cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

core.h (64745B)


      1/* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
      2/*
      3 * core.h - DesignWare HS OTG Controller common declarations
      4 *
      5 * Copyright (C) 2004-2013 Synopsys, Inc.
      6 *
      7 * Redistribution and use in source and binary forms, with or without
      8 * modification, are permitted provided that the following conditions
      9 * are met:
     10 * 1. Redistributions of source code must retain the above copyright
     11 *    notice, this list of conditions, and the following disclaimer,
     12 *    without modification.
     13 * 2. Redistributions in binary form must reproduce the above copyright
     14 *    notice, this list of conditions and the following disclaimer in the
     15 *    documentation and/or other materials provided with the distribution.
     16 * 3. The names of the above-listed copyright holders may not be used
     17 *    to endorse or promote products derived from this software without
     18 *    specific prior written permission.
     19 *
     20 * ALTERNATIVELY, this software may be distributed under the terms of the
     21 * GNU General Public License ("GPL") as published by the Free Software
     22 * Foundation; either version 2 of the License, or (at your option) any
     23 * later version.
     24 *
     25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
     26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
     29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     36 */
     37
     38#ifndef __DWC2_CORE_H__
     39#define __DWC2_CORE_H__
     40
     41#include <linux/acpi.h>
     42#include <linux/phy/phy.h>
     43#include <linux/regulator/consumer.h>
     44#include <linux/usb/gadget.h>
     45#include <linux/usb/otg.h>
     46#include <linux/usb/phy.h>
     47#include "hw.h"
     48
     49/*
     50 * Suggested defines for tracers:
     51 * - no_printk:    Disable tracing
     52 * - pr_info:      Print this info to the console
     53 * - trace_printk: Print this info to trace buffer (good for verbose logging)
     54 */
     55
     56#define DWC2_TRACE_SCHEDULER		no_printk
     57#define DWC2_TRACE_SCHEDULER_VB		no_printk
     58
     59/* Detailed scheduler tracing, but won't overwhelm console */
     60#define dwc2_sch_dbg(hsotg, fmt, ...)					\
     61	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
     62			     dev_name(hsotg->dev), ##__VA_ARGS__)
     63
     64/* Verbose scheduler tracing */
     65#define dwc2_sch_vdbg(hsotg, fmt, ...)					\
     66	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
     67				dev_name(hsotg->dev), ##__VA_ARGS__)
     68
     69/* Maximum number of Endpoints/HostChannels */
     70#define MAX_EPS_CHANNELS	16
     71
     72/* dwc2-hsotg declarations */
     73static const char * const dwc2_hsotg_supply_names[] = {
     74	"vusb_d",               /* digital USB supply, 1.2V */
     75	"vusb_a",               /* analog USB supply, 1.1V */
     76};
     77
     78#define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
     79
     80/*
     81 * EP0_MPS_LIMIT
     82 *
     83 * Unfortunately there seems to be a limit of the amount of data that can
     84 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
     85 * packets (which practically means 1 packet and 63 bytes of data) when the
     86 * MPS is set to 64.
     87 *
     88 * This means if we are wanting to move >127 bytes of data, we need to
     89 * split the transactions up, but just doing one packet at a time does
     90 * not work (this may be an implicit DATA0 PID on first packet of the
     91 * transaction) and doing 2 packets is outside the controller's limits.
     92 *
     93 * If we try to lower the MPS size for EP0, then no transfers work properly
     94 * for EP0, and the system will fail basic enumeration. As no cause for this
     95 * has currently been found, we cannot support any large IN transfers for
     96 * EP0.
     97 */
     98#define EP0_MPS_LIMIT   64
     99
    100struct dwc2_hsotg;
    101struct dwc2_hsotg_req;
    102
    103/**
    104 * struct dwc2_hsotg_ep - driver endpoint definition.
    105 * @ep: The gadget layer representation of the endpoint.
    106 * @name: The driver generated name for the endpoint.
    107 * @queue: Queue of requests for this endpoint.
    108 * @parent: Reference back to the parent device structure.
    109 * @req: The current request that the endpoint is processing. This is
    110 *       used to indicate an request has been loaded onto the endpoint
    111 *       and has yet to be completed (maybe due to data move, or simply
    112 *       awaiting an ack from the core all the data has been completed).
    113 * @debugfs: File entry for debugfs file for this endpoint.
