;
    263	s32 auxadc_channel;
    264	const int *vts_index;
    265	const int *sensor_mux_values;
    266	const int *msr;
    267	const int *adcpnp;
    268	const int cali_val;
    269	const int num_controller;
    270	const int *controller_offset;
    271	bool need_switch_bank;
    272	struct thermal_bank_cfg bank_data[MAX_NUM_ZONES];
    273	enum mtk_thermal_version version;
    274};
    275
    276struct mtk_thermal {
    277	struct device *dev;
    278	void __iomem *thermal_base;
    279
    280	struct clk *clk_peri_therm;
    281	struct clk *clk_auxadc;
    282	/* lock: for getting and putting banks */
    283	struct mutex lock;
    284
    285	/* Calibration values */
    286	s32 adc_ge;
    287	s32 adc_oe;
    288	s32 degc_cali;
    289	s32 o_slope;
    290	s32 o_slope_sign;
    291	s32 vts[MAX_NUM_VTS];
    292
    293	const struct mtk_thermal_data *conf;
    294	struct mtk_thermal_bank banks[MAX_NUM_ZONES];
    295};
    296
    297/* MT8183 thermal sensor data */
    298static const int mt8183_bank_data[MT8183_NUM_SENSORS] = {
    299	MT8183_TS1, MT8183_TS2, MT8183_TS3, MT8183_TS4, MT8183_TS5, MT8183_TSABB
    300};
    301
    302static const int mt8183_msr[MT8183_NUM_SENSORS_PER_ZONE] = {
    303	TEMP_MSR0_1, TEMP_MSR1_1, TEMP_MSR2_1, TEMP_MSR1, TEMP_MSR0, TEMP_MSR3_1
    304};
    305
    306static const int mt8183_adcpnp[MT8183_NUM_SENSORS_PER_ZONE] = {
    307	TEMP_ADCPNP0_1, TEMP_ADCPNP1_1, TEMP_ADCPNP2_1,
    308	TEMP_ADCPNP1, TEMP_ADCPNP0, TEMP_ADCPNP3_1
    309};
    310
    311static const int mt8183_mux_values[MT8183_NUM_SENSORS] = { 0, 1, 2, 3, 4, 0 };
    312static const int mt8183_tc_offset[MT8183_NUM_CONTROLLER] = {0x0, 0x100};
    313
    314static const int mt8183_vts_index[MT8183_NUM_SENSORS] = {
    315	VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB
    316};
    317
    318/* MT8173 thermal sensor data */
    319static const int mt8173_bank_data[MT8173_NUM_ZONES][3] = {
    320	{ MT8173_TS2, MT8173_TS3 },
    321	{ MT8173_TS2, MT8173_TS4 },
    322	{ MT8173_TS1, MT8173_TS2, MT8173_TSABB },
    323	{ MT8173_TS2 },
    324};
    325
    326static const int mt8173_msr[MT8173_NUM_SENSORS_PER_ZONE] = {
    327	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
    328};
    329
    330static const int mt8173_adcpnp[MT8173_NUM_SENSORS_PER_ZONE] = {
    331	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
    332};
    333
    334static const int mt8173_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 };
    335static const int mt8173_tc_offset[MT8173_NUM_CONTROLLER] = { 0x0, };
    336
    337static const int mt8173_vts_index[MT8173_NUM_SENSORS] = {
    338	VTS1, VTS2, VTS3, VTS4, VTSABB
    339};
    340
    341/* MT2701 thermal sensor data */
    342static const int mt2701_bank_data[MT2701_NUM_SENSORS] = {
    343	MT2701_TS1, MT2701_TS2, MT2701_TSABB
    344};
    345
    346static const int mt2701_msr[MT2701_NUM_SENSORS_PER_ZONE] = {
    347	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2
    348};
    349
    350static const int mt2701_adcpnp[MT2701_NUM_SENSORS_PER_ZONE] = {
    351	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2
    352};
    353
    354static const int mt2701_mux_values[MT2701_NUM_SENSORS] = { 0, 1, 16 };
    355static const int mt2701_tc_offset[MT2701_NUM_CONTROLLER] = { 0x0, };
    356
    357static const int mt2701_vts_index[MT2701_NUM_SENSORS] = {
    358	VTS1, VTS2, VTS3
    359};
    360
    361/* MT2712 thermal sensor data */
    362static const int mt2712_bank_data[MT2712_NUM_SENSORS] = {
    363	MT2712_TS1, MT2712_TS2, MT2712_TS3, MT2712_TS4
    364};
    365
    366static const int mt2712_msr[MT2712_NUM_SENSORS_PER_ZONE] = {
    367	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
    368};
    369
    370static const int mt2712_adcpnp[MT2712_NUM_SENSORS_PER_ZONE] = {
    371	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
