cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

zs.c (31372B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * zs.c: Serial port driver for IOASIC DECstations.
      4 *
      5 * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
      6 * Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
      7 *
      8 * DECstation changes
      9 * Copyright (C) 1998-2000 Harald Koerfgen
     10 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
     11 *
     12 * For the rest of the code the original Copyright applies:
     13 * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
     14 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
     15 *
     16 *
     17 * Note: for IOASIC systems the wiring is as follows:
     18 *
     19 * mouse/keyboard:
     20 * DIN-7 MJ-4  signal        SCC
     21 * 2     1     TxD       <-  A.TxD
     22 * 3     4     RxD       ->  A.RxD
     23 *
     24 * EIA-232/EIA-423:
     25 * DB-25 MMJ-6 signal        SCC
     26 * 2     2     TxD       <-  B.TxD
     27 * 3     5     RxD       ->  B.RxD
     28 * 4           RTS       <- ~A.RTS
     29 * 5           CTS       -> ~B.CTS
     30 * 6     6     DSR       -> ~A.SYNC
     31 * 8           CD        -> ~B.DCD
     32 * 12          DSRS(DCE) -> ~A.CTS  (*)
     33 * 15          TxC       ->  B.TxC
     34 * 17          RxC       ->  B.RxC
     35 * 20    1     DTR       <- ~A.DTR
     36 * 22          RI        -> ~A.DCD
     37 * 23          DSRS(DTE) <- ~B.RTS
     38 *
     39 * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
     40 *     is shared with DSRS(DTE) at pin 23.
     41 *
     42 * As you can immediately notice the wiring of the RTS, DTR and DSR signals
     43 * is a bit odd.  This makes the handling of port B unnecessarily
     44 * complicated and prevents the use of some automatic modes of operation.
     45 */
     46
     47#include <linux/bug.h>
     48#include <linux/console.h>
     49#include <linux/delay.h>
     50#include <linux/errno.h>
     51#include <linux/init.h>
     52#include <linux/interrupt.h>
     53#include <linux/io.h>
     54#include <linux/ioport.h>
     55#include <linux/irqflags.h>
     56#include <linux/kernel.h>
     57#include <linux/module.h>
     58#include <linux/major.h>
     59#include <linux/serial.h>
     60#include <linux/serial_core.h>
     61#include <linux/spinlock.h>
     62#include <linux/sysrq.h>
     63#include <linux/tty.h>
     64#include <linux/tty_flip.h>
     65#include <linux/types.h>
     66
     67#include <linux/atomic.h>
     68
     69#include <asm/dec/interrupts.h>
     70#include <asm/dec/ioasic_addrs.h>
     71#include <asm/dec/system.h>
     72
     73#include "zs.h"
     74
     75
     76MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
     77MODULE_DESCRIPTION("DECstation Z85C30 serial driver");
     78MODULE_LICENSE("GPL");
     79
     80
     81static char zs_name[] __initdata = "DECstation Z85C30 serial driver version ";
     82static char zs_version[] __initdata = "0.10";
     83
     84/*
     85 * It would be nice to dynamically allocate everything that
     86 * depends on ZS_NUM_SCCS, so we could support any number of
     87 * Z85C30s, but for now...
     88 */
     89#define ZS_NUM_SCCS	2		/* Max # of ZS chips supported.  */
     90#define ZS_NUM_CHAN	2		/* 2 channels per chip.  */
     91#define ZS_CHAN_A	0		/* Index of the channel A.  */
     92#define ZS_CHAN_B	1		/* Index of the channel B.  */
     93#define ZS_CHAN_IO_SIZE 8		/* IOMEM space size.  */
     94#define ZS_CHAN_IO_STRIDE 4		/* Register alignment.  */
     95#define ZS_CHAN_IO_OFFSET 1		/* The SCC resides on the high byte
     96					   of the 16-bit IOBUS.  */
     97#define ZS_CLOCK        7372800 	/* Z85C30 PCLK input clock rate.  */
     98
     99#define to_zport(uport) container_of(uport, struct zs_port, port)
    100
    101struct zs_parms {
    102	resource_size_t scc[ZS_NUM_SCCS];
    103	int irq[ZS_NUM_SCCS];
    104};
    105
    106static struct zs_scc zs_sccs[ZS_NUM_SCCS];
    107
    108static u8 zs_init_regs[ZS_NUM_REGS] __initdata = {
    109	0,				/* write 0 */
    110	PAR_SPEC,			/* write 1 */
    111	0,				/* write 2 */
    112	0,				/* write 3 */
    113	X16CLK | SB1,			/* write 4 */
    114	0,				/* write 5 */
    115	0, 0, 0,			/* write 6, 7, 8 */
    116	MIE | DLC | NV,			/* write 9 */
    117	NRZ,				/* write 10 */
    118	TCBR | RCBR,			/* write 11 */
    119	0, 0,				/* BRG time constant, write 12 + 13 */
    120	BRSRC | BRENABL,		/* write 14 */
    121	0,				/* write 15 */
    122};
    123
    124/*
    125 * Debugging.
    126 */
    127#undef ZS_DEBUG_REGS
    128
    129
    130/*
    131 * Reading and writing Z85C30 registers.