    114 * @dir_in: Set to true if this endpoint is of the IN direction, which
    115 *          means that it is sending data to the Host.
    116 * @map_dir: Set to the value of dir_in when the DMA buffer is mapped.
    117 * @index: The index for the endpoint registers.
    118 * @mc: Multi Count - number of transactions per microframe
    119 * @interval: Interval for periodic endpoints, in frames or microframes.
    120 * @name: The name array passed to the USB core.
    121 * @halted: Set if the endpoint has been halted.
    122 * @periodic: Set if this is a periodic ep, such as Interrupt
    123 * @isochronous: Set if this is a isochronous ep
    124 * @send_zlp: Set if we need to send a zero-length packet.
    125 * @wedged: Set if ep is wedged.
    126 * @desc_list_dma: The DMA address of descriptor chain currently in use.
    127 * @desc_list: Pointer to descriptor DMA chain head currently in use.
    128 * @desc_count: Count of entries within the DMA descriptor chain of EP.
    129 * @next_desc: index of next free descriptor in the ISOC chain under SW control.
    130 * @compl_desc: index of next descriptor to be completed by xFerComplete
    131 * @total_data: The total number of data bytes done.
    132 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
    133 * @fifo_index: For Dedicated FIFO operation, only FIFO0 can be used for EP0.
    134 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
    135 * @last_load: The offset of data for the last start of request.
    136 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
    137 * @target_frame: Targeted frame num to setup next ISOC transfer
    138 * @frame_overrun: Indicates SOF number overrun in DSTS
    139 *
    140 * This is the driver's state for each registered endpoint, allowing it
    141 * to keep track of transactions that need doing. Each endpoint has a
    142 * lock to protect the state, to try and avoid using an overall lock
    143 * for the host controller as much as possible.
    144 *
    145 * For periodic IN endpoints, we have fifo_size and fifo_load to try
    146 * and keep track of the amount of data in the periodic FIFO for each
    147 * of these as we don't have a status register that tells us how much
    148 * is in each of them. (note, this may actually be useless information
    149 * as in shared-fifo mode periodic in acts like a single-frame packet
    150 * buffer than a fifo)
    151 */
    152struct dwc2_hsotg_ep {
    153	struct usb_ep           ep;
    154	struct list_head        queue;
    155	struct dwc2_hsotg       *parent;
    156	struct dwc2_hsotg_req    *req;
    157	struct dentry           *debugfs;
    158
    159	unsigned long           total_data;
    160	unsigned int            size_loaded;
    161	unsigned int            last_load;
    162	unsigned int            fifo_load;
    163	unsigned short          fifo_size;
    164	unsigned short		fifo_index;
    165
    166	unsigned char           dir_in;
    167	unsigned char           map_dir;
    168	unsigned char           index;
    169	unsigned char           mc;
    170	u16                     interval;
    171
    172	unsigned int            halted:1;
    173	unsigned int            periodic:1;
    174	unsigned int            isochronous:1;
    175	unsigned int            send_zlp:1;
    176	unsigned int            wedged:1;
    177	unsigned int            target_frame;
    178#define TARGET_FRAME_INITIAL   0xFFFFFFFF
    179	bool			frame_overrun;
    180
    181	dma_addr_t		desc_list_dma;
    182	struct dwc2_dma_desc	*desc_list;
    183	u8			desc_count;
    184
    185	unsigned int		next_desc;
    186	unsigned int		compl_desc;
    187
    188	char                    name[10];
    189};
    190
    191/**
    192 * struct dwc2_hsotg_req - data transfer request
    193 * @req: The USB gadget request
    194 * @queue: The list of requests for the endpoint this is queued for.
