cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

soctherm.c (66145B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (c) 2014 - 2018, NVIDIA CORPORATION.  All rights reserved.
      4 *
      5 * Author:
      6 *	Mikko Perttunen <mperttunen@nvidia.com>
      7 *
      8 * This software is licensed under the terms of the GNU General Public
      9 * License version 2, as published by the Free Software Foundation, and
     10 * may be copied, distributed, and modified under those terms.
     11 *
     12 * This program is distributed in the hope that it will be useful,
     13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15 * GNU General Public License for more details.
     16 *
     17 */
     18
     19#include <linux/debugfs.h>
     20#include <linux/bitops.h>
     21#include <linux/clk.h>
     22#include <linux/delay.h>
     23#include <linux/err.h>
     24#include <linux/interrupt.h>
     25#include <linux/io.h>
     26#include <linux/irq.h>
     27#include <linux/irqdomain.h>
     28#include <linux/module.h>
     29#include <linux/of.h>
     30#include <linux/platform_device.h>
     31#include <linux/reset.h>
     32#include <linux/thermal.h>
     33
     34#include <dt-bindings/thermal/tegra124-soctherm.h>
     35
     36#include "../thermal_core.h"
     37#include "soctherm.h"
     38
     39#define SENSOR_CONFIG0				0
     40#define SENSOR_CONFIG0_STOP			BIT(0)
     41#define SENSOR_CONFIG0_CPTR_OVER		BIT(2)
     42#define SENSOR_CONFIG0_OVER			BIT(3)
     43#define SENSOR_CONFIG0_TCALC_OVER		BIT(4)
     44#define SENSOR_CONFIG0_TALL_MASK		(0xfffff << 8)
     45#define SENSOR_CONFIG0_TALL_SHIFT		8
     46
     47#define SENSOR_CONFIG1				4
     48#define SENSOR_CONFIG1_TSAMPLE_MASK		0x3ff
     49#define SENSOR_CONFIG1_TSAMPLE_SHIFT		0
     50#define SENSOR_CONFIG1_TIDDQ_EN_MASK		(0x3f << 15)
     51#define SENSOR_CONFIG1_TIDDQ_EN_SHIFT		15
     52#define SENSOR_CONFIG1_TEN_COUNT_MASK		(0x3f << 24)
     53#define SENSOR_CONFIG1_TEN_COUNT_SHIFT		24
     54#define SENSOR_CONFIG1_TEMP_ENABLE		BIT(31)
     55
     56/*
     57 * SENSOR_CONFIG2 is defined in soctherm.h
     58 * because, it will be used by tegra_soctherm_fuse.c
     59 */
     60
     61#define SENSOR_STATUS0				0xc
     62#define SENSOR_STATUS0_VALID_MASK		BIT(31)
     63#define SENSOR_STATUS0_CAPTURE_MASK		0xffff
     64
     65#define SENSOR_STATUS1				0x10
     66#define SENSOR_STATUS1_TEMP_VALID_MASK		BIT(31)
     67#define SENSOR_STATUS1_TEMP_MASK		0xffff
     68
     69#define READBACK_VALUE_MASK			0xff00
     70#define READBACK_VALUE_SHIFT			8
     71#define READBACK_ADD_HALF			BIT(7)
     72#define READBACK_NEGATE				BIT(0)
     73
     74/*
     75 * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h
     76 * because it will be used by tegraxxx_soctherm.c
     77 */
     78#define THERMCTL_LVL0_CPU0_EN_MASK		BIT(8)
     79#define THERMCTL_LVL0_CPU0_CPU_THROT_MASK	(0x3 << 5)
     80#define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT	0x1
     81#define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY	0x2
     82#define THERMCTL_LVL0_CPU0_GPU_THROT_MASK	(0x3 << 3)
     83#define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT	0x1
     84#define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY	0x2
     85#define THERMCTL_LVL0_CPU0_MEM_THROT_MASK	BIT(2)
     86#define THERMCTL_LVL0_CPU0_STATUS_MASK		0x3
     87
     88#define THERMCTL_LVL0_UP_STATS			0x10
     89#define THERMCTL_LVL0_DN_STATS			0x14
     90
     91#define THERMCTL_INTR_STATUS			0x84
     92
     93#define TH_INTR_MD0_MASK			BIT(25)
     94#define TH_INTR_MU0_MASK			BIT(24)
     95#define TH_INTR_GD0_MASK			BIT(17)
     96#define TH_INTR_GU0_MASK			BIT(16)
     97#define TH_INTR_CD0_MASK			BIT(9)
     98#define TH_INTR_CU0_MASK			BIT(8)
     99#define TH_INTR_PD0_MASK			BIT(1)
    100#define TH_INTR_PU0_MASK			BIT(0)
    101#define TH_INTR_IGNORE_MASK			0xFCFCFCFC
    102
    103#define THERMCTL_STATS_CTL			0x94
    104#define STATS_CTL_CLR_DN			0x8
    105#define STATS_CTL_EN_DN				0x4
    106#define STATS_CTL_CLR_UP			0x2
    107#define STATS_CTL_EN_UP				0x1
    108
    109#define OC1_CFG					0x310
    110#define OC1_CFG_LONG_LATENCY_MASK		BIT(6)
    111#define OC1_CFG_HW_RESTORE_MASK			BIT(5)
    112#define OC1_CFG_PWR_GOOD_MASK_MASK		BIT(4)
    113#define OC1_CFG_THROTTLE_MODE_MASK		(0x3 << 2)
    114#define OC1_CFG_ALARM_POLARITY_MASK		BIT(1)
    115#define OC1_CFG_EN_THROTTLE_MASK		BIT(0)
    116
    117#define OC1_CNT_THRESHOLD			0x314
    118#define OC1_THROTTLE_PERIOD			0x318
    119#define OC1_ALARM_COUNT				0x31c
    120#define OC1_FILTER				0x320
    121#define OC1_STATS				0x3a8
    122
    123#define OC_INTR_STATUS				0x39c
    124#define OC_INTR_ENABLE				0x3a0
    125#define OC_INTR_DISABLE				0x3a4
    126#define OC_STATS_CTL				0x3c4
    127#define OC_STATS_CTL_CLR_ALL			0x2
    128#define OC_STATS_CTL_EN_ALL			0x1
    129
    130#define OC_INTR_OC1_MASK			BIT(0)
    131#define OC_INTR_OC2_MASK			BIT(1)
    132#define OC_INTR_OC3_MASK			BIT(2)
    133#define OC_INTR_OC4_MASK			BIT(3)
    134#define OC_INTR_OC5_MASK			BIT(4)
    135
    136#define THROT_GLOBAL_CFG			0x400
    137#define THROT_GLOBAL_ENB_MASK			BIT(0)
    138
    139#define CPU_PSKIP_STATUS			0x418
    140#define XPU_PSKIP_STATUS_M_MASK			(0xff << 12)
    141#define XPU_PSKIP_STATUS_N_MASK			(0xff << 4)
    142#define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK	BIT(1)
    143#define XPU_PSKIP_STATUS_ENABLED_MASK		BIT(0)
    144
    145#define THROT_PRIORITY_LOCK			0x424
    146#define THROT_PRIORITY_LOCK_PRIORITY_MASK	0xff
    147
    148#define THROT_STATUS				0x428
    149#define THROT_STATUS_BREACH_MASK		BIT(12)
    150#define THROT_STATUS_STATE_MASK			(0xff << 4)
    151#define THROT_STATUS_ENABLED_MASK		BIT(0)
    152
    153#define THROT_PSKIP_CTRL_LITE_CPU		0x430
    154#define THROT_PSKIP_CTRL_ENABLE_MASK            BIT(31)
    155#define THROT_PSKIP_CTRL_DIVIDEND_MASK          (0xff << 8)
    156#define THROT_PSKIP_CTRL_DIVISOR_MASK           0xff
    157#define THROT_PSKIP_CTRL_VECT_GPU_MASK          (0x7 << 16)
    158#define THROT_PSKIP_CTRL_VECT_CPU_MASK          (0x7 << 8)
    159#define THROT_PSKIP_CTRL_VECT2_CPU_MASK         0x7
    160
    161#define THROT_VECT_NONE				0x0 /* 3'b000 */
    162#define THROT_VECT_LOW				0x1 /* 3'b001 */
    163#define THROT_VECT_MED				0x3 /* 3'b011 */
    164#define THROT_VECT_HIGH				0x7 /* 3'b111 */
    165
    166#define THROT_PSKIP_RAMP_LITE_CPU		0x434
    167#define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK	BIT(31)
    168#define THROT_PSKIP_RAMP_DURATION_MASK		(0xffff << 8)
    169#define THROT_PSKIP_RAMP_STEP_MASK		0xff
    170
    171#define THROT_PRIORITY_LITE			0x444
    172#define THROT_PRIORITY_LITE_PRIO_MASK		0xff
    173
    174#define THROT_DELAY_LITE			0x448
    175#define THROT_DELAY_LITE_DELAY_MASK		0xff
    176
    177/* car register offsets needed for enabling HW throttling */
    178#define CAR_SUPER_CCLKG_DIVIDER			0x36c
    179#define CDIVG_USE_THERM_CONTROLS_MASK		BIT(30)
    180
    181/* ccroc register offsets needed for enabling HW throttling for Tegra132 */
    182#define CCROC_SUPER_CCLKG_DIVIDER		0x024
    183
    184#define CCROC_GLOBAL_CFG			0x148
    185
    186#define CCROC_THROT_PSKIP_RAMP_CPU		0x150
    187#define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK	BIT(31)
    188#define CCROC_THROT_PSKIP_RAMP_DURATION_MASK	(0xffff << 8)
    189#define CCROC_THROT_PSKIP_RAMP_STEP_MASK	0xff
    190
    191#define CCROC_THROT_PSKIP_CTRL_CPU		0x154
    192#define CCROC_THROT_PSKIP_CTRL_ENB_MASK		BIT(31)
    193#define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK	(0xff << 8)
    194#define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK	0xff
    195
    196/* get val from register(r) mask bits(m) */
    197#define REG_GET_MASK(r, m)	(((r) & (m)) >> (ffs(m) - 1))
    198/* set val(v) to mask bits(m) of register(r) */
    199#define REG_SET_MASK(r, m, v)	(((r) & ~(m)) | \
    200				 (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1)))
    201
    202/* get dividend from the depth */
    203#define THROT_DEPTH_DIVIDEND(depth)	((256 * (100 - (depth)) / 100) - 1)
    204
    205/* gk20a nv_therm interface N:3 Mapping. Levels defined in tegra124-soctherm.h
    206 * level	vector
    207 * NONE		3'b000
    208 * LOW		3'b001
    209 * MED		3'b011
    210 * HIGH		3'b111
    211 */
    212#define THROT_LEVEL_TO_DEPTH(level)	((0x1 << (level)) - 1)
    213
    214/* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */
    215#define THROT_OFFSET			0x30
    216#define THROT_PSKIP_CTRL(throt, dev)	(THROT_PSKIP_CTRL_LITE_CPU + \
    217					(THROT_OFFSET * throt) + (8 * dev))
    218#define THROT_PSKIP_RAMP(throt, dev)	(THROT_PSKIP_RAMP_LITE_CPU + \
    219					(THROT_OFFSET * throt) + (8 * dev))
    220
    221/* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */
    222#define THROT_PRIORITY_CTRL(throt)	(THROT_PRIORITY_LITE + \
    223					(THROT_OFFSET * throt))
    224#define THROT_DELAY_CTRL(throt)		(THROT_DELAY_LITE + \
    225					(THROT_OFFSET * throt))
    226
    227#define ALARM_OFFSET			0x14
    228#define ALARM_CFG(throt)		(OC1_CFG + \
    229					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
    230
    231#define ALARM_CNT_THRESHOLD(throt)	(OC1_CNT_THRESHOLD + \
    232					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
    233
    234#define ALARM_THROTTLE_PERIOD(throt)	(OC1_THROTTLE_PERIOD + \
