cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

amba-pl011.c (75445B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/*
      3 *  Driver for AMBA serial ports
      4 *
      5 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
      6 *
      7 *  Copyright 1999 ARM Limited
      8 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
      9 *  Copyright (C) 2010 ST-Ericsson SA
     10 *
     11 * This is a generic driver for ARM AMBA-type serial ports.  They
     12 * have a lot of 16550-like features, but are not register compatible.
     13 * Note that although they do have CTS, DCD and DSR inputs, they do
     14 * not have an RI input, nor do they have DTR or RTS outputs.  If
     15 * required, these have to be supplied via some other means (eg, GPIO)
     16 * and hooked into this driver.
     17 */
     18
     19#include <linux/module.h>
     20#include <linux/ioport.h>
     21#include <linux/init.h>
     22#include <linux/console.h>
     23#include <linux/sysrq.h>
     24#include <linux/device.h>
     25#include <linux/tty.h>
     26#include <linux/tty_flip.h>
     27#include <linux/serial_core.h>
     28#include <linux/serial.h>
     29#include <linux/amba/bus.h>
     30#include <linux/amba/serial.h>
     31#include <linux/clk.h>
     32#include <linux/slab.h>
     33#include <linux/dmaengine.h>
     34#include <linux/dma-mapping.h>
     35#include <linux/scatterlist.h>
     36#include <linux/delay.h>
     37#include <linux/types.h>
     38#include <linux/of.h>
     39#include <linux/of_device.h>
     40#include <linux/pinctrl/consumer.h>
     41#include <linux/sizes.h>
     42#include <linux/io.h>
     43#include <linux/acpi.h>
     44
     45#define UART_NR			14
     46
     47#define SERIAL_AMBA_MAJOR	204
     48#define SERIAL_AMBA_MINOR	64
     49#define SERIAL_AMBA_NR		UART_NR
     50
     51#define AMBA_ISR_PASS_LIMIT	256
     52
     53#define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
     54#define UART_DUMMY_DR_RX	(1 << 16)
     55
     56enum {
     57	REG_DR,
     58	REG_ST_DMAWM,
     59	REG_ST_TIMEOUT,
     60	REG_FR,
     61	REG_LCRH_RX,
     62	REG_LCRH_TX,
     63	REG_IBRD,
     64	REG_FBRD,
     65	REG_CR,
     66	REG_IFLS,
     67	REG_IMSC,
     68	REG_RIS,
     69	REG_MIS,
     70	REG_ICR,
     71	REG_DMACR,
     72	REG_ST_XFCR,
     73	REG_ST_XON1,
     74	REG_ST_XON2,
     75	REG_ST_XOFF1,
     76	REG_ST_XOFF2,
     77	REG_ST_ITCR,
     78	REG_ST_ITIP,
     79	REG_ST_ABCR,
     80	REG_ST_ABIMSC,
     81
     82	/* The size of the array - must be last */
     83	REG_ARRAY_SIZE,
     84};
     85
     86static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
     87	[REG_DR] = UART01x_DR,
     88	[REG_FR] = UART01x_FR,
     89	[REG_LCRH_RX] = UART011_LCRH,
     90	[REG_LCRH_TX] = UART011_LCRH,
     91	[REG_IBRD] = UART011_IBRD,
     92	[REG_FBRD] = UART011_FBRD,
     93	[REG_CR] = UART011_CR,
     94	[REG_IFLS] = UART011_IFLS,
     95	[REG_IMSC] = UART011_IMSC,
     96	[REG_RIS] = UART011_RIS,
     97	[REG_MIS] = UART011_MIS,
     98	[REG_ICR] = UART011_ICR,
     99	[REG_DMACR] = UART011_DMACR,
    100};
    101
    102/* There is by now at least one vendor with differing details, so handle it */
    103struct vendor_data {
    104	const u16		*reg_offset;
    105	unsigned int		ifls;
    106	unsigned int		fr_busy;
    107	unsigned int		fr_dsr;
    108	unsigned int		fr_cts;
    109	unsigned int		fr_ri;
    110	unsigned int		inv_fr;
    111	bool			access_32b;
    112	bool			oversampling;
    113	bool			dma_threshold;
    114	bool			cts_event_workaround;
    115	bool			always_enabled;
    116	bool			fixed_options;
    117
    118	unsigned int (*get_fifosize)(struct amba_device *dev);
    119};
    120
    121static unsigned int get_fifosize_arm(struct amba_device *dev)
    122{
    123	return amba_rev(dev) < 3 ? 16 : 32;
    124}
    125
    126static struct vendor_data vendor_arm = {
    127	.reg_offset		= pl011_std_offsets,
    128	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
    129	.fr_busy		= UART01x_FR_BUSY,
    130	.fr_dsr			= UART01x_FR_DSR,
    131	.fr_cts			= UART01x_FR_CTS,
    132	.fr_ri			= UART011_FR_RI,
    133	.oversampling		= false,
    134	.dma_threshold		= false,
    135	.cts_event_workaround	= false,
    136	.always_enabled		= false,
    137	.fixed_options		= false,
    138	.get_fifosize		= get_fifosize_arm,
    139};
    140
    141static const struct vendor_data vendor_sbsa = {
    142	.reg_offset		= pl011_std_offsets,
    143	.fr_busy		= UART01x_FR_BUSY,
    144	.fr_dsr			= UART01x_FR_DSR,
    145	.fr_cts			= UART01x_FR_CTS,
    146	.fr_ri			= UART011_FR_RI,
    147	.access_32b		= true,
    148	.oversampling		= false,
    149	.dma_threshold		= false,
    150	.cts_event_workaround	= false,
    151	.always_enabled		= true,
    152	.fixed_options		= true,
    153};
    154
    155#ifdef CONFIG_ACPI_SPCR_TABLE
    156static const struct vendor_data vendor_qdt_qdf2400_e44 = {
    157	.reg_offset		= pl011_std_offsets,
    158	.fr_busy		= UART011_FR_TXFE,
    159	.fr_dsr			= UART01x_FR_DSR,
    160	.fr_cts			= UART01x_FR_CTS,
    161	.fr_ri			= UART011_FR_RI,
    162	.inv_fr			= UART011_FR_TXFE,
    163	.access_32b		= true,
    164	.oversampling		= false,
    165	.dma_threshold		= false,
    166	.cts_event_workaround	= false,
    167	.always_enabled		= true,
    168	.fixed_options		= true,
    169};
    170#endif
    171
    172static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
    173	[REG_DR] = UART01x_DR,
    174	[REG_ST_DMAWM] = ST_UART011_DMAWM,
    175	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
    176	[REG_FR] = UART01x_FR,
    177	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
    178	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
    179	[REG_IBRD] = UART011_IBRD,
    180	[REG_FBRD] = UART011_FBRD,
    181	[REG_CR] = UART011_CR,
    182	[REG_IFLS] = UART011_IFLS,
    183	[REG_IMSC] = UART011_IMSC,
    184	[REG_RIS] = UART011_RIS,
    185	[REG_MIS] = UART011_MIS,
    186	[REG_ICR] = UART011_ICR,
    187	[REG_DMACR] = UART011_DMACR,
    188	[REG_ST_XFCR] = ST_UART011_XFCR,
    189	[REG_ST_XON1] = ST_UART011_XON1,
    190	[REG_ST_XON2] = ST_UART011_XON2,
    191	[REG_ST_XOFF1] = ST_UART011_XOFF1,
    192	[REG_ST_XOFF2] = ST_UART011_XOFF2,
    193	[REG_ST_ITCR] = ST_UART011_ITCR,
    194	[REG_ST_ITIP] = ST_UART011_ITIP,
    195	[REG_ST_ABCR] = ST_UART011_ABCR,
    196	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
    197};
    198
    199static unsigned int get_fifosize_st(struct amba_device *dev)
    200{
    201	return 64;
    202}
    203
    204static struct vendor_data vendor_st = {
    205	.reg_offset		= pl011_st_offsets,
    206	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
    207	.fr_busy		= UART01x_FR_BUSY,
    208	.fr_dsr			= UART01x_FR_DSR,
    209	.fr_cts			= UART01x_FR_CTS,
    210	.fr_ri			= UART011_FR_RI,
    211	.oversampling		= true,
    212	.dma_threshold		= true,
    213	.cts_event_workaround	= true,
    214	.always_enabled		= false,
    215	.fixed_options		= false,
    216	.get_fifosize		= get_fifosize_st,
    217};
    218
    219/* Deals with DMA transactions */
    220
    221struct pl011_sgbuf {
    222	struct scatterlist sg;
    223	char *buf;
    224};
    225
    226struct pl011_dmarx_data {
    227	struct dma_chan		*chan;
    228	struct completion	complete;
    229	bool			use_buf_b;
    230	struct pl011_sgbuf	sgbuf_a;
    231	struct pl011_sgbuf	sgbuf_b;
    232	dma_cookie_t		cookie;
    233	bool			running;
    234	struct timer_list	timer;
    235	unsigned int last_residue;
    236	unsigned long last_jiffies;
    237	bool auto_poll_rate;
    238	unsigned int poll_rate;
    239	unsigned int poll_timeout;
    240};
    241
    242struct pl011_dmatx_data {
    243	struct dma_chan		*chan;
    244	struct scatterlist	sg;
    245	char			*buf;
    246	bool			queued;
    247};
    248
    249/*
    250 * We wrap our port structure around the generic uart_port.
    251 */
    252struct uart_amba_port {
    253	struct uart_port	port;
    254	const u16		*reg_offset;
    255	struct clk		*clk;
    256	const struct vendor_data *vendor;
    257	unsigned int		dmacr;		/* dma control reg */
    258	unsigned int		im;		/* interrupt mask */
    259	unsigned int		old_status;
    260	unsigned int		fifosize;	/* vendor-specific */
    261	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
    262	char			type[12];
    263	bool			rs485_tx_started;
    264	unsigned int		rs485_tx_drain_interval; /* usecs */
    265#ifdef CONFIG_DMA_ENGINE
    266	/* DMA stuff */
    267	bool			using_tx_dma;
    268	bool			using_rx_dma;
    269	struct pl011_dmarx_data dmarx;
    270	struct pl011_dmatx_data	dmatx;
    271	bool			dma_probed;
    272#endif
    273};
    274
    275static unsigned int pl011_tx_empty(struct uart_port *port);
    276
    277static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
    278	unsigned int reg)
    279{
    280	return uap->reg_offset[reg];
    281}
    282
    283static unsigned int pl011_read(const struct uart_amba_port *uap,
    284	unsigned int reg)
    285{
    286	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
    287
    288	return (uap->port.iotype == UPIO_MEM32) ?
    289		readl_relaxed(addr) : readw_relaxed(addr);
    290}
    291
    292static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
    293	unsigned int reg)
    294{
    295	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
    296
    297	if (uap->port.iotype == UPIO_MEM32)
    298		writel_relaxed(val, addr);
    299	else
    300		writew_relaxed(val, addr);
    301}
    302
    303/*
    304 * Reads up to 256 characters from the FIFO or until it's empty and
    305 * inserts them into the TTY layer. Returns the number of characters
    306 * read from the FIFO.
    307 */
    308static int pl011_fifo_to_tty(struct uart_amba_port *uap)
    309{
    310	unsigned int ch, flag, fifotaken;
    311	int sysrq;
    312	u16 status;
    313
    314	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
    315		status = pl011_read(uap, REG_FR);
    316		if (status & UART01x_FR_RXFE)
    317			break;
    318
    319		/* Take chars from the FIFO and update status */
    320		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
    321		flag = TTY_NORMAL;
    322		uap->port.icount.rx++;
    323
    324		if (unlikely(ch & UART_DR_ERROR)) {
    325			if (ch & UART011_DR_BE) {
    326				ch &= ~(UART011_DR_FE | UART011_DR_PE);
    327				uap->port.icount.brk++;
    328				if (uart_handle_break(&uap->port))
    329					continue;
    330			} else if (ch & UART011_DR_PE)
    331				uap->port.icount.parity++;
    332			else if (ch & UART011_DR_FE)
    333				uap->port.icount.frame++;
    334			if (ch & UART011_DR_OE)
    335				uap->port.icount.overrun++;
    336
    337			ch &= uap->port.read_status_mask;
    338
    339			if (ch & UART011_DR_BE)
    340				flag = TTY_BREAK;
    341			else if (ch & UART011_DR_PE)
    342				flag = TTY_PARITY;
    343			else if (ch & UART011_DR_FE)
    344				flag = TTY_FRAME;
    345		}
    346
    347		spin_unlock(&uap->port.lock);
    348		sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
    349		spin_lock(&uap->port.lock);
    350
    351		if (!sysrq)
    352			uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
    353	}
    354
    355	return fifotaken;
    356}
    357
    358
    359/*
    360 * All the DMA operation mode stuff goes inside this ifdef.