    372};
    373
    374static const int mt2712_mux_values[MT2712_NUM_SENSORS] = { 0, 1, 2, 3 };
    375static const int mt2712_tc_offset[MT2712_NUM_CONTROLLER] = { 0x0, };
    376
    377static const int mt2712_vts_index[MT2712_NUM_SENSORS] = {
    378	VTS1, VTS2, VTS3, VTS4
    379};
    380
    381/* MT7622 thermal sensor data */
    382static const int mt7622_bank_data[MT7622_NUM_SENSORS] = { MT7622_TS1, };
    383static const int mt7622_msr[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, };
    384static const int mt7622_adcpnp[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, };
    385static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, };
    386static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 };
    387static const int mt7622_tc_offset[MT7622_NUM_CONTROLLER] = { 0x0, };
    388
    389/*
    390 * The MT8173 thermal controller has four banks. Each bank can read up to
    391 * four temperature sensors simultaneously. The MT8173 has a total of 5
    392 * temperature sensors. We use each bank to measure a certain area of the
    393 * SoC. Since TS2 is located centrally in the SoC it is influenced by multiple
    394 * areas, hence is used in different banks.
    395 *
    396 * The thermal core only gets the maximum temperature of all banks, so
    397 * the bank concept wouldn't be necessary here. However, the SVS (Smart
    398 * Voltage Scaling) unit makes its decisions based on the same bank
    399 * data, and this indeed needs the temperatures of the individual banks
    400 * for making better decisions.
    401 */
    402static const struct mtk_thermal_data mt8173_thermal_data = {
    403	.auxadc_channel = MT8173_TEMP_AUXADC_CHANNEL,
    404	.num_banks = MT8173_NUM_ZONES,
    405	.num_sensors = MT8173_NUM_SENSORS,
    406	.vts_index = mt8173_vts_index,
    407	.cali_val = MT8173_CALIBRATION,
    408	.num_controller = MT8173_NUM_CONTROLLER,
    409	.controller_offset = mt8173_tc_offset,
    410	.need_switch_bank = true,
    411	.bank_data = {
    412		{
    413			.num_sensors = 2,
    414			.sensors = mt8173_bank_data[0],
    415		}, {
    416			.num_sensors = 2,
    417			.sensors = mt8173_bank_data[1],
    418		}, {
    419			.num_sensors = 3,
    420			.sensors = mt8173_bank_data[2],
    421		}, {
    422			.num_sensors = 1,
    423			.sensors = mt8173_bank_data[3],
    424		},
    425	},
    426	.msr = mt8173_msr,
    427	.adcpnp = mt8173_adcpnp,
    428	.sensor_mux_values = mt8173_mux_values,
    429	.version = MTK_THERMAL_V1,
    430};
    431
    432/*
    433 * The MT2701 thermal controller has one bank, which can read up to
    434 * three temperature sensors simultaneously. The MT2701 has a total of 3
    435 * temperature sensors.
    436 *
    437 * The thermal core only gets the maximum temperature of this one bank,
    438 * so the bank concept wouldn't be necessary here. However, the SVS (Smart
    439 * Voltage Scaling) unit makes its decisions based on the same bank
    440 * data.
    441 */
    442static const struct mtk_thermal_data mt2701_thermal_data = {
    443	.auxadc_channel = MT2701_TEMP_AUXADC_CHANNEL,
    444	.num_banks = 1,
    445	.num_sensors = MT2701_NUM_SENSORS,
    446	.vts_index = mt2701_vts_index,
    447	.cali_val = MT2701_CALIBRATION,
    448	.num_controller = MT2701_NUM_CONTROLLER,
    449	.controller_offset = mt2701_tc_offset,
    450	.need_switch_bank = true,
    451	.bank_data = {
    452		{
    453			.num_sensors = 3,
    454			.sensors = mt2701_bank_data,
    455		},
    456	},
    457	.msr = mt2701_msr,
    458	.adcpnp = mt2701_adcpnp,
    459	.sensor_mux_values = mt2701_mux_values,
    460	.version = MTK_THERMAL_V1,
    461};
    462
    463/*
    464 * The MT2712 thermal controller has one bank, which can read up to
    465 * four temperature sensors simultaneously. The MT2712 has a total of 4
    466 * temperature sensors.