    235					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
    236
    237#define ALARM_ALARM_COUNT(throt)	(OC1_ALARM_COUNT + \
    238					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
    239
    240#define ALARM_FILTER(throt)		(OC1_FILTER + \
    241					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
    242
    243#define ALARM_STATS(throt)		(OC1_STATS + \
    244					(4 * (throt - THROTTLE_OC1)))
    245
    246/* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/
    247#define CCROC_THROT_OFFSET			0x0c
    248#define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect)    (CCROC_THROT_PSKIP_CTRL_CPU + \
    249						(CCROC_THROT_OFFSET * vect))
    250#define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect)    (CCROC_THROT_PSKIP_RAMP_CPU + \
    251						(CCROC_THROT_OFFSET * vect))
    252
    253/* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */
    254#define THERMCTL_LVL_REGS_SIZE		0x20
    255#define THERMCTL_LVL_REG(rg, lv)	((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE))
    256
    257#define OC_THROTTLE_MODE_DISABLED	0
    258#define OC_THROTTLE_MODE_BRIEF		2
    259
    260static const int min_low_temp = -127000;
    261static const int max_high_temp = 127000;
    262
    263enum soctherm_throttle_id {
    264	THROTTLE_LIGHT = 0,
    265	THROTTLE_HEAVY,
    266	THROTTLE_OC1,
    267	THROTTLE_OC2,
    268	THROTTLE_OC3,
    269	THROTTLE_OC4,
    270	THROTTLE_OC5, /* OC5 is reserved */
    271	THROTTLE_SIZE,
    272};
    273
    274enum soctherm_oc_irq_id {
    275	TEGRA_SOC_OC_IRQ_1,
    276	TEGRA_SOC_OC_IRQ_2,
    277	TEGRA_SOC_OC_IRQ_3,
    278	TEGRA_SOC_OC_IRQ_4,
    279	TEGRA_SOC_OC_IRQ_5,
    280	TEGRA_SOC_OC_IRQ_MAX,
    281};
    282
    283enum soctherm_throttle_dev_id {
    284	THROTTLE_DEV_CPU = 0,
    285	THROTTLE_DEV_GPU,
    286	THROTTLE_DEV_SIZE,
    287};
    288
    289static const char *const throt_names[] = {
    290	[THROTTLE_LIGHT] = "light",
    291	[THROTTLE_HEAVY] = "heavy",
    292	[THROTTLE_OC1]   = "oc1",
    293	[THROTTLE_OC2]   = "oc2",
    294	[THROTTLE_OC3]   = "oc3",
    295	[THROTTLE_OC4]   = "oc4",
    296	[THROTTLE_OC5]   = "oc5",
    297};
    298
    299struct tegra_soctherm;
    300struct tegra_thermctl_zone {
    301	void __iomem *reg;
    302	struct device *dev;
    303	struct tegra_soctherm *ts;
    304	struct thermal_zone_device *tz;
    305	const struct tegra_tsensor_group *sg;
    306};
    307
    308struct soctherm_oc_cfg {
    309	u32 active_low;
    310	u32 throt_period;
    311	u32 alarm_cnt_thresh;
    312	u32 alarm_filter;
    313	u32 mode;
    314	bool intr_en;
    315};
    316
    317struct soctherm_throt_cfg {
    318	const char *name;
    319	unsigned int id;
    320	u8 priority;
    321	u8 cpu_throt_level;
    322	u32 cpu_throt_depth;
    323	u32 gpu_throt_level;
    324	struct soctherm_oc_cfg oc_cfg;
    325	struct thermal_cooling_device *cdev;
    326	bool init;
    327};
    328
    329struct tegra_soctherm {
    330	struct reset_control *reset;
    331	struct clk *clock_tsensor;
    332	struct clk *clock_soctherm;
    333	void __iomem *regs;
    334	void __iomem *clk_regs;
    335	void __iomem *ccroc_regs;
    336
    337	int thermal_irq;
    338	int edp_irq;
    339
    340	u32 *calib;
    341	struct thermal_zone_device **thermctl_tzs;
    342	struct tegra_soctherm_soc *soc;
    343
    344	struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE];
    345
    346	struct dentry *debugfs_dir;
    347
    348	struct mutex thermctl_lock;
    349};
    350
    351struct soctherm_oc_irq_chip_data {
    352	struct mutex		irq_lock; /* serialize OC IRQs */
    353	struct irq_chip		irq_chip;
    354	struct irq_domain	*domain;
    355	int			irq_enable;
    356};
    357
    358static struct soctherm_oc_irq_chip_data soc_irq_cdata;
    359
    360/**
    361 * ccroc_writel() - writes a value to a CCROC register
    362 * @ts: pointer to a struct tegra_soctherm
    363 * @value: the value to write
    364 * @reg: the register offset
    365 *
    366 * Writes @v to @reg.  No return value.
    367 */
    368static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg)
    369{
    370	writel(value, (ts->ccroc_regs + reg));
    371}
    372
    373/**
    374 * ccroc_readl() - reads specified register from CCROC IP block
    375 * @ts: pointer to a struct tegra_soctherm
    376 * @reg: register address to be read
    377 *
    378 * Return: the value of the register
    379 */
    380static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg)
    381{
    382	return readl(ts->ccroc_regs + reg);
    383}
    384
    385static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i)
    386{
    387	const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i];
    388	void __iomem *base = tegra->regs + sensor->base;
    389	unsigned int val;
    390
    391	val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT;
    392	writel(val, base + SENSOR_CONFIG0);
    393
    394	val  = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT;
    395	val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT;
    396	val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT;
    397	val |= SENSOR_CONFIG1_TEMP_ENABLE;
    398	writel(val, base + SENSOR_CONFIG1);
    399
    400	writel(tegra->calib[i], base + SENSOR_CONFIG2);
    401}
    402
    403/*
    404 * Translate from soctherm readback format to millicelsius.
    405 * The soctherm readback format in bits is as follows:
    406 *   TTTTTTTT H______N
    407 * where T's contain the temperature in Celsius,
    408 * H denotes an addition of 0.5 Celsius and N denotes negation
    409 * of the final value.
    410 */
    411static int translate_temp(u16 val)
    412{
    413	int t;
    414
    415	t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000;
    416	if (val & READBACK_ADD_HALF)
    417		t += 500;
    418	if (val & READBACK_NEGATE)
    419		t *= -1;
    420
    421	return t;
    422}
    423
    424static int tegra_thermctl_get_temp(void *data, int *out_temp)
    425{
    426	struct tegra_thermctl_zone *zone = data;
    427	u32 val;
    428
    429	val = readl(zone->reg);
    430	val = REG_GET_MASK(val, zone->sg->sensor_temp_mask);
    431	*out_temp = translate_temp(val);
    432
    433	return 0;
    434}
    435
    436/**
    437 * enforce_temp_range() - check and enforce temperature range [min, max]
    438 * @dev: struct device * of the SOC_THERM instance
    439 * @trip_temp: the trip temperature to check
    440 *
    441 * Checks and enforces the permitted temperature range that SOC_THERM
    442 * HW can support This is
    443 * done while taking care of precision.
    444 *
    445 * Return: The precision adjusted capped temperature in millicelsius.
    446 */
    447static int enforce_temp_range(struct device *dev, int trip_temp)
    448{
    449	int temp;
    450
    451	temp = clamp_val(trip_temp, min_low_temp, max_high_temp);
    452	if (temp != trip_temp)
    453		dev_dbg(dev, "soctherm: trip temperature %d forced to %d\n",
    454			trip_temp, temp);
    455	return temp;
    456}
    457
    458/**
    459 * thermtrip_program() - Configures the hardware to shut down the
    460 * system if a given sensor group reaches a given temperature
    461 * @dev: ptr to the struct device for the SOC_THERM IP block
    462 * @sg: pointer to the sensor group to set the thermtrip temperature for
    463 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
    464 *
    465 * Sets the thermal trip threshold of the given sensor group to be the
    466 * @trip_temp.  If this threshold is crossed, the hardware will shut
    467 * down.
    468 *
    469 * Note that, although @trip_temp is specified in millicelsius, the
    470 * hardware is programmed in degrees Celsius.
    471 *
    472 * Return: 0 upon success, or %-EINVAL upon failure.
    473 */
    474static int thermtrip_program(struct device *dev,
    475			     const struct tegra_tsensor_group *sg,
    476			     int trip_temp)
    477{
    478	struct tegra_soctherm *ts = dev_get_drvdata(dev);
    479	int temp;
    480	u32 r;
    481
    482	if (!sg || !sg->thermtrip_threshold_mask)
    483		return -EINVAL;
    484
    485	temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
    486
    487	r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
    488	r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp);
    489	r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1);
    490	r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0);
    491	writel(r, ts->regs + THERMCTL_THERMTRIP_CTL);
    492
    493	return 0;
    494}
    495
    496/**
    497 * throttrip_program() - Configures the hardware to throttle the
    498 * pulse if a given sensor group reaches a given temperature
    499 * @dev: ptr to the struct device for the SOC_THERM IP block
    500 * @sg: pointer to the sensor group to set the thermtrip temperature for
    501 * @stc: pointer to the throttle need to be triggered
    502 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
    503 *
    504 * Sets the thermal trip threshold and throttle event of the given sensor
    505 * group. If this threshold is crossed, the hardware will trigger the
    506 * throttle.
    507 *
    508 * Note that, although @trip_temp is specified in millicelsius, the
    509 * hardware is programmed in degrees Celsius.
    510 *
    511 * Return: 0 upon success, or %-EINVAL upon failure.
