cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ehv_bytechan.c (22295B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* ePAPR hypervisor byte channel device driver
      3 *
      4 * Copyright 2009-2011 Freescale Semiconductor, Inc.
      5 *
      6 * Author: Timur Tabi <timur@freescale.com>
      7 *
      8 * This driver support three distinct interfaces, all of which are related to
      9 * ePAPR hypervisor byte channels.
     10 *
     11 * 1) An early-console (udbg) driver.  This provides early console output
     12 * through a byte channel.  The byte channel handle must be specified in a
     13 * Kconfig option.
     14 *
     15 * 2) A normal console driver.  Output is sent to the byte channel designated
     16 * for stdout in the device tree.  The console driver is for handling kernel
     17 * printk calls.
     18 *
     19 * 3) A tty driver, which is used to handle user-space input and output.  The
     20 * byte channel used for the console is designated as the default tty.
     21 */
     22
     23#include <linux/init.h>
     24#include <linux/slab.h>
     25#include <linux/err.h>
     26#include <linux/interrupt.h>
     27#include <linux/fs.h>
     28#include <linux/poll.h>
     29#include <asm/epapr_hcalls.h>
     30#include <linux/of.h>
     31#include <linux/of_irq.h>
     32#include <linux/platform_device.h>
     33#include <linux/cdev.h>
     34#include <linux/console.h>
     35#include <linux/tty.h>
     36#include <linux/tty_flip.h>
     37#include <linux/circ_buf.h>
     38#include <asm/udbg.h>
     39
     40/* The size of the transmit circular buffer.  This must be a power of two. */
     41#define BUF_SIZE	2048
     42
     43/* Per-byte channel private data */
     44struct ehv_bc_data {
     45	struct device *dev;
     46	struct tty_port port;
     47	uint32_t handle;
     48	unsigned int rx_irq;
     49	unsigned int tx_irq;
     50
     51	spinlock_t lock;	/* lock for transmit buffer */
     52	unsigned char buf[BUF_SIZE];	/* transmit circular buffer */
     53	unsigned int head;	/* circular buffer head */
     54	unsigned int tail;	/* circular buffer tail */
     55
     56	int tx_irq_enabled;	/* true == TX interrupt is enabled */
     57};
     58
     59/* Array of byte channel objects */
     60static struct ehv_bc_data *bcs;
     61
     62/* Byte channel handle for stdout (and stdin), taken from device tree */
     63static unsigned int stdout_bc;
     64
     65/* Virtual IRQ for the byte channel handle for stdin, taken from device tree */
     66static unsigned int stdout_irq;
     67
     68/**************************** SUPPORT FUNCTIONS ****************************/
     69
     70/*
     71 * Enable the transmit interrupt
     72 *
     73 * Unlike a serial device, byte channels have no mechanism for disabling their
     74 * own receive or transmit interrupts.  To emulate that feature, we toggle
     75 * the IRQ in the kernel.
     76 *
     77 * We cannot just blindly call enable_irq() or disable_irq(), because these
     78 * calls are reference counted.  This means that we cannot call enable_irq()
     79 * if interrupts are already enabled.  This can happen in two situations:
     80 *
     81 * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write()
     82 * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue()
     83 *
     84 * To work around this, we keep a flag to tell us if the IRQ is enabled or not.
     85 */
     86static void enable_tx_interrupt(struct ehv_bc_data *bc)
     87{
     88	if (!bc->tx_irq_enabled) {
     89		enable_irq(bc->tx_irq);
     90		bc->tx_irq_enabled = 1;
     91	}
     92}
     93
     94static void disable_tx_interrupt(struct ehv_bc_data *bc)
     95{
     96	if (bc->tx_irq_enabled) {
     97		disable_irq_nosync(bc->tx_irq);
     98		bc->tx_irq_enabled = 0;
     99	}
    100}
    101
    102/*
    103 * find the byte channel handle to use for the console
    104 *
    105 * The byte channel to be used for the console is specified via a "stdout"
    106 * property in the /chosen node.