    467 *
    468 * The thermal core only gets the maximum temperature of this one bank,
    469 * so the bank concept wouldn't be necessary here. However, the SVS (Smart
    470 * Voltage Scaling) unit makes its decisions based on the same bank
    471 * data.
    472 */
    473static const struct mtk_thermal_data mt2712_thermal_data = {
    474	.auxadc_channel = MT2712_TEMP_AUXADC_CHANNEL,
    475	.num_banks = 1,
    476	.num_sensors = MT2712_NUM_SENSORS,
    477	.vts_index = mt2712_vts_index,
    478	.cali_val = MT2712_CALIBRATION,
    479	.num_controller = MT2712_NUM_CONTROLLER,
    480	.controller_offset = mt2712_tc_offset,
    481	.need_switch_bank = true,
    482	.bank_data = {
    483		{
    484			.num_sensors = 4,
    485			.sensors = mt2712_bank_data,
    486		},
    487	},
    488	.msr = mt2712_msr,
    489	.adcpnp = mt2712_adcpnp,
    490	.sensor_mux_values = mt2712_mux_values,
    491	.version = MTK_THERMAL_V1,
    492};
    493
    494/*
    495 * MT7622 have only one sensing point which uses AUXADC Channel 11 for raw data
    496 * access.
    497 */
    498static const struct mtk_thermal_data mt7622_thermal_data = {
    499	.auxadc_channel = MT7622_TEMP_AUXADC_CHANNEL,
    500	.num_banks = MT7622_NUM_ZONES,
    501	.num_sensors = MT7622_NUM_SENSORS,
    502	.vts_index = mt7622_vts_index,
    503	.cali_val = MT7622_CALIBRATION,
    504	.num_controller = MT7622_NUM_CONTROLLER,
    505	.controller_offset = mt7622_tc_offset,
    506	.need_switch_bank = true,
    507	.bank_data = {
    508		{
    509			.num_sensors = 1,
    510			.sensors = mt7622_bank_data,
    511		},
    512	},
    513	.msr = mt7622_msr,
    514	.adcpnp = mt7622_adcpnp,
    515	.sensor_mux_values = mt7622_mux_values,
    516	.version = MTK_THERMAL_V2,
    517};
    518
    519/*
    520 * The MT8183 thermal controller has one bank for the current SW framework.
    521 * The MT8183 has a total of 6 temperature sensors.
    522 * There are two thermal controller to control the six sensor.
    523 * The first one bind 2 sensor, and the other bind 4 sensors.
    524 * The thermal core only gets the maximum temperature of all sensor, so
    525 * the bank concept wouldn't be necessary here. However, the SVS (Smart
    526 * Voltage Scaling) unit makes its decisions based on the same bank
    527 * data, and this indeed needs the temperatures of the individual banks
    528 * for making better decisions.
    529 */
    530static const struct mtk_thermal_data mt8183_thermal_data = {
    531	.auxadc_channel = MT8183_TEMP_AUXADC_CHANNEL,
    532	.num_banks = MT8183_NUM_ZONES,
    533	.num_sensors = MT8183_NUM_SENSORS,
    534	.vts_index = mt8183_vts_index,
    535	.cali_val = MT8183_CALIBRATION,
    536	.num_controller = MT8183_NUM_CONTROLLER,
    537	.controller_offset = mt8183_tc_offset,
    538	.need_switch_bank = false,
    539	.bank_data = {
    540		{
    541			.num_sensors = 6,
    542			.sensors = mt8183_bank_data,
    543		},
    544	},
    545
    546	.msr = mt8183_msr,
    547	.adcpnp = mt8183_adcpnp,
    548	.sensor_mux_values = mt8183_mux_values,
    549	.version = MTK_THERMAL_V1,
    550};
    551
    552/**
    553 * raw_to_mcelsius - convert a raw ADC value to mcelsius
    554 * @mt:	The thermal controller
    555 * @sensno:	sensor number
    556 * @raw:	raw ADC value
    557 *
    558 * This converts the raw ADC value to mcelsius using the SoC specific
    559 * calibration constants