    512 */
    513static int throttrip_program(struct device *dev,
    514			     const struct tegra_tsensor_group *sg,
    515			     struct soctherm_throt_cfg *stc,
    516			     int trip_temp)
    517{
    518	struct tegra_soctherm *ts = dev_get_drvdata(dev);
    519	int temp, cpu_throt, gpu_throt;
    520	unsigned int throt;
    521	u32 r, reg_off;
    522
    523	if (!sg || !stc || !stc->init)
    524		return -EINVAL;
    525
    526	temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
    527
    528	/* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */
    529	throt = stc->id;
    530	reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1);
    531
    532	if (throt == THROTTLE_LIGHT) {
    533		cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT;
    534		gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT;
    535	} else {
    536		cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY;
    537		gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY;
    538		if (throt != THROTTLE_HEAVY)
    539			dev_warn(dev,
    540				 "invalid throt id %d - assuming HEAVY",
    541				 throt);
    542	}
    543
    544	r = readl(ts->regs + reg_off);
    545	r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp);
    546	r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp);
    547	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt);
    548	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt);
    549	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
    550	writel(r, ts->regs + reg_off);
    551
    552	return 0;
    553}
    554
    555static struct soctherm_throt_cfg *
    556find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name)
    557{
    558	unsigned int i;
    559
    560	for (i = 0; ts->throt_cfgs[i].name; i++)
    561		if (!strcmp(ts->throt_cfgs[i].name, name))
    562			return &ts->throt_cfgs[i];
    563
    564	return NULL;
    565}
    566
    567static int tsensor_group_thermtrip_get(struct tegra_soctherm *ts, int id)
    568{
    569	int i, temp = min_low_temp;
    570	struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
    571
    572	if (id >= TEGRA124_SOCTHERM_SENSOR_NUM)
    573		return temp;
    574
    575	if (tt) {
    576		for (i = 0; i < ts->soc->num_ttgs; i++) {
    577			if (tt[i].id == id)
    578				return tt[i].temp;
    579		}
    580	}
    581
    582	return temp;
    583}
    584
    585static int tegra_thermctl_set_trip_temp(void *data, int trip, int temp)
    586{
    587	struct tegra_thermctl_zone *zone = data;
    588	struct thermal_zone_device *tz = zone->tz;
    589	struct tegra_soctherm *ts = zone->ts;
    590	const struct tegra_tsensor_group *sg = zone->sg;
    591	struct device *dev = zone->dev;
    592	enum thermal_trip_type type;
    593	int ret;
    594
    595	if (!tz)
    596		return -EINVAL;
    597
    598	ret = tz->ops->get_trip_type(tz, trip, &type);
    599	if (ret)
    600		return ret;
    601
    602	if (type == THERMAL_TRIP_CRITICAL) {
    603		/*
    604		 * If thermtrips property is set in DT,
    605		 * doesn't need to program critical type trip to HW,
    606		 * if not, program critical trip to HW.
    607		 */
    608		if (min_low_temp == tsensor_group_thermtrip_get(ts, sg->id))
    609			return thermtrip_program(dev, sg, temp);
    610		else
    611			return 0;
    612
    613	} else if (type == THERMAL_TRIP_HOT) {
    614		int i;
    615
    616		for (i = 0; i < THROTTLE_SIZE; i++) {
    617			struct thermal_cooling_device *cdev;
    618			struct soctherm_throt_cfg *stc;
    619
    620			if (!ts->throt_cfgs[i].init)
    621				continue;
    622
    623			cdev = ts->throt_cfgs[i].cdev;
    624			if (get_thermal_instance(tz, cdev, trip))
    625				stc = find_throttle_cfg_by_name(ts, cdev->type);
    626			else
    627				continue;
    628
    629			return throttrip_program(dev, sg, stc, temp);
    630		}
    631	}
    632
    633	return 0;
    634}
    635
    636static int tegra_thermctl_get_trend(void *data, int trip,
    637				    enum thermal_trend *trend)
    638{
    639	struct tegra_thermctl_zone *zone = data;
    640	struct thermal_zone_device *tz = zone->tz;
    641	int trip_temp, temp, last_temp, ret;
    642
    643	if (!tz)
    644		return -EINVAL;
    645
    646	ret = tz->ops->get_trip_temp(zone->tz, trip, &trip_temp);
    647	if (ret)
    648		return ret;
    649
    650	temp = READ_ONCE(tz->temperature);
    651	last_temp = READ_ONCE(tz->last_temperature);
    652
    653	if (temp > trip_temp) {
    654		if (temp >= last_temp)
    655			*trend = THERMAL_TREND_RAISING;
    656		else
    657			*trend = THERMAL_TREND_STABLE;
    658	} else if (temp < trip_temp) {
    659		*trend = THERMAL_TREND_DROPPING;
    660	} else {
    661		*trend = THERMAL_TREND_STABLE;
    662	}
    663
    664	return 0;
    665}
    666
    667static void thermal_irq_enable(struct tegra_thermctl_zone *zn)
    668{
    669	u32 r;
    670
    671	/* multiple zones could be handling and setting trips at once */
    672	mutex_lock(&zn->ts->thermctl_lock);
    673	r = readl(zn->ts->regs + THERMCTL_INTR_ENABLE);
    674	r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, TH_INTR_UP_DN_EN);
    675	writel(r, zn->ts->regs + THERMCTL_INTR_ENABLE);
    676	mutex_unlock(&zn->ts->thermctl_lock);
    677}
    678
    679static void thermal_irq_disable(struct tegra_thermctl_zone *zn)
    680{
    681	u32 r;
    682
    683	/* multiple zones could be handling and setting trips at once */
    684	mutex_lock(&zn->ts->thermctl_lock);
    685	r = readl(zn->ts->regs + THERMCTL_INTR_DISABLE);
    686	r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, 0);
    687	writel(r, zn->ts->regs + THERMCTL_INTR_DISABLE);
    688	mutex_unlock(&zn->ts->thermctl_lock);
    689}
    690
    691static int tegra_thermctl_set_trips(void *data, int lo, int hi)
    692{
    693	struct tegra_thermctl_zone *zone = data;
    694	u32 r;
    695
    696	thermal_irq_disable(zone);
    697
    698	r = readl(zone->ts->regs + zone->sg->thermctl_lvl0_offset);
    699	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 0);
    700	writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
    701
    702	lo = enforce_temp_range(zone->dev, lo) / zone->ts->soc->thresh_grain;
    703	hi = enforce_temp_range(zone->dev, hi) / zone->ts->soc->thresh_grain;
    704	dev_dbg(zone->dev, "%s hi:%d, lo:%d\n", __func__, hi, lo);
    705
    706	r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_up_thresh_mask, hi);
    707	r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_dn_thresh_mask, lo);
    708	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
    709	writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
    710
    711	thermal_irq_enable(zone);
    712
    713	return 0;
    714}
    715
    716static const struct thermal_zone_of_device_ops tegra_of_thermal_ops = {
    717	.get_temp = tegra_thermctl_get_temp,
    718	.set_trip_temp = tegra_thermctl_set_trip_temp,
    719	.get_trend = tegra_thermctl_get_trend,
    720	.set_trips = tegra_thermctl_set_trips,
    721};
    722
    723static int get_hot_temp(struct thermal_zone_device *tz, int *trip, int *temp)
    724{
    725	int ntrips, i, ret;
    726	enum thermal_trip_type type;
    727
    728	ntrips = of_thermal_get_ntrips(tz);
    729	if (ntrips <= 0)
    730		return -EINVAL;
    731
    732	for (i = 0; i < ntrips; i++) {
    733		ret = tz->ops->get_trip_type(tz, i, &type);
    734		if (ret)
    735			return -EINVAL;
    736		if (type == THERMAL_TRIP_HOT) {
    737			ret = tz->ops->get_trip_temp(tz, i, temp);
    738			if (!ret)
    739				*trip = i;
    740
    741			return ret;
    742		}
    743	}
    744
    745	return -EINVAL;
    746}
    747
    748/**
    749 * tegra_soctherm_set_hwtrips() - set HW trip point from DT data
    750 * @dev: struct device * of the SOC_THERM instance
    751 * @sg: pointer to the sensor group to set the thermtrip temperature for
    752 * @tz: struct thermal_zone_device *
    753 *
    754 * Configure the SOC_THERM HW trip points, setting "THERMTRIP"
    755 * "THROTTLE" trip points , using "thermtrips", "critical" or "hot"
    756 * type trip_temp
    757 * from thermal zone.
    758 * After they have been configured, THERMTRIP or THROTTLE will take
    759 * action when the configured SoC thermal sensor group reaches a
    760 * certain temperature.
    761 *
    762 * Return: 0 upon success, or a negative error code on failure.
    763 * "Success" does not mean that trips was enabled; it could also
    764 * mean that no node was found in DT.
    765 * THERMTRIP has been enabled successfully when a message similar to
    766 * this one appears on the serial console:
    767 * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC"
    768 * THROTTLE has been enabled successfully when a message similar to
    769 * this one appears on the serial console:
    770 * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC"
    771 */
    772static int tegra_soctherm_set_hwtrips(struct device *dev,
    773				      const struct tegra_tsensor_group *sg,
    774				      struct thermal_zone_device *tz)
    775{
    776	struct tegra_soctherm *ts = dev_get_drvdata(dev);
    777	struct soctherm_throt_cfg *stc;
    778	int i, trip, temperature, ret;
    779
    780	/* Get thermtrips. If missing, try to get critical trips. */
    781	temperature = tsensor_group_thermtrip_get(ts, sg->id);
    782	if (min_low_temp == temperature)
    783		if (tz->ops->get_crit_temp(tz, &temperature))
    784			temperature = max_high_temp;
    785
    786	ret = thermtrip_program(dev, sg, temperature);
    787	if (ret) {
    788		dev_err(dev, "thermtrip: %s: error during enable\n", sg->name);
    789		return ret;
    790	}
    791
    792	dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n",
    793		 sg->name, temperature);
    794
    795	ret = get_hot_temp(tz, &trip, &temperature);
    796	if (ret) {
    797		dev_info(dev, "throttrip: %s: missing hot temperature\n",
    798			 sg->name);
    799		return 0;
    800	}
    801
    802	for (i = 0; i < THROTTLE_OC1; i++) {
    803		struct thermal_cooling_device *cdev;
    804
    805		if (!ts->throt_cfgs[i].init)
    806			continue;
    807
    808		cdev = ts->throt_cfgs[i].cdev;
    809		if (get_thermal_instance(tz, cdev, trip))
    810			stc = find_throttle_cfg_by_name(ts, cdev->type);
    811		else
    812			continue;
    813
    814		ret = throttrip_program(dev, sg, stc, temperature);
    815		if (ret) {
    816			dev_err(dev, "throttrip: %s: error during enable\n",
    817				sg->name);
    818			return ret;
    819		}
    820
    821		dev_info(dev,
    822			 "throttrip: will throttle when %s reaches %d mC\n",
    823			 sg->name, temperature);
    824		break;
    825	}
    826
    827	if (i == THROTTLE_SIZE)
    828		dev_info(dev, "throttrip: %s: missing throttle cdev\n",
    829			 sg->name);
    830
    831	return 0;
    832}
    833
    834static irqreturn_t soctherm_thermal_isr(int irq, void *dev_id)
    835{
    836	struct tegra_soctherm *ts = dev_id;
    837	u32 r;
    838
    839	/* Case for no lock:
    840	 * Although interrupts are enabled in set_trips, there is still no need
    841	 * to lock here because the interrupts are disabled before programming
    842	 * new trip points. Hence there cant be a interrupt on the same sensor.