    107 */
    108static int find_console_handle(void)
    109{
    110	struct device_node *np = of_stdout;
    111	const uint32_t *iprop;
    112
    113	/* We don't care what the aliased node is actually called.  We only
    114	 * care if it's compatible with "epapr,hv-byte-channel", because that
    115	 * indicates that it's a byte channel node.
    116	 */
    117	if (!np || !of_device_is_compatible(np, "epapr,hv-byte-channel"))
    118		return 0;
    119
    120	stdout_irq = irq_of_parse_and_map(np, 0);
    121	if (stdout_irq == NO_IRQ) {
    122		pr_err("ehv-bc: no 'interrupts' property in %pOF node\n", np);
    123		return 0;
    124	}
    125
    126	/*
    127	 * The 'hv-handle' property contains the handle for this byte channel.
    128	 */
    129	iprop = of_get_property(np, "hv-handle", NULL);
    130	if (!iprop) {
    131		pr_err("ehv-bc: no 'hv-handle' property in %pOFn node\n",
    132		       np);
    133		return 0;
    134	}
    135	stdout_bc = be32_to_cpu(*iprop);
    136	return 1;
    137}
    138
    139static unsigned int local_ev_byte_channel_send(unsigned int handle,
    140					       unsigned int *count,
    141					       const char *p)
    142{
    143	char buffer[EV_BYTE_CHANNEL_MAX_BYTES];
    144	unsigned int c = *count;
    145
    146	if (c < sizeof(buffer)) {
    147		memcpy(buffer, p, c);
    148		memset(&buffer[c], 0, sizeof(buffer) - c);
    149		p = buffer;
    150	}
    151	return ev_byte_channel_send(handle, count, p);
    152}
    153
    154/*************************** EARLY CONSOLE DRIVER ***************************/
    155
    156#ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
    157
    158/*
    159 * send a byte to a byte channel, wait if necessary
    160 *
    161 * This function sends a byte to a byte channel, and it waits and
    162 * retries if the byte channel is full.  It returns if the character
    163 * has been sent, or if some error has occurred.
    164 *
    165 */
    166static void byte_channel_spin_send(const char data)
    167{
    168	int ret, count;
    169
    170	do {
    171		count = 1;
    172		ret = local_ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
    173					   &count, &data);
    174	} while (ret == EV_EAGAIN);
    175}
    176
    177/*
    178 * The udbg subsystem calls this function to display a single character.
    179 * We convert CR to a CR/LF.
    180 */
    181static void ehv_bc_udbg_putc(char c)
    182{
    183	if (c == '\n')
    184		byte_channel_spin_send('\r');
    185
    186	byte_channel_spin_send(c);
    187}
    188
    189/*
    190 * early console initialization
    191 *
    192 * PowerPC kernels support an early printk console, also known as udbg.
    193 * This function must be called via the ppc_md.init_early function pointer.
    194 * At this point, the device tree has been unflattened, so we can obtain the
    195 * byte channel handle for stdout.
    196 *
    197 * We only support displaying of characters (putc).  We do not support
    198 * keyboard input.
    199 */
    200void __init udbg_init_ehv_bc(void)
    201{
    202	unsigned int rx_count, tx_count;
    203	unsigned int ret;
    204
    205	/* Verify the byte channel handle */
    206	ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
    207				   &rx_count, &tx_count);
    208	if (ret)
    209		return;
    210
    211	udbg_putc = ehv_bc_udbg_putc;
    212	register_early_udbg_console();
    213
    214	udbg_printf("ehv-bc: early console using byte channel handle %u\n",
    215		    CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
    216}
    217
    218#endif
    219
    220/****************************** CONSOLE DRIVER ******************************/
    221
    222static struct tty_driver *ehv_bc_driver;
    223
    224/*
    225 * Byte channel console sending worker function.
    226 *
    227 * For consoles, if the output buffer is full, we should just spin until it
    228 * clears.