    195 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
    196 */
    197struct dwc2_hsotg_req {
    198	struct usb_request      req;
    199	struct list_head        queue;
    200	void *saved_req_buf;
    201};
    202
    203#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
    204	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
    205#define call_gadget(_hs, _entry) \
    206do { \
    207	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
    208		(_hs)->driver && (_hs)->driver->_entry) { \
    209		spin_unlock(&_hs->lock); \
    210		(_hs)->driver->_entry(&(_hs)->gadget); \
    211		spin_lock(&_hs->lock); \
    212	} \
    213} while (0)
    214#else
    215#define call_gadget(_hs, _entry)	do {} while (0)
    216#endif
    217
    218struct dwc2_hsotg;
    219struct dwc2_host_chan;
    220
    221/* Device States */
    222enum dwc2_lx_state {
    223	DWC2_L0,	/* On state */
    224	DWC2_L1,	/* LPM sleep state */
    225	DWC2_L2,	/* USB suspend state */
    226	DWC2_L3,	/* Off state */
    227};
    228
    229/* Gadget ep0 states */
    230enum dwc2_ep0_state {
    231	DWC2_EP0_SETUP,
    232	DWC2_EP0_DATA_IN,
    233	DWC2_EP0_DATA_OUT,
    234	DWC2_EP0_STATUS_IN,
    235	DWC2_EP0_STATUS_OUT,
    236};
    237
    238/**
    239 * struct dwc2_core_params - Parameters for configuring the core
    240 *
    241 * @otg_caps:           Specifies the OTG capabilities. OTG caps from the platform parameters,
    242 *                      used to setup the:
    243 *                       - HNP and SRP capable
    244 *                       - SRP Only capable
    245 *                       - No HNP/SRP capable (always available)
    246 *                       Defaults to best available option
    247 *                       - OTG revision number the device is compliant with, in binary-coded
    248 *                         decimal (i.e. 2.0 is 0200H). (see struct usb_otg_caps)
    249 * @host_dma:           Specifies whether to use slave or DMA mode for accessing
    250 *                      the data FIFOs. The driver will automatically detect the
    251 *                      value for this parameter if none is specified.
    252 *                       0 - Slave (always available)
    253 *                       1 - DMA (default, if available)
    254 * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
    255 *                      address DMA mode or descriptor DMA mode for accessing
    256 *                      the data FIFOs. The driver will automatically detect the
    257 *                      value for this if none is specified.
    258 *                       0 - Address DMA
    259 *                       1 - Descriptor DMA (default, if available)
    260 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
    261 *                      address DMA mode or descriptor DMA mode for accessing
    262 *                      the data FIFOs in Full Speed mode only. The driver
    263 *                      will automatically detect the value for this if none is
    264 *                      specified.
    265 *                       0 - Address DMA
    266 *                       1 - Descriptor DMA in FS (default, if available)
    267 * @speed:              Specifies the maximum speed of operation in host and
    268 *                      device mode. The actual speed depends on the speed of
    269 *                      the attached device and the value of phy_type.
    270 *                       0 - High Speed
    271 *                           (default when phy_type is UTMI+ or ULPI)
    272 *                       1 - Full Speed
    273 *                           (default when phy_type is Full Speed)
    274 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
    275 *                       1 - Allow dynamic FIFO sizing (default, if available)
    276 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
    277 *                      are enabled for non-periodic IN endpoints in device
    278 *                      mode.
    279 * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
    280 *                      dynamic FIFO sizing is enabled
    281 *                       16 to 32768
    282 *                      Actual maximum value is autodetected and also
    283 *                      the default.
    284 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
    285 *                      in host mode when dynamic FIFO sizing is enabled
    286 *                       16 to 32768
    287 *                      Actual maximum value is autodetected and also
    288 *                      the default.
    289 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
    290 *                      host mode when dynamic FIFO sizing is enabled
    291 *                       16 to 32768
    292 *                      Actual maximum value is autodetected and also
    293 *                      the default.
    294 * @max_transfer_size:  The maximum transfer size supported, in bytes
    295 *                       2047 to 65,535
    296 *                      Actual maximum value is autodetected and also
    297 *                      the default.
    298 * @max_packet_count:   The maximum number of packets in a transfer
    299 *                       15 to 511
    300 *                      Actual maximum value is autodetected and also
    301 *                      the default.
    302 * @host_channels:      The number of host channel registers to use
    303 *                       1 to 16
    304 *                      Actual maximum value is autodetected and also
    305 *                      the default.
    306 * @phy_type:           Specifies the type of PHY interface to use. By default,
    307 *                      the driver will automatically detect the phy_type.
    308 *                       0 - Full Speed Phy
    309 *                       1 - UTMI+ Phy
    310 *                       2 - ULPI Phy
    311 *                      Defaults to best available option (2, 1, then 0)
    312 * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
    313 *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
    314 *                      ULPI phy_type, this parameter indicates the data width
    315 *                      between the MAC and the ULPI Wrapper.) Also, this
    316 *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
    317 *                      parameter was set to "8 and 16 bits", meaning that the
    318 *                      core has been configured to work at either data path
    319 *                      width.