    560 */
    561static int raw_to_mcelsius_v1(struct mtk_thermal *mt, int sensno, s32 raw)
    562{
    563	s32 tmp;
    564
    565	raw &= 0xfff;
    566
    567	tmp = 203450520 << 3;
    568	tmp /= mt->conf->cali_val + mt->o_slope;
    569	tmp /= 10000 + mt->adc_ge;
    570	tmp *= raw - mt->vts[sensno] - 3350;
    571	tmp >>= 3;
    572
    573	return mt->degc_cali * 500 - tmp;
    574}
    575
    576static int raw_to_mcelsius_v2(struct mtk_thermal *mt, int sensno, s32 raw)
    577{
    578	s32 format_1;
    579	s32 format_2;
    580	s32 g_oe;
    581	s32 g_gain;
    582	s32 g_x_roomt;
    583	s32 tmp;
    584
    585	if (raw == 0)
    586		return 0;
    587
    588	raw &= 0xfff;
    589	g_gain = 10000 + (((mt->adc_ge - 512) * 10000) >> 12);
    590	g_oe = mt->adc_oe - 512;
    591	format_1 = mt->vts[VTS2] + 3105 - g_oe;
    592	format_2 = (mt->degc_cali * 10) >> 1;
    593	g_x_roomt = (((format_1 * 10000) >> 12) * 10000) / g_gain;
    594
    595	tmp = (((((raw - g_oe) * 10000) >> 12) * 10000) / g_gain) - g_x_roomt;
    596	tmp = tmp * 10 * 100 / 11;
    597
    598	if (mt->o_slope_sign == 0)
    599		tmp = tmp / (165 - mt->o_slope);
    600	else
    601		tmp = tmp / (165 + mt->o_slope);
    602
    603	return (format_2 - tmp) * 100;
    604}
    605
    606/**
    607 * mtk_thermal_get_bank - get bank
    608 * @bank:	The bank
    609 *
    610 * The bank registers are banked, we have to select a bank in the
    611 * PTPCORESEL register to access it.
    612 */
    613static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank)
    614{
    615	struct mtk_thermal *mt = bank->mt;
    616	u32 val;
    617
    618	if (mt->conf->need_switch_bank) {
    619		mutex_lock(&mt->lock);
    620
    621		val = readl(mt->thermal_base + PTPCORESEL);
    622		val &= ~0xf;
    623		val |= bank->id;
    624		writel(val, mt->thermal_base + PTPCORESEL);
    625	}
    626}
    627
    628/**
    629 * mtk_thermal_put_bank - release bank
    630 * @bank:	The bank
    631 *
    632 * release a bank previously taken with mtk_thermal_get_bank,
    633 */
    634static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank)
    635{
    636	struct mtk_thermal *mt = bank->mt;
    637
    638	if (mt->conf->need_switch_bank)
    639		mutex_unlock(&mt->lock);
    640}
    641
    642/**
    643 * mtk_thermal_bank_temperature - get the temperature of a bank
    644 * @bank:	The bank
    645 *
    646 * The temperature of a bank is considered the maximum temperature of
    647 * the sensors associated to the bank.
    648 */
    649static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank)
    650{
    651	struct mtk_thermal *mt = bank->mt;
    652	const struct mtk_thermal_data *conf = mt->conf;
    653	int i, temp = INT_MIN, max = INT_MIN;
    654	u32 raw;
    655
    656	for (i = 0; i < conf->bank_data[bank->id].num_sensors; i++) {
    657		raw = readl(mt->thermal_base + conf->msr[i]);
    658
    659		if (mt->conf->version == MTK_THERMAL_V1) {
    660			temp = raw_to_mcelsius_v1(
    661				mt, conf->bank_data[bank->id].sensors[i], raw);
    662		} else {
    663			temp = raw_to_mcelsius_v2(
    664				mt, conf->bank_data[bank->id].sensors[i], raw);
    665		}
    666
    667		/*
    668		 * The first read of a sensor often contains very high bogus
    669		 * temperature value. Filter these out so that the system does
    670		 * not immediately shut down.