    132 */
    133static void recovery_delay(void)
    134{
    135	udelay(2);
    136}
    137
    138static u8 read_zsreg(struct zs_port *zport, int reg)
    139{
    140	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
    141	u8 retval;
    142
    143	if (reg != 0) {
    144		writeb(reg & 0xf, control);
    145		fast_iob();
    146		recovery_delay();
    147	}
    148	retval = readb(control);
    149	recovery_delay();
    150	return retval;
    151}
    152
    153static void write_zsreg(struct zs_port *zport, int reg, u8 value)
    154{
    155	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
    156
    157	if (reg != 0) {
    158		writeb(reg & 0xf, control);
    159		fast_iob(); recovery_delay();
    160	}
    161	writeb(value, control);
    162	fast_iob();
    163	recovery_delay();
    164	return;
    165}
    166
    167static u8 read_zsdata(struct zs_port *zport)
    168{
    169	void __iomem *data = zport->port.membase +
    170			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
    171	u8 retval;
    172
    173	retval = readb(data);
    174	recovery_delay();
    175	return retval;
    176}
    177
    178static void write_zsdata(struct zs_port *zport, u8 value)
    179{
    180	void __iomem *data = zport->port.membase +
    181			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
    182
    183	writeb(value, data);
    184	fast_iob();
    185	recovery_delay();
    186	return;
    187}
    188
    189#ifdef ZS_DEBUG_REGS
    190void zs_dump(void)
    191{
    192	struct zs_port *zport;
    193	int i, j;
    194
    195	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
    196		zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN];
    197
    198		if (!zport->scc)
    199			continue;
    200
    201		for (j = 0; j < 16; j++)
    202			printk("W%-2d = 0x%02x\t", j, zport->regs[j]);
    203		printk("\n");
    204		for (j = 0; j < 16; j++)
    205			printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j));
    206		printk("\n\n");
    207	}
    208}
    209#endif
    210
    211
    212static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq)
    213{
    214	if (irq)
    215		spin_lock_irq(lock);
    216	else
    217		spin_lock(lock);
    218}
    219
    220static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq)
    221{
    222	if (irq)
    223		spin_unlock_irq(lock);
    224	else
    225		spin_unlock(lock);
    226}
    227
    228static int zs_receive_drain(struct zs_port *zport)
    229{
    230	int loops = 10000;
    231
    232	while ((read_zsreg(zport, R0) & Rx_CH_AV) && --loops)
    233		read_zsdata(zport);
    234	return loops;
    235}
    236
    237static int zs_transmit_drain(struct zs_port *zport, int irq)
    238{
    239	struct zs_scc *scc = zport->scc;
    240	int loops = 10000;
    241
    242	while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && --loops) {
    243		zs_spin_unlock_cond_irq(&scc->zlock, irq);
    244		udelay(2);
    245		zs_spin_lock_cond_irq(&scc->zlock, irq);
    246	}
    247	return loops;
    248}
    249
    250static int zs_line_drain(struct zs_port *zport, int irq)
    251{
    252	struct zs_scc *scc = zport->scc;
    253	int loops = 10000;
    254
    255	while (!(read_zsreg(zport, R1) & ALL_SNT) && --loops) {
    256		zs_spin_unlock_cond_irq(&scc->zlock, irq);
    257		udelay(2);
    258		zs_spin_lock_cond_irq(&scc->zlock, irq);
    259	}
    260	return loops;
    261}
    262
    263
    264static void load_zsregs(struct zs_port *zport, u8 *regs, int irq)
    265{
    266	/* Let the current transmission finish.  */
    267	zs_line_drain(zport, irq);
    268	/* Load 'em up.  */
    269	write_zsreg(zport, R3, regs[3] & ~RxENABLE);
    270	write_zsreg(zport, R5, regs[5] & ~TxENAB);
    271	write_zsreg(zport, R4, regs[4]);
    272	write_zsreg(zport, R9, regs[9]);
    273	write_zsreg(zport, R1, regs[1]);
    274	write_zsreg(zport, R2, regs[2]);
    275	write_zsreg(zport, R10, regs[10]);
    276	write_zsreg(zport, R14, regs[14] & ~BRENABL);
    277	write_zsreg(zport, R11, regs[11]);
    278	write_zsreg(zport, R12, regs[12]);
    279	write_zsreg(zport, R13, regs[13]);
    280	write_zsreg(zport, R14, regs[14]);
    281	write_zsreg(zport, R15, regs[15]);
    282	if (regs[3] & RxENABLE)
    283		write_zsreg(zport, R3, regs[3]);
    284	if (regs[5] & TxENAB)
    285		write_zsreg(zport, R5, regs[5]);
    286	return;
    287}
    288
    289
    290/*
    291 * Status handling routines.
    292 */
    293
    294/*
    295 * zs_tx_empty() -- get the transmitter empty status
    296 *
    297 * Purpose: Let user call ioctl() to get info when the UART physically
    298 * 	    is emptied.  On bus types like RS485, the transmitter must
    299 * 	    release the bus after transmitting.  This must be done when
    300 * 	    the transmit shift register is empty, not be done when the
    301 * 	    transmit holding register is empty.  This functionality
    302 * 	    allows an RS485 driver to be written in user space.