    843	 * An interrupt can however occur on a sensor while trips are being
    844	 * programmed on a different one. This beign a LEVEL interrupt won't
    845	 * cause a new interrupt but this is taken care of by the re-reading of
    846	 * the STATUS register in the thread function.
    847	 */
    848	r = readl(ts->regs + THERMCTL_INTR_STATUS);
    849	writel(r, ts->regs + THERMCTL_INTR_DISABLE);
    850
    851	return IRQ_WAKE_THREAD;
    852}
    853
    854/**
    855 * soctherm_thermal_isr_thread() - Handles a thermal interrupt request
    856 * @irq:       The interrupt number being requested; not used
    857 * @dev_id:    Opaque pointer to tegra_soctherm;
    858 *
    859 * Clears the interrupt status register if there are expected
    860 * interrupt bits set.
    861 * The interrupt(s) are then handled by updating the corresponding
    862 * thermal zones.
    863 *
    864 * An error is logged if any unexpected interrupt bits are set.
    865 *
    866 * Disabled interrupts are re-enabled.
    867 *
    868 * Return: %IRQ_HANDLED. Interrupt was handled and no further processing
    869 * is needed.
    870 */
    871static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id)
    872{
    873	struct tegra_soctherm *ts = dev_id;
    874	struct thermal_zone_device *tz;
    875	u32 st, ex = 0, cp = 0, gp = 0, pl = 0, me = 0;
    876
    877	st = readl(ts->regs + THERMCTL_INTR_STATUS);
    878
    879	/* deliberately clear expected interrupts handled in SW */
    880	cp |= st & TH_INTR_CD0_MASK;
    881	cp |= st & TH_INTR_CU0_MASK;
    882
    883	gp |= st & TH_INTR_GD0_MASK;
    884	gp |= st & TH_INTR_GU0_MASK;
    885
    886	pl |= st & TH_INTR_PD0_MASK;
    887	pl |= st & TH_INTR_PU0_MASK;
    888
    889	me |= st & TH_INTR_MD0_MASK;
    890	me |= st & TH_INTR_MU0_MASK;
    891
    892	ex |= cp | gp | pl | me;
    893	if (ex) {
    894		writel(ex, ts->regs + THERMCTL_INTR_STATUS);
    895		st &= ~ex;
    896
    897		if (cp) {
    898			tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_CPU];
    899			thermal_zone_device_update(tz,
    900						   THERMAL_EVENT_UNSPECIFIED);
    901		}
    902
    903		if (gp) {
    904			tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_GPU];
    905			thermal_zone_device_update(tz,
    906						   THERMAL_EVENT_UNSPECIFIED);
    907		}
    908
    909		if (pl) {
    910			tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_PLLX];
    911			thermal_zone_device_update(tz,
    912						   THERMAL_EVENT_UNSPECIFIED);
    913		}
    914
    915		if (me) {
    916			tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_MEM];
    917			thermal_zone_device_update(tz,
    918						   THERMAL_EVENT_UNSPECIFIED);
    919		}
    920	}
    921
    922	/* deliberately ignore expected interrupts NOT handled in SW */
    923	ex |= TH_INTR_IGNORE_MASK;
    924	st &= ~ex;
    925
    926	if (st) {
    927		/* Whine about any other unexpected INTR bits still set */
    928		pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st);
    929		writel(st, ts->regs + THERMCTL_INTR_STATUS);
    930	}
    931
    932	return IRQ_HANDLED;
    933}
    934
    935/**
    936 * soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt
    937 * @ts:		pointer to a struct tegra_soctherm
    938 * @alarm:		The soctherm throttle id
    939 * @enable:		Flag indicating enable the soctherm over-current
    940 *			interrupt or disable it
    941 *
    942 * Enables a specific over-current pins @alarm to raise an interrupt if the flag
    943 * is set and the alarm corresponds to OC1, OC2, OC3, or OC4.
    944 */
    945static void soctherm_oc_intr_enable(struct tegra_soctherm *ts,
    946				    enum soctherm_throttle_id alarm,
    947				    bool enable)
    948{
    949	u32 r;
    950
    951	if (!enable)
    952		return;
    953
    954	r = readl(ts->regs + OC_INTR_ENABLE);
    955	switch (alarm) {
    956	case THROTTLE_OC1:
    957		r = REG_SET_MASK(r, OC_INTR_OC1_MASK, 1);
    958		break;
    959	case THROTTLE_OC2:
    960		r = REG_SET_MASK(r, OC_INTR_OC2_MASK, 1);
    961		break;
    962	case THROTTLE_OC3:
    963		r = REG_SET_MASK(r, OC_INTR_OC3_MASK, 1);
    964		break;
    965	case THROTTLE_OC4:
    966		r = REG_SET_MASK(r, OC_INTR_OC4_MASK, 1);
    967		break;
    968	default:
    969		r = 0;
    970		break;
    971	}
    972	writel(r, ts->regs + OC_INTR_ENABLE);
    973}
    974
    975/**
    976 * soctherm_handle_alarm() - Handles soctherm alarms
    977 * @alarm:		The soctherm throttle id
    978 *
    979 * "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing
    980 * a warning or informative message.
    981 *
    982 * Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success).
    983 */
    984static int soctherm_handle_alarm(enum soctherm_throttle_id alarm)
    985{
    986	int rv = -EINVAL;
    987
    988	switch (alarm) {
    989	case THROTTLE_OC1:
    990		pr_debug("soctherm: Successfully handled OC1 alarm\n");
    991		rv = 0;
    992		break;
    993
    994	case THROTTLE_OC2:
    995		pr_debug("soctherm: Successfully handled OC2 alarm\n");
    996		rv = 0;
    997		break;
    998
    999	case THROTTLE_OC3:
   1000		pr_debug("soctherm: Successfully handled OC3 alarm\n");
   1001		rv = 0;
   1002		break;
   1003
   1004	case THROTTLE_OC4:
   1005		pr_debug("soctherm: Successfully handled OC4 alarm\n");
   1006		rv = 0;
   1007		break;
   1008
   1009	default:
   1010		break;
   1011	}
   1012
   1013	if (rv)
   1014		pr_err("soctherm: ERROR in handling %s alarm\n",
   1015		       throt_names[alarm]);
   1016
   1017	return rv;
   1018}
   1019
   1020/**
   1021 * soctherm_edp_isr_thread() - log an over-current interrupt request
   1022 * @irq:	OC irq number. Currently not being used. See description
   1023 * @arg:	a void pointer for callback, currently not being used
   1024 *
   1025 * Over-current events are handled in hardware. This function is called to log
   1026 * and handle any OC events that happened. Additionally, it checks every
   1027 * over-current interrupt registers for registers are set but
   1028 * was not expected (i.e. any discrepancy in interrupt status) by the function,
   1029 * the discrepancy will logged.
   1030 *
   1031 * Return: %IRQ_HANDLED
   1032 */
   1033static irqreturn_t soctherm_edp_isr_thread(int irq, void *arg)
   1034{
   1035	struct tegra_soctherm *ts = arg;
   1036	u32 st, ex, oc1, oc2, oc3, oc4;
   1037
   1038	st = readl(ts->regs + OC_INTR_STATUS);
   1039
   1040	/* deliberately clear expected interrupts handled in SW */
   1041	oc1 = st & OC_INTR_OC1_MASK;
   1042	oc2 = st & OC_INTR_OC2_MASK;
   1043	oc3 = st & OC_INTR_OC3_MASK;
   1044	oc4 = st & OC_INTR_OC4_MASK;
   1045	ex = oc1 | oc2 | oc3 | oc4;
   1046
   1047	pr_err("soctherm: OC ALARM 0x%08x\n", ex);
   1048	if (ex) {
   1049		writel(st, ts->regs + OC_INTR_STATUS);
   1050		st &= ~ex;
   1051
   1052		if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1))
   1053			soctherm_oc_intr_enable(ts, THROTTLE_OC1, true);
   1054
   1055		if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2))
   1056			soctherm_oc_intr_enable(ts, THROTTLE_OC2, true);
   1057
   1058		if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3))
   1059			soctherm_oc_intr_enable(ts, THROTTLE_OC3, true);
   1060
   1061		if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4))
   1062			soctherm_oc_intr_enable(ts, THROTTLE_OC4, true);
   1063
   1064		if (oc1 && soc_irq_cdata.irq_enable & BIT(0))
   1065			handle_nested_irq(
   1066				irq_find_mapping(soc_irq_cdata.domain, 0));
   1067
   1068		if (oc2 && soc_irq_cdata.irq_enable & BIT(1))
   1069			handle_nested_irq(
   1070				irq_find_mapping(soc_irq_cdata.domain, 1));
   1071
   1072		if (oc3 && soc_irq_cdata.irq_enable & BIT(2))
   1073			handle_nested_irq(
   1074				irq_find_mapping(soc_irq_cdata.domain, 2));
   1075
   1076		if (oc4 && soc_irq_cdata.irq_enable & BIT(3))
   1077			handle_nested_irq(
   1078				irq_find_mapping(soc_irq_cdata.domain, 3));
   1079	}
   1080
   1081	if (st) {
   1082		pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st);
   1083		writel(st, ts->regs + OC_INTR_STATUS);
   1084	}
   1085
   1086	return IRQ_HANDLED;
   1087}
   1088
   1089/**
   1090 * soctherm_edp_isr() - Disables any active interrupts
   1091 * @irq:	The interrupt request number
   1092 * @arg:	Opaque pointer to an argument
   1093 *
   1094 * Writes to the OC_INTR_DISABLE register the over current interrupt status,
   1095 * masking any asserted interrupts. Doing this prevents the same interrupts
   1096 * from triggering this isr repeatedly. The thread woken by this isr will
   1097 * handle asserted interrupts and subsequently unmask/re-enable them.
   1098 *
   1099 * The OC_INTR_DISABLE register indicates which OC interrupts
   1100 * have been disabled.
   1101 *
   1102 * Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread
   1103 */
   1104static irqreturn_t soctherm_edp_isr(int irq, void *arg)
   1105{
   1106	struct tegra_soctherm *ts = arg;
   1107	u32 r;
   1108
   1109	if (!ts)
   1110		return IRQ_NONE;
   1111
   1112	r = readl(ts->regs + OC_INTR_STATUS);
   1113	writel(r, ts->regs + OC_INTR_DISABLE);
   1114
   1115	return IRQ_WAKE_THREAD;
   1116}
   1117
   1118/**
   1119 * soctherm_oc_irq_lock() - locks the over-current interrupt request
   1120 * @data:	Interrupt request data
   1121 *
   1122 * Looks up the chip data from @data and locks the mutex associated with
   1123 * a particular over-current interrupt request.
   1124 */
   1125static void soctherm_oc_irq_lock(struct irq_data *data)
   1126{
   1127	struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
   1128
   1129	mutex_lock(&d->irq_lock);
   1130}
   1131
   1132/**
   1133 * soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request
   1134 * @data:		Interrupt request data
   1135 *
   1136 * Looks up the interrupt request data @data and unlocks the mutex associated
   1137 * with a particular over-current interrupt request.