    320 *                       8 or 16 (default 16 if available)
    321 * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
    322 *                      data rate. This parameter is only applicable if phy_type
    323 *                      is ULPI.
    324 *                       0 - single data rate ULPI interface with 8 bit wide
    325 *                           data bus (default)
    326 *                       1 - double data rate ULPI interface with 4 bit wide
    327 *                           data bus
    328 * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
    329 *                      external supply to drive the VBus
    330 *                       0 - Internal supply (default)
    331 *                       1 - External supply
    332 * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
    333 *                      speed PHY. This parameter is only applicable if phy_type
    334 *                      is FS.
    335 *                       0 - No (default)
    336 *                       1 - Yes
    337 * @ipg_isoc_en:        Indicates the IPG supports is enabled or disabled.
    338 *                       0 - Disable (default)
    339 *                       1 - Enable
    340 * @acg_enable:		For enabling Active Clock Gating in the controller
    341 *                       0 - No
    342 *                       1 - Yes
    343 * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
    344 *                       0 - No (default)
    345 *                       1 - Yes
    346 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
    347 *                      when attached to a Full Speed or Low Speed device in
    348 *                      host mode.
    349 *                       0 - Don't support low power mode (default)
    350 *                       1 - Support low power mode
    351 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
    352 *                      when connected to a Low Speed device in host
    353 *                      mode. This parameter is applicable only if
    354 *                      host_support_fs_ls_low_power is enabled.
    355 *                       0 - 48 MHz
    356 *                           (default when phy_type is UTMI+ or ULPI)
    357 *                       1 - 6 MHz
    358 *                           (default when phy_type is Full Speed)
    359 * @oc_disable:		Flag to disable overcurrent condition.
    360 *			0 - Allow overcurrent condition to get detected
    361 *			1 - Disable overcurrent condtion to get detected
    362 * @ts_dline:           Enable Term Select Dline pulsing
    363 *                       0 - No (default)
    364 *                       1 - Yes
    365 * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
    366 *                       0 - No (default for core < 2.92a)
    367 *                       1 - Yes (default for core >= 2.92a)
    368 * @ahbcfg:             This field allows the default value of the GAHBCFG
    369 *                      register to be overridden
    370 *                       -1         - GAHBCFG value will be set to 0x06
    371 *                                    (INCR, default)
    372 *                       all others - GAHBCFG value will be overridden with
    373 *                                    this value
    374 *                      Not all bits can be controlled like this, the
    375 *                      bits defined by GAHBCFG_CTRL_MASK are controlled
    376 *                      by the driver and are ignored in this
    377 *                      configuration value.
    378 * @uframe_sched:       True to enable the microframe scheduler
    379 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
    380 *                      Disable CONIDSTSCHNG controller interrupt in such
    381 *                      case.
    382 *                      0 - No (default)
    383 *                      1 - Yes
    384 * @power_down:         Specifies whether the controller support power_down.
    385 *			If power_down is enabled, the controller will enter
    386 *			power_down in both peripheral and host mode when
    387 *			needed.
    388 *			0 - No (default)
    389 *			1 - Partial power down
    390 *			2 - Hibernation
    391 * @no_clock_gating:	Specifies whether to avoid clock gating feature.
    392 *			0 - No (use clock gating)
    393 *			1 - Yes (avoid it)
    394 * @lpm:		Enable LPM support.
    395 *			0 - No
    396 *			1 - Yes
    397 * @lpm_clock_gating:		Enable core PHY clock gating.
    398 *			0 - No
    399 *			1 - Yes
    400 * @besl:		Enable LPM Errata support.
    401 *			0 - No
    402 *			1 - Yes
    403 * @hird_threshold_en:	HIRD or HIRD Threshold enable.
    404 *			0 - No
    405 *			1 - Yes
    406 * @hird_threshold:	Value of BESL or HIRD Threshold.
    407 * @ref_clk_per:        Indicates in terms of pico seconds the period
    408 *                      of ref_clk.
    409 *			62500 - 16MHz
    410 *                      58823 - 17MHz
    411 *                      52083 - 19.2MHz
    412 *			50000 - 20MHz
    413 *			41666 - 24MHz
    414 *			33333 - 30MHz (default)
    415 *			25000 - 40MHz
    416 * @sof_cnt_wkup_alert: Indicates in term of number of SOF's after which
    417 *                      the controller should generate an interrupt if the
    418 *                      device had been in L1 state until that period.