    303 */
    304static unsigned int zs_tx_empty(struct uart_port *uport)
    305{
    306	struct zs_port *zport = to_zport(uport);
    307	struct zs_scc *scc = zport->scc;
    308	unsigned long flags;
    309	u8 status;
    310
    311	spin_lock_irqsave(&scc->zlock, flags);
    312	status = read_zsreg(zport, R1);
    313	spin_unlock_irqrestore(&scc->zlock, flags);
    314
    315	return status & ALL_SNT ? TIOCSER_TEMT : 0;
    316}
    317
    318static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a,
    319					struct zs_port *zport_b)
    320{
    321	u8 status_a, status_b;
    322	unsigned int mctrl;
    323
    324	status_a = read_zsreg(zport_a, R0);
    325	status_b = read_zsreg(zport_b, R0);
    326
    327	mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) |
    328		((status_b & DCD) ? TIOCM_CAR : 0) |
    329		((status_a & DCD) ? TIOCM_RNG : 0) |
    330		((status_a & SYNC_HUNT) ? TIOCM_DSR : 0);
    331
    332	return mctrl;
    333}
    334
    335static unsigned int zs_raw_get_mctrl(struct zs_port *zport)
    336{
    337	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
    338
    339	return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0;
    340}
    341
    342static unsigned int zs_raw_xor_mctrl(struct zs_port *zport)
    343{
    344	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
    345	unsigned int mmask, mctrl, delta;
    346	u8 mask_a, mask_b;
    347
    348	if (zport == zport_a)
    349		return 0;
    350
    351	mask_a = zport_a->regs[15];
    352	mask_b = zport->regs[15];
    353
    354	mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) |
    355		((mask_b & DCDIE) ? TIOCM_CAR : 0) |
    356		((mask_a & DCDIE) ? TIOCM_RNG : 0) |
    357		((mask_a & SYNCIE) ? TIOCM_DSR : 0);
    358
    359	mctrl = zport->mctrl;
    360	if (mmask) {
    361		mctrl &= ~mmask;
    362		mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask;
    363	}
    364
    365	delta = mctrl ^ zport->mctrl;
    366	if (delta)
    367		zport->mctrl = mctrl;
    368
    369	return delta;
    370}
    371
    372static unsigned int zs_get_mctrl(struct uart_port *uport)
    373{
    374	struct zs_port *zport = to_zport(uport);
    375	struct zs_scc *scc = zport->scc;
    376	unsigned int mctrl;
    377
    378	spin_lock(&scc->zlock);
    379	mctrl = zs_raw_get_mctrl(zport);
    380	spin_unlock(&scc->zlock);
    381
    382	return mctrl;
    383}
    384
    385static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl)
    386{
    387	struct zs_port *zport = to_zport(uport);
    388	struct zs_scc *scc = zport->scc;
    389	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
    390	u8 oldloop, newloop;
    391
    392	spin_lock(&scc->zlock);
    393	if (zport != zport_a) {
    394		if (mctrl & TIOCM_DTR)
    395			zport_a->regs[5] |= DTR;
    396		else
    397			zport_a->regs[5] &= ~DTR;
    398		if (mctrl & TIOCM_RTS)
    399			zport_a->regs[5] |= RTS;
    400		else
    401			zport_a->regs[5] &= ~RTS;
    402		write_zsreg(zport_a, R5, zport_a->regs[5]);
    403	}
    404
    405	/* Rarely modified, so don't poke at hardware unless necessary. */
    406	oldloop = zport->regs[14];
    407	newloop = oldloop;
    408	if (mctrl & TIOCM_LOOP)
    409		newloop |= LOOPBAK;
    410	else
    411		newloop &= ~LOOPBAK;
    412	if (newloop != oldloop) {
    413		zport->regs[14] = newloop;
    414		write_zsreg(zport, R14, zport->regs[14]);
    415	}
    416	spin_unlock(&scc->zlock);
    417}
    418
    419static void zs_raw_stop_tx(struct zs_port *zport)
    420{
    421	write_zsreg(zport, R0, RES_Tx_P);
    422	zport->tx_stopped = 1;
    423}
    424
    425static void zs_stop_tx(struct uart_port *uport)
    426{
    427	struct zs_port *zport = to_zport(uport);
    428	struct zs_scc *scc = zport->scc;
    429
    430	spin_lock(&scc->zlock);
    431	zs_raw_stop_tx(zport);
    432	spin_unlock(&scc->zlock);
    433}
    434
    435static void zs_raw_transmit_chars(struct zs_port *);
    436
    437static void zs_start_tx(struct uart_port *uport)
    438{
    439	struct zs_port *zport = to_zport(uport);
    440	struct zs_scc *scc = zport->scc;
    441
    442	spin_lock(&scc->zlock);
    443	if (zport->tx_stopped) {
    444		zs_transmit_drain(zport, 0);
    445		zport->tx_stopped = 0;
    446		zs_raw_transmit_chars(zport);
    447	}
    448	spin_unlock(&scc->zlock);
    449}
    450
    451static void zs_stop_rx(struct uart_port *uport)
    452{
    453	struct zs_port *zport = to_zport(uport);
    454	struct zs_scc *scc = zport->scc;
    455	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
    456
    457	spin_lock(&scc->zlock);
    458	zport->regs[15] &= ~BRKIE;
    459	zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB);
    460	zport->regs[1] |= RxINT_DISAB;
    461
    462	if (zport != zport_a) {
    463		/* A-side DCD tracks RI and SYNC tracks DSR.  */
    464		zport_a->regs[15] &= ~(DCDIE | SYNCIE);
    465		write_zsreg(zport_a, R15, zport_a->regs[15]);
    466		if (!(zport_a->regs[15] & BRKIE)) {
    467			zport_a->regs[1] &= ~EXT_INT_ENAB;
    468			write_zsreg(zport_a, R1, zport_a->regs[1]);
    469		}
    470
    471		/* This-side DCD tracks DCD and CTS tracks CTS.  */
    472		zport->regs[15] &= ~(DCDIE | CTSIE);
    473		zport->regs[1] &= ~EXT_INT_ENAB;
    474	} else {
    475		/* DCD tracks RI and SYNC tracks DSR for the B side.  */
    476		if (!(zport->regs[15] & (DCDIE | SYNCIE)))
    477			zport->regs[1] &= ~EXT_INT_ENAB;
    478	}
    479
    480	write_zsreg(zport, R15, zport->regs[15]);
    481	write_zsreg(zport, R1, zport->regs[1]);
    482	spin_unlock(&scc->zlock);
    483}
    484
    485static void zs_enable_ms(struct uart_port *uport)
    486{
    487	struct zs_port *zport = to_zport(uport);
    488	struct zs_scc *scc = zport->scc;
    489	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
    490
    491	if (zport == zport_a)
    492		return;
    493
    494	spin_lock(&scc->zlock);
    495
    496	/* Clear Ext interrupts if not being handled already.  */
    497	if (!(zport_a->regs[1] & EXT_INT_ENAB))
    498		write_zsreg(zport_a, R0, RES_EXT_INT);
    499
    500	/* A-side DCD tracks RI and SYNC tracks DSR.  */
    501	zport_a->regs[1] |= EXT_INT_ENAB;
    502	zport_a->regs[15] |= DCDIE | SYNCIE;
    503
    504	/* This-side DCD tracks DCD and CTS tracks CTS.  */
    505	zport->regs[15] |= DCDIE | CTSIE;
    506
    507	zs_raw_xor_mctrl(zport);
    508
    509	write_zsreg(zport_a, R1, zport_a->regs[1]);
    510	write_zsreg(zport_a, R15, zport_a->regs[15]);
    511	write_zsreg(zport, R15, zport->regs[15]);
    512	spin_unlock(&scc->zlock);
    513}
    514
    515static void zs_break_ctl(struct uart_port *uport, int break_state)
    516{
    517	struct zs_port *zport = to_zport(uport);
    518	struct zs_scc *scc = zport->scc;
    519	unsigned long flags;
    520
    521	spin_lock_irqsave(&scc->zlock, flags);
    522	if (break_state == -1)
    523		zport->regs[5] |= SND_BRK;
    524	else
    525		zport->regs[5] &= ~SND_BRK;
    526	write_zsreg(zport, R5, zport->regs[5]);
    527	spin_unlock_irqrestore(&scc->zlock, flags);
    528}
    529
    530
    531/*
    532 * Interrupt handling routines.