    361 * This assumes that you have a generic DMA device interface,
    362 * no custom DMA interfaces are supported.
    363 */
    364#ifdef CONFIG_DMA_ENGINE
    365
    366#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
    367
    368static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
    369	enum dma_data_direction dir)
    370{
    371	dma_addr_t dma_addr;
    372
    373	sg->buf = dma_alloc_coherent(chan->device->dev,
    374		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
    375	if (!sg->buf)
    376		return -ENOMEM;
    377
    378	sg_init_table(&sg->sg, 1);
    379	sg_set_page(&sg->sg, phys_to_page(dma_addr),
    380		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
    381	sg_dma_address(&sg->sg) = dma_addr;
    382	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
    383
    384	return 0;
    385}
    386
    387static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
    388	enum dma_data_direction dir)
    389{
    390	if (sg->buf) {
    391		dma_free_coherent(chan->device->dev,
    392			PL011_DMA_BUFFER_SIZE, sg->buf,
    393			sg_dma_address(&sg->sg));
    394	}
    395}
    396
    397static void pl011_dma_probe(struct uart_amba_port *uap)
    398{
    399	/* DMA is the sole user of the platform data right now */
    400	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
    401	struct device *dev = uap->port.dev;
    402	struct dma_slave_config tx_conf = {
    403		.dst_addr = uap->port.mapbase +
    404				 pl011_reg_to_offset(uap, REG_DR),
    405		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
    406		.direction = DMA_MEM_TO_DEV,
    407		.dst_maxburst = uap->fifosize >> 1,
    408		.device_fc = false,
    409	};
    410	struct dma_chan *chan;
    411	dma_cap_mask_t mask;
    412
    413	uap->dma_probed = true;
    414	chan = dma_request_chan(dev, "tx");
    415	if (IS_ERR(chan)) {
    416		if (PTR_ERR(chan) == -EPROBE_DEFER) {
    417			uap->dma_probed = false;
    418			return;
    419		}
    420
    421		/* We need platform data */
    422		if (!plat || !plat->dma_filter) {
    423			dev_info(uap->port.dev, "no DMA platform data\n");
    424			return;
    425		}
    426
    427		/* Try to acquire a generic DMA engine slave TX channel */
    428		dma_cap_zero(mask);
    429		dma_cap_set(DMA_SLAVE, mask);
    430
    431		chan = dma_request_channel(mask, plat->dma_filter,
    432						plat->dma_tx_param);
    433		if (!chan) {
    434			dev_err(uap->port.dev, "no TX DMA channel!\n");
    435			return;
    436		}
    437	}
    438
    439	dmaengine_slave_config(chan, &tx_conf);
    440	uap->dmatx.chan = chan;
    441
    442	dev_info(uap->port.dev, "DMA channel TX %s\n",
    443		 dma_chan_name(uap->dmatx.chan));
    444
    445	/* Optionally make use of an RX channel as well */
    446	chan = dma_request_slave_channel(dev, "rx");
    447
    448	if (!chan && plat && plat->dma_rx_param) {
    449		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
    450
    451		if (!chan) {
    452			dev_err(uap->port.dev, "no RX DMA channel!\n");
    453			return;
    454		}
    455	}
    456
    457	if (chan) {
    458		struct dma_slave_config rx_conf = {
    459			.src_addr = uap->port.mapbase +
    460				pl011_reg_to_offset(uap, REG_DR),
    461			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
    462			.direction = DMA_DEV_TO_MEM,
    463			.src_maxburst = uap->fifosize >> 2,
    464			.device_fc = false,
    465		};
    466		struct dma_slave_caps caps;
    467
    468		/*
    469		 * Some DMA controllers provide information on their capabilities.
    470		 * If the controller does, check for suitable residue processing
    471		 * otherwise assime all is well.
    472		 */
    473		if (0 == dma_get_slave_caps(chan, &caps)) {
    474			if (caps.residue_granularity ==
    475					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
    476				dma_release_channel(chan);
    477				dev_info(uap->port.dev,
    478					"RX DMA disabled - no residue processing\n");
    479				return;
    480			}
    481		}
    482		dmaengine_slave_config(chan, &rx_conf);
    483		uap->dmarx.chan = chan;
    484
    485		uap->dmarx.auto_poll_rate = false;
    486		if (plat && plat->dma_rx_poll_enable) {
    487			/* Set poll rate if specified. */
    488			if (plat->dma_rx_poll_rate) {
    489				uap->dmarx.auto_poll_rate = false;
    490				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
    491			} else {
    492				/*
    493				 * 100 ms defaults to poll rate if not
    494				 * specified. This will be adjusted with
    495				 * the baud rate at set_termios.
    496				 */
    497				uap->dmarx.auto_poll_rate = true;
    498				uap->dmarx.poll_rate =  100;
    499			}
    500			/* 3 secs defaults poll_timeout if not specified. */
    501			if (plat->dma_rx_poll_timeout)
    502				uap->dmarx.poll_timeout =
    503					plat->dma_rx_poll_timeout;
    504			else
    505				uap->dmarx.poll_timeout = 3000;
    506		} else if (!plat && dev->of_node) {
    507			uap->dmarx.auto_poll_rate = of_property_read_bool(
    508						dev->of_node, "auto-poll");
    509			if (uap->dmarx.auto_poll_rate) {
    510				u32 x;
    511
    512				if (0 == of_property_read_u32(dev->of_node,
    513						"poll-rate-ms", &x))
    514					uap->dmarx.poll_rate = x;
    515				else
    516					uap->dmarx.poll_rate = 100;
    517				if (0 == of_property_read_u32(dev->of_node,
    518						"poll-timeout-ms", &x))
    519					uap->dmarx.poll_timeout = x;
    520				else
    521					uap->dmarx.poll_timeout = 3000;
    522			}
    523		}
    524		dev_info(uap->port.dev, "DMA channel RX %s\n",
    525			 dma_chan_name(uap->dmarx.chan));
    526	}
    527}
    528
    529static void pl011_dma_remove(struct uart_amba_port *uap)
    530{
    531	if (uap->dmatx.chan)
    532		dma_release_channel(uap->dmatx.chan);
    533	if (uap->dmarx.chan)
    534		dma_release_channel(uap->dmarx.chan);
    535}
    536
    537/* Forward declare these for the refill routine */
    538static int pl011_dma_tx_refill(struct uart_amba_port *uap);
    539static void pl011_start_tx_pio(struct uart_amba_port *uap);
    540
    541/*
    542 * The current DMA TX buffer has been sent.
    543 * Try to queue up another DMA buffer.
    544 */
    545static void pl011_dma_tx_callback(void *data)
    546{
    547	struct uart_amba_port *uap = data;
    548	struct pl011_dmatx_data *dmatx = &uap->dmatx;
    549	unsigned long flags;
    550	u16 dmacr;
    551
    552	spin_lock_irqsave(&uap->port.lock, flags);
    553	if (uap->dmatx.queued)
    554		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
    555			     DMA_TO_DEVICE);
    556
    557	dmacr = uap->dmacr;
    558	uap->dmacr = dmacr & ~UART011_TXDMAE;
    559	pl011_write(uap->dmacr, uap, REG_DMACR);
    560
    561	/*
    562	 * If TX DMA was disabled, it means that we've stopped the DMA for
    563	 * some reason (eg, XOFF received, or we want to send an X-char.)
    564	 *
    565	 * Note: we need to be careful here of a potential race between DMA
    566	 * and the rest of the driver - if the driver disables TX DMA while
    567	 * a TX buffer completing, we must update the tx queued status to
    568	 * get further refills (hence we check dmacr).
    569	 */
    570	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
    571	    uart_circ_empty(&uap->port.state->xmit)) {
    572		uap->dmatx.queued = false;
    573		spin_unlock_irqrestore(&uap->port.lock, flags);
    574		return;
    575	}
    576
    577	if (pl011_dma_tx_refill(uap) <= 0)
    578		/*
    579		 * We didn't queue a DMA buffer for some reason, but we
    580		 * have data pending to be sent.  Re-enable the TX IRQ.
    581		 */
    582		pl011_start_tx_pio(uap);
    583
    584	spin_unlock_irqrestore(&uap->port.lock, flags);
    585}
    586
    587/*
    588 * Try to refill the TX DMA buffer.
    589 * Locking: called with port lock held and IRQs disabled.
    590 * Returns:
    591 *   1 if we queued up a TX DMA buffer.
    592 *   0 if we didn't want to handle this by DMA
    593 *  <0 on error
    594 */
    595static int pl011_dma_tx_refill(struct uart_amba_port *uap)
    596{
    597	struct pl011_dmatx_data *dmatx = &uap->dmatx;
    598	struct dma_chan *chan = dmatx->chan;
    599	struct dma_device *dma_dev = chan->device;
    600	struct dma_async_tx_descriptor *desc;
    601	struct circ_buf *xmit = &uap->port.state->xmit;
    602	unsigned int count;
    603
    604	/*
    605	 * Try to avoid the overhead involved in using DMA if the
    606	 * transaction fits in the first half of the FIFO, by using
    607	 * the standard interrupt handling.  This ensures that we
    608	 * issue a uart_write_wakeup() at the appropriate time.
    609	 */
    610	count = uart_circ_chars_pending(xmit);
    611	if (count < (uap->fifosize >> 1)) {
    612		uap->dmatx.queued = false;
    613		return 0;
    614	}
    615
    616	/*
    617	 * Bodge: don't send the last character by DMA, as this
    618	 * will prevent XON from notifying us to restart DMA.
    619	 */
    620	count -= 1;
    621
    622	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
    623	if (count > PL011_DMA_BUFFER_SIZE)
    624		count = PL011_DMA_BUFFER_SIZE;
    625
    626	if (xmit->tail < xmit->head)
    627		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
    628	else {
    629		size_t first = UART_XMIT_SIZE - xmit->tail;
    630		size_t second;
    631
    632		if (first > count)
    633			first = count;
    634		second = count - first;
    635
    636		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
    637		if (second)
    638			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
    639	}
    640
    641	dmatx->sg.length = count;
    642
    643	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
    644		uap->dmatx.queued = false;
    645		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
    646		return -EBUSY;
    647	}
    648
    649	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
    650					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
    651	if (!desc) {
    652		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
    653		uap->dmatx.queued = false;
    654		/*
    655		 * If DMA cannot be used right now, we complete this
    656		 * transaction via IRQ and let the TTY layer retry.
    657		 */
    658		dev_dbg(uap->port.dev, "TX DMA busy\n");
    659		return -EBUSY;
    660	}
    661
    662	/* Some data to go along to the callback */
    663	desc->callback = pl011_dma_tx_callback;
    664	desc->callback_param = uap;
    665
    666	/* All errors should happen at prepare time */
    667	dmaengine_submit(desc);
    668
    669	/* Fire the DMA transaction */
    670	dma_dev->device_issue_pending(chan);
    671
    672	uap->dmacr |= UART011_TXDMAE;
    673	pl011_write(uap->dmacr, uap, REG_DMACR);
    674	uap->dmatx.queued = true;
    675
    676	/*
    677	 * Now we know that DMA will fire, so advance the ring buffer
    678	 * with the stuff we just dispatched.
    679	 */
    680	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
    681	uap->port.icount.tx += count;
    682
    683	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
    684		uart_write_wakeup(&uap->port);
    685
    686	return 1;
    687}
    688
    689/*
    690 * We received a transmit interrupt without a pending X-char but with
    691 * pending characters.
    692 * Locking: called with port lock held and IRQs disabled.
    693 * Returns:
    694 *   false if we want to use PIO to transmit
    695 *   true if we queued a DMA buffer
    696 */
    697static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
    698{
    699	if (!uap->using_tx_dma)
    700		return false;
    701
    702	/*
    703	 * If we already have a TX buffer queued, but received a
    704	 * TX interrupt, it will be because we've just sent an X-char.
    705	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
    706	 */
    707	if (uap->dmatx.queued) {
    708		uap->dmacr |= UART011_TXDMAE;
    709		pl011_write(uap->dmacr, uap, REG_DMACR);
    710		uap->im &= ~UART011_TXIM;
    711		pl011_write(uap->im, uap, REG_IMSC);
    712		return true;
    713	}
    714
    715	/*
    716	 * We don't have a TX buffer queued, so try to queue one.
    717	 * If we successfully queued a buffer, mask the TX IRQ.