   1138 */
   1139static void soctherm_oc_irq_sync_unlock(struct irq_data *data)
   1140{
   1141	struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
   1142
   1143	mutex_unlock(&d->irq_lock);
   1144}
   1145
   1146/**
   1147 * soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue
   1148 * @data:       irq_data structure of the chip
   1149 *
   1150 * Sets the irq_enable bit of SOC_THERM allowing SOC_THERM
   1151 * to respond to over-current interrupts.
   1152 *
   1153 */
   1154static void soctherm_oc_irq_enable(struct irq_data *data)
   1155{
   1156	struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
   1157
   1158	d->irq_enable |= BIT(data->hwirq);
   1159}
   1160
   1161/**
   1162 * soctherm_oc_irq_disable() - Disables overcurrent interrupt requests
   1163 * @data:	The interrupt request information
   1164 *
   1165 * Clears the interrupt request enable bit of the overcurrent
   1166 * interrupt request chip data.
   1167 *
   1168 * Return: Nothing is returned (void)
   1169 */
   1170static void soctherm_oc_irq_disable(struct irq_data *data)
   1171{
   1172	struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
   1173
   1174	d->irq_enable &= ~BIT(data->hwirq);
   1175}
   1176
   1177static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type)
   1178{
   1179	return 0;
   1180}
   1181
   1182/**
   1183 * soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper
   1184 * @h:		Interrupt request domain
   1185 * @virq:	Virtual interrupt request number
   1186 * @hw:		Hardware interrupt request number
   1187 *
   1188 * Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM
   1189 * interrupt request is called, the irq_domain takes the request's virtual
   1190 * request number (much like a virtual memory address) and maps it to a
   1191 * physical hardware request number.
   1192 *
   1193 * When a mapping doesn't already exist for a virtual request number, the
   1194 * irq_domain calls this function to associate the virtual request number with
   1195 * a hardware request number.
   1196 *
   1197 * Return: 0
   1198 */
   1199static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq,
   1200		irq_hw_number_t hw)
   1201{
   1202	struct soctherm_oc_irq_chip_data *data = h->host_data;
   1203
   1204	irq_set_chip_data(virq, data);
   1205	irq_set_chip(virq, &data->irq_chip);
   1206	irq_set_nested_thread(virq, 1);
   1207	return 0;
   1208}
   1209
   1210/**
   1211 * soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts
   1212 * @d:      Interrupt request domain
   1213 * @ctrlr:      Controller device tree node
   1214 * @intspec:    Array of u32s from DTs "interrupt" property
   1215 * @intsize:    Number of values inside the intspec array
   1216 * @out_hwirq:  HW IRQ value associated with this interrupt
   1217 * @out_type:   The IRQ SENSE type for this interrupt.
   1218 *
   1219 * This Device Tree IRQ specifier translation function will translate a
   1220 * specific "interrupt" as defined by 2 DT values where the cell values map
   1221 * the hwirq number + 1 and linux irq flags. Since the output is the hwirq
   1222 * number, this function will subtract 1 from the value listed in DT.
   1223 *
   1224 * Return: 0
   1225 */
   1226static int soctherm_irq_domain_xlate_twocell(struct irq_domain *d,
   1227	struct device_node *ctrlr, const u32 *intspec, unsigned int intsize,
   1228	irq_hw_number_t *out_hwirq, unsigned int *out_type)
   1229{
   1230	if (WARN_ON(intsize < 2))
   1231		return -EINVAL;
   1232
   1233	/*
   1234	 * The HW value is 1 index less than the DT IRQ values.
   1235	 * i.e. OC4 goes to HW index 3.
   1236	 */
   1237	*out_hwirq = intspec[0] - 1;
   1238	*out_type = intspec[1] & IRQ_TYPE_SENSE_MASK;
   1239	return 0;
   1240}
   1241
   1242static const struct irq_domain_ops soctherm_oc_domain_ops = {
   1243	.map	= soctherm_oc_irq_map,
   1244	.xlate	= soctherm_irq_domain_xlate_twocell,
   1245};
   1246
   1247/**
   1248 * soctherm_oc_int_init() - Initial enabling of the over
   1249 * current interrupts
   1250 * @np:	The devicetree node for soctherm
   1251 * @num_irqs:	The number of new interrupt requests
   1252 *
   1253 * Sets the over current interrupt request chip data
   1254 *
   1255 * Return: 0 on success or if overcurrent interrupts are not enabled,
   1256 * -ENOMEM (out of memory), or irq_base if the function failed to
   1257 * allocate the irqs
   1258 */
   1259static int soctherm_oc_int_init(struct device_node *np, int num_irqs)
   1260{
   1261	if (!num_irqs) {
   1262		pr_info("%s(): OC interrupts are not enabled\n", __func__);
   1263		return 0;
   1264	}
   1265
   1266	mutex_init(&soc_irq_cdata.irq_lock);
   1267	soc_irq_cdata.irq_enable = 0;
   1268
   1269	soc_irq_cdata.irq_chip.name = "soc_therm_oc";
   1270	soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock;
   1271	soc_irq_cdata.irq_chip.irq_bus_sync_unlock =
   1272		soctherm_oc_irq_sync_unlock;
   1273	soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable;
   1274	soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable;
   1275	soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type;
   1276	soc_irq_cdata.irq_chip.irq_set_wake = NULL;
   1277
   1278	soc_irq_cdata.domain = irq_domain_add_linear(np, num_irqs,
   1279						     &soctherm_oc_domain_ops,
   1280						     &soc_irq_cdata);
   1281
   1282	if (!soc_irq_cdata.domain) {
   1283		pr_err("%s: Failed to create IRQ domain\n", __func__);
   1284		return -ENOMEM;
   1285	}
   1286
   1287	pr_debug("%s(): OC interrupts enabled successful\n", __func__);
   1288	return 0;
   1289}
   1290
   1291#ifdef CONFIG_DEBUG_FS
   1292static int regs_show(struct seq_file *s, void *data)
   1293{
   1294	struct platform_device *pdev = s->private;
   1295	struct tegra_soctherm *ts = platform_get_drvdata(pdev);
   1296	const struct tegra_tsensor *tsensors = ts->soc->tsensors;
   1297	const struct tegra_tsensor_group **ttgs = ts->soc->ttgs;
   1298	u32 r, state;
   1299	int i, level;
   1300
   1301	seq_puts(s, "-----TSENSE (convert HW)-----\n");
   1302
   1303	for (i = 0; i < ts->soc->num_tsensors; i++) {
   1304		r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1);
   1305		state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE);
   1306
   1307		seq_printf(s, "%s: ", tsensors[i].name);
   1308		seq_printf(s, "En(%d) ", state);
   1309
   1310		if (!state) {
   1311			seq_puts(s, "\n");
   1312			continue;
   1313		}
   1314
   1315		state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK);
   1316		seq_printf(s, "tiddq(%d) ", state);
   1317		state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK);
   1318		seq_printf(s, "ten_count(%d) ", state);
   1319		state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK);
   1320		seq_printf(s, "tsample(%d) ", state + 1);
   1321
   1322		r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1);
   1323		state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK);
   1324		seq_printf(s, "Temp(%d/", state);
   1325		state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK);
   1326		seq_printf(s, "%d) ", translate_temp(state));
   1327
   1328		r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0);
   1329		state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK);
   1330		seq_printf(s, "Capture(%d/", state);
   1331		state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK);
   1332		seq_printf(s, "%d) ", state);
   1333
   1334		r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0);
   1335		state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP);
   1336		seq_printf(s, "Stop(%d) ", state);
   1337		state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK);
   1338		seq_printf(s, "Tall(%d) ", state);
   1339		state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER);
   1340		seq_printf(s, "Over(%d/", state);
   1341		state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER);
   1342		seq_printf(s, "%d/", state);
   1343		state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER);
   1344		seq_printf(s, "%d) ", state);
   1345
   1346		r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2);
   1347		state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK);
   1348		seq_printf(s, "Therm_A/B(%d/", state);
   1349		state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK);
   1350		seq_printf(s, "%d)\n", (s16)state);
   1351	}
   1352
   1353	r = readl(ts->regs + SENSOR_PDIV);
   1354	seq_printf(s, "PDIV: 0x%x\n", r);
   1355
   1356	r = readl(ts->regs + SENSOR_HOTSPOT_OFF);
   1357	seq_printf(s, "HOTSPOT: 0x%x\n", r);
   1358
   1359	seq_puts(s, "\n");
   1360	seq_puts(s, "-----SOC_THERM-----\n");
   1361
   1362	r = readl(ts->regs + SENSOR_TEMP1);
   1363	state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK);
   1364	seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state));
   1365	state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK);
   1366	seq_printf(s, " GPU(%d) ", translate_temp(state));
   1367	r = readl(ts->regs + SENSOR_TEMP2);
   1368	state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK);
   1369	seq_printf(s, " PLLX(%d) ", translate_temp(state));
   1370	state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK);
   1371	seq_printf(s, " MEM(%d)\n", translate_temp(state));
   1372
   1373	for (i = 0; i < ts->soc->num_ttgs; i++) {
   1374		seq_printf(s, "%s:\n", ttgs[i]->name);
   1375		for (level = 0; level < 4; level++) {
   1376			s32 v;
   1377			u32 mask;
   1378			u16 off = ttgs[i]->thermctl_lvl0_offset;
   1379
   1380			r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
   1381
   1382			mask = ttgs[i]->thermctl_lvl0_up_thresh_mask;
   1383			state = REG_GET_MASK(r, mask);
   1384			v = sign_extend32(state, ts->soc->bptt - 1);
   1385			v *= ts->soc->thresh_grain;
   1386			seq_printf(s, "   %d: Up/Dn(%d /", level, v);
   1387
   1388			mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask;
   1389			state = REG_GET_MASK(r, mask);
   1390			v = sign_extend32(state, ts->soc->bptt - 1);