    229 */
    230static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s,
    231			     unsigned int count)
    232{
    233	unsigned int len;
    234	int ret = 0;
    235
    236	while (count) {
    237		len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES);
    238		do {
    239			ret = local_ev_byte_channel_send(handle, &len, s);
    240		} while (ret == EV_EAGAIN);
    241		count -= len;
    242		s += len;
    243	}
    244
    245	return ret;
    246}
    247
    248/*
    249 * write a string to the console
    250 *
    251 * This function gets called to write a string from the kernel, typically from
    252 * a printk().  This function spins until all data is written.
    253 *
    254 * We copy the data to a temporary buffer because we need to insert a \r in
    255 * front of every \n.  It's more efficient to copy the data to the buffer than
    256 * it is to make multiple hcalls for each character or each newline.
    257 */
    258static void ehv_bc_console_write(struct console *co, const char *s,
    259				 unsigned int count)
    260{
    261	char s2[EV_BYTE_CHANNEL_MAX_BYTES];
    262	unsigned int i, j = 0;
    263	char c;
    264
    265	for (i = 0; i < count; i++) {
    266		c = *s++;
    267
    268		if (c == '\n')
    269			s2[j++] = '\r';
    270
    271		s2[j++] = c;
    272		if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) {
    273			if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j))
    274				return;
    275			j = 0;
    276		}
    277	}
    278
    279	if (j)
    280		ehv_bc_console_byte_channel_send(stdout_bc, s2, j);
    281}
    282
    283/*
    284 * When /dev/console is opened, the kernel iterates the console list looking
    285 * for one with ->device and then calls that method. On success, it expects
    286 * the passed-in int* to contain the minor number to use.
    287 */
    288static struct tty_driver *ehv_bc_console_device(struct console *co, int *index)
    289{
    290	*index = co->index;
    291
    292	return ehv_bc_driver;
    293}
    294
    295static struct console ehv_bc_console = {
    296	.name		= "ttyEHV",
    297	.write		= ehv_bc_console_write,
    298	.device		= ehv_bc_console_device,
    299	.flags		= CON_PRINTBUFFER | CON_ENABLED,
    300};
    301
    302/*
    303 * Console initialization
    304 *
    305 * This is the first function that is called after the device tree is
    306 * available, so here is where we determine the byte channel handle and IRQ for
    307 * stdout/stdin, even though that information is used by the tty and character
    308 * drivers.
    309 */
    310static int __init ehv_bc_console_init(void)
    311{
    312	if (!find_console_handle()) {
    313		pr_debug("ehv-bc: stdout is not a byte channel\n");
    314		return -ENODEV;
    315	}
    316
    317#ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
    318	/* Print a friendly warning if the user chose the wrong byte channel
    319	 * handle for udbg.
    320	 */
    321	if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE)
    322		pr_warn("ehv-bc: udbg handle %u is not the stdout handle\n",
    323			CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
    324#endif
    325
    326	/* add_preferred_console() must be called before register_console(),
    327	   otherwise it won't work.  However, we don't want to enumerate all the
    328	   byte channels here, either, since we only care about one. */
    329
    330	add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL);
    331	register_console(&ehv_bc_console);
    332
    333	pr_info("ehv-bc: registered console driver for byte channel %u\n",
    334		stdout_bc);
    335
    336	return 0;
    337}
    338console_initcall(ehv_bc_console_init);
    339
    340/******************************** TTY DRIVER ********************************/
    341
    342/*
    343 * byte channel receive interrupt handler
    344 *
    345 * This ISR is called whenever data is available on a byte channel.
    346 */
    347static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data)
    348{
    349	struct ehv_bc_data *bc = data;
    350	unsigned int rx_count, tx_count, len;
    351	int count;
    352	char buffer[EV_BYTE_CHANNEL_MAX_BYTES];
    353	int ret;
    354
    355	/* Find out how much data needs to be read, and then ask the TTY layer
    356	 * if it can handle that much.  We want to ensure that every byte we
    357	 * read from the byte channel will be accepted by the TTY layer.