    718	 */
    719	if (pl011_dma_tx_refill(uap) > 0) {
    720		uap->im &= ~UART011_TXIM;
    721		pl011_write(uap->im, uap, REG_IMSC);
    722		return true;
    723	}
    724	return false;
    725}
    726
    727/*
    728 * Stop the DMA transmit (eg, due to received XOFF).
    729 * Locking: called with port lock held and IRQs disabled.
    730 */
    731static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
    732{
    733	if (uap->dmatx.queued) {
    734		uap->dmacr &= ~UART011_TXDMAE;
    735		pl011_write(uap->dmacr, uap, REG_DMACR);
    736	}
    737}
    738
    739/*
    740 * Try to start a DMA transmit, or in the case of an XON/OFF
    741 * character queued for send, try to get that character out ASAP.
    742 * Locking: called with port lock held and IRQs disabled.
    743 * Returns:
    744 *   false if we want the TX IRQ to be enabled
    745 *   true if we have a buffer queued
    746 */
    747static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
    748{
    749	u16 dmacr;
    750
    751	if (!uap->using_tx_dma)
    752		return false;
    753
    754	if (!uap->port.x_char) {
    755		/* no X-char, try to push chars out in DMA mode */
    756		bool ret = true;
    757
    758		if (!uap->dmatx.queued) {
    759			if (pl011_dma_tx_refill(uap) > 0) {
    760				uap->im &= ~UART011_TXIM;
    761				pl011_write(uap->im, uap, REG_IMSC);
    762			} else
    763				ret = false;
    764		} else if (!(uap->dmacr & UART011_TXDMAE)) {
    765			uap->dmacr |= UART011_TXDMAE;
    766			pl011_write(uap->dmacr, uap, REG_DMACR);
    767		}
    768		return ret;
    769	}
    770
    771	/*
    772	 * We have an X-char to send.  Disable DMA to prevent it loading
    773	 * the TX fifo, and then see if we can stuff it into the FIFO.
    774	 */
    775	dmacr = uap->dmacr;
    776	uap->dmacr &= ~UART011_TXDMAE;
    777	pl011_write(uap->dmacr, uap, REG_DMACR);
    778
    779	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
    780		/*
    781		 * No space in the FIFO, so enable the transmit interrupt
    782		 * so we know when there is space.  Note that once we've
    783		 * loaded the character, we should just re-enable DMA.
    784		 */
    785		return false;
    786	}
    787
    788	pl011_write(uap->port.x_char, uap, REG_DR);
    789	uap->port.icount.tx++;
    790	uap->port.x_char = 0;
    791
    792	/* Success - restore the DMA state */
    793	uap->dmacr = dmacr;
    794	pl011_write(dmacr, uap, REG_DMACR);
    795
    796	return true;
    797}
    798
    799/*
    800 * Flush the transmit buffer.
    801 * Locking: called with port lock held and IRQs disabled.
    802 */
    803static void pl011_dma_flush_buffer(struct uart_port *port)
    804__releases(&uap->port.lock)
    805__acquires(&uap->port.lock)
    806{
    807	struct uart_amba_port *uap =
    808	    container_of(port, struct uart_amba_port, port);
    809
    810	if (!uap->using_tx_dma)
    811		return;
    812
    813	dmaengine_terminate_async(uap->dmatx.chan);
    814
    815	if (uap->dmatx.queued) {
    816		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
    817			     DMA_TO_DEVICE);
    818		uap->dmatx.queued = false;
    819		uap->dmacr &= ~UART011_TXDMAE;
    820		pl011_write(uap->dmacr, uap, REG_DMACR);
    821	}
    822}
    823
    824static void pl011_dma_rx_callback(void *data);
    825
    826static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
    827{
    828	struct dma_chan *rxchan = uap->dmarx.chan;
    829	struct pl011_dmarx_data *dmarx = &uap->dmarx;
    830	struct dma_async_tx_descriptor *desc;
    831	struct pl011_sgbuf *sgbuf;
    832
    833	if (!rxchan)
    834		return -EIO;
    835
    836	/* Start the RX DMA job */
    837	sgbuf = uap->dmarx.use_buf_b ?
    838		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
    839	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
    840					DMA_DEV_TO_MEM,
    841					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
    842	/*
    843	 * If the DMA engine is busy and cannot prepare a
    844	 * channel, no big deal, the driver will fall back
    845	 * to interrupt mode as a result of this error code.
    846	 */
    847	if (!desc) {
    848		uap->dmarx.running = false;
    849		dmaengine_terminate_all(rxchan);
    850		return -EBUSY;
    851	}
    852
    853	/* Some data to go along to the callback */
    854	desc->callback = pl011_dma_rx_callback;
    855	desc->callback_param = uap;
    856	dmarx->cookie = dmaengine_submit(desc);
    857	dma_async_issue_pending(rxchan);
    858
    859	uap->dmacr |= UART011_RXDMAE;
    860	pl011_write(uap->dmacr, uap, REG_DMACR);
    861	uap->dmarx.running = true;
    862
    863	uap->im &= ~UART011_RXIM;
    864	pl011_write(uap->im, uap, REG_IMSC);
    865
    866	return 0;
    867}
    868
    869/*
    870 * This is called when either the DMA job is complete, or
    871 * the FIFO timeout interrupt occurred. This must be called
    872 * with the port spinlock uap->port.lock held.
    873 */
    874static void pl011_dma_rx_chars(struct uart_amba_port *uap,
    875			       u32 pending, bool use_buf_b,
    876			       bool readfifo)
    877{
    878	struct tty_port *port = &uap->port.state->port;
    879	struct pl011_sgbuf *sgbuf = use_buf_b ?
    880		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
    881	int dma_count = 0;
    882	u32 fifotaken = 0; /* only used for vdbg() */
    883
    884	struct pl011_dmarx_data *dmarx = &uap->dmarx;
    885	int dmataken = 0;
    886
    887	if (uap->dmarx.poll_rate) {
    888		/* The data can be taken by polling */
    889		dmataken = sgbuf->sg.length - dmarx->last_residue;
    890		/* Recalculate the pending size */
    891		if (pending >= dmataken)
    892			pending -= dmataken;
    893	}
    894
    895	/* Pick the remain data from the DMA */
    896	if (pending) {
    897
    898		/*
    899		 * First take all chars in the DMA pipe, then look in the FIFO.
    900		 * Note that tty_insert_flip_buf() tries to take as many chars
    901		 * as it can.
    902		 */
    903		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
    904				pending);
    905
    906		uap->port.icount.rx += dma_count;
    907		if (dma_count < pending)
    908			dev_warn(uap->port.dev,
    909				 "couldn't insert all characters (TTY is full?)\n");
    910	}
    911
    912	/* Reset the last_residue for Rx DMA poll */
    913	if (uap->dmarx.poll_rate)
    914		dmarx->last_residue = sgbuf->sg.length;
    915
    916	/*
    917	 * Only continue with trying to read the FIFO if all DMA chars have
    918	 * been taken first.
    919	 */
    920	if (dma_count == pending && readfifo) {
    921		/* Clear any error flags */
    922		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
    923			    UART011_FEIS, uap, REG_ICR);
    924
    925		/*
    926		 * If we read all the DMA'd characters, and we had an
    927		 * incomplete buffer, that could be due to an rx error, or
    928		 * maybe we just timed out. Read any pending chars and check
    929		 * the error status.
    930		 *
    931		 * Error conditions will only occur in the FIFO, these will
    932		 * trigger an immediate interrupt and stop the DMA job, so we
    933		 * will always find the error in the FIFO, never in the DMA
    934		 * buffer.
    935		 */
    936		fifotaken = pl011_fifo_to_tty(uap);
    937	}
    938
    939	dev_vdbg(uap->port.dev,
    940		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
    941		 dma_count, fifotaken);
    942	tty_flip_buffer_push(port);
    943}
    944
    945static void pl011_dma_rx_irq(struct uart_amba_port *uap)
    946{
    947	struct pl011_dmarx_data *dmarx = &uap->dmarx;
    948	struct dma_chan *rxchan = dmarx->chan;
    949	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
    950		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
    951	size_t pending;
    952	struct dma_tx_state state;
    953	enum dma_status dmastat;
    954
    955	/*
    956	 * Pause the transfer so we can trust the current counter,
    957	 * do this before we pause the PL011 block, else we may
    958	 * overflow the FIFO.
    959	 */
    960	if (dmaengine_pause(rxchan))
    961		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
    962	dmastat = rxchan->device->device_tx_status(rxchan,
    963						   dmarx->cookie, &state);
    964	if (dmastat != DMA_PAUSED)
    965		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
    966
    967	/* Disable RX DMA - incoming data will wait in the FIFO */
    968	uap->dmacr &= ~UART011_RXDMAE;
    969	pl011_write(uap->dmacr, uap, REG_DMACR);
    970	uap->dmarx.running = false;
    971
    972	pending = sgbuf->sg.length - state.residue;
    973	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
    974	/* Then we terminate the transfer - we now know our residue */
    975	dmaengine_terminate_all(rxchan);
    976
    977	/*
    978	 * This will take the chars we have so far and insert
    979	 * into the framework.
    980	 */
    981	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
    982
    983	/* Switch buffer & re-trigger DMA job */
    984	dmarx->use_buf_b = !dmarx->use_buf_b;
    985	if (pl011_dma_rx_trigger_dma(uap)) {
    986		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
    987			"fall back to interrupt mode\n");
    988		uap->im |= UART011_RXIM;
    989		pl011_write(uap->im, uap, REG_IMSC);
    990	}
    991}
    992
    993static void pl011_dma_rx_callback(void *data)
    994{
    995	struct uart_amba_port *uap = data;
    996	struct pl011_dmarx_data *dmarx = &uap->dmarx;
    997	struct dma_chan *rxchan = dmarx->chan;
    998	bool lastbuf = dmarx->use_buf_b;
    999	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
   1000		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
   1001	size_t pending;
   1002	struct dma_tx_state state;
   1003	int ret;
   1004
   1005	/*
   1006	 * This completion interrupt occurs typically when the
   1007	 * RX buffer is totally stuffed but no timeout has yet
   1008	 * occurred. When that happens, we just want the RX
   1009	 * routine to flush out the secondary DMA buffer while
   1010	 * we immediately trigger the next DMA job.
   1011	 */
   1012	spin_lock_irq(&uap->port.lock);
   1013	/*
   1014	 * Rx data can be taken by the UART interrupts during
   1015	 * the DMA irq handler. So we check the residue here.
   1016	 */
   1017	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
   1018	pending = sgbuf->sg.length - state.residue;
   1019	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
   1020	/* Then we terminate the transfer - we now know our residue */
   1021	dmaengine_terminate_all(rxchan);
   1022
   1023	uap->dmarx.running = false;
   1024	dmarx->use_buf_b = !lastbuf;
   1025	ret = pl011_dma_rx_trigger_dma(uap);
   1026
   1027	pl011_dma_rx_chars(uap, pending, lastbuf, false);
   1028	spin_unlock_irq(&uap->port.lock);
   1029	/*
   1030	 * Do this check after we picked the DMA chars so we don't
   1031	 * get some IRQ immediately from RX.
   1032	 */
   1033	if (ret) {
   1034		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
   1035			"fall back to interrupt mode\n");
   1036		uap->im |= UART011_RXIM;
   1037		pl011_write(uap->im, uap, REG_IMSC);
   1038	}
   1039}
   1040
   1041/*
   1042 * Stop accepting received characters, when we're shutting down or
   1043 * suspending this port.
   1044 * Locking: called with port lock held and IRQs disabled.
   1045 */
   1046static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
   1047{
   1048	/* FIXME.  Just disable the DMA enable */
   1049	uap->dmacr &= ~UART011_RXDMAE;
   1050	pl011_write(uap->dmacr, uap, REG_DMACR);
   1051}
   1052
   1053/*
   1054 * Timer handler for Rx DMA polling.
   1055 * Every polling, It checks the residue in the dma buffer and transfer
   1056 * data to the tty. Also, last_residue is updated for the next polling.