   1391			v *= ts->soc->thresh_grain;
   1392			seq_printf(s, "%d ) ", v);
   1393
   1394			mask = THERMCTL_LVL0_CPU0_EN_MASK;
   1395			state = REG_GET_MASK(r, mask);
   1396			seq_printf(s, "En(%d) ", state);
   1397
   1398			mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK;
   1399			state = REG_GET_MASK(r, mask);
   1400			seq_puts(s, "CPU Throt");
   1401			if (!state)
   1402				seq_printf(s, "(%s) ", "none");
   1403			else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT)
   1404				seq_printf(s, "(%s) ", "L");
   1405			else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY)
   1406				seq_printf(s, "(%s) ", "H");
   1407			else
   1408				seq_printf(s, "(%s) ", "H+L");
   1409
   1410			mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK;
   1411			state = REG_GET_MASK(r, mask);
   1412			seq_puts(s, "GPU Throt");
   1413			if (!state)
   1414				seq_printf(s, "(%s) ", "none");
   1415			else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT)
   1416				seq_printf(s, "(%s) ", "L");
   1417			else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY)
   1418				seq_printf(s, "(%s) ", "H");
   1419			else
   1420				seq_printf(s, "(%s) ", "H+L");
   1421
   1422			mask = THERMCTL_LVL0_CPU0_STATUS_MASK;
   1423			state = REG_GET_MASK(r, mask);
   1424			seq_printf(s, "Status(%s)\n",
   1425				   state == 0 ? "LO" :
   1426				   state == 1 ? "In" :
   1427				   state == 2 ? "Res" : "HI");
   1428		}
   1429	}
   1430
   1431	r = readl(ts->regs + THERMCTL_STATS_CTL);
   1432	seq_printf(s, "STATS: Up(%s) Dn(%s)\n",
   1433		   r & STATS_CTL_EN_UP ? "En" : "--",
   1434		   r & STATS_CTL_EN_DN ? "En" : "--");
   1435
   1436	for (level = 0; level < 4; level++) {
   1437		u16 off;
   1438
   1439		off = THERMCTL_LVL0_UP_STATS;
   1440		r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
   1441		seq_printf(s, "  Level_%d Up(%d) ", level, r);
   1442
   1443		off = THERMCTL_LVL0_DN_STATS;
   1444		r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
   1445		seq_printf(s, "Dn(%d)\n", r);
   1446	}
   1447
   1448	r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
   1449	state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask);
   1450	seq_printf(s, "Thermtrip Any En(%d)\n", state);
   1451	for (i = 0; i < ts->soc->num_ttgs; i++) {
   1452		state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask);
   1453		seq_printf(s, "     %s En(%d) ", ttgs[i]->name, state);
   1454		state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask);
   1455		state *= ts->soc->thresh_grain;
   1456		seq_printf(s, "Thresh(%d)\n", state);
   1457	}
   1458
   1459	r = readl(ts->regs + THROT_GLOBAL_CFG);
   1460	seq_puts(s, "\n");
   1461	seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r);
   1462
   1463	seq_puts(s, "---------------------------------------------------\n");
   1464	r = readl(ts->regs + THROT_STATUS);
   1465	state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK);
   1466	seq_printf(s, "THROT STATUS: breach(%d) ", state);
   1467	state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK);
   1468	seq_printf(s, "state(%d) ", state);
   1469	state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK);
   1470	seq_printf(s, "enabled(%d)\n", state);
   1471
   1472	r = readl(ts->regs + CPU_PSKIP_STATUS);
   1473	if (ts->soc->use_ccroc) {
   1474		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
   1475		seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state);
   1476	} else {
   1477		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK);
   1478		seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state);
   1479		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK);
   1480		seq_printf(s, "N(%d) ", state);
   1481		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
   1482		seq_printf(s, "enabled(%d)\n", state);
   1483	}
   1484
   1485	return 0;
   1486}
   1487
   1488DEFINE_SHOW_ATTRIBUTE(regs);
   1489
   1490static void soctherm_debug_init(struct platform_device *pdev)
   1491{
   1492	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
   1493	struct dentry *root;
   1494
   1495	root = debugfs_create_dir("soctherm", NULL);
   1496
   1497	tegra->debugfs_dir = root;
   1498
   1499	debugfs_create_file("reg_contents", 0644, root, pdev, &regs_fops);
   1500}
   1501#else
   1502static inline void soctherm_debug_init(struct platform_device *pdev) {}
   1503#endif
   1504
   1505static int soctherm_clk_enable(struct platform_device *pdev, bool enable)
   1506{
   1507	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
   1508	int err;
   1509
   1510	if (!tegra->clock_soctherm || !tegra->clock_tsensor)
   1511		return -EINVAL;
   1512
   1513	reset_control_assert(tegra->reset);
   1514
   1515	if (enable) {
   1516		err = clk_prepare_enable(tegra->clock_soctherm);
   1517		if (err) {
   1518			reset_control_deassert(tegra->reset);
   1519			return err;
   1520		}
   1521
   1522		err = clk_prepare_enable(tegra->clock_tsensor);
   1523		if (err) {
   1524			clk_disable_unprepare(tegra->clock_soctherm);
   1525			reset_control_deassert(tegra->reset);
   1526			return err;
   1527		}
   1528	} else {
   1529		clk_disable_unprepare(tegra->clock_tsensor);
   1530		clk_disable_unprepare(tegra->clock_soctherm);
   1531	}
   1532
   1533	reset_control_deassert(tegra->reset);
   1534
   1535	return 0;
   1536}
   1537
   1538static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev,
   1539				    unsigned long *max_state)
   1540{
   1541	*max_state = 1;
   1542	return 0;
   1543}
   1544
   1545static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev,
   1546				    unsigned long *cur_state)
   1547{
   1548	struct tegra_soctherm *ts = cdev->devdata;
   1549	u32 r;
   1550
   1551	r = readl(ts->regs + THROT_STATUS);
   1552	if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK))
   1553		*cur_state = 1;
   1554	else
   1555		*cur_state = 0;
   1556
   1557	return 0;
   1558}
   1559
   1560static int throt_set_cdev_state(struct thermal_cooling_device *cdev,
   1561				unsigned long cur_state)
   1562{
   1563	return 0;
   1564}
   1565
   1566static const struct thermal_cooling_device_ops throt_cooling_ops = {
   1567	.get_max_state = throt_get_cdev_max_state,
   1568	.get_cur_state = throt_get_cdev_cur_state,
   1569	.set_cur_state = throt_set_cdev_state,
   1570};
   1571
   1572static int soctherm_thermtrips_parse(struct platform_device *pdev)
   1573{
   1574	struct device *dev = &pdev->dev;
   1575	struct tegra_soctherm *ts = dev_get_drvdata(dev);
   1576	struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
   1577	const int max_num_prop = ts->soc->num_ttgs * 2;
   1578	u32 *tlb;
   1579	int i, j, n, ret;
   1580
   1581	if (!tt)
   1582		return -ENOMEM;
   1583
   1584	n = of_property_count_u32_elems(dev->of_node, "nvidia,thermtrips");
   1585	if (n <= 0) {
   1586		dev_info(dev,
   1587			 "missing thermtrips, will use critical trips as shut down temp\n");
   1588		return n;
   1589	}
   1590
   1591	n = min(max_num_prop, n);
   1592
   1593	tlb = devm_kcalloc(&pdev->dev, max_num_prop, sizeof(u32), GFP_KERNEL);
   1594	if (!tlb)
   1595		return -ENOMEM;
   1596	ret = of_property_read_u32_array(dev->of_node, "nvidia,thermtrips",
   1597					 tlb, n);
   1598	if (ret) {
   1599		dev_err(dev, "invalid num ele: thermtrips:%d\n", ret);
   1600		return ret;
   1601	}
   1602
   1603	i = 0;
   1604	for (j = 0; j < n; j = j + 2) {
   1605		if (tlb[j] >= TEGRA124_SOCTHERM_SENSOR_NUM)
   1606			continue;
   1607
   1608		tt[i].id = tlb[j];
   1609		tt[i].temp = tlb[j + 1];
   1610		i++;
   1611	}
   1612
   1613	return 0;
   1614}
   1615
   1616static void soctherm_oc_cfg_parse(struct device *dev,
   1617				struct device_node *np_oc,
   1618				struct soctherm_throt_cfg *stc)
   1619{
   1620	u32 val;
   1621
   1622	if (of_property_read_bool(np_oc, "nvidia,polarity-active-low"))
   1623		stc->oc_cfg.active_low = 1;
   1624	else
   1625		stc->oc_cfg.active_low = 0;
   1626
   1627	if (!of_property_read_u32(np_oc, "nvidia,count-threshold", &val)) {
   1628		stc->oc_cfg.intr_en = 1;
   1629		stc->oc_cfg.alarm_cnt_thresh = val;
   1630	}
   1631
   1632	if (!of_property_read_u32(np_oc, "nvidia,throttle-period-us", &val))
   1633		stc->oc_cfg.throt_period = val;
   1634
   1635	if (!of_property_read_u32(np_oc, "nvidia,alarm-filter", &val))
   1636		stc->oc_cfg.alarm_filter = val;
   1637
   1638	/* BRIEF throttling by default, do not support STICKY */
   1639	stc->oc_cfg.mode = OC_THROTTLE_MODE_BRIEF;
   1640}
   1641
   1642static int soctherm_throt_cfg_parse(struct device *dev,
   1643				    struct device_node *np,
   1644				    struct soctherm_throt_cfg *stc)
   1645{
   1646	struct tegra_soctherm *ts = dev_get_drvdata(dev);
   1647	int ret;
   1648	u32 val;
   1649
   1650	ret = of_property_read_u32(np, "nvidia,priority", &val);
   1651	if (ret) {
   1652		dev_err(dev, "throttle-cfg: %s: invalid priority\n", stc->name);
   1653		return -EINVAL;
   1654	}
   1655	stc->priority = val;
   1656
   1657	ret = of_property_read_u32(np, ts->soc->use_ccroc ?
   1658				   "nvidia,cpu-throt-level" :
   1659				   "nvidia,cpu-throt-percent", &val);
   1660	if (!ret) {
   1661		if (ts->soc->use_ccroc &&
   1662		    val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
   1663			stc->cpu_throt_level = val;
   1664		else if (!ts->soc->use_ccroc && val <= 100)
   1665			stc->cpu_throt_depth = val;
   1666		else
   1667			goto err;
   1668	} else {
   1669		goto err;
   1670	}
   1671
   1672	ret = of_property_read_u32(np, "nvidia,gpu-throt-level", &val);
   1673	if (!ret && val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
   1674		stc->gpu_throt_level = val;
   1675	else
   1676		goto err;
   1677
   1678	return 0;
   1679
   1680err:
   1681	dev_err(dev, "throttle-cfg: %s: no throt prop or invalid prop\n",
   1682		stc->name);
   1683	return -EINVAL;
   1684}
   1685
   1686/**
   1687 * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations
   1688 * and register them as cooling devices.