    419 *                      This is used by SW to initiate Remote WakeUp in the
    420 *                      controller so as to sync to the uF number from the host.
    421 * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
    422 *			register.
    423 *			0 - Deactivate the transceiver (default)
    424 *			1 - Activate the transceiver
    425 * @activate_stm_id_vb_detection: Activate external ID pin and Vbus level
    426 *			detection using GGPIO register.
    427 *			0 - Deactivate the external level detection (default)
    428 *			1 - Activate the external level detection
    429 * @activate_ingenic_overcurrent_detection: Activate Ingenic overcurrent
    430 *			detection.
    431 *			0 - Deactivate the overcurrent detection
    432 *			1 - Activate the overcurrent detection (default)
    433 * @g_dma:              Enables gadget dma usage (default: autodetect).
    434 * @g_dma_desc:         Enables gadget descriptor DMA (default: autodetect).
    435 * @g_rx_fifo_size:	The periodic rx fifo size for the device, in
    436 *			DWORDS from 16-32768 (default: 2048 if
    437 *			possible, otherwise autodetect).
    438 * @g_np_tx_fifo_size:	The non-periodic tx fifo size for the device in
    439 *			DWORDS from 16-32768 (default: 1024 if
    440 *			possible, otherwise autodetect).
    441 * @g_tx_fifo_size:	An array of TX fifo sizes in dedicated fifo
    442 *			mode. Each value corresponds to one EP
    443 *			starting from EP1 (max 15 values). Sizes are
    444 *			in DWORDS with possible values from
    445 *			16-32768 (default: 256, 256, 256, 256, 768,
    446 *			768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
    447 * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
    448 *                      while full&low speed device connect. And change speed
    449 *                      back to DWC2_SPEED_PARAM_HIGH while device is gone.
    450 *			0 - No (default)
    451 *			1 - Yes
    452 * @service_interval:   Enable service interval based scheduling.
    453 *                      0 - No
    454 *                      1 - Yes
    455 *
    456 * The following parameters may be specified when starting the module. These
    457 * parameters define how the DWC_otg controller should be configured. A
    458 * value of -1 (or any other out of range value) for any parameter means
    459 * to read the value from hardware (if possible) or use the builtin
    460 * default described above.
    461 */
    462struct dwc2_core_params {
    463	struct usb_otg_caps otg_caps;
    464	u8 phy_type;
    465#define DWC2_PHY_TYPE_PARAM_FS		0
    466#define DWC2_PHY_TYPE_PARAM_UTMI	1
    467#define DWC2_PHY_TYPE_PARAM_ULPI	2
    468
    469	u8 speed;
    470#define DWC2_SPEED_PARAM_HIGH	0
    471#define DWC2_SPEED_PARAM_FULL	1
    472#define DWC2_SPEED_PARAM_LOW	2
    473
    474	u8 phy_utmi_width;
    475	bool phy_ulpi_ddr;
    476	bool phy_ulpi_ext_vbus;
    477	bool enable_dynamic_fifo;
    478	bool en_multiple_tx_fifo;
    479	bool i2c_enable;
    480	bool acg_enable;
    481	bool ulpi_fs_ls;
    482	bool ts_dline;
    483	bool reload_ctl;
    484	bool uframe_sched;
    485	bool external_id_pin_ctl;
    486
    487	int power_down;
    488#define DWC2_POWER_DOWN_PARAM_NONE		0
    489#define DWC2_POWER_DOWN_PARAM_PARTIAL		1
    490#define DWC2_POWER_DOWN_PARAM_HIBERNATION	2
    491	bool no_clock_gating;
    492
    493	bool lpm;
    494	bool lpm_clock_gating;
    495	bool besl;
    496	bool hird_threshold_en;
    497	bool service_interval;
    498	u8 hird_threshold;
    499	bool activate_stm_fs_transceiver;
    500	bool activate_stm_id_vb_detection;
    501	bool activate_ingenic_overcurrent_detection;
    502	bool ipg_isoc_en;
    503	u16 max_packet_count;
    504	u32 max_transfer_size;
    505	u32 ahbcfg;
    506
    507	/* GREFCLK parameters */
    508	u32 ref_clk_per;
    509	u16 sof_cnt_wkup_alert;
    510
    511	/* Host parameters */
    512	bool host_dma;
    513	bool dma_desc_enable;
    514	bool dma_desc_fs_enable;
    515	bool host_support_fs_ls_low_power;
    516	bool host_ls_low_power_phy_clk;
    517	bool oc_disable;
    518
    519	u8 host_channels;
    520	u16 host_rx_fifo_size;
    521	u16 host_nperio_tx_fifo_size;
    522	u16 host_perio_tx_fifo_size;
    523
    524	/* Gadget parameters */
    525	bool g_dma;
    526	bool g_dma_desc;
    527	u32 g_rx_fifo_size;
    528	u32 g_np_tx_fifo_size;
    529	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
    530
    531	bool change_speed_quirk;
    532};
    533
    534/**
    535 * struct dwc2_hw_params - Autodetected parameters.