   1057 */
   1058static void pl011_dma_rx_poll(struct timer_list *t)
   1059{
   1060	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
   1061	struct tty_port *port = &uap->port.state->port;
   1062	struct pl011_dmarx_data *dmarx = &uap->dmarx;
   1063	struct dma_chan *rxchan = uap->dmarx.chan;
   1064	unsigned long flags;
   1065	unsigned int dmataken = 0;
   1066	unsigned int size = 0;
   1067	struct pl011_sgbuf *sgbuf;
   1068	int dma_count;
   1069	struct dma_tx_state state;
   1070
   1071	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
   1072	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
   1073	if (likely(state.residue < dmarx->last_residue)) {
   1074		dmataken = sgbuf->sg.length - dmarx->last_residue;
   1075		size = dmarx->last_residue - state.residue;
   1076		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
   1077				size);
   1078		if (dma_count == size)
   1079			dmarx->last_residue =  state.residue;
   1080		dmarx->last_jiffies = jiffies;
   1081	}
   1082	tty_flip_buffer_push(port);
   1083
   1084	/*
   1085	 * If no data is received in poll_timeout, the driver will fall back
   1086	 * to interrupt mode. We will retrigger DMA at the first interrupt.
   1087	 */
   1088	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
   1089			> uap->dmarx.poll_timeout) {
   1090
   1091		spin_lock_irqsave(&uap->port.lock, flags);
   1092		pl011_dma_rx_stop(uap);
   1093		uap->im |= UART011_RXIM;
   1094		pl011_write(uap->im, uap, REG_IMSC);
   1095		spin_unlock_irqrestore(&uap->port.lock, flags);
   1096
   1097		uap->dmarx.running = false;
   1098		dmaengine_terminate_all(rxchan);
   1099		del_timer(&uap->dmarx.timer);
   1100	} else {
   1101		mod_timer(&uap->dmarx.timer,
   1102			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
   1103	}
   1104}
   1105
   1106static void pl011_dma_startup(struct uart_amba_port *uap)
   1107{
   1108	int ret;
   1109
   1110	if (!uap->dma_probed)
   1111		pl011_dma_probe(uap);
   1112
   1113	if (!uap->dmatx.chan)
   1114		return;
   1115
   1116	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
   1117	if (!uap->dmatx.buf) {
   1118		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
   1119		uap->port.fifosize = uap->fifosize;
   1120		return;
   1121	}
   1122
   1123	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
   1124
   1125	/* The DMA buffer is now the FIFO the TTY subsystem can use */
   1126	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
   1127	uap->using_tx_dma = true;
   1128
   1129	if (!uap->dmarx.chan)
   1130		goto skip_rx;
   1131
   1132	/* Allocate and map DMA RX buffers */
   1133	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
   1134			       DMA_FROM_DEVICE);
   1135	if (ret) {
   1136		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
   1137			"RX buffer A", ret);
   1138		goto skip_rx;
   1139	}
   1140
   1141	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
   1142			       DMA_FROM_DEVICE);
   1143	if (ret) {
   1144		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
   1145			"RX buffer B", ret);
   1146		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
   1147				 DMA_FROM_DEVICE);
   1148		goto skip_rx;
   1149	}
   1150
   1151	uap->using_rx_dma = true;
   1152
   1153skip_rx:
   1154	/* Turn on DMA error (RX/TX will be enabled on demand) */
   1155	uap->dmacr |= UART011_DMAONERR;
   1156	pl011_write(uap->dmacr, uap, REG_DMACR);
   1157
   1158	/*
   1159	 * ST Micro variants has some specific dma burst threshold
   1160	 * compensation. Set this to 16 bytes, so burst will only
   1161	 * be issued above/below 16 bytes.
   1162	 */
   1163	if (uap->vendor->dma_threshold)
   1164		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
   1165			    uap, REG_ST_DMAWM);
   1166
   1167	if (uap->using_rx_dma) {
   1168		if (pl011_dma_rx_trigger_dma(uap))
   1169			dev_dbg(uap->port.dev, "could not trigger initial "
   1170				"RX DMA job, fall back to interrupt mode\n");
   1171		if (uap->dmarx.poll_rate) {
   1172			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
   1173			mod_timer(&uap->dmarx.timer,
   1174				jiffies +
   1175				msecs_to_jiffies(uap->dmarx.poll_rate));
   1176			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
   1177			uap->dmarx.last_jiffies = jiffies;
   1178		}
   1179	}
   1180}
   1181
   1182static void pl011_dma_shutdown(struct uart_amba_port *uap)
   1183{
   1184	if (!(uap->using_tx_dma || uap->using_rx_dma))
   1185		return;
   1186
   1187	/* Disable RX and TX DMA */
   1188	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
   1189		cpu_relax();
   1190
   1191	spin_lock_irq(&uap->port.lock);
   1192	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
   1193	pl011_write(uap->dmacr, uap, REG_DMACR);
   1194	spin_unlock_irq(&uap->port.lock);
   1195
   1196	if (uap->using_tx_dma) {
   1197		/* In theory, this should already be done by pl011_dma_flush_buffer */
   1198		dmaengine_terminate_all(uap->dmatx.chan);
   1199		if (uap->dmatx.queued) {
   1200			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
   1201				     DMA_TO_DEVICE);
   1202			uap->dmatx.queued = false;
   1203		}
   1204
   1205		kfree(uap->dmatx.buf);
   1206		uap->using_tx_dma = false;
   1207	}
   1208
   1209	if (uap->using_rx_dma) {
   1210		dmaengine_terminate_all(uap->dmarx.chan);
   1211		/* Clean up the RX DMA */
   1212		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
   1213		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
   1214		if (uap->dmarx.poll_rate)
   1215			del_timer_sync(&uap->dmarx.timer);
   1216		uap->using_rx_dma = false;
   1217	}
   1218}
   1219
   1220static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
   1221{
   1222	return uap->using_rx_dma;
   1223}
   1224
   1225static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
   1226{
   1227	return uap->using_rx_dma && uap->dmarx.running;
   1228}
   1229
   1230#else
   1231/* Blank functions if the DMA engine is not available */
   1232static inline void pl011_dma_remove(struct uart_amba_port *uap)
   1233{
   1234}
   1235
   1236static inline void pl011_dma_startup(struct uart_amba_port *uap)
   1237{
   1238}
   1239
   1240static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
   1241{
   1242}
   1243
   1244static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
   1245{
   1246	return false;
   1247}
   1248
   1249static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
   1250{
   1251}
   1252
   1253static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
   1254{
   1255	return false;
   1256}
   1257
   1258static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
   1259{
   1260}
   1261
   1262static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
   1263{
   1264}
   1265
   1266static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
   1267{
   1268	return -EIO;
   1269}
   1270
   1271static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
   1272{
   1273	return false;
   1274}
   1275
   1276static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
   1277{
   1278	return false;
   1279}
   1280
   1281#define pl011_dma_flush_buffer	NULL
   1282#endif
   1283
   1284static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
   1285{
   1286	/*
   1287	 * To be on the safe side only time out after twice as many iterations
   1288	 * as fifo size.
   1289	 */
   1290	const int MAX_TX_DRAIN_ITERS = uap->port.fifosize * 2;
   1291	struct uart_port *port = &uap->port;
   1292	int i = 0;
   1293	u32 cr;
   1294
   1295	/* Wait until hardware tx queue is empty */
   1296	while (!pl011_tx_empty(port)) {
   1297		if (i > MAX_TX_DRAIN_ITERS) {
   1298			dev_warn(port->dev,
   1299				 "timeout while draining hardware tx queue\n");
   1300			break;
   1301		}
   1302
   1303		udelay(uap->rs485_tx_drain_interval);
   1304		i++;
   1305	}
   1306
   1307	if (port->rs485.delay_rts_after_send)
   1308		mdelay(port->rs485.delay_rts_after_send);
   1309
   1310	cr = pl011_read(uap, REG_CR);
   1311
   1312	if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
   1313		cr &= ~UART011_CR_RTS;
   1314	else
   1315		cr |= UART011_CR_RTS;
   1316
   1317	/* Disable the transmitter and reenable the transceiver */
   1318	cr &= ~UART011_CR_TXE;
   1319	cr |= UART011_CR_RXE;
   1320	pl011_write(cr, uap, REG_CR);
   1321
   1322	uap->rs485_tx_started = false;
   1323}
   1324
   1325static void pl011_stop_tx(struct uart_port *port)
   1326{
   1327	struct uart_amba_port *uap =
   1328	    container_of(port, struct uart_amba_port, port);
   1329
   1330	uap->im &= ~UART011_TXIM;
   1331	pl011_write(uap->im, uap, REG_IMSC);
   1332	pl011_dma_tx_stop(uap);
   1333
   1334	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
   1335		pl011_rs485_tx_stop(uap);
   1336}
   1337
   1338static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
   1339
   1340/* Start TX with programmed I/O only (no DMA) */
   1341static void pl011_start_tx_pio(struct uart_amba_port *uap)
   1342{
   1343	if (pl011_tx_chars(uap, false)) {
   1344		uap->im |= UART011_TXIM;
   1345		pl011_write(uap->im, uap, REG_IMSC);
   1346	}
   1347}
   1348
   1349static void pl011_start_tx(struct uart_port *port)
   1350{
   1351	struct uart_amba_port *uap =
   1352	    container_of(port, struct uart_amba_port, port);
   1353
   1354	if (!pl011_dma_tx_start(uap))
   1355		pl011_start_tx_pio(uap);
   1356}
   1357
   1358static void pl011_stop_rx(struct uart_port *port)
   1359{
   1360	struct uart_amba_port *uap =
   1361	    container_of(port, struct uart_amba_port, port);
   1362
   1363	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
   1364		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
   1365	pl011_write(uap->im, uap, REG_IMSC);
   1366
   1367	pl011_dma_rx_stop(uap);
   1368}
   1369
   1370static void pl011_enable_ms(struct uart_port *port)
   1371{
   1372	struct uart_amba_port *uap =
   1373	    container_of(port, struct uart_amba_port, port);
   1374
   1375	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
   1376	pl011_write(uap->im, uap, REG_IMSC);
   1377}
   1378
   1379static void pl011_rx_chars(struct uart_amba_port *uap)
   1380__releases(&uap->port.lock)
   1381__acquires(&uap->port.lock)
   1382{
   1383	pl011_fifo_to_tty(uap);
   1384
   1385	spin_unlock(&uap->port.lock);
   1386	tty_flip_buffer_push(&uap->port.state->port);
   1387	/*
   1388	 * If we were temporarily out of DMA mode for a while,
   1389	 * attempt to switch back to DMA mode again.