    533 */
    534#define Rx_BRK 0x0100			/* BREAK event software flag.  */
    535#define Rx_SYS 0x0200			/* SysRq event software flag.  */
    536
    537static void zs_receive_chars(struct zs_port *zport)
    538{
    539	struct uart_port *uport = &zport->port;
    540	struct zs_scc *scc = zport->scc;
    541	struct uart_icount *icount;
    542	unsigned int avail, status, ch, flag;
    543	int count;
    544
    545	for (count = 16; count; count--) {
    546		spin_lock(&scc->zlock);
    547		avail = read_zsreg(zport, R0) & Rx_CH_AV;
    548		spin_unlock(&scc->zlock);
    549		if (!avail)
    550			break;
    551
    552		spin_lock(&scc->zlock);
    553		status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR);
    554		ch = read_zsdata(zport);
    555		spin_unlock(&scc->zlock);
    556
    557		flag = TTY_NORMAL;
    558
    559		icount = &uport->icount;
    560		icount->rx++;
    561
    562		/* Handle the null char got when BREAK is removed.  */
    563		if (!ch)
    564			status |= zport->tty_break;
    565		if (unlikely(status &
    566			     (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) {
    567			zport->tty_break = 0;
    568
    569			/* Reset the error indication.  */
    570			if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) {
    571				spin_lock(&scc->zlock);
    572				write_zsreg(zport, R0, ERR_RES);
    573				spin_unlock(&scc->zlock);
    574			}
    575
    576			if (status & (Rx_SYS | Rx_BRK)) {
    577				icount->brk++;
    578				/* SysRq discards the null char.  */
    579				if (status & Rx_SYS)
    580					continue;
    581			} else if (status & FRM_ERR)
    582				icount->frame++;
    583			else if (status & PAR_ERR)
    584				icount->parity++;
    585			if (status & Rx_OVR)
    586				icount->overrun++;
    587
    588			status &= uport->read_status_mask;
    589			if (status & Rx_BRK)
    590				flag = TTY_BREAK;
    591			else if (status & FRM_ERR)
    592				flag = TTY_FRAME;
    593			else if (status & PAR_ERR)
    594				flag = TTY_PARITY;
    595		}
    596
    597		if (uart_handle_sysrq_char(uport, ch))
    598			continue;
    599
    600		uart_insert_char(uport, status, Rx_OVR, ch, flag);
    601	}
    602
    603	tty_flip_buffer_push(&uport->state->port);
    604}
    605
    606static void zs_raw_transmit_chars(struct zs_port *zport)
    607{
    608	struct circ_buf *xmit = &zport->port.state->xmit;
    609
    610	/* XON/XOFF chars.  */
    611	if (zport->port.x_char) {
    612		write_zsdata(zport, zport->port.x_char);
    613		zport->port.icount.tx++;
    614		zport->port.x_char = 0;
    615		return;
    616	}
    617
    618	/* If nothing to do or stopped or hardware stopped.  */
    619	if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) {
    620		zs_raw_stop_tx(zport);
    621		return;
    622	}
    623
    624	/* Send char.  */
    625	write_zsdata(zport, xmit->buf[xmit->tail]);
    626	xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
    627	zport->port.icount.tx++;
    628
    629	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
    630		uart_write_wakeup(&zport->port);
    631
    632	/* Are we are done?  */
    633	if (uart_circ_empty(xmit))
    634		zs_raw_stop_tx(zport);
    635}
    636
    637static void zs_transmit_chars(struct zs_port *zport)
    638{
    639	struct zs_scc *scc = zport->scc;
    640
    641	spin_lock(&scc->zlock);
    642	zs_raw_transmit_chars(zport);
    643	spin_unlock(&scc->zlock);
    644}
    645
    646static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a)
    647{
    648	struct uart_port *uport = &zport->port;
    649	struct zs_scc *scc = zport->scc;
    650	unsigned int delta;
    651	u8 status, brk;
    652
    653	spin_lock(&scc->zlock);
    654
    655	/* Get status from Read Register 0.  */
    656	status = read_zsreg(zport, R0);
    657
    658	if (zport->regs[15] & BRKIE) {
    659		brk = status & BRK_ABRT;
    660		if (brk && !zport->brk) {
    661			spin_unlock(&scc->zlock);
    662			if (uart_handle_break(uport))
    663				zport->tty_break = Rx_SYS;
    664			else
    665				zport->tty_break = Rx_BRK;
    666			spin_lock(&scc->zlock);
    667		}
    668		zport->brk = brk;
    669	}
    670
    671	if (zport != zport_a) {
    672		delta = zs_raw_xor_mctrl(zport);
    673		spin_unlock(&scc->zlock);
    674
    675		if (delta & TIOCM_CTS)
    676			uart_handle_cts_change(uport,
    677					       zport->mctrl & TIOCM_CTS);
    678		if (delta & TIOCM_CAR)
    679			uart_handle_dcd_change(uport,
    680					       zport->mctrl & TIOCM_CAR);
    681		if (delta & TIOCM_RNG)
    682			uport->icount.dsr++;
    683		if (delta & TIOCM_DSR)
    684			uport->icount.rng++;
    685
    686		if (delta)
    687			wake_up_interruptible(&uport->state->port.delta_msr_wait);
    688
    689		spin_lock(&scc->zlock);
    690	}
    691
    692	/* Clear the status condition...  */
    693	write_zsreg(zport, R0, RES_EXT_INT);
    694
    695	spin_unlock(&scc->zlock);
    696}
    697
    698/*
    699 * This is the Z85C30 driver's generic interrupt routine.