    358	 */
    359	ev_byte_channel_poll(bc->handle, &rx_count, &tx_count);
    360	count = tty_buffer_request_room(&bc->port, rx_count);
    361
    362	/* 'count' is the maximum amount of data the TTY layer can accept at
    363	 * this time.  However, during testing, I was never able to get 'count'
    364	 * to be less than 'rx_count'.  I'm not sure whether I'm calling it
    365	 * correctly.
    366	 */
    367
    368	while (count > 0) {
    369		len = min_t(unsigned int, count, sizeof(buffer));
    370
    371		/* Read some data from the byte channel.  This function will
    372		 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes.
    373		 */
    374		ev_byte_channel_receive(bc->handle, &len, buffer);
    375
    376		/* 'len' is now the amount of data that's been received. 'len'
    377		 * can't be zero, and most likely it's equal to one.
    378		 */
    379
    380		/* Pass the received data to the tty layer. */
    381		ret = tty_insert_flip_string(&bc->port, buffer, len);
    382
    383		/* 'ret' is the number of bytes that the TTY layer accepted.
    384		 * If it's not equal to 'len', then it means the buffer is
    385		 * full, which should never happen.  If it does happen, we can
    386		 * exit gracefully, but we drop the last 'len - ret' characters
    387		 * that we read from the byte channel.
    388		 */
    389		if (ret != len)
    390			break;
    391
    392		count -= len;
    393	}
    394
    395	/* Tell the tty layer that we're done. */
    396	tty_flip_buffer_push(&bc->port);
    397
    398	return IRQ_HANDLED;
    399}
    400
    401/*
    402 * dequeue the transmit buffer to the hypervisor
    403 *
    404 * This function, which can be called in interrupt context, dequeues as much
    405 * data as possible from the transmit buffer to the byte channel.
    406 */
    407static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc)
    408{
    409	unsigned int count;
    410	unsigned int len, ret;
    411	unsigned long flags;
    412
    413	do {
    414		spin_lock_irqsave(&bc->lock, flags);
    415		len = min_t(unsigned int,
    416			    CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE),
    417			    EV_BYTE_CHANNEL_MAX_BYTES);
    418
    419		ret = local_ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail);
    420
    421		/* 'len' is valid only if the return code is 0 or EV_EAGAIN */
    422		if (!ret || (ret == EV_EAGAIN))
    423			bc->tail = (bc->tail + len) & (BUF_SIZE - 1);
    424
    425		count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE);
    426		spin_unlock_irqrestore(&bc->lock, flags);
    427	} while (count && !ret);
    428
    429	spin_lock_irqsave(&bc->lock, flags);
    430	if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE))
    431		/*
    432		 * If we haven't emptied the buffer, then enable the TX IRQ.
    433		 * We'll get an interrupt when there's more room in the
    434		 * hypervisor's output buffer.
    435		 */
    436		enable_tx_interrupt(bc);
    437	else
    438		disable_tx_interrupt(bc);
    439	spin_unlock_irqrestore(&bc->lock, flags);
    440}
    441
    442/*
    443 * byte channel transmit interrupt handler
    444 *
    445 * This ISR is called whenever space becomes available for transmitting
    446 * characters on a byte channel.
    447 */
    448static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data)
    449{
    450	struct ehv_bc_data *bc = data;
    451
    452	ehv_bc_tx_dequeue(bc);
    453	tty_port_tty_wakeup(&bc->port);
    454
    455	return IRQ_HANDLED;
    456}
    457
    458/*
    459 * This function is called when the tty layer has data for us send.  We store
    460 * the data first in a circular buffer, and then dequeue as much of that data
    461 * as possible.
    462 *
    463 * We don't need to worry about whether there is enough room in the buffer for
    464 * all the data.  The purpose of ehv_bc_tty_write_room() is to tell the tty
    465 * layer how much data it can safely send to us.  We guarantee that
    466 * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us
    467 * too much data.