   1390	 */
   1391	if (pl011_dma_rx_available(uap)) {
   1392		if (pl011_dma_rx_trigger_dma(uap)) {
   1393			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
   1394				"fall back to interrupt mode again\n");
   1395			uap->im |= UART011_RXIM;
   1396			pl011_write(uap->im, uap, REG_IMSC);
   1397		} else {
   1398#ifdef CONFIG_DMA_ENGINE
   1399			/* Start Rx DMA poll */
   1400			if (uap->dmarx.poll_rate) {
   1401				uap->dmarx.last_jiffies = jiffies;
   1402				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
   1403				mod_timer(&uap->dmarx.timer,
   1404					jiffies +
   1405					msecs_to_jiffies(uap->dmarx.poll_rate));
   1406			}
   1407#endif
   1408		}
   1409	}
   1410	spin_lock(&uap->port.lock);
   1411}
   1412
   1413static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
   1414			  bool from_irq)
   1415{
   1416	if (unlikely(!from_irq) &&
   1417	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
   1418		return false; /* unable to transmit character */
   1419
   1420	pl011_write(c, uap, REG_DR);
   1421	uap->port.icount.tx++;
   1422
   1423	return true;
   1424}
   1425
   1426static void pl011_rs485_tx_start(struct uart_amba_port *uap)
   1427{
   1428	struct uart_port *port = &uap->port;
   1429	u32 cr;
   1430
   1431	/* Enable transmitter */
   1432	cr = pl011_read(uap, REG_CR);
   1433	cr |= UART011_CR_TXE;
   1434
   1435	/* Disable receiver if half-duplex */
   1436	if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
   1437		cr &= ~UART011_CR_RXE;
   1438
   1439	if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
   1440		cr &= ~UART011_CR_RTS;
   1441	else
   1442		cr |= UART011_CR_RTS;
   1443
   1444	pl011_write(cr, uap, REG_CR);
   1445
   1446	if (port->rs485.delay_rts_before_send)
   1447		mdelay(port->rs485.delay_rts_before_send);
   1448
   1449	uap->rs485_tx_started = true;
   1450}
   1451
   1452/* Returns true if tx interrupts have to be (kept) enabled  */
   1453static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
   1454{
   1455	struct circ_buf *xmit = &uap->port.state->xmit;
   1456	int count = uap->fifosize >> 1;
   1457
   1458	if (uap->port.x_char) {
   1459		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
   1460			return true;
   1461		uap->port.x_char = 0;
   1462		--count;
   1463	}
   1464	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
   1465		pl011_stop_tx(&uap->port);
   1466		return false;
   1467	}
   1468
   1469	if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
   1470	    !uap->rs485_tx_started)
   1471		pl011_rs485_tx_start(uap);
   1472
   1473	/* If we are using DMA mode, try to send some characters. */
   1474	if (pl011_dma_tx_irq(uap))
   1475		return true;
   1476
   1477	do {
   1478		if (likely(from_irq) && count-- == 0)
   1479			break;
   1480
   1481		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
   1482			break;
   1483
   1484		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
   1485	} while (!uart_circ_empty(xmit));
   1486
   1487	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
   1488		uart_write_wakeup(&uap->port);
   1489
   1490	if (uart_circ_empty(xmit)) {
   1491		pl011_stop_tx(&uap->port);
   1492		return false;
   1493	}
   1494	return true;
   1495}
   1496
   1497static void pl011_modem_status(struct uart_amba_port *uap)
   1498{
   1499	unsigned int status, delta;
   1500
   1501	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
   1502
   1503	delta = status ^ uap->old_status;
   1504	uap->old_status = status;
   1505
   1506	if (!delta)
   1507		return;
   1508
   1509	if (delta & UART01x_FR_DCD)
   1510		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
   1511
   1512	if (delta & uap->vendor->fr_dsr)
   1513		uap->port.icount.dsr++;
   1514
   1515	if (delta & uap->vendor->fr_cts)
   1516		uart_handle_cts_change(&uap->port,
   1517				       status & uap->vendor->fr_cts);
   1518
   1519	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
   1520}
   1521
   1522static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
   1523{
   1524	if (!uap->vendor->cts_event_workaround)
   1525		return;
   1526
   1527	/* workaround to make sure that all bits are unlocked.. */
   1528	pl011_write(0x00, uap, REG_ICR);
   1529
   1530	/*
   1531	 * WA: introduce 26ns(1 uart clk) delay before W1C;
   1532	 * single apb access will incur 2 pclk(133.12Mhz) delay,
   1533	 * so add 2 dummy reads
   1534	 */
   1535	pl011_read(uap, REG_ICR);
   1536	pl011_read(uap, REG_ICR);
   1537}
   1538
   1539static irqreturn_t pl011_int(int irq, void *dev_id)
   1540{
   1541	struct uart_amba_port *uap = dev_id;
   1542	unsigned long flags;
   1543	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
   1544	int handled = 0;
   1545
   1546	spin_lock_irqsave(&uap->port.lock, flags);
   1547	status = pl011_read(uap, REG_RIS) & uap->im;
   1548	if (status) {
   1549		do {
   1550			check_apply_cts_event_workaround(uap);
   1551
   1552			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
   1553					       UART011_RXIS),
   1554				    uap, REG_ICR);
   1555
   1556			if (status & (UART011_RTIS|UART011_RXIS)) {
   1557				if (pl011_dma_rx_running(uap))
   1558					pl011_dma_rx_irq(uap);
   1559				else
   1560					pl011_rx_chars(uap);
   1561			}
   1562			if (status & (UART011_DSRMIS|UART011_DCDMIS|
   1563				      UART011_CTSMIS|UART011_RIMIS))
   1564				pl011_modem_status(uap);
   1565			if (status & UART011_TXIS)
   1566				pl011_tx_chars(uap, true);
   1567
   1568			if (pass_counter-- == 0)
   1569				break;
   1570
   1571			status = pl011_read(uap, REG_RIS) & uap->im;
   1572		} while (status != 0);
   1573		handled = 1;
   1574	}
   1575
   1576	spin_unlock_irqrestore(&uap->port.lock, flags);
   1577
   1578	return IRQ_RETVAL(handled);
   1579}
   1580
   1581static unsigned int pl011_tx_empty(struct uart_port *port)
   1582{
   1583	struct uart_amba_port *uap =
   1584	    container_of(port, struct uart_amba_port, port);
   1585
   1586	/* Allow feature register bits to be inverted to work around errata */
   1587	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
   1588
   1589	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
   1590							0 : TIOCSER_TEMT;
   1591}
   1592
   1593static unsigned int pl011_get_mctrl(struct uart_port *port)
   1594{
   1595	struct uart_amba_port *uap =
   1596	    container_of(port, struct uart_amba_port, port);
   1597	unsigned int result = 0;
   1598	unsigned int status = pl011_read(uap, REG_FR);
   1599
   1600#define TIOCMBIT(uartbit, tiocmbit)	\
   1601	if (status & uartbit)		\
   1602		result |= tiocmbit
   1603
   1604	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
   1605	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
   1606	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
   1607	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
   1608#undef TIOCMBIT
   1609	return result;
   1610}
   1611
   1612static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
   1613{
   1614	struct uart_amba_port *uap =
   1615	    container_of(port, struct uart_amba_port, port);
   1616	unsigned int cr;
   1617
   1618	cr = pl011_read(uap, REG_CR);
   1619
   1620#define	TIOCMBIT(tiocmbit, uartbit)		\
   1621	if (mctrl & tiocmbit)		\
   1622		cr |= uartbit;		\
   1623	else				\
   1624		cr &= ~uartbit
   1625
   1626	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
   1627	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
   1628	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
   1629	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
   1630	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
   1631
   1632	if (port->status & UPSTAT_AUTORTS) {
   1633		/* We need to disable auto-RTS if we want to turn RTS off */
   1634		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
   1635	}
   1636#undef TIOCMBIT
   1637
   1638	pl011_write(cr, uap, REG_CR);
   1639}
   1640
   1641static void pl011_break_ctl(struct uart_port *port, int break_state)
   1642{
   1643	struct uart_amba_port *uap =
   1644	    container_of(port, struct uart_amba_port, port);
   1645	unsigned long flags;
   1646	unsigned int lcr_h;
   1647
   1648	spin_lock_irqsave(&uap->port.lock, flags);
   1649	lcr_h = pl011_read(uap, REG_LCRH_TX);
   1650	if (break_state == -1)
   1651		lcr_h |= UART01x_LCRH_BRK;
   1652	else
   1653		lcr_h &= ~UART01x_LCRH_BRK;
   1654	pl011_write(lcr_h, uap, REG_LCRH_TX);
   1655	spin_unlock_irqrestore(&uap->port.lock, flags);
   1656}
   1657
   1658#ifdef CONFIG_CONSOLE_POLL
   1659
   1660static void pl011_quiesce_irqs(struct uart_port *port)
   1661{
   1662	struct uart_amba_port *uap =
   1663	    container_of(port, struct uart_amba_port, port);
   1664
   1665	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
   1666	/*
   1667	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
   1668	 * we simply mask it. start_tx() will unmask it.
   1669	 *
   1670	 * Note we can race with start_tx(), and if the race happens, the
   1671	 * polling user might get another interrupt just after we clear it.
   1672	 * But it should be OK and can happen even w/o the race, e.g.
   1673	 * controller immediately got some new data and raised the IRQ.
   1674	 *
   1675	 * And whoever uses polling routines assumes that it manages the device
   1676	 * (including tx queue), so we're also fine with start_tx()'s caller
   1677	 * side.
   1678	 */
   1679	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
   1680		    REG_IMSC);
   1681}
   1682
   1683static int pl011_get_poll_char(struct uart_port *port)
   1684{
   1685	struct uart_amba_port *uap =
   1686	    container_of(port, struct uart_amba_port, port);
   1687	unsigned int status;
   1688
   1689	/*
   1690	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
   1691	 * debugger.
   1692	 */
   1693	pl011_quiesce_irqs(port);
   1694
   1695	status = pl011_read(uap, REG_FR);
   1696	if (status & UART01x_FR_RXFE)
   1697		return NO_POLL_CHAR;
   1698
   1699	return pl011_read(uap, REG_DR);
   1700}
   1701
   1702static void pl011_put_poll_char(struct uart_port *port,
   1703			 unsigned char ch)
   1704{
   1705	struct uart_amba_port *uap =
   1706	    container_of(port, struct uart_amba_port, port);
   1707
   1708	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
   1709		cpu_relax();
   1710
   1711	pl011_write(ch, uap, REG_DR);
   1712}
   1713
   1714#endif /* CONFIG_CONSOLE_POLL */
   1715
   1716static int pl011_hwinit(struct uart_port *port)
   1717{
   1718	struct uart_amba_port *uap =
   1719	    container_of(port, struct uart_amba_port, port);
   1720	int retval;
   1721
   1722	/* Optionaly enable pins to be muxed in and configured */
   1723	pinctrl_pm_select_default_state(port->dev);
   1724
   1725	/*
   1726	 * Try to enable the clock producer.
   1727	 */
   1728	retval = clk_prepare_enable(uap->clk);
   1729	if (retval)
   1730		return retval;
   1731
   1732	uap->port.uartclk = clk_get_rate(uap->clk);
   1733
   1734	/* Clear pending error and receive interrupts */
   1735	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
   1736		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
   1737		    uap, REG_ICR);
   1738
   1739	/*
   1740	 * Save interrupts enable mask, and enable RX interrupts in case if
   1741	 * the interrupt is used for NMI entry.
   1742	 */
   1743	uap->im = pl011_read(uap, REG_IMSC);
   1744	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
   1745
   1746	if (dev_get_platdata(uap->port.dev)) {
   1747		struct amba_pl011_data *plat;
   1748
   1749		plat = dev_get_platdata(uap->port.dev);
   1750		if (plat->init)
   1751			plat->init();
   1752	}
   1753	return 0;
   1754}
   1755
   1756static bool pl011_split_lcrh(const struct uart_amba_port *uap)
   1757{
   1758	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
   1759	       pl011_reg_to_offset(uap, REG_LCRH_TX);
   1760}
   1761
   1762static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
   1763{
   1764	pl011_write(lcr_h, uap, REG_LCRH_RX);
   1765	if (pl011_split_lcrh(uap)) {
   1766		int i;
   1767		/*
   1768		 * Wait 10 PCLKs before writing LCRH_TX register,
   1769		 * to get this delay write read only register 10 times
   1770		 */
   1771		for (i = 0; i < 10; ++i)
   1772			pl011_write(0xff, uap, REG_MIS);
   1773		pl011_write(lcr_h, uap, REG_LCRH_TX);
   1774	}
   1775}
   1776
   1777static int pl011_allocate_irq(struct uart_amba_port *uap)
   1778{
   1779	pl011_write(uap->im, uap, REG_IMSC);
   1780
   1781	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
   1782}
   1783
   1784/*
   1785 * Enable interrupts, only timeouts when using DMA
   1786 * if initial RX DMA job failed, start in interrupt mode
   1787 * as well.
   1788 */
   1789static void pl011_enable_interrupts(struct uart_amba_port *uap)
   1790{
   1791	unsigned int i;
   1792
   1793	spin_lock_irq(&uap->port.lock);
   1794
   1795	/* Clear out any spuriously appearing RX interrupts */
   1796	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
   1797
   1798	/*
   1799	 * RXIS is asserted only when the RX FIFO transitions from below
   1800	 * to above the trigger threshold.  If the RX FIFO is already
   1801	 * full to the threshold this can't happen and RXIS will now be
   1802	 * stuck off.  Drain the RX FIFO explicitly to fix this:
   1803	 */
   1804	for (i = 0; i < uap->fifosize * 2; ++i) {
   1805		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
   1806			break;
   1807
   1808		pl011_read(uap, REG_DR);
   1809	}
   1810
   1811	uap->im = UART011_RTIM;
   1812	if (!pl011_dma_rx_running(uap))
   1813		uap->im |= UART011_RXIM;
   1814	pl011_write(uap->im, uap, REG_IMSC);
   1815	spin_unlock_irq(&uap->port.lock);
   1816}
   1817
   1818static int pl011_startup(struct uart_port *port)
   1819{
   1820	struct uart_amba_port *uap =
   1821	    container_of(port, struct uart_amba_port, port);
   1822	unsigned int cr;
   1823	int retval;
   1824
   1825	retval = pl011_hwinit(port);
   1826	if (retval)
   1827		goto clk_dis;
   1828
   1829	retval = pl011_allocate_irq(uap);
   1830	if (retval)
   1831		goto clk_dis;
   1832
   1833	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
   1834
   1835	spin_lock_irq(&uap->port.lock);
   1836
   1837	cr = pl011_read(uap, REG_CR);
   1838	cr &= UART011_CR_RTS | UART011_CR_DTR;
   1839	cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
   1840
   1841	if (!(port->rs485.flags & SER_RS485_ENABLED))
   1842		cr |= UART011_CR_TXE;
   1843
   1844	pl011_write(cr, uap, REG_CR);
   1845
   1846	spin_unlock_irq(&uap->port.lock);
   1847
   1848	/*
   1849	 * initialise the old status of the modem signals
   1850	 */
   1851	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
   1852
   1853	/* Startup DMA */
   1854	pl011_dma_startup(uap);
   1855
   1856	pl011_enable_interrupts(uap);
   1857
   1858	return 0;
   1859
   1860 clk_dis:
   1861	clk_disable_unprepare(uap->clk);
   1862	return retval;
   1863}
   1864
   1865static int sbsa_uart_startup(struct uart_port *port)
   1866{
   1867	struct uart_amba_port *uap =
   1868		container_of(port, struct uart_amba_port, port);
   1869	int retval;
   1870
   1871	retval = pl011_hwinit(port);
   1872	if (retval)
   1873		return retval;
   1874
   1875	retval = pl011_allocate_irq(uap);
   1876	if (retval)
   1877		return retval;
   1878
   1879	/* The SBSA UART does not support any modem status lines. */
   1880	uap->old_status = 0;
   1881
   1882	pl011_enable_interrupts(uap);
   1883
   1884	return 0;
   1885}
   1886
   1887static void pl011_shutdown_channel(struct uart_amba_port *uap,
   1888					unsigned int lcrh)
   1889{
   1890      unsigned long val;
   1891
   1892      val = pl011_read(uap, lcrh);
   1893      val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
   1894      pl011_write(val, uap, lcrh);
   1895}
   1896
   1897/*
   1898 * disable the port. It should not disable RTS and DTR.