    700 */
    701static irqreturn_t zs_interrupt(int irq, void *dev_id)
    702{
    703	struct zs_scc *scc = dev_id;
    704	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
    705	struct zs_port *zport_b = &scc->zport[ZS_CHAN_B];
    706	irqreturn_t status = IRQ_NONE;
    707	u8 zs_intreg;
    708	int count;
    709
    710	/*
    711	 * NOTE: The read register 3, which holds the irq status,
    712	 *       does so for both channels on each chip.  Although
    713	 *       the status value itself must be read from the A
    714	 *       channel and is only valid when read from channel A.
    715	 *       Yes... broken hardware...
    716	 */
    717	for (count = 16; count; count--) {
    718		spin_lock(&scc->zlock);
    719		zs_intreg = read_zsreg(zport_a, R3);
    720		spin_unlock(&scc->zlock);
    721		if (!zs_intreg)
    722			break;
    723
    724		/*
    725		 * We do not like losing characters, so we prioritise
    726		 * interrupt sources a little bit differently than
    727		 * the SCC would, was it allowed to.
    728		 */
    729		if (zs_intreg & CHBRxIP)
    730			zs_receive_chars(zport_b);
    731		if (zs_intreg & CHARxIP)
    732			zs_receive_chars(zport_a);
    733		if (zs_intreg & CHBEXT)
    734			zs_status_handle(zport_b, zport_a);
    735		if (zs_intreg & CHAEXT)
    736			zs_status_handle(zport_a, zport_a);
    737		if (zs_intreg & CHBTxIP)
    738			zs_transmit_chars(zport_b);
    739		if (zs_intreg & CHATxIP)
    740			zs_transmit_chars(zport_a);
    741
    742		status = IRQ_HANDLED;
    743	}
    744
    745	return status;
    746}
    747
    748
    749/*
    750 * Finally, routines used to initialize the serial port.
    751 */
    752static int zs_startup(struct uart_port *uport)
    753{
    754	struct zs_port *zport = to_zport(uport);
    755	struct zs_scc *scc = zport->scc;
    756	unsigned long flags;
    757	int irq_guard;
    758	int ret;
    759
    760	irq_guard = atomic_add_return(1, &scc->irq_guard);
    761	if (irq_guard == 1) {
    762		ret = request_irq(zport->port.irq, zs_interrupt,
    763				  IRQF_SHARED, "scc", scc);
    764		if (ret) {
    765			atomic_add(-1, &scc->irq_guard);
    766			printk(KERN_ERR "zs: can't get irq %d\n",
    767			       zport->port.irq);
    768			return ret;
    769		}
    770	}
    771
    772	spin_lock_irqsave(&scc->zlock, flags);
    773
    774	/* Clear the receive FIFO.  */
    775	zs_receive_drain(zport);
    776
    777	/* Clear the interrupt registers.  */
    778	write_zsreg(zport, R0, ERR_RES);
    779	write_zsreg(zport, R0, RES_Tx_P);
    780	/* But Ext only if not being handled already.  */
    781	if (!(zport->regs[1] & EXT_INT_ENAB))
    782		write_zsreg(zport, R0, RES_EXT_INT);
    783
    784	/* Finally, enable sequencing and interrupts.  */
    785	zport->regs[1] &= ~RxINT_MASK;
    786	zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB;
    787	zport->regs[3] |= RxENABLE;
    788	zport->regs[15] |= BRKIE;
    789	write_zsreg(zport, R1, zport->regs[1]);
    790	write_zsreg(zport, R3, zport->regs[3]);
    791	write_zsreg(zport, R5, zport->regs[5]);
    792	write_zsreg(zport, R15, zport->regs[15]);
    793
    794	/* Record the current state of RR0.  */
    795	zport->mctrl = zs_raw_get_mctrl(zport);
    796	zport->brk = read_zsreg(zport, R0) & BRK_ABRT;
    797
    798	zport->tx_stopped = 1;
    799
    800	spin_unlock_irqrestore(&scc->zlock, flags);
    801
    802	return 0;
    803}
    804
    805static void zs_shutdown(struct uart_port *uport)
    806{
    807	struct zs_port *zport = to_zport(uport);
    808	struct zs_scc *scc = zport->scc;
    809	unsigned long flags;
    810	int irq_guard;
    811
    812	spin_lock_irqsave(&scc->zlock, flags);
    813
    814	zport->regs[3] &= ~RxENABLE;
    815	write_zsreg(zport, R5, zport->regs[5]);
    816	write_zsreg(zport, R3, zport->regs[3]);
    817
    818	spin_unlock_irqrestore(&scc->zlock, flags);
    819
    820	irq_guard = atomic_add_return(-1, &scc->irq_guard);
    821	if (!irq_guard)
    822		free_irq(zport->port.irq, scc);
    823}
    824
    825
    826static void zs_reset(struct zs_port *zport)
    827{