   1689 * @pdev: Pointer to platform_device struct
   1690 */
   1691static void soctherm_init_hw_throt_cdev(struct platform_device *pdev)
   1692{
   1693	struct device *dev = &pdev->dev;
   1694	struct tegra_soctherm *ts = dev_get_drvdata(dev);
   1695	struct device_node *np_stc, *np_stcc;
   1696	const char *name;
   1697	int i;
   1698
   1699	for (i = 0; i < THROTTLE_SIZE; i++) {
   1700		ts->throt_cfgs[i].name = throt_names[i];
   1701		ts->throt_cfgs[i].id = i;
   1702		ts->throt_cfgs[i].init = false;
   1703	}
   1704
   1705	np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs");
   1706	if (!np_stc) {
   1707		dev_info(dev,
   1708			 "throttle-cfg: no throttle-cfgs - not enabling\n");
   1709		return;
   1710	}
   1711
   1712	for_each_child_of_node(np_stc, np_stcc) {
   1713		struct soctherm_throt_cfg *stc;
   1714		struct thermal_cooling_device *tcd;
   1715		int err;
   1716
   1717		name = np_stcc->name;
   1718		stc = find_throttle_cfg_by_name(ts, name);
   1719		if (!stc) {
   1720			dev_err(dev,
   1721				"throttle-cfg: could not find %s\n", name);
   1722			continue;
   1723		}
   1724
   1725		if (stc->init) {
   1726			dev_err(dev, "throttle-cfg: %s: redefined!\n", name);
   1727			of_node_put(np_stcc);
   1728			break;
   1729		}
   1730
   1731		err = soctherm_throt_cfg_parse(dev, np_stcc, stc);
   1732		if (err)
   1733			continue;
   1734
   1735		if (stc->id >= THROTTLE_OC1) {
   1736			soctherm_oc_cfg_parse(dev, np_stcc, stc);
   1737			stc->init = true;
   1738		} else {
   1739
   1740			tcd = thermal_of_cooling_device_register(np_stcc,
   1741							 (char *)name, ts,
   1742							 &throt_cooling_ops);
   1743			if (IS_ERR_OR_NULL(tcd)) {
   1744				dev_err(dev,
   1745					"throttle-cfg: %s: failed to register cooling device\n",
   1746					name);
   1747				continue;
   1748			}
   1749			stc->cdev = tcd;
   1750			stc->init = true;
   1751		}
   1752
   1753	}
   1754
   1755	of_node_put(np_stc);
   1756}
   1757
   1758/**
   1759 * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config
   1760 * @ts: pointer to a struct tegra_soctherm
   1761 * @level: describing the level LOW/MED/HIGH of throttling
   1762 *
   1763 * It's necessary to set up the CPU-local CCROC NV_THERM instance with
   1764 * the M/N values desired for each level. This function does this.
   1765 *
   1766 * This function pre-programs the CCROC NV_THERM levels in terms of
   1767 * pre-configured "Low", "Medium" or "Heavy" throttle levels which are
   1768 * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY.
   1769 */
   1770static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level)
   1771{
   1772	u8 depth, dividend;
   1773	u32 r;
   1774
   1775	switch (level) {
   1776	case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
   1777		depth = 50;
   1778		break;
   1779	case TEGRA_SOCTHERM_THROT_LEVEL_MED:
   1780		depth = 75;
   1781		break;
   1782	case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
   1783		depth = 80;
   1784		break;
   1785	case TEGRA_SOCTHERM_THROT_LEVEL_NONE:
   1786		return;
   1787	default:
   1788		return;
   1789	}
   1790
   1791	dividend = THROT_DEPTH_DIVIDEND(depth);
   1792
   1793	/* setup PSKIP in ccroc nv_therm registers */
   1794	r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
   1795	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
   1796	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf);
   1797	ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
   1798
   1799	r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
   1800	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1);
   1801	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
   1802	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
   1803	ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
   1804}
   1805
   1806/**
   1807 * throttlectl_cpu_level_select() - program CPU pulse skipper config
   1808 * @ts: pointer to a struct tegra_soctherm
   1809 * @throt: the LIGHT/HEAVY of throttle event id
   1810 *
   1811 * Pulse skippers are used to throttle clock frequencies.  This
   1812 * function programs the pulse skippers based on @throt and platform
   1813 * data.  This function is used on SoCs which have CPU-local pulse
   1814 * skipper control, such as T13x. It programs soctherm's interface to
   1815 * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling
   1816 * vectors. PSKIP_BYPASS mode is set as required per HW spec.
   1817 */
   1818static void throttlectl_cpu_level_select(struct tegra_soctherm *ts,
   1819					 enum soctherm_throttle_id throt)
   1820{
   1821	u32 r, throt_vect;
   1822
   1823	/* Denver:CCROC NV_THERM interface N:3 Mapping */
   1824	switch (ts->throt_cfgs[throt].cpu_throt_level) {
   1825	case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
   1826		throt_vect = THROT_VECT_LOW;
   1827		break;
   1828	case TEGRA_SOCTHERM_THROT_LEVEL_MED:
   1829		throt_vect = THROT_VECT_MED;
   1830		break;
   1831	case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
   1832		throt_vect = THROT_VECT_HIGH;
   1833		break;
   1834	default:
   1835		throt_vect = THROT_VECT_NONE;
   1836		break;
   1837	}
   1838
   1839	r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
   1840	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
   1841	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect);
   1842	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect);
   1843	writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
   1844
   1845	/* bypass sequencer in soc_therm as it is programmed in ccroc */
   1846	r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1);
   1847	writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
   1848}
   1849
   1850/**
   1851 * throttlectl_cpu_mn() - program CPU pulse skipper configuration
   1852 * @ts: pointer to a struct tegra_soctherm
   1853 * @throt: the LIGHT/HEAVY of throttle event id
   1854 *
   1855 * Pulse skippers are used to throttle clock frequencies.  This
   1856 * function programs the pulse skippers based on @throt and platform
   1857 * data.  This function is used for CPUs that have "remote" pulse
   1858 * skipper control, e.g., the CPU pulse skipper is controlled by the
   1859 * SOC_THERM IP block.  (SOC_THERM is located outside the CPU
   1860 * complex.)
   1861 */
   1862static void throttlectl_cpu_mn(struct tegra_soctherm *ts,
   1863			       enum soctherm_throttle_id throt)
   1864{
   1865	u32 r;
   1866	int depth;
   1867	u8 dividend;
   1868
   1869	depth = ts->throt_cfgs[throt].cpu_throt_depth;
   1870	dividend = THROT_DEPTH_DIVIDEND(depth);
   1871
   1872	r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
   1873	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
   1874	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
   1875	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
   1876	writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
   1877
   1878	r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
   1879	r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
   1880	r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf);
   1881	writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
   1882}
   1883
   1884/**
   1885 * throttlectl_gpu_level_select() - selects throttling level for GPU
   1886 * @ts: pointer to a struct tegra_soctherm
   1887 * @throt: the LIGHT/HEAVY of throttle event id
   1888 *
   1889 * This function programs soctherm's interface to GK20a NV_THERM to select
   1890 * pre-configured "Low", "Medium" or "Heavy" throttle levels.
   1891 *
   1892 * Return: boolean true if HW was programmed
   1893 */
   1894static void throttlectl_gpu_level_select(struct tegra_soctherm *ts,
   1895					 enum soctherm_throttle_id throt)
   1896{
   1897	u32 r, level, throt_vect;
   1898
   1899	level = ts->throt_cfgs[throt].gpu_throt_level;
   1900	throt_vect = THROT_LEVEL_TO_DEPTH(level);
   1901	r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
   1902	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
   1903	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_GPU_MASK, throt_vect);
   1904	writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
   1905}
   1906
   1907static int soctherm_oc_cfg_program(struct tegra_soctherm *ts,
   1908				      enum soctherm_throttle_id throt)
   1909{
   1910	u32 r;
   1911	struct soctherm_oc_cfg *oc = &ts->throt_cfgs[throt].oc_cfg;
   1912
   1913	if (oc->mode == OC_THROTTLE_MODE_DISABLED)
   1914		return -EINVAL;
   1915
   1916	r = REG_SET_MASK(0, OC1_CFG_HW_RESTORE_MASK, 1);
   1917	r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, oc->mode);
   1918	r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, oc->active_low);
   1919	r = REG_SET_MASK(r, OC1_CFG_EN_THROTTLE_MASK, 1);
   1920	writel(r, ts->regs + ALARM_CFG(throt));
   1921	writel(oc->throt_period, ts->regs + ALARM_THROTTLE_PERIOD(throt));
   1922	writel(oc->alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(throt));
   1923	writel(oc->alarm_filter, ts->regs + ALARM_FILTER(throt));
   1924	soctherm_oc_intr_enable(ts, throt, oc->intr_en);
   1925
   1926	return 0;
   1927}
   1928
   1929/**
   1930 * soctherm_throttle_program() - programs pulse skippers' configuration
   1931 * @ts: pointer to a struct tegra_soctherm
   1932 * @throt: the LIGHT/HEAVY of the throttle event id.
   1933 *
   1934 * Pulse skippers are used to throttle clock frequencies.
   1935 * This function programs the pulse skippers.