   1899 * Also RTS and DTR state should be preserved to restore
   1900 * it during startup().
   1901 */
   1902static void pl011_disable_uart(struct uart_amba_port *uap)
   1903{
   1904	unsigned int cr;
   1905
   1906	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
   1907	spin_lock_irq(&uap->port.lock);
   1908	cr = pl011_read(uap, REG_CR);
   1909	cr &= UART011_CR_RTS | UART011_CR_DTR;
   1910	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
   1911	pl011_write(cr, uap, REG_CR);
   1912	spin_unlock_irq(&uap->port.lock);
   1913
   1914	/*
   1915	 * disable break condition and fifos
   1916	 */
   1917	pl011_shutdown_channel(uap, REG_LCRH_RX);
   1918	if (pl011_split_lcrh(uap))
   1919		pl011_shutdown_channel(uap, REG_LCRH_TX);
   1920}
   1921
   1922static void pl011_disable_interrupts(struct uart_amba_port *uap)
   1923{
   1924	spin_lock_irq(&uap->port.lock);
   1925
   1926	/* mask all interrupts and clear all pending ones */
   1927	uap->im = 0;
   1928	pl011_write(uap->im, uap, REG_IMSC);
   1929	pl011_write(0xffff, uap, REG_ICR);
   1930
   1931	spin_unlock_irq(&uap->port.lock);
   1932}
   1933
   1934static void pl011_shutdown(struct uart_port *port)
   1935{
   1936	struct uart_amba_port *uap =
   1937		container_of(port, struct uart_amba_port, port);
   1938
   1939	pl011_disable_interrupts(uap);
   1940
   1941	pl011_dma_shutdown(uap);
   1942
   1943	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
   1944		pl011_rs485_tx_stop(uap);
   1945
   1946	free_irq(uap->port.irq, uap);
   1947
   1948	pl011_disable_uart(uap);
   1949
   1950	/*
   1951	 * Shut down the clock producer
   1952	 */
   1953	clk_disable_unprepare(uap->clk);
   1954	/* Optionally let pins go into sleep states */
   1955	pinctrl_pm_select_sleep_state(port->dev);
   1956
   1957	if (dev_get_platdata(uap->port.dev)) {
   1958		struct amba_pl011_data *plat;
   1959
   1960		plat = dev_get_platdata(uap->port.dev);
   1961		if (plat->exit)
   1962			plat->exit();
   1963	}
   1964
   1965	if (uap->port.ops->flush_buffer)
   1966		uap->port.ops->flush_buffer(port);
   1967}
   1968
   1969static void sbsa_uart_shutdown(struct uart_port *port)
   1970{
   1971	struct uart_amba_port *uap =
   1972		container_of(port, struct uart_amba_port, port);
   1973
   1974	pl011_disable_interrupts(uap);
   1975
   1976	free_irq(uap->port.irq, uap);
   1977
   1978	if (uap->port.ops->flush_buffer)
   1979		uap->port.ops->flush_buffer(port);
   1980}
   1981
   1982static void
   1983pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
   1984{
   1985	port->read_status_mask = UART011_DR_OE | 255;
   1986	if (termios->c_iflag & INPCK)
   1987		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
   1988	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
   1989		port->read_status_mask |= UART011_DR_BE;
   1990
   1991	/*
   1992	 * Characters to ignore
   1993	 */
   1994	port->ignore_status_mask = 0;
   1995	if (termios->c_iflag & IGNPAR)
   1996		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
   1997	if (termios->c_iflag & IGNBRK) {
   1998		port->ignore_status_mask |= UART011_DR_BE;
   1999		/*
   2000		 * If we're ignoring parity and break indicators,
   2001		 * ignore overruns too (for real raw support).
   2002		 */
   2003		if (termios->c_iflag & IGNPAR)
   2004			port->ignore_status_mask |= UART011_DR_OE;
   2005	}
   2006
   2007	/*
   2008	 * Ignore all characters if CREAD is not set.
   2009	 */
   2010	if ((termios->c_cflag & CREAD) == 0)
   2011		port->ignore_status_mask |= UART_DUMMY_DR_RX;
   2012}
   2013
   2014static void
   2015pl011_set_termios(struct uart_port *port, struct ktermios *termios,
   2016		     struct ktermios *old)
   2017{
   2018	struct uart_amba_port *uap =
   2019	    container_of(port, struct uart_amba_port, port);
   2020	unsigned int lcr_h, old_cr;
   2021	unsigned long flags;
   2022	unsigned int baud, quot, clkdiv;
   2023	unsigned int bits;
   2024
   2025	if (uap->vendor->oversampling)
   2026		clkdiv = 8;
   2027	else
   2028		clkdiv = 16;
   2029
   2030	/*
   2031	 * Ask the core to calculate the divisor for us.
   2032	 */
   2033	baud = uart_get_baud_rate(port, termios, old, 0,
   2034				  port->uartclk / clkdiv);
   2035#ifdef CONFIG_DMA_ENGINE
   2036	/*
   2037	 * Adjust RX DMA polling rate with baud rate if not specified.
   2038	 */
   2039	if (uap->dmarx.auto_poll_rate)
   2040		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
   2041#endif
   2042
   2043	if (baud > port->uartclk/16)
   2044		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
   2045	else
   2046		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
   2047
   2048	switch (termios->c_cflag & CSIZE) {
   2049	case CS5:
   2050		lcr_h = UART01x_LCRH_WLEN_5;
   2051		break;
   2052	case CS6:
   2053		lcr_h = UART01x_LCRH_WLEN_6;
   2054		break;
   2055	case CS7:
   2056		lcr_h = UART01x_LCRH_WLEN_7;
   2057		break;
   2058	default: // CS8
   2059		lcr_h = UART01x_LCRH_WLEN_8;
   2060		break;
   2061	}
   2062	if (termios->c_cflag & CSTOPB)
   2063		lcr_h |= UART01x_LCRH_STP2;
   2064	if (termios->c_cflag & PARENB) {
   2065		lcr_h |= UART01x_LCRH_PEN;
   2066		if (!(termios->c_cflag & PARODD))
   2067			lcr_h |= UART01x_LCRH_EPS;
   2068		if (termios->c_cflag & CMSPAR)
   2069			lcr_h |= UART011_LCRH_SPS;
   2070	}
   2071	if (uap->fifosize > 1)
   2072		lcr_h |= UART01x_LCRH_FEN;
   2073
   2074	bits = tty_get_frame_size(termios->c_cflag);
   2075
   2076	spin_lock_irqsave(&port->lock, flags);
   2077
   2078	/*
   2079	 * Update the per-port timeout.
   2080	 */
   2081	uart_update_timeout(port, termios->c_cflag, baud);
   2082
   2083	/*
   2084	 * Calculate the approximated time it takes to transmit one character
   2085	 * with the given baud rate. We use this as the poll interval when we
   2086	 * wait for the tx queue to empty.
   2087	 */
   2088	uap->rs485_tx_drain_interval = DIV_ROUND_UP(bits * 1000 * 1000, baud);
   2089
   2090	pl011_setup_status_masks(port, termios);
   2091
   2092	if (UART_ENABLE_MS(port, termios->c_cflag))
   2093		pl011_enable_ms(port);
   2094
   2095	if (port->rs485.flags & SER_RS485_ENABLED)
   2096		termios->c_cflag &= ~CRTSCTS;
   2097
   2098	old_cr = pl011_read(uap, REG_CR);
   2099
   2100	if (termios->c_cflag & CRTSCTS) {
   2101		if (old_cr & UART011_CR_RTS)
   2102			old_cr |= UART011_CR_RTSEN;
   2103
   2104		old_cr |= UART011_CR_CTSEN;
   2105		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
   2106	} else {
   2107		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
   2108		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
   2109	}
   2110
   2111	if (uap->vendor->oversampling) {
   2112		if (baud > port->uartclk / 16)
   2113			old_cr |= ST_UART011_CR_OVSFACT;
   2114		else
   2115			old_cr &= ~ST_UART011_CR_OVSFACT;
   2116	}
   2117
   2118	/*
   2119	 * Workaround for the ST Micro oversampling variants to
   2120	 * increase the bitrate slightly, by lowering the divisor,
   2121	 * to avoid delayed sampling of start bit at high speeds,
   2122	 * else we see data corruption.
   2123	 */
   2124	if (uap->vendor->oversampling) {
   2125		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
   2126			quot -= 1;
   2127		else if ((baud > 3250000) && (quot > 2))
   2128			quot -= 2;
   2129	}
   2130	/* Set baud rate */
   2131	pl011_write(quot & 0x3f, uap, REG_FBRD);
   2132	pl011_write(quot >> 6, uap, REG_IBRD);
   2133
   2134	/*
   2135	 * ----------v----------v----------v----------v-----
   2136	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
   2137	 * REG_FBRD & REG_IBRD.
   2138	 * ----------^----------^----------^----------^-----
   2139	 */
   2140	pl011_write_lcr_h(uap, lcr_h);
   2141	pl011_write(old_cr, uap, REG_CR);
   2142
   2143	spin_unlock_irqrestore(&port->lock, flags);
   2144}
   2145
   2146static void
   2147sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
   2148		      struct ktermios *old)
   2149{
   2150	struct uart_amba_port *uap =
   2151	    container_of(port, struct uart_amba_port, port);
   2152	unsigned long flags;
   2153
   2154	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
   2155
   2156	/* The SBSA UART only supports 8n1 without hardware flow control. */
   2157	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
   2158	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
   2159	termios->c_cflag |= CS8 | CLOCAL;
   2160
   2161	spin_lock_irqsave(&port->lock, flags);
   2162	uart_update_timeout(port, CS8, uap->fixed_baud);
   2163	pl011_setup_status_masks(port, termios);
   2164	spin_unlock_irqrestore(&port->lock, flags);
   2165}
   2166
   2167static const char *pl011_type(struct uart_port *port)
   2168{
   2169	struct uart_amba_port *uap =
   2170	    container_of(port, struct uart_amba_port, port);
   2171	return uap->port.type == PORT_AMBA ? uap->type : NULL;
   2172}
   2173
   2174/*
   2175 * Configure/autoconfigure the port.
   2176 */
   2177static void pl011_config_port(struct uart_port *port, int flags)
   2178{
   2179	if (flags & UART_CONFIG_TYPE)
   2180		port->type = PORT_AMBA;
   2181}
   2182
   2183/*
   2184 * verify the new serial_struct (for TIOCSSERIAL).