    828	struct zs_scc *scc = zport->scc;
    829	int irq;
    830	unsigned long flags;
    831
    832	spin_lock_irqsave(&scc->zlock, flags);
    833	irq = !irqs_disabled_flags(flags);
    834	if (!scc->initialised) {
    835		/* Reset the pointer first, just in case...  */
    836		read_zsreg(zport, R0);
    837		/* And let the current transmission finish.  */
    838		zs_line_drain(zport, irq);
    839		write_zsreg(zport, R9, FHWRES);
    840		udelay(10);
    841		write_zsreg(zport, R9, 0);
    842		scc->initialised = 1;
    843	}
    844	load_zsregs(zport, zport->regs, irq);
    845	spin_unlock_irqrestore(&scc->zlock, flags);
    846}
    847
    848static void zs_set_termios(struct uart_port *uport, struct ktermios *termios,
    849			   struct ktermios *old_termios)
    850{
    851	struct zs_port *zport = to_zport(uport);
    852	struct zs_scc *scc = zport->scc;
    853	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
    854	int irq;
    855	unsigned int baud, brg;
    856	unsigned long flags;
    857
    858	spin_lock_irqsave(&scc->zlock, flags);
    859	irq = !irqs_disabled_flags(flags);
    860
    861	/* Byte size.  */
    862	zport->regs[3] &= ~RxNBITS_MASK;
    863	zport->regs[5] &= ~TxNBITS_MASK;
    864	switch (termios->c_cflag & CSIZE) {
    865	case CS5:
    866		zport->regs[3] |= Rx5;
    867		zport->regs[5] |= Tx5;
    868		break;
    869	case CS6:
    870		zport->regs[3] |= Rx6;
    871		zport->regs[5] |= Tx6;
    872		break;
    873	case CS7:
    874		zport->regs[3] |= Rx7;
    875		zport->regs[5] |= Tx7;
    876		break;
    877	case CS8:
    878	default:
    879		zport->regs[3] |= Rx8;
    880		zport->regs[5] |= Tx8;
    881		break;
    882	}
    883
    884	/* Parity and stop bits.  */
    885	zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN);
    886	if (termios->c_cflag & CSTOPB)
    887		zport->regs[4] |= SB2;
    888	else
    889		zport->regs[4] |= SB1;
    890	if (termios->c_cflag & PARENB)
    891		zport->regs[4] |= PAR_ENA;
    892	if (!(termios->c_cflag & PARODD))
    893		zport->regs[4] |= PAR_EVEN;
    894	switch (zport->clk_mode) {
    895	case 64:
    896		zport->regs[4] |= X64CLK;
    897		break;
    898	case 32:
    899		zport->regs[4] |= X32CLK;
    900		break;
    901	case 16:
    902		zport->regs[4] |= X16CLK;
    903		break;
    904	case 1:
    905		zport->regs[4] |= X1CLK;
    906		break;
    907	default:
    908		BUG();
    909	}
    910
    911	baud = uart_get_baud_rate(uport, termios, old_termios, 0,
    912				  uport->uartclk / zport->clk_mode / 4);
    913
    914	brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode);
    915	zport->regs[12] = brg & 0xff;
    916	zport->regs[13] = (brg >> 8) & 0xff;
    917
    918	uart_update_timeout(uport, termios->c_cflag, baud);
    919
    920	uport->read_status_mask = Rx_OVR;
    921	if (termios->c_iflag & INPCK)
    922		uport->read_status_mask |= FRM_ERR | PAR_ERR;
    923	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
    924		uport->read_status_mask |= Rx_BRK;
    925
    926	uport->ignore_status_mask = 0;
    927	if (termios->c_iflag & IGNPAR)
    928		uport->ignore_status_mask |= FRM_ERR | PAR_ERR;
    929	if (termios->c_iflag & IGNBRK) {
    930		uport->ignore_status_mask |= Rx_BRK;
    931		if (termios->c_iflag & IGNPAR)
    932			uport->ignore_status_mask |= Rx_OVR;
    933	}
    934
    935	if (termios->c_cflag & CREAD)
    936		zport->regs[3] |= RxENABLE;
    937	else
    938		zport->regs[3] &= ~RxENABLE;
    939
    940	if (zport != zport_a) {
    941		if (!(termios->c_cflag & CLOCAL)) {
    942			zport->regs[15] |= DCDIE;
    943		} else
    944			zport->regs[15] &= ~DCDIE;
    945		if (termios->c_cflag & CRTSCTS) {
    946			zport->regs[15] |= CTSIE;
    947		} else
    948			zport->regs[15] &= ~CTSIE;
    949		zs_raw_xor_mctrl(zport);
    950	}
    951
    952	/* Load up the new values.  */
    953	load_zsregs(zport, zport->regs, irq);
    954
    955	spin_unlock_irqrestore(&scc->zlock, flags);
    956}
    957
    958/*
    959 * Hack alert!
    960 * Required solely so that the initial PROM-based console
    961 * works undisturbed in parallel with this one.