   1936 */
   1937static void soctherm_throttle_program(struct tegra_soctherm *ts,
   1938				      enum soctherm_throttle_id throt)
   1939{
   1940	u32 r;
   1941	struct soctherm_throt_cfg stc = ts->throt_cfgs[throt];
   1942
   1943	if (!stc.init)
   1944		return;
   1945
   1946	if ((throt >= THROTTLE_OC1) && (soctherm_oc_cfg_program(ts, throt)))
   1947		return;
   1948
   1949	/* Setup PSKIP parameters */
   1950	if (ts->soc->use_ccroc)
   1951		throttlectl_cpu_level_select(ts, throt);
   1952	else
   1953		throttlectl_cpu_mn(ts, throt);
   1954
   1955	throttlectl_gpu_level_select(ts, throt);
   1956
   1957	r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority);
   1958	writel(r, ts->regs + THROT_PRIORITY_CTRL(throt));
   1959
   1960	r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0);
   1961	writel(r, ts->regs + THROT_DELAY_CTRL(throt));
   1962
   1963	r = readl(ts->regs + THROT_PRIORITY_LOCK);
   1964	r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK);
   1965	if (r >= stc.priority)
   1966		return;
   1967	r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK,
   1968			 stc.priority);
   1969	writel(r, ts->regs + THROT_PRIORITY_LOCK);
   1970}
   1971
   1972static void tegra_soctherm_throttle(struct device *dev)
   1973{
   1974	struct tegra_soctherm *ts = dev_get_drvdata(dev);
   1975	u32 v;
   1976	int i;
   1977
   1978	/* configure LOW, MED and HIGH levels for CCROC NV_THERM */
   1979	if (ts->soc->use_ccroc) {
   1980		throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW);
   1981		throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED);
   1982		throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH);
   1983	}
   1984
   1985	/* Thermal HW throttle programming */
   1986	for (i = 0; i < THROTTLE_SIZE; i++)
   1987		soctherm_throttle_program(ts, i);
   1988
   1989	v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1);
   1990	if (ts->soc->use_ccroc) {
   1991		ccroc_writel(ts, v, CCROC_GLOBAL_CFG);
   1992
   1993		v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER);
   1994		v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
   1995		ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER);
   1996	} else {
   1997		writel(v, ts->regs + THROT_GLOBAL_CFG);
   1998
   1999		v = readl(ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
   2000		v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
   2001		writel(v, ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
   2002	}
   2003
   2004	/* initialize stats collection */
   2005	v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN |
   2006	    STATS_CTL_CLR_UP | STATS_CTL_EN_UP;
   2007	writel(v, ts->regs + THERMCTL_STATS_CTL);
   2008}
   2009
   2010static int soctherm_interrupts_init(struct platform_device *pdev,
   2011				    struct tegra_soctherm *tegra)
   2012{
   2013	struct device_node *np = pdev->dev.of_node;
   2014	int ret;
   2015
   2016	ret = soctherm_oc_int_init(np, TEGRA_SOC_OC_IRQ_MAX);
   2017	if (ret < 0) {
   2018		dev_err(&pdev->dev, "soctherm_oc_int_init failed\n");
   2019		return ret;
   2020	}
   2021
   2022	tegra->thermal_irq = platform_get_irq(pdev, 0);
   2023	if (tegra->thermal_irq < 0) {
   2024		dev_dbg(&pdev->dev, "get 'thermal_irq' failed.\n");
   2025		return 0;
   2026	}
   2027
   2028	tegra->edp_irq = platform_get_irq(pdev, 1);
   2029	if (tegra->edp_irq < 0) {
   2030		dev_dbg(&pdev->dev, "get 'edp_irq' failed.\n");
   2031		return 0;
   2032	}
   2033
   2034	ret = devm_request_threaded_irq(&pdev->dev,
   2035					tegra->thermal_irq,
   2036					soctherm_thermal_isr,
   2037					soctherm_thermal_isr_thread,
   2038					IRQF_ONESHOT,
   2039					dev_name(&pdev->dev),
   2040					tegra);
   2041	if (ret < 0) {
   2042		dev_err(&pdev->dev, "request_irq 'thermal_irq' failed.\n");
   2043		return ret;
   2044	}
   2045
   2046	ret = devm_request_threaded_irq(&pdev->dev,
   2047					tegra->edp_irq,
   2048					soctherm_edp_isr,
   2049					soctherm_edp_isr_thread,
   2050					IRQF_ONESHOT,
   2051					"soctherm_edp",
   2052					tegra);
   2053	if (ret < 0) {
   2054		dev_err(&pdev->dev, "request_irq 'edp_irq' failed.\n");
   2055		return ret;
   2056	}
   2057
   2058	return 0;
   2059}
   2060
   2061static void soctherm_init(struct platform_device *pdev)
   2062{
   2063	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
   2064	const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs;
   2065	int i;
   2066	u32 pdiv, hotspot;
   2067
   2068	/* Initialize raw sensors */
   2069	for (i = 0; i < tegra->soc->num_tsensors; ++i)
   2070		enable_tsensor(tegra, i);
   2071
   2072	/* program pdiv and hotspot offsets per THERM */
   2073	pdiv = readl(tegra->regs + SENSOR_PDIV);
   2074	hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF);
   2075	for (i = 0; i < tegra->soc->num_ttgs; ++i) {
   2076		pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask,
   2077				    ttgs[i]->pdiv);
   2078		/* hotspot offset from PLLX, doesn't need to configure PLLX */
   2079		if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX)
   2080			continue;
   2081		hotspot =  REG_SET_MASK(hotspot,
   2082					ttgs[i]->pllx_hotspot_mask,
   2083					ttgs[i]->pllx_hotspot_diff);
   2084	}
   2085	writel(pdiv, tegra->regs + SENSOR_PDIV);
   2086	writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF);
   2087
   2088	/* Configure hw throttle */
   2089	tegra_soctherm_throttle(&pdev->dev);
   2090}
   2091
   2092static const struct of_device_id tegra_soctherm_of_match[] = {
   2093#ifdef CONFIG_ARCH_TEGRA_124_SOC
   2094	{
   2095		.compatible = "nvidia,tegra124-soctherm",
   2096		.data = &tegra124_soctherm,
   2097	},
   2098#endif
   2099#ifdef CONFIG_ARCH_TEGRA_132_SOC
   2100	{
   2101		.compatible = "nvidia,tegra132-soctherm",
   2102		.data = &tegra132_soctherm,
   2103	},
   2104#endif
   2105#ifdef CONFIG_ARCH_TEGRA_210_SOC
   2106	{
   2107		.compatible = "nvidia,tegra210-soctherm",
   2108		.data = &tegra210_soctherm,
   2109	},
   2110#endif
   2111	{ },
   2112};
   2113MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match);
   2114
   2115static int tegra_soctherm_probe(struct platform_device *pdev)
   2116{
   2117	const struct of_device_id *match;
   2118	struct tegra_soctherm *tegra;
   2119	struct thermal_zone_device *z;
   2120	struct tsensor_shared_calib shared_calib;
   2121	struct tegra_soctherm_soc *soc;
   2122	unsigned int i;
   2123	int err;
   2124
   2125	match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node);
   2126	if (!match)
   2127		return -ENODEV;
   2128
   2129	soc = (struct tegra_soctherm_soc *)match->data;
   2130	if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM)
   2131		return -EINVAL;
   2132
   2133	tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
   2134	if (!tegra)
   2135		return -ENOMEM;
   2136
   2137	mutex_init(&tegra->thermctl_lock);
   2138	dev_set_drvdata(&pdev->dev, tegra);
   2139
   2140	tegra->soc = soc;
   2141
   2142	tegra->regs = devm_platform_ioremap_resource_byname(pdev, "soctherm-reg");
   2143	if (IS_ERR(tegra->regs)) {
   2144		dev_err(&pdev->dev, "can't get soctherm registers");
   2145		return PTR_ERR(tegra->regs);
   2146	}
   2147
   2148	if (!tegra->soc->use_ccroc) {
   2149		tegra->clk_regs = devm_platform_ioremap_resource_byname(pdev, "car-reg");
   2150		if (IS_ERR(tegra->clk_regs)) {
   2151			dev_err(&pdev->dev, "can't get car clk registers");
   2152			return PTR_ERR(tegra->clk_regs);
   2153		}
   2154	} else {
   2155		tegra->ccroc_regs = devm_platform_ioremap_resource_byname(pdev, "ccroc-reg");
   2156		if (IS_ERR(tegra->ccroc_regs)) {
   2157			dev_err(&pdev->dev, "can't get ccroc registers");
   2158			return PTR_ERR(tegra->ccroc_regs);
   2159		}
   2160	}
   2161
   2162	tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm");
   2163	if (IS_ERR(tegra->reset)) {
   2164		dev_err(&pdev->dev, "can't get soctherm reset\n");
   2165		return PTR_ERR(tegra->reset);
   2166	}
   2167
   2168	tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor");
   2169	if (IS_ERR(tegra->clock_tsensor)) {
   2170		dev_err(&pdev->dev, "can't get tsensor clock\n");
   2171		return PTR_ERR(tegra->clock_tsensor);
   2172	}
   2173
   2174	tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm");
   2175	if (IS_ERR(tegra->clock_soctherm)) {
   2176		dev_err(&pdev->dev, "can't get soctherm clock\n");
   2177		return PTR_ERR(tegra->clock_soctherm);
   2178	}
   2179
   2180	tegra->calib = devm_kcalloc(&pdev->dev,
   2181				    soc->num_tsensors, sizeof(u32),
   2182				    GFP_KERNEL);
   2183	if (!tegra->calib)
   2184		return -ENOMEM;
   2185
   2186	/* calculate shared calibration data */
   2187	err = tegra_calc_shared_calib(soc->tfuse, &shared_calib);
   2188	if (err)
   2189		return err;
   2190
   2191	/* calculate tsensor calibration data */
   2192	for (i = 0; i < soc->num_tsensors; ++i) {
   2193		err = tegra_calc_tsensor_calib(&soc->tsensors[i],
   2194					       &shared_calib,
   2195					       &tegra->calib[i]);
   2196		if (err)
   2197			return err;
   2198	}
   2199
   2200	tegra->thermctl_tzs = devm_kcalloc(&pdev->dev,
   2201					   soc->num_ttgs, sizeof(z),
   2202					   GFP_KERNEL);
   2203	if (!tegra->thermctl_tzs)
   2204		return -ENOMEM;
   2205
   2206	err = soctherm_clk_enable(pdev, true);
   2207	if (err)
   2208		return err;
   2209
   2210	soctherm_thermtrips_parse(pdev);
   2211
   2212	soctherm_init_hw_throt_cdev(pdev);
   2213
   2214	soctherm_init(pdev);
   2215
   2216	for (i = 0; i < soc->num_ttgs; ++i) {
   2217		struct tegra_thermctl_zone *zone =
   2218			devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL);
   2219		if (!zone) {
   2220			err = -ENOMEM;
   2221			goto disable_clocks;
   2222		}
   2223
   2224		zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset;
   2225		zone->dev = &pdev->dev;
   2226		zone->sg = soc->ttgs[i];
   2227		zone->ts = tegra;
   2228
   2229		z = devm_thermal_zone_of_sensor_register(&pdev->dev,
   2230							 soc->ttgs[i]->id, zone,
   2231							 &tegra_of_thermal_ops);
   2232		if (IS_ERR(z)) {
   2233			err = PTR_ERR(z);
   2234			dev_err(&pdev->dev, "failed to register sensor: %d\n",
   2235				err);
   2236			goto disable_clocks;
   2237		}
   2238
   2239		zone->tz = z;
   2240		tegra->thermctl_tzs[soc->ttgs[i]->id] = z;
   2241
   2242		/* Configure hw trip points */
   2243		err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z);
   2244		if (err)
   2245			goto disable_clocks;
   2246	}
   2247
   2248	err = soctherm_interrupts_init(pdev, tegra);
   2249
   2250	soctherm_debug_init(pdev);
   2251
   2252	return 0;
   2253
   2254disable_clocks:
   2255	soctherm_clk_enable(pdev, false);
   2256
   2257	return err;
   2258}
   2259
   2260static int tegra_soctherm_remove(struct platform_device *pdev)
   2261{
   2262	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
   2263
   2264	debugfs_remove_recursive(tegra->debugfs_dir);
   2265
   2266	soctherm_clk_enable(pdev, false);
   2267
   2268	return 0;
   2269}
   2270
   2271static int __maybe_unused soctherm_suspend(struct device *dev)
   2272{
   2273	struct platform_device *pdev = to_platform_device(dev);
   2274
   2275	soctherm_clk_enable(pdev, false);
   2276
   2277	return 0;
   2278}
   2279
   2280static int __maybe_unused soctherm_resume(struct device *dev)
   2281{
   2282	struct platform_device *pdev = to_platform_device(dev);
   2283	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
   2284	struct tegra_soctherm_soc *soc = tegra->soc;
   2285	int err, i;
   2286
   2287	err = soctherm_clk_enable(pdev, true);
   2288	if (err) {
   2289		dev_err(&pdev->dev,
   2290			"Resume failed: enable clocks failed\n");
   2291		return err;
   2292	}
   2293
   2294	soctherm_init(pdev);
   2295
   2296	for (i = 0; i < soc->num_ttgs; ++i) {
   2297		struct thermal_zone_device *tz;
   2298
   2299		tz = tegra->thermctl_tzs[soc->ttgs[i]->id];
   2300		err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz);
   2301		if (err) {
   2302			dev_err(&pdev->dev,
   2303				"Resume failed: set hwtrips failed\n");
   2304			return err;
   2305		}
   2306	}
   2307
   2308	return 0;
   2309}
   2310
   2311static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume);
   2312
   2313static struct platform_driver tegra_soctherm_driver = {
   2314	.probe = tegra_soctherm_probe,
   2315	.remove = tegra_soctherm_remove,
   2316	.driver = {
   2317		.name = "tegra_soctherm",
   2318		.pm = &tegra_soctherm_pm,
   2319		.of_match_table = tegra_soctherm_of_match,
   2320	},
   2321};
   2322module_platform_driver(tegra_soctherm_driver);
   2323
   2324MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
   2325MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver");
   2326MODULE_LICENSE("GPL v2");