   2185 */
   2186static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
   2187{
   2188	int ret = 0;
   2189	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
   2190		ret = -EINVAL;
   2191	if (ser->irq < 0 || ser->irq >= nr_irqs)
   2192		ret = -EINVAL;
   2193	if (ser->baud_base < 9600)
   2194		ret = -EINVAL;
   2195	if (port->mapbase != (unsigned long) ser->iomem_base)
   2196		ret = -EINVAL;
   2197	return ret;
   2198}
   2199
   2200static int pl011_rs485_config(struct uart_port *port,
   2201			      struct serial_rs485 *rs485)
   2202{
   2203	struct uart_amba_port *uap =
   2204		container_of(port, struct uart_amba_port, port);
   2205
   2206	if (port->rs485.flags & SER_RS485_ENABLED)
   2207		pl011_rs485_tx_stop(uap);
   2208
   2209	/* Make sure auto RTS is disabled */
   2210	if (rs485->flags & SER_RS485_ENABLED) {
   2211		u32 cr = pl011_read(uap, REG_CR);
   2212
   2213		cr &= ~UART011_CR_RTSEN;
   2214		pl011_write(cr, uap, REG_CR);
   2215		port->status &= ~UPSTAT_AUTORTS;
   2216	}
   2217
   2218	return 0;
   2219}
   2220
   2221static const struct uart_ops amba_pl011_pops = {
   2222	.tx_empty	= pl011_tx_empty,
   2223	.set_mctrl	= pl011_set_mctrl,
   2224	.get_mctrl	= pl011_get_mctrl,
   2225	.stop_tx	= pl011_stop_tx,
   2226	.start_tx	= pl011_start_tx,
   2227	.stop_rx	= pl011_stop_rx,
   2228	.enable_ms	= pl011_enable_ms,
   2229	.break_ctl	= pl011_break_ctl,
   2230	.startup	= pl011_startup,
   2231	.shutdown	= pl011_shutdown,
   2232	.flush_buffer	= pl011_dma_flush_buffer,
   2233	.set_termios	= pl011_set_termios,
   2234	.type		= pl011_type,
   2235	.config_port	= pl011_config_port,
   2236	.verify_port	= pl011_verify_port,
   2237#ifdef CONFIG_CONSOLE_POLL
   2238	.poll_init     = pl011_hwinit,
   2239	.poll_get_char = pl011_get_poll_char,
   2240	.poll_put_char = pl011_put_poll_char,
   2241#endif
   2242};
   2243
   2244static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
   2245{
   2246}
   2247
   2248static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
   2249{
   2250	return 0;
   2251}
   2252
   2253static const struct uart_ops sbsa_uart_pops = {
   2254	.tx_empty	= pl011_tx_empty,
   2255	.set_mctrl	= sbsa_uart_set_mctrl,
   2256	.get_mctrl	= sbsa_uart_get_mctrl,
   2257	.stop_tx	= pl011_stop_tx,
   2258	.start_tx	= pl011_start_tx,
   2259	.stop_rx	= pl011_stop_rx,
   2260	.startup	= sbsa_uart_startup,
   2261	.shutdown	= sbsa_uart_shutdown,
   2262	.set_termios	= sbsa_uart_set_termios,
   2263	.type		= pl011_type,
   2264	.config_port	= pl011_config_port,
   2265	.verify_port	= pl011_verify_port,
   2266#ifdef CONFIG_CONSOLE_POLL
   2267	.poll_init     = pl011_hwinit,
   2268	.poll_get_char = pl011_get_poll_char,
   2269	.poll_put_char = pl011_put_poll_char,
   2270#endif
   2271};
   2272
   2273static struct uart_amba_port *amba_ports[UART_NR];
   2274
   2275#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
   2276
   2277static void pl011_console_putchar(struct uart_port *port, unsigned char ch)
   2278{
   2279	struct uart_amba_port *uap =
   2280	    container_of(port, struct uart_amba_port, port);
   2281
   2282	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
   2283		cpu_relax();
   2284	pl011_write(ch, uap, REG_DR);
   2285}
   2286
   2287static void
   2288pl011_console_write(struct console *co, const char *s, unsigned int count)
   2289{
   2290	struct uart_amba_port *uap = amba_ports[co->index];
   2291	unsigned int old_cr = 0, new_cr;
   2292	unsigned long flags;
   2293	int locked = 1;
   2294
   2295	clk_enable(uap->clk);
   2296
   2297	local_irq_save(flags);
   2298	if (uap->port.sysrq)
   2299		locked = 0;
   2300	else if (oops_in_progress)
   2301		locked = spin_trylock(&uap->port.lock);
   2302	else
   2303		spin_lock(&uap->port.lock);
   2304
   2305	/*
   2306	 *	First save the CR then disable the interrupts
   2307	 */
   2308	if (!uap->vendor->always_enabled) {
   2309		old_cr = pl011_read(uap, REG_CR);
   2310		new_cr = old_cr & ~UART011_CR_CTSEN;
   2311		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
   2312		pl011_write(new_cr, uap, REG_CR);
   2313	}
   2314
   2315	uart_console_write(&uap->port, s, count, pl011_console_putchar);
   2316
   2317	/*
   2318	 *	Finally, wait for transmitter to become empty and restore the
   2319	 *	TCR. Allow feature register bits to be inverted to work around
   2320	 *	errata.
   2321	 */
   2322	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
   2323						& uap->vendor->fr_busy)
   2324		cpu_relax();
   2325	if (!uap->vendor->always_enabled)
   2326		pl011_write(old_cr, uap, REG_CR);
   2327
   2328	if (locked)
   2329		spin_unlock(&uap->port.lock);
   2330	local_irq_restore(flags);
   2331
   2332	clk_disable(uap->clk);
   2333}
   2334
   2335static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
   2336				      int *parity, int *bits)
   2337{
   2338	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
   2339		unsigned int lcr_h, ibrd, fbrd;
   2340
   2341		lcr_h = pl011_read(uap, REG_LCRH_TX);
   2342
   2343		*parity = 'n';
   2344		if (lcr_h & UART01x_LCRH_PEN) {
   2345			if (lcr_h & UART01x_LCRH_EPS)
   2346				*parity = 'e';
   2347			else
   2348				*parity = 'o';
   2349		}
   2350
   2351		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
   2352			*bits = 7;
   2353		else
   2354			*bits = 8;
   2355
   2356		ibrd = pl011_read(uap, REG_IBRD);
   2357		fbrd = pl011_read(uap, REG_FBRD);
   2358
   2359		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
   2360
   2361		if (uap->vendor->oversampling) {
   2362			if (pl011_read(uap, REG_CR)
   2363				  & ST_UART011_CR_OVSFACT)
   2364				*baud *= 2;
   2365		}
   2366	}
   2367}
   2368
   2369static int pl011_console_setup(struct console *co, char *options)
   2370{
   2371	struct uart_amba_port *uap;
   2372	int baud = 38400;
   2373	int bits = 8;
   2374	int parity = 'n';
   2375	int flow = 'n';
   2376	int ret;
   2377
   2378	/*
   2379	 * Check whether an invalid uart number has been specified, and
   2380	 * if so, search for the first available port that does have
   2381	 * console support.
   2382	 */
   2383	if (co->index >= UART_NR)
   2384		co->index = 0;
   2385	uap = amba_ports[co->index];
   2386	if (!uap)
   2387		return -ENODEV;
   2388
   2389	/* Allow pins to be muxed in and configured */
   2390	pinctrl_pm_select_default_state(uap->port.dev);
   2391
   2392	ret = clk_prepare(uap->clk);
   2393	if (ret)
   2394		return ret;
   2395
   2396	if (dev_get_platdata(uap->port.dev)) {
   2397		struct amba_pl011_data *plat;
   2398
   2399		plat = dev_get_platdata(uap->port.dev);
   2400		if (plat->init)
   2401			plat->init();
   2402	}
   2403
   2404	uap->port.uartclk = clk_get_rate(uap->clk);
   2405
   2406	if (uap->vendor->fixed_options) {
   2407		baud = uap->fixed_baud;
   2408	} else {
   2409		if (options)
   2410			uart_parse_options(options,
   2411					   &baud, &parity, &bits, &flow);
   2412		else
   2413			pl011_console_get_options(uap, &baud, &parity, &bits);
   2414	}
   2415
   2416	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
   2417}
   2418
   2419/**
   2420 *	pl011_console_match - non-standard console matching
   2421 *	@co:	  registering console
   2422 *	@name:	  name from console command line
   2423 *	@idx:	  index from console command line
   2424 *	@options: ptr to option string from console command line
   2425 *
   2426 *	Only attempts to match console command lines of the form:
   2427 *	    console=pl011,mmio|mmio32,<addr>[,<options>]
   2428 *	    console=pl011,0x<addr>[,<options>]
   2429 *	This form is used to register an initial earlycon boot console and
   2430 *	replace it with the amba_console at pl011 driver init.
   2431 *
   2432 *	Performs console setup for a match (as required by interface)
   2433 *	If no <options> are specified, then assume the h/w is already setup.
   2434 *
   2435 *	Returns 0 if console matches; otherwise non-zero to use default matching
   2436 */
   2437static int pl011_console_match(struct console *co, char *name, int idx,
   2438			       char *options)
   2439{
   2440	unsigned char iotype;
   2441	resource_size_t addr;
   2442	int i;
   2443
   2444	/*
   2445	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
   2446	 * have a distinct console name, so make sure we check for that.
   2447	 * The actual implementation of the erratum occurs in the probe
   2448	 * function.
   2449	 */
   2450	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
   2451		return -ENODEV;
   2452
   2453	if (uart_parse_earlycon(options, &iotype, &addr, &options))
   2454		return -ENODEV;
   2455
   2456	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
   2457		return -ENODEV;
   2458
   2459	/* try to match the port specified on the command line */
   2460	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
   2461		struct uart_port *port;
   2462
   2463		if (!amba_ports[i])
   2464			continue;
   2465
   2466		port = &amba_ports[i]->port;
   2467
   2468		if (port->mapbase != addr)
   2469			continue;
   2470
   2471		co->index = i;
   2472		port->cons = co;
   2473		return pl011_console_setup(co, options);
   2474	}
   2475
   2476	return -ENODEV;
   2477}
   2478
   2479static struct uart_driver amba_reg;
   2480static struct console amba_console = {
   2481	.name		= "ttyAMA",
   2482	.write		= pl011_console_write,
   2483	.device		= uart_console_device,
   2484	.setup		= pl011_console_setup,
   2485	.match		= pl011_console_match,
   2486	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
   2487	.index		= -1,
   2488	.data		= &amba_reg,
   2489};
   2490
   2491#define AMBA_CONSOLE	(&amba_console)
   2492
   2493static void qdf2400_e44_putc(struct uart_port *port, unsigned char c)
   2494{
   2495	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
   2496		cpu_relax();
   2497	writel(c, port->membase + UART01x_DR);
   2498	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
   2499		cpu_relax();
   2500}
   2501
   2502static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
   2503{
   2504	struct earlycon_device *dev = con->data;
   2505
   2506	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
   2507}
   2508
   2509static void pl011_putc(struct uart_port *port, unsigned char c)
   2510{
   2511	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
   2512		cpu_relax();
   2513	if (port->iotype == UPIO_MEM32)
   2514		writel(c, port->membase + UART01x_DR);
   2515	else
   2516		writeb(c, port->membase + UART01x_DR);
   2517	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
   2518		cpu_relax();
   2519}
   2520
   2521static void pl011_early_write(struct console *con, const char *s, unsigned n)
   2522{
   2523	struct earlycon_device *dev = con->data;
   2524
   2525	uart_console_write(&dev->port, s, n, pl011_putc);
   2526}
   2527
   2528#ifdef CONFIG_CONSOLE_POLL
   2529static int pl011_getc(struct uart_port *port)
   2530{
   2531	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
   2532		return NO_POLL_CHAR;
   2533
   2534	if (port->iotype == UPIO_MEM32)
   2535		return readl(port->membase + UART01x_DR);
   2536	else
   2537		return readb(port->membase + UART01x_DR);
   2538}
   2539
   2540static int pl011_early_read(struct console *con, char *s, unsigned int n)
   2541{
   2542	struct earlycon_device *dev = con->data;
   2543	int ch, num_read = 0;
   2544
   2545	while (num_read < n) {
   2546		ch = pl011_getc(&dev->port);
   2547		if (ch == NO_POLL_CHAR)
   2548			break;
   2549
   2550		s[num_read++] = ch;
   2551	}
   2552
   2553	return num_read;
   2554}
   2555#else
   2556#define pl011_early_read NULL
   2557#endif
   2558
   2559/*
   2560 * On non-ACPI systems, earlycon is enabled by specifying
   2561 * "earlycon=pl011,<address>" on the kernel command line.
   2562 *
   2563 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
   2564 * by specifying only "earlycon" on the command line.  Because it requires
   2565 * SPCR, the console starts after ACPI is parsed, which is later than a
   2566 * traditional early console.
   2567 *
   2568 * To get the traditional early console that starts before ACPI is parsed,
   2569 * specify the full "earlycon=pl011,<address>" option.