    671		 */
    672		if (temp > 200000)
    673			temp = 0;
    674
    675		if (temp > max)
    676			max = temp;
    677	}
    678
    679	return max;
    680}
    681
    682static int mtk_read_temp(void *data, int *temperature)
    683{
    684	struct mtk_thermal *mt = data;
    685	int i;
    686	int tempmax = INT_MIN;
    687
    688	for (i = 0; i < mt->conf->num_banks; i++) {
    689		struct mtk_thermal_bank *bank = &mt->banks[i];
    690
    691		mtk_thermal_get_bank(bank);
    692
    693		tempmax = max(tempmax, mtk_thermal_bank_temperature(bank));
    694
    695		mtk_thermal_put_bank(bank);
    696	}
    697
    698	*temperature = tempmax;
    699
    700	return 0;
    701}
    702
    703static const struct thermal_zone_of_device_ops mtk_thermal_ops = {
    704	.get_temp = mtk_read_temp,
    705};
    706
    707static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num,
    708				  u32 apmixed_phys_base, u32 auxadc_phys_base,
    709				  int ctrl_id)
    710{
    711	struct mtk_thermal_bank *bank = &mt->banks[num];
    712	const struct mtk_thermal_data *conf = mt->conf;
    713	int i;
    714
    715	int offset = mt->conf->controller_offset[ctrl_id];
    716	void __iomem *controller_base = mt->thermal_base + offset;
    717
    718	bank->id = num;
    719	bank->mt = mt;
    720
    721	mtk_thermal_get_bank(bank);
    722
    723	/* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */
    724	writel(TEMP_MONCTL1_PERIOD_UNIT(12), controller_base + TEMP_MONCTL1);
    725
    726	/*
    727	 * filt interval is 1 * 46.540us = 46.54us,
    728	 * sen interval is 429 * 46.540us = 19.96ms
    729	 */
    730	writel(TEMP_MONCTL2_FILTER_INTERVAL(1) |
    731			TEMP_MONCTL2_SENSOR_INTERVAL(429),
    732			controller_base + TEMP_MONCTL2);
    733
    734	/* poll is set to 10u */
    735	writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768),
    736	       controller_base + TEMP_AHBPOLL);
    737
    738	/* temperature sampling control, 1 sample */
    739	writel(0x0, controller_base + TEMP_MSRCTL0);
    740
    741	/* exceed this polling time, IRQ would be inserted */
    742	writel(0xffffffff, controller_base + TEMP_AHBTO);
    743
    744	/* number of interrupts per event, 1 is enough */
    745	writel(0x0, controller_base + TEMP_MONIDET0);
    746	writel(0x0, controller_base + TEMP_MONIDET1);
    747
    748	/*
    749	 * The MT8173 thermal controller does not have its own ADC. Instead it
    750	 * uses AHB bus accesses to control the AUXADC. To do this the thermal
    751	 * controller has to be programmed with the physical addresses of the
    752	 * AUXADC registers and with the various bit positions in the AUXADC.
    753	 * Also the thermal controller controls a mux in the APMIXEDSYS register
    754	 * space.
    755	 */
    756
    757	/*
    758	 * this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0)
    759	 * automatically by hw
    760	 */
    761	writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCMUX);
    762
    763	/* AHB address for auxadc mux selection */
    764	writel(auxadc_phys_base + AUXADC_CON1_CLR_V,
    765	       controller_base + TEMP_ADCMUXADDR);
    766
    767	if (mt->conf->version == MTK_THERMAL_V1) {
    768		/* AHB address for pnp sensor mux selection */
    769		writel(apmixed_phys_base + APMIXED_SYS_TS_CON1,
    770		       controller_base + TEMP_PNPMUXADDR);
    771	}
    772
    773	/* AHB value for auxadc enable */
    774	writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCEN);
    775
    776	/* AHB address for auxadc enable (channel 0 immediate mode selected) */
    777	writel(auxadc_phys_base + AUXADC_CON1_SET_V,
    778	       controller_base + TEMP_ADCENADDR);
    779
    780	/* AHB address for auxadc valid bit */