    468 */
    469static int ehv_bc_tty_write(struct tty_struct *ttys, const unsigned char *s,
    470			    int count)
    471{
    472	struct ehv_bc_data *bc = ttys->driver_data;
    473	unsigned long flags;
    474	unsigned int len;
    475	unsigned int written = 0;
    476
    477	while (1) {
    478		spin_lock_irqsave(&bc->lock, flags);
    479		len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE);
    480		if (count < len)
    481			len = count;
    482		if (len) {
    483			memcpy(bc->buf + bc->head, s, len);
    484			bc->head = (bc->head + len) & (BUF_SIZE - 1);
    485		}
    486		spin_unlock_irqrestore(&bc->lock, flags);
    487		if (!len)
    488			break;
    489
    490		s += len;
    491		count -= len;
    492		written += len;
    493	}
    494
    495	ehv_bc_tx_dequeue(bc);
    496
    497	return written;
    498}
    499
    500/*
    501 * This function can be called multiple times for a given tty_struct, which is
    502 * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead.
    503 *
    504 * The tty layer will still call this function even if the device was not
    505 * registered (i.e. tty_register_device() was not called).  This happens
    506 * because tty_register_device() is optional and some legacy drivers don't
    507 * use it.  So we need to check for that.
    508 */
    509static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp)
    510{
    511	struct ehv_bc_data *bc = &bcs[ttys->index];
    512
    513	if (!bc->dev)
    514		return -ENODEV;
    515
    516	return tty_port_open(&bc->port, ttys, filp);
    517}
    518
    519/*
    520 * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will
    521 * still call this function to close the tty device.  So we can't assume that
    522 * the tty port has been initialized.
    523 */
    524static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp)
    525{
    526	struct ehv_bc_data *bc = &bcs[ttys->index];
    527
    528	if (bc->dev)
    529		tty_port_close(&bc->port, ttys, filp);
    530}
    531
    532/*
    533 * Return the amount of space in the output buffer
    534 *
    535 * This is actually a contract between the driver and the tty layer outlining
    536 * how much write room the driver can guarantee will be sent OR BUFFERED.  This
    537 * driver MUST honor the return value.
    538 */
    539static unsigned int ehv_bc_tty_write_room(struct tty_struct *ttys)
    540{
    541	struct ehv_bc_data *bc = ttys->driver_data;
    542	unsigned long flags;
    543	unsigned int count;
    544
    545	spin_lock_irqsave(&bc->lock, flags);
    546	count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE);
    547	spin_unlock_irqrestore(&bc->lock, flags);
    548
    549	return count;
    550}
    551
    552/*
    553 * Stop sending data to the tty layer
    554 *
    555 * This function is called when the tty layer's input buffers are getting full,
    556 * so the driver should stop sending it data.  The easiest way to do this is to
    557 * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being
    558 * called.
    559 *
    560 * The hypervisor will continue to queue up any incoming data.  If there is any
    561 * data in the queue when the RX interrupt is enabled, we'll immediately get an
    562 * RX interrupt.
    563 */
    564static void ehv_bc_tty_throttle(struct tty_struct *ttys)
    565{
    566	struct ehv_bc_data *bc = ttys->driver_data;
    567
    568	disable_irq(bc->rx_irq);
    569}
    570
    571/*
    572 * Resume sending data to the tty layer
    573 *
    574 * This function is called after previously calling ehv_bc_tty_throttle().  The
    575 * tty layer's input buffers now have more room, so the driver can resume
    576 * sending it data.
    577 */
    578static void ehv_bc_tty_unthrottle(struct tty_struct *ttys)
    579{
    580	struct ehv_bc_data *bc = ttys->driver_data;
    581
    582	/* If there is any data in the queue when the RX interrupt is enabled,
    583	 * we'll immediately get an RX interrupt.