   2570 */
   2571static int __init pl011_early_console_setup(struct earlycon_device *device,
   2572					    const char *opt)
   2573{
   2574	if (!device->port.membase)
   2575		return -ENODEV;
   2576
   2577	device->con->write = pl011_early_write;
   2578	device->con->read = pl011_early_read;
   2579
   2580	return 0;
   2581}
   2582OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
   2583OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
   2584
   2585/*
   2586 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
   2587 * Erratum 44, traditional earlycon can be enabled by specifying
   2588 * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
   2589 *
   2590 * Alternatively, you can just specify "earlycon", and the early console
   2591 * will be enabled with the information from the SPCR table.  In this
   2592 * case, the SPCR code will detect the need for the E44 work-around,
   2593 * and set the console name to "qdf2400_e44".
   2594 */
   2595static int __init
   2596qdf2400_e44_early_console_setup(struct earlycon_device *device,
   2597				const char *opt)
   2598{
   2599	if (!device->port.membase)
   2600		return -ENODEV;
   2601
   2602	device->con->write = qdf2400_e44_early_write;
   2603	return 0;
   2604}
   2605EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
   2606
   2607#else
   2608#define AMBA_CONSOLE	NULL
   2609#endif
   2610
   2611static struct uart_driver amba_reg = {
   2612	.owner			= THIS_MODULE,
   2613	.driver_name		= "ttyAMA",
   2614	.dev_name		= "ttyAMA",
   2615	.major			= SERIAL_AMBA_MAJOR,
   2616	.minor			= SERIAL_AMBA_MINOR,
   2617	.nr			= UART_NR,
   2618	.cons			= AMBA_CONSOLE,
   2619};
   2620
   2621static int pl011_probe_dt_alias(int index, struct device *dev)
   2622{
   2623	struct device_node *np;
   2624	static bool seen_dev_with_alias = false;
   2625	static bool seen_dev_without_alias = false;
   2626	int ret = index;
   2627
   2628	if (!IS_ENABLED(CONFIG_OF))
   2629		return ret;
   2630
   2631	np = dev->of_node;
   2632	if (!np)
   2633		return ret;
   2634
   2635	ret = of_alias_get_id(np, "serial");
   2636	if (ret < 0) {
   2637		seen_dev_without_alias = true;
   2638		ret = index;
   2639	} else {
   2640		seen_dev_with_alias = true;
   2641		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
   2642			dev_warn(dev, "requested serial port %d  not available.\n", ret);
   2643			ret = index;
   2644		}
   2645	}
   2646
   2647	if (seen_dev_with_alias && seen_dev_without_alias)
   2648		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
   2649
   2650	return ret;
   2651}
   2652
   2653/* unregisters the driver also if no more ports are left */
   2654static void pl011_unregister_port(struct uart_amba_port *uap)
   2655{
   2656	int i;
   2657	bool busy = false;
   2658
   2659	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
   2660		if (amba_ports[i] == uap)
   2661			amba_ports[i] = NULL;
   2662		else if (amba_ports[i])
   2663			busy = true;
   2664	}
   2665	pl011_dma_remove(uap);
   2666	if (!busy)
   2667		uart_unregister_driver(&amba_reg);
   2668}
   2669
   2670static int pl011_find_free_port(void)
   2671{
   2672	int i;
   2673
   2674	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
   2675		if (amba_ports[i] == NULL)
   2676			return i;
   2677
   2678	return -EBUSY;
   2679}
   2680
   2681static int pl011_get_rs485_mode(struct uart_amba_port *uap)
   2682{
   2683	struct uart_port *port = &uap->port;
   2684	struct serial_rs485 *rs485 = &port->rs485;
   2685	int ret;
   2686
   2687	ret = uart_get_rs485_mode(port);
   2688	if (ret)
   2689		return ret;
   2690
   2691	/* clamp the delays to [0, 100ms] */
   2692	rs485->delay_rts_before_send = min(rs485->delay_rts_before_send, 100U);
   2693	rs485->delay_rts_after_send = min(rs485->delay_rts_after_send, 100U);
   2694
   2695	return 0;
   2696}
   2697
   2698static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
   2699			    struct resource *mmiobase, int index)
   2700{
   2701	void __iomem *base;
   2702	int ret;
   2703
   2704	base = devm_ioremap_resource(dev, mmiobase);
   2705	if (IS_ERR(base))
   2706		return PTR_ERR(base);
   2707
   2708	index = pl011_probe_dt_alias(index, dev);
   2709
   2710	uap->port.dev = dev;
   2711	uap->port.mapbase = mmiobase->start;
   2712	uap->port.membase = base;
   2713	uap->port.fifosize = uap->fifosize;
   2714	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
   2715	uap->port.flags = UPF_BOOT_AUTOCONF;
   2716	uap->port.line = index;
   2717
   2718	ret = pl011_get_rs485_mode(uap);
   2719	if (ret)
   2720		return ret;
   2721
   2722	amba_ports[index] = uap;
   2723
   2724	return 0;
   2725}
   2726
   2727static int pl011_register_port(struct uart_amba_port *uap)
   2728{
   2729	int ret, i;
   2730
   2731	/* Ensure interrupts from this UART are masked and cleared */
   2732	pl011_write(0, uap, REG_IMSC);
   2733	pl011_write(0xffff, uap, REG_ICR);
   2734
   2735	if (!amba_reg.state) {
   2736		ret = uart_register_driver(&amba_reg);
   2737		if (ret < 0) {
   2738			dev_err(uap->port.dev,
   2739				"Failed to register AMBA-PL011 driver\n");
   2740			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
   2741				if (amba_ports[i] == uap)
   2742					amba_ports[i] = NULL;
   2743			return ret;
   2744		}
   2745	}
   2746
   2747	ret = uart_add_one_port(&amba_reg, &uap->port);
   2748	if (ret)
   2749		pl011_unregister_port(uap);
   2750
   2751	return ret;
   2752}
   2753
   2754static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
   2755{
   2756	struct uart_amba_port *uap;
   2757	struct vendor_data *vendor = id->data;
   2758	int portnr, ret;
   2759
   2760	portnr = pl011_find_free_port();
   2761	if (portnr < 0)
   2762		return portnr;
   2763
   2764	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
   2765			   GFP_KERNEL);
   2766	if (!uap)
   2767		return -ENOMEM;
   2768
   2769	uap->clk = devm_clk_get(&dev->dev, NULL);
   2770	if (IS_ERR(uap->clk))
   2771		return PTR_ERR(uap->clk);
   2772
   2773	uap->reg_offset = vendor->reg_offset;
   2774	uap->vendor = vendor;
   2775	uap->fifosize = vendor->get_fifosize(dev);
   2776	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
   2777	uap->port.irq = dev->irq[0];
   2778	uap->port.ops = &amba_pl011_pops;
   2779	uap->port.rs485_config = pl011_rs485_config;
   2780	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
   2781
   2782	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
   2783	if (ret)
   2784		return ret;
   2785
   2786	amba_set_drvdata(dev, uap);
   2787
   2788	return pl011_register_port(uap);
   2789}
   2790
   2791static void pl011_remove(struct amba_device *dev)
   2792{
   2793	struct uart_amba_port *uap = amba_get_drvdata(dev);
   2794
   2795	uart_remove_one_port(&amba_reg, &uap->port);
   2796	pl011_unregister_port(uap);
   2797}
   2798
   2799#ifdef CONFIG_PM_SLEEP
   2800static int pl011_suspend(struct device *dev)
   2801{
   2802	struct uart_amba_port *uap = dev_get_drvdata(dev);
   2803
   2804	if (!uap)
   2805		return -EINVAL;
   2806
   2807	return uart_suspend_port(&amba_reg, &uap->port);
   2808}
   2809
   2810static int pl011_resume(struct device *dev)
   2811{
   2812	struct uart_amba_port *uap = dev_get_drvdata(dev);
   2813
   2814	if (!uap)
   2815		return -EINVAL;
   2816
   2817	return uart_resume_port(&amba_reg, &uap->port);
   2818}
   2819#endif
   2820
   2821static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
   2822
   2823static int sbsa_uart_probe(struct platform_device *pdev)
   2824{
   2825	struct uart_amba_port *uap;
   2826	struct resource *r;
   2827	int portnr, ret;
   2828	int baudrate;
   2829
   2830	/*
   2831	 * Check the mandatory baud rate parameter in the DT node early
   2832	 * so that we can easily exit with the error.
   2833	 */
   2834	if (pdev->dev.of_node) {
   2835		struct device_node *np = pdev->dev.of_node;
   2836
   2837		ret = of_property_read_u32(np, "current-speed", &baudrate);
   2838		if (ret)
   2839			return ret;
   2840	} else {
   2841		baudrate = 115200;
   2842	}
   2843
   2844	portnr = pl011_find_free_port();
   2845	if (portnr < 0)
   2846		return portnr;
   2847
   2848	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
   2849			   GFP_KERNEL);
   2850	if (!uap)
   2851		return -ENOMEM;
   2852
   2853	ret = platform_get_irq(pdev, 0);
   2854	if (ret < 0)
   2855		return ret;
   2856	uap->port.irq	= ret;
   2857
   2858#ifdef CONFIG_ACPI_SPCR_TABLE
   2859	if (qdf2400_e44_present) {
   2860		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
   2861		uap->vendor = &vendor_qdt_qdf2400_e44;
   2862	} else
   2863#endif
   2864		uap->vendor = &vendor_sbsa;
   2865
   2866	uap->reg_offset	= uap->vendor->reg_offset;
   2867	uap->fifosize	= 32;
   2868	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
   2869	uap->port.ops	= &sbsa_uart_pops;
   2870	uap->fixed_baud = baudrate;
   2871
   2872	snprintf(uap->type, sizeof(uap->type), "SBSA");
   2873
   2874	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
   2875
   2876	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
   2877	if (ret)
   2878		return ret;
   2879
   2880	platform_set_drvdata(pdev, uap);
   2881
   2882	return pl011_register_port(uap);
   2883}
   2884
   2885static int sbsa_uart_remove(struct platform_device *pdev)
   2886{
   2887	struct uart_amba_port *uap = platform_get_drvdata(pdev);
   2888
   2889	uart_remove_one_port(&amba_reg, &uap->port);
   2890	pl011_unregister_port(uap);
   2891	return 0;
   2892}
   2893
   2894static const struct of_device_id sbsa_uart_of_match[] = {
   2895	{ .compatible = "arm,sbsa-uart", },
   2896	{},
   2897};
   2898MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
   2899
   2900static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
   2901	{ "ARMH0011", 0 },
   2902	{ "ARMHB000", 0 },
   2903	{},
   2904};
   2905MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
   2906
   2907static struct platform_driver arm_sbsa_uart_platform_driver = {
   2908	.probe		= sbsa_uart_probe,
   2909	.remove		= sbsa_uart_remove,
   2910	.driver	= {
   2911		.name	= "sbsa-uart",
   2912		.pm	= &pl011_dev_pm_ops,
   2913		.of_match_table = of_match_ptr(sbsa_uart_of_match),
   2914		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
   2915		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
   2916	},
   2917};
   2918
   2919static const struct amba_id pl011_ids[] = {
   2920	{
   2921		.id	= 0x00041011,
   2922		.mask	= 0x000fffff,
   2923		.data	= &vendor_arm,
   2924	},
   2925	{
   2926		.id	= 0x00380802,
   2927		.mask	= 0x00ffffff,
   2928		.data	= &vendor_st,
   2929	},
   2930	{ 0, 0 },
   2931};
   2932
   2933MODULE_DEVICE_TABLE(amba, pl011_ids);
   2934
   2935static struct amba_driver pl011_driver = {
   2936	.drv = {
   2937		.name	= "uart-pl011",
   2938		.pm	= &pl011_dev_pm_ops,
   2939		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
   2940	},
   2941	.id_table	= pl011_ids,
   2942	.probe		= pl011_probe,
   2943	.remove		= pl011_remove,
   2944};
   2945
   2946static int __init pl011_init(void)
   2947{
   2948	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
   2949
   2950	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
   2951		pr_warn("could not register SBSA UART platform driver\n");
   2952	return amba_driver_register(&pl011_driver);
   2953}
   2954
   2955static void __exit pl011_exit(void)
   2956{
   2957	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
   2958	amba_driver_unregister(&pl011_driver);
   2959}
   2960
   2961/*
   2962 * While this can be a module, if builtin it's most likely the console
   2963 * So let's leave module_exit but move module_init to an earlier place
   2964 */
   2965arch_initcall(pl011_init);
   2966module_exit(pl011_exit);
   2967
   2968MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
   2969MODULE_DESCRIPTION("ARM AMBA serial port driver");
   2970MODULE_LICENSE("GPL");