    962 */
    963static void zs_pm(struct uart_port *uport, unsigned int state,
    964		  unsigned int oldstate)
    965{
    966	struct zs_port *zport = to_zport(uport);
    967
    968	if (state < 3)
    969		zport->regs[5] |= TxENAB;
    970	else
    971		zport->regs[5] &= ~TxENAB;
    972	write_zsreg(zport, R5, zport->regs[5]);
    973}
    974
    975
    976static const char *zs_type(struct uart_port *uport)
    977{
    978	return "Z85C30 SCC";
    979}
    980
    981static void zs_release_port(struct uart_port *uport)
    982{
    983	iounmap(uport->membase);
    984	uport->membase = NULL;
    985	release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
    986}
    987
    988static int zs_map_port(struct uart_port *uport)
    989{
    990	if (!uport->membase)
    991		uport->membase = ioremap(uport->mapbase,
    992						 ZS_CHAN_IO_SIZE);
    993	if (!uport->membase) {
    994		printk(KERN_ERR "zs: Cannot map MMIO\n");
    995		return -ENOMEM;
    996	}
    997	return 0;
    998}
    999
   1000static int zs_request_port(struct uart_port *uport)
   1001{
   1002	int ret;
   1003
   1004	if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) {
   1005		printk(KERN_ERR "zs: Unable to reserve MMIO resource\n");
   1006		return -EBUSY;
   1007	}
   1008	ret = zs_map_port(uport);
   1009	if (ret) {
   1010		release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
   1011		return ret;
   1012	}
   1013	return 0;
   1014}
   1015
   1016static void zs_config_port(struct uart_port *uport, int flags)
   1017{
   1018	struct zs_port *zport = to_zport(uport);
   1019
   1020	if (flags & UART_CONFIG_TYPE) {
   1021		if (zs_request_port(uport))
   1022			return;
   1023
   1024		uport->type = PORT_ZS;
   1025
   1026		zs_reset(zport);
   1027	}
   1028}
   1029
   1030static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser)
   1031{
   1032	struct zs_port *zport = to_zport(uport);
   1033	int ret = 0;
   1034
   1035	if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS)
   1036		ret = -EINVAL;
   1037	if (ser->irq != uport->irq)
   1038		ret = -EINVAL;
   1039	if (ser->baud_base != uport->uartclk / zport->clk_mode / 4)
   1040		ret = -EINVAL;
   1041	return ret;
   1042}
   1043
   1044
   1045static const struct uart_ops zs_ops = {
   1046	.tx_empty	= zs_tx_empty,
   1047	.set_mctrl	= zs_set_mctrl,
   1048	.get_mctrl	= zs_get_mctrl,
   1049	.stop_tx	= zs_stop_tx,
   1050	.start_tx	= zs_start_tx,
   1051	.stop_rx	= zs_stop_rx,
   1052	.enable_ms	= zs_enable_ms,
   1053	.break_ctl	= zs_break_ctl,
   1054	.startup	= zs_startup,
   1055	.shutdown	= zs_shutdown,
   1056	.set_termios	= zs_set_termios,
   1057	.pm		= zs_pm,
   1058	.type		= zs_type,
   1059	.release_port	= zs_release_port,
   1060	.request_port	= zs_request_port,
   1061	.config_port	= zs_config_port,
   1062	.verify_port	= zs_verify_port,
   1063};
   1064
   1065/*
   1066 * Initialize Z85C30 port structures.
   1067 */
   1068static int __init zs_probe_sccs(void)
   1069{
   1070	static int probed;
   1071	struct zs_parms zs_parms;
   1072	int chip, side, irq;
   1073	int n_chips = 0;
   1074	int i;
   1075
   1076	if (probed)
   1077		return 0;
   1078
   1079	irq = dec_interrupt[DEC_IRQ_SCC0];
   1080	if (irq >= 0) {
   1081		zs_parms.scc[n_chips] = IOASIC_SCC0;
   1082		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0];
   1083		n_chips++;
   1084	}
   1085	irq = dec_interrupt[DEC_IRQ_SCC1];
   1086	if (irq >= 0) {
   1087		zs_parms.scc[n_chips] = IOASIC_SCC1;
   1088		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1];
   1089		n_chips++;
   1090	}
   1091	if (!n_chips)
   1092		return -ENXIO;
   1093
   1094	probed = 1;
   1095
   1096	for (chip = 0; chip < n_chips; chip++) {
   1097		spin_lock_init(&zs_sccs[chip].zlock);
   1098		for (side = 0; side < ZS_NUM_CHAN; side++) {
   1099			struct zs_port *zport = &zs_sccs[chip].zport[side];
   1100			struct uart_port *uport = &zport->port;
   1101
   1102			zport->scc	= &zs_sccs[chip];
   1103			zport->clk_mode	= 16;
   1104
   1105			uport->has_sysrq = IS_ENABLED(CONFIG_SERIAL_ZS_CONSOLE);
   1106			uport->irq	= zs_parms.irq[chip];
   1107			uport->uartclk	= ZS_CLOCK;
   1108			uport->fifosize	= 1;
   1109			uport->iotype	= UPIO_MEM;
   1110			uport->flags	= UPF_BOOT_AUTOCONF;
   1111			uport->ops	= &zs_ops;
   1112			uport->line	= chip * ZS_NUM_CHAN + side;
   1113			uport->mapbase	= dec_kn_slot_base +
   1114					  zs_parms.scc[chip] +
   1115					  (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE;
   1116
   1117			for (i = 0; i < ZS_NUM_REGS; i++)
   1118				zport->regs[i] = zs_init_regs[i];
   1119		}
   1120	}
   1121
   1122	return 0;
   1123}
   1124
   1125
   1126#ifdef CONFIG_SERIAL_ZS_CONSOLE
   1127static void zs_console_putchar(struct uart_port *uport, unsigned char ch)
   1128{
   1129	struct zs_port *zport = to_zport(uport);
   1130	struct zs_scc *scc = zport->scc;
   1131	int irq;
   1132	unsigned long flags;
   1133
   1134	spin_lock_irqsave(&scc->zlock, flags);
   1135	irq = !irqs_disabled_flags(flags);
   1136	if (zs_transmit_drain(zport, irq))
   1137		write_zsdata(zport, ch);
   1138	spin_unlock_irqrestore(&scc->zlock, flags);
   1139}
   1140
   1141/*
   1142 * Print a string to the serial port trying not to disturb
   1143 * any possible real use of the port...