    584	 */
    585	enable_irq(bc->rx_irq);
    586}
    587
    588static void ehv_bc_tty_hangup(struct tty_struct *ttys)
    589{
    590	struct ehv_bc_data *bc = ttys->driver_data;
    591
    592	ehv_bc_tx_dequeue(bc);
    593	tty_port_hangup(&bc->port);
    594}
    595
    596/*
    597 * TTY driver operations
    598 *
    599 * If we could ask the hypervisor how much data is still in the TX buffer, or
    600 * at least how big the TX buffers are, then we could implement the
    601 * .wait_until_sent and .chars_in_buffer functions.
    602 */
    603static const struct tty_operations ehv_bc_ops = {
    604	.open		= ehv_bc_tty_open,
    605	.close		= ehv_bc_tty_close,
    606	.write		= ehv_bc_tty_write,
    607	.write_room	= ehv_bc_tty_write_room,
    608	.throttle	= ehv_bc_tty_throttle,
    609	.unthrottle	= ehv_bc_tty_unthrottle,
    610	.hangup		= ehv_bc_tty_hangup,
    611};
    612
    613/*
    614 * initialize the TTY port
    615 *
    616 * This function will only be called once, no matter how many times
    617 * ehv_bc_tty_open() is called.  That's why we register the ISR here, and also
    618 * why we initialize tty_struct-related variables here.
    619 */
    620static int ehv_bc_tty_port_activate(struct tty_port *port,
    621				    struct tty_struct *ttys)
    622{
    623	struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
    624	int ret;
    625
    626	ttys->driver_data = bc;
    627
    628	ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc);
    629	if (ret < 0) {
    630		dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n",
    631		       bc->rx_irq, ret);
    632		return ret;
    633	}
    634
    635	/* request_irq also enables the IRQ */
    636	bc->tx_irq_enabled = 1;
    637
    638	ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc);
    639	if (ret < 0) {
    640		dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n",
    641		       bc->tx_irq, ret);
    642		free_irq(bc->rx_irq, bc);
    643		return ret;
    644	}
    645
    646	/* The TX IRQ is enabled only when we can't write all the data to the
    647	 * byte channel at once, so by default it's disabled.
    648	 */
    649	disable_tx_interrupt(bc);
    650
    651	return 0;
    652}
    653
    654static void ehv_bc_tty_port_shutdown(struct tty_port *port)
    655{
    656	struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
    657
    658	free_irq(bc->tx_irq, bc);
    659	free_irq(bc->rx_irq, bc);
    660}
    661
    662static const struct tty_port_operations ehv_bc_tty_port_ops = {
    663	.activate = ehv_bc_tty_port_activate,
    664	.shutdown = ehv_bc_tty_port_shutdown,
    665};
    666
    667static int ehv_bc_tty_probe(struct platform_device *pdev)
    668{
    669	struct device_node *np = pdev->dev.of_node;
    670	struct ehv_bc_data *bc;
    671	const uint32_t *iprop;
    672	unsigned int handle;
    673	int ret;
    674	static unsigned int index = 1;
    675	unsigned int i;
    676
    677	iprop = of_get_property(np, "hv-handle", NULL);
    678	if (!iprop) {
    679		dev_err(&pdev->dev, "no 'hv-handle' property in %pOFn node\n",
    680			np);
    681		return -ENODEV;
    682	}
    683
    684	/* We already told the console layer that the index for the console
    685	 * device is zero, so we need to make sure that we use that index when
    686	 * we probe the console byte channel node.