    781	writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
    782	       controller_base + TEMP_ADCVALIDADDR);
    783
    784	/* AHB address for auxadc voltage output */
    785	writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
    786	       controller_base + TEMP_ADCVOLTADDR);
    787
    788	/* read valid & voltage are at the same register */
    789	writel(0x0, controller_base + TEMP_RDCTRL);
    790
    791	/* indicate where the valid bit is */
    792	writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12),
    793	       controller_base + TEMP_ADCVALIDMASK);
    794
    795	/* no shift */
    796	writel(0x0, controller_base + TEMP_ADCVOLTAGESHIFT);
    797
    798	/* enable auxadc mux write transaction */
    799	writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
    800		controller_base + TEMP_ADCWRITECTRL);
    801
    802	for (i = 0; i < conf->bank_data[num].num_sensors; i++)
    803		writel(conf->sensor_mux_values[conf->bank_data[num].sensors[i]],
    804		       mt->thermal_base + conf->adcpnp[i]);
    805
    806	writel((1 << conf->bank_data[num].num_sensors) - 1,
    807	       controller_base + TEMP_MONCTL0);
    808
    809	writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE |
    810	       TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
    811	       controller_base + TEMP_ADCWRITECTRL);
    812
    813	mtk_thermal_put_bank(bank);
    814}
    815
    816static u64 of_get_phys_base(struct device_node *np)
    817{
    818	u64 size64;
    819	const __be32 *regaddr_p;
    820
    821	regaddr_p = of_get_address(np, 0, &size64, NULL);
    822	if (!regaddr_p)
    823		return OF_BAD_ADDR;
    824
    825	return of_translate_address(np, regaddr_p);
    826}
    827
    828static int mtk_thermal_extract_efuse_v1(struct mtk_thermal *mt, u32 *buf)
    829{
    830	int i;
    831
    832	if (!(buf[0] & CALIB_BUF0_VALID_V1))
    833		return -EINVAL;
    834
    835	mt->adc_ge = CALIB_BUF1_ADC_GE_V1(buf[1]);
    836
    837	for (i = 0; i < mt->conf->num_sensors; i++) {
    838		switch (mt->conf->vts_index[i]) {
    839		case VTS1:
    840			mt->vts[VTS1] = CALIB_BUF0_VTS_TS1_V1(buf[0]);
    841			break;
    842		case VTS2:
    843			mt->vts[VTS2] = CALIB_BUF0_VTS_TS2_V1(buf[0]);
    844			break;
    845		case VTS3:
    846			mt->vts[VTS3] = CALIB_BUF1_VTS_TS3_V1(buf[1]);
    847			break;
    848		case VTS4:
    849			mt->vts[VTS4] = CALIB_BUF2_VTS_TS4_V1(buf[2]);
    850			break;
    851		case VTS5:
    852			mt->vts[VTS5] = CALIB_BUF2_VTS_TS5_V1(buf[2]);
    853			break;
    854		case VTSABB:
    855			mt->vts[VTSABB] =
    856				CALIB_BUF2_VTS_TSABB_V1(buf[2]);
    857			break;
    858		default:
    859			break;
    860		}
    861	}
    862
    863	mt->degc_cali = CALIB_BUF0_DEGC_CALI_V1(buf[0]);
    864	if (CALIB_BUF1_ID_V1(buf[1]) &
    865	    CALIB_BUF0_O_SLOPE_SIGN_V1(buf[0]))
    866		mt->o_slope = -CALIB_BUF0_O_SLOPE_V1(buf[0]);
    867	else
    868		mt->o_slope = CALIB_BUF0_O_SLOPE_V1(buf[0]);
    869
    870	return 0;
    871}
    872
    873static int mtk_thermal_extract_efuse_v2(struct mtk_thermal *mt, u32 *buf)
    874{
    875	if (!CALIB_BUF1_VALID_V2(buf[1]))
    876		return -EINVAL;
    877
    878	mt->adc_oe = CALIB_BUF0_ADC_OE_V2(buf[0]);
    879	mt->adc_ge = CALIB_BUF0_ADC_GE_V2(buf[0]);
    880	mt->degc_cali = CALIB_BUF0_DEGC_CALI_V2(buf[0]);
    881	mt->o_slope = CALIB_BUF0_O_SLOPE_V2(buf[0]);
    882	mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V2(buf[1]);
    883	mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V2(buf[1]);
    884	mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V2(buf[1]);
    885	mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V2(buf[1]);
    886
    887	return 0;
    888}
    889