   1144 */
   1145static void zs_console_write(struct console *co, const char *s,
   1146			     unsigned int count)
   1147{
   1148	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
   1149	struct zs_port *zport = &zs_sccs[chip].zport[side];
   1150	struct zs_scc *scc = zport->scc;
   1151	unsigned long flags;
   1152	u8 txint, txenb;
   1153	int irq;
   1154
   1155	/* Disable transmit interrupts and enable the transmitter. */
   1156	spin_lock_irqsave(&scc->zlock, flags);
   1157	txint = zport->regs[1];
   1158	txenb = zport->regs[5];
   1159	if (txint & TxINT_ENAB) {
   1160		zport->regs[1] = txint & ~TxINT_ENAB;
   1161		write_zsreg(zport, R1, zport->regs[1]);
   1162	}
   1163	if (!(txenb & TxENAB)) {
   1164		zport->regs[5] = txenb | TxENAB;
   1165		write_zsreg(zport, R5, zport->regs[5]);
   1166	}
   1167	spin_unlock_irqrestore(&scc->zlock, flags);
   1168
   1169	uart_console_write(&zport->port, s, count, zs_console_putchar);
   1170
   1171	/* Restore transmit interrupts and the transmitter enable. */
   1172	spin_lock_irqsave(&scc->zlock, flags);
   1173	irq = !irqs_disabled_flags(flags);
   1174	zs_line_drain(zport, irq);
   1175	if (!(txenb & TxENAB)) {
   1176		zport->regs[5] &= ~TxENAB;
   1177		write_zsreg(zport, R5, zport->regs[5]);
   1178	}
   1179	if (txint & TxINT_ENAB) {
   1180		zport->regs[1] |= TxINT_ENAB;
   1181		write_zsreg(zport, R1, zport->regs[1]);
   1182
   1183		/* Resume any transmission as the TxIP bit won't be set.  */
   1184		if (!zport->tx_stopped)
   1185			zs_raw_transmit_chars(zport);
   1186	}
   1187	spin_unlock_irqrestore(&scc->zlock, flags);
   1188}
   1189
   1190/*
   1191 * Setup serial console baud/bits/parity.  We do two things here:
   1192 * - construct a cflag setting for the first uart_open()
   1193 * - initialise the serial port
   1194 * Return non-zero if we didn't find a serial port.
   1195 */
   1196static int __init zs_console_setup(struct console *co, char *options)
   1197{
   1198	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
   1199	struct zs_port *zport = &zs_sccs[chip].zport[side];
   1200	struct uart_port *uport = &zport->port;
   1201	int baud = 9600;
   1202	int bits = 8;
   1203	int parity = 'n';
   1204	int flow = 'n';
   1205	int ret;
   1206
   1207	ret = zs_map_port(uport);
   1208	if (ret)
   1209		return ret;
   1210
   1211	zs_reset(zport);
   1212	zs_pm(uport, 0, -1);
   1213
   1214	if (options)
   1215		uart_parse_options(options, &baud, &parity, &bits, &flow);
   1216	return uart_set_options(uport, co, baud, parity, bits, flow);
   1217}
   1218
   1219static struct uart_driver zs_reg;
   1220static struct console zs_console = {
   1221	.name	= "ttyS",
   1222	.write	= zs_console_write,
   1223	.device	= uart_console_device,
   1224	.setup	= zs_console_setup,
   1225	.flags	= CON_PRINTBUFFER,
   1226	.index	= -1,
   1227	.data	= &zs_reg,
   1228};
   1229
   1230/*
   1231 *	Register console.
   1232 */
   1233static int __init zs_serial_console_init(void)
   1234{
   1235	int ret;
   1236
   1237	ret = zs_probe_sccs();
   1238	if (ret)
   1239		return ret;
   1240	register_console(&zs_console);
   1241
   1242	return 0;
   1243}
   1244
   1245console_initcall(zs_serial_console_init);
   1246
   1247#define SERIAL_ZS_CONSOLE	&zs_console
   1248#else
   1249#define SERIAL_ZS_CONSOLE	NULL
   1250#endif /* CONFIG_SERIAL_ZS_CONSOLE */
   1251
   1252static struct uart_driver zs_reg = {
   1253	.owner			= THIS_MODULE,
   1254	.driver_name		= "serial",
   1255	.dev_name		= "ttyS",
   1256	.major			= TTY_MAJOR,
   1257	.minor			= 64,
   1258	.nr			= ZS_NUM_SCCS * ZS_NUM_CHAN,
   1259	.cons			= SERIAL_ZS_CONSOLE,
   1260};
   1261
   1262/* zs_init inits the driver. */
   1263static int __init zs_init(void)
   1264{
   1265	int i, ret;
   1266
   1267	pr_info("%s%s\n", zs_name, zs_version);
   1268
   1269	/* Find out how many Z85C30 SCCs we have.  */
   1270	ret = zs_probe_sccs();
   1271	if (ret)
   1272		return ret;
   1273
   1274	ret = uart_register_driver(&zs_reg);
   1275	if (ret)
   1276		return ret;
   1277
   1278	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
   1279		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
   1280		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
   1281		struct uart_port *uport = &zport->port;
   1282
   1283		if (zport->scc)
   1284			uart_add_one_port(&zs_reg, uport);
   1285	}
   1286
   1287	return 0;
   1288}
   1289
   1290static void __exit zs_exit(void)
   1291{
   1292	int i;
   1293
   1294	for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) {
   1295		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
   1296		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
   1297		struct uart_port *uport = &zport->port;
   1298
   1299		if (zport->scc)
   1300			uart_remove_one_port(&zs_reg, uport);
   1301	}
   1302
   1303	uart_unregister_driver(&zs_reg);
   1304}
   1305
   1306module_init(zs_init);
   1307module_exit(zs_exit);