    687	 */
    688	handle = be32_to_cpu(*iprop);
    689	i = (handle == stdout_bc) ? 0 : index++;
    690	bc = &bcs[i];
    691
    692	bc->handle = handle;
    693	bc->head = 0;
    694	bc->tail = 0;
    695	spin_lock_init(&bc->lock);
    696
    697	bc->rx_irq = irq_of_parse_and_map(np, 0);
    698	bc->tx_irq = irq_of_parse_and_map(np, 1);
    699	if ((bc->rx_irq == NO_IRQ) || (bc->tx_irq == NO_IRQ)) {
    700		dev_err(&pdev->dev, "no 'interrupts' property in %pOFn node\n",
    701			np);
    702		ret = -ENODEV;
    703		goto error;
    704	}
    705
    706	tty_port_init(&bc->port);
    707	bc->port.ops = &ehv_bc_tty_port_ops;
    708
    709	bc->dev = tty_port_register_device(&bc->port, ehv_bc_driver, i,
    710			&pdev->dev);
    711	if (IS_ERR(bc->dev)) {
    712		ret = PTR_ERR(bc->dev);
    713		dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret);
    714		goto error;
    715	}
    716
    717	dev_set_drvdata(&pdev->dev, bc);
    718
    719	dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n",
    720		ehv_bc_driver->name, i, bc->handle);
    721
    722	return 0;
    723
    724error:
    725	tty_port_destroy(&bc->port);
    726	irq_dispose_mapping(bc->tx_irq);
    727	irq_dispose_mapping(bc->rx_irq);
    728
    729	memset(bc, 0, sizeof(struct ehv_bc_data));
    730	return ret;
    731}
    732
    733static const struct of_device_id ehv_bc_tty_of_ids[] = {
    734	{ .compatible = "epapr,hv-byte-channel" },
    735	{}
    736};
    737
    738static struct platform_driver ehv_bc_tty_driver = {
    739	.driver = {
    740		.name = "ehv-bc",
    741		.of_match_table = ehv_bc_tty_of_ids,
    742		.suppress_bind_attrs = true,
    743	},
    744	.probe		= ehv_bc_tty_probe,
    745};
    746
    747/**
    748 * ehv_bc_init - ePAPR hypervisor byte channel driver initialization
    749 *
    750 * This function is called when this driver is loaded.
    751 */
    752static int __init ehv_bc_init(void)
    753{
    754	struct tty_driver *driver;
    755	struct device_node *np;
    756	unsigned int count = 0; /* Number of elements in bcs[] */
    757	int ret;
    758
    759	pr_info("ePAPR hypervisor byte channel driver\n");
    760
    761	/* Count the number of byte channels */
    762	for_each_compatible_node(np, NULL, "epapr,hv-byte-channel")
    763		count++;
    764
    765	if (!count)
    766		return -ENODEV;
    767
    768	/* The array index of an element in bcs[] is the same as the tty index
    769	 * for that element.  If you know the address of an element in the
    770	 * array, then you can use pointer math (e.g. "bc - bcs") to get its
    771	 * tty index.
    772	 */
    773	bcs = kcalloc(count, sizeof(struct ehv_bc_data), GFP_KERNEL);
    774	if (!bcs)
    775		return -ENOMEM;
    776
    777	driver = tty_alloc_driver(count, TTY_DRIVER_REAL_RAW |
    778			TTY_DRIVER_DYNAMIC_DEV);
    779	if (IS_ERR(driver)) {
    780		ret = PTR_ERR(driver);
    781		goto err_free_bcs;
    782	}
    783
    784	driver->driver_name = "ehv-bc";
    785	driver->name = ehv_bc_console.name;
    786	driver->type = TTY_DRIVER_TYPE_CONSOLE;
    787	driver->subtype = SYSTEM_TYPE_CONSOLE;
    788	driver->init_termios = tty_std_termios;
    789	tty_set_operations(driver, &ehv_bc_ops);
    790
    791	ret = tty_register_driver(driver);
    792	if (ret) {
    793		pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret);
    794		goto err_tty_driver_kref_put;
    795	}
    796
    797	ehv_bc_driver = driver;
    798
    799	ret = platform_driver_register(&ehv_bc_tty_driver);
    800	if (ret) {
    801		pr_err("ehv-bc: could not register platform driver (ret=%i)\n",
    802		       ret);
    803		goto err_deregister_tty_driver;
    804	}
    805
    806	return 0;
    807
    808err_deregister_tty_driver:
    809	ehv_bc_driver = NULL;
    810	tty_unregister_driver(driver);
    811err_tty_driver_kref_put:
    812	tty_driver_kref_put(driver);
    813err_free_bcs:
    814	kfree(bcs);
    815
    816	return ret;
    817}
    818device_initcall(ehv_bc_init);