    890static int mtk_thermal_get_calibration_data(struct device *dev,
    891					    struct mtk_thermal *mt)
    892{
    893	struct nvmem_cell *cell;
    894	u32 *buf;
    895	size_t len;
    896	int i, ret = 0;
    897
    898	/* Start with default values */
    899	mt->adc_ge = 512;
    900	for (i = 0; i < mt->conf->num_sensors; i++)
    901		mt->vts[i] = 260;
    902	mt->degc_cali = 40;
    903	mt->o_slope = 0;
    904
    905	cell = nvmem_cell_get(dev, "calibration-data");
    906	if (IS_ERR(cell)) {
    907		if (PTR_ERR(cell) == -EPROBE_DEFER)
    908			return PTR_ERR(cell);
    909		return 0;
    910	}
    911
    912	buf = (u32 *)nvmem_cell_read(cell, &len);
    913
    914	nvmem_cell_put(cell);
    915
    916	if (IS_ERR(buf))
    917		return PTR_ERR(buf);
    918
    919	if (len < 3 * sizeof(u32)) {
    920		dev_warn(dev, "invalid calibration data\n");
    921		ret = -EINVAL;
    922		goto out;
    923	}
    924
    925	if (mt->conf->version == MTK_THERMAL_V1)
    926		ret = mtk_thermal_extract_efuse_v1(mt, buf);
    927	else
    928		ret = mtk_thermal_extract_efuse_v2(mt, buf);
    929
    930	if (ret) {
    931		dev_info(dev, "Device not calibrated, using default calibration values\n");
    932		ret = 0;
    933	}
    934
    935out:
    936	kfree(buf);
    937
    938	return ret;
    939}
    940
    941static const struct of_device_id mtk_thermal_of_match[] = {
    942	{
    943		.compatible = "mediatek,mt8173-thermal",
    944		.data = (void *)&mt8173_thermal_data,
    945	},
    946	{
    947		.compatible = "mediatek,mt2701-thermal",
    948		.data = (void *)&mt2701_thermal_data,
    949	},
    950	{
    951		.compatible = "mediatek,mt2712-thermal",
    952		.data = (void *)&mt2712_thermal_data,
    953	},
    954	{
    955		.compatible = "mediatek,mt7622-thermal",
    956		.data = (void *)&mt7622_thermal_data,
    957	},
    958	{
    959		.compatible = "mediatek,mt8183-thermal",
    960		.data = (void *)&mt8183_thermal_data,
    961	}, {
    962	},
    963};
    964MODULE_DEVICE_TABLE(of, mtk_thermal_of_match);
    965
    966static void mtk_thermal_turn_on_buffer(void __iomem *apmixed_base)
    967{
    968	int tmp;
    969
    970	tmp = readl(apmixed_base + APMIXED_SYS_TS_CON1);
    971	tmp &= ~(0x37);
    972	tmp |= 0x1;
    973	writel(tmp, apmixed_base + APMIXED_SYS_TS_CON1);
    974	udelay(200);
    975}
    976
    977static void mtk_thermal_release_periodic_ts(struct mtk_thermal *mt,
    978					    void __iomem *auxadc_base)
    979{
    980	int tmp;
    981
    982	writel(0x800, auxadc_base + AUXADC_CON1_SET_V);
    983	writel(0x1, mt->thermal_base + TEMP_MONCTL0);
    984	tmp = readl(mt->thermal_base + TEMP_MSRCTL1);
    985	writel((tmp & (~0x10e)), mt->thermal_base + TEMP_MSRCTL1);
    986}
    987
    988static int mtk_thermal_probe(struct platform_device *pdev)
    989{
    990	int ret, i, ctrl_id;
    991	struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node;
    992	struct mtk_thermal *mt;
    993	struct resource *res;
    994	u64 auxadc_phys_base, apmixed_phys_base;
    995	struct thermal_zone_device *tzdev;
    996	void __iomem *apmixed_base, *auxadc_base;
    997
    998	mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL);
    999	if (!mt)
   1000		return -ENOMEM;
   1001
   1002	mt->conf = of_device_get_match_data(&pdev->dev);
   1003
   1004	mt->clk_peri_therm = devm_clk_get(&pdev->dev, "therm");
   1005	if (IS_ERR(mt->clk_peri_therm))
   1006		return PTR_ERR(mt->clk_peri_therm);
   1007
   1008	mt->clk_auxadc = devm_clk_get(&pdev->dev, "auxadc");
   1009	if (IS_ERR(mt->clk_auxadc))
   1010		return PTR_ERR(mt->clk_auxadc);
   1011
   1012	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
   1013	mt->thermal_base = devm_ioremap_resource(&pdev->dev, res);
   1014	if (IS_ERR(mt->thermal_base))
   1015		return PTR_ERR(mt->thermal_base);
   1016
   1017	ret = mtk_thermal_get_calibration_data(&pdev->dev, mt);
   1018	if (ret)
   1019		return ret;
   1020
   1021	mutex_init(&mt->lock);
   1022
   1023	mt->dev = &pdev->dev;
   1024
   1025	auxadc = of_parse_phandle(np, "mediatek,auxadc", 0);
   1026	if (!auxadc) {
   1027		dev_err(&pdev->dev, "missing auxadc node\n");
   1028		return -ENODEV;
   1029	}
   1030
   1031	auxadc_base = of_iomap(auxadc, 0);
   1032	auxadc_phys_base = of_get_phys_base(auxadc);
   1033
   1034	of_node_put(auxadc);
   1035
   1036	if (auxadc_phys_base == OF_BAD_ADDR) {
   1037		dev_err(&pdev->dev, "Can't get auxadc phys address\n");
   1038		return -EINVAL;
   1039	}
   1040
   1041	apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0);
   1042	if (!apmixedsys) {
   1043		dev_err(&pdev->dev, "missing apmixedsys node\n");
   1044		return -ENODEV;
   1045	}
   1046
   1047	apmixed_base = of_iomap(apmixedsys, 0);
   1048	apmixed_phys_base = of_get_phys_base(apmixedsys);
   1049
   1050	of_node_put(apmixedsys);
   1051
   1052	if (apmixed_phys_base == OF_BAD_ADDR) {
   1053		dev_err(&pdev->dev, "Can't get auxadc phys address\n");
   1054		return -EINVAL;
   1055	}
   1056
   1057	ret = device_reset_optional(&pdev->dev);
   1058	if (ret)
   1059		return ret;
   1060
   1061	ret = clk_prepare_enable(mt->clk_auxadc);
   1062	if (ret) {
   1063		dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret);
   1064		return ret;
   1065	}
   1066
   1067	ret = clk_prepare_enable(mt->clk_peri_therm);
   1068	if (ret) {
   1069		dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret);
   1070		goto err_disable_clk_auxadc;
   1071	}
   1072
   1073	if (mt->conf->version == MTK_THERMAL_V2) {
   1074		mtk_thermal_turn_on_buffer(apmixed_base);
   1075		mtk_thermal_release_periodic_ts(mt, auxadc_base);
   1076	}
   1077
   1078	for (ctrl_id = 0; ctrl_id < mt->conf->num_controller ; ctrl_id++)
   1079		for (i = 0; i < mt->conf->num_banks; i++)
   1080			mtk_thermal_init_bank(mt, i, apmixed_phys_base,
   1081					      auxadc_phys_base, ctrl_id);
   1082
   1083	platform_set_drvdata(pdev, mt);
   1084
   1085	tzdev = devm_thermal_zone_of_sensor_register(&pdev->dev, 0, mt,
   1086						     &mtk_thermal_ops);
   1087	if (IS_ERR(tzdev)) {
   1088		ret = PTR_ERR(tzdev);
   1089		goto err_disable_clk_peri_therm;
   1090	}
   1091
   1092	ret = devm_thermal_add_hwmon_sysfs(tzdev);
   1093	if (ret)
   1094		dev_warn(&pdev->dev, "error in thermal_add_hwmon_sysfs");
   1095
   1096	return 0;
   1097
   1098err_disable_clk_peri_therm:
   1099	clk_disable_unprepare(mt->clk_peri_therm);
   1100err_disable_clk_auxadc:
   1101	clk_disable_unprepare(mt->clk_auxadc);
   1102
   1103	return ret;
   1104}
   1105
   1106static int mtk_thermal_remove(struct platform_device *pdev)
   1107{
   1108	struct mtk_thermal *mt = platform_get_drvdata(pdev);
   1109
   1110	clk_disable_unprepare(mt->clk_peri_therm);
   1111	clk_disable_unprepare(mt->clk_auxadc);
   1112
   1113	return 0;
   1114}
   1115
   1116static struct platform_driver mtk_thermal_driver = {
   1117	.probe = mtk_thermal_probe,
   1118	.remove = mtk_thermal_remove,
   1119	.driver = {
   1120		.name = "mtk-thermal",
   1121		.of_match_table = mtk_thermal_of_match,
   1122	},
   1123};
   1124
   1125module_platform_driver(mtk_thermal_driver);
   1126
   1127MODULE_AUTHOR("Michael Kao <michael.kao@mediatek.com>");
   1128MODULE_AUTHOR("Louis Yu <louis.yu@mediatek.com>");
   1129MODULE_AUTHOR("Dawei Chien <dawei.chien@mediatek.com>");
   1130MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
   1131MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>");
   1132MODULE_DESCRIPTION("Mediatek thermal driver");
   1133MODULE_LICENSE("GPL v2");