    536 *
    537 * These parameters are the various parameters read from hardware
    538 * registers during initialization. They typically contain the best
    539 * supported or maximum value that can be configured in the
    540 * corresponding dwc2_core_params value.
    541 *
    542 * The values that are not in dwc2_core_params are documented below.
    543 *
    544 * @op_mode:             Mode of Operation
    545 *                       0 - HNP- and SRP-Capable OTG (Host & Device)
    546 *                       1 - SRP-Capable OTG (Host & Device)
    547 *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
    548 *                       3 - SRP-Capable Device
    549 *                       4 - Non-OTG Device
    550 *                       5 - SRP-Capable Host
    551 *                       6 - Non-OTG Host
    552 * @arch:                Architecture
    553 *                       0 - Slave only
    554 *                       1 - External DMA
    555 *                       2 - Internal DMA
    556 * @ipg_isoc_en:        This feature indicates that the controller supports
    557 *                      the worst-case scenario of Rx followed by Rx
    558 *                      Interpacket Gap (IPG) (32 bitTimes) as per the utmi
    559 *                      specification for any token following ISOC OUT token.
    560 *                       0 - Don't support
    561 *                       1 - Support
    562 * @power_optimized:    Are power optimizations enabled?
    563 * @num_dev_ep:         Number of device endpoints available
    564 * @num_dev_in_eps:     Number of device IN endpoints available
    565 * @num_dev_perio_in_ep: Number of device periodic IN endpoints
    566 *                       available
    567 * @dev_token_q_depth:  Device Mode IN Token Sequence Learning Queue
    568 *                      Depth
    569 *                       0 to 30
    570 * @host_perio_tx_q_depth:
    571 *                      Host Mode Periodic Request Queue Depth
    572 *                       2, 4 or 8
    573 * @nperio_tx_q_depth:
    574 *                      Non-Periodic Request Queue Depth
    575 *                       2, 4 or 8
    576 * @hs_phy_type:         High-speed PHY interface type
    577 *                       0 - High-speed interface not supported
    578 *                       1 - UTMI+
    579 *                       2 - ULPI
    580 *                       3 - UTMI+ and ULPI
    581 * @fs_phy_type:         Full-speed PHY interface type
    582 *                       0 - Full speed interface not supported
    583 *                       1 - Dedicated full speed interface
    584 *                       2 - FS pins shared with UTMI+ pins
    585 *                       3 - FS pins shared with ULPI pins
    586 * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
    587 * @hibernation:	Is hibernation enabled?
    588 * @utmi_phy_data_width: UTMI+ PHY data width
    589 *                       0 - 8 bits
    590 *                       1 - 16 bits
    591 *                       2 - 8 or 16 bits
    592 * @snpsid:             Value from SNPSID register
    593 * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
    594 * @g_tx_fifo_size:	Power-on values of TxFIFO sizes
    595 * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
    596 *                      address DMA mode or descriptor DMA mode for accessing
    597 *                      the data FIFOs. The driver will automatically detect the
    598 *                      value for this if none is specified.
    599 *                       0 - Address DMA
    600 *                       1 - Descriptor DMA (default, if available)
    601 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
    602 *                       1 - Allow dynamic FIFO sizing (default, if available)
    603 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
    604 *                      are enabled for non-periodic IN endpoints in device
    605 *                      mode.
    606 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
    607 *                      in host mode when dynamic FIFO sizing is enabled
    608 *                       16 to 32768
    609 *                      Actual maximum value is autodetected and also
    610 *                      the default.
    611 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
    612 *                      host mode when dynamic FIFO sizing is enabled
    613 *                       16 to 32768
    614 *                      Actual maximum value is autodetected and also
    615 *                      the default.
    616 * @max_transfer_size:  The maximum transfer size supported, in bytes
    617 *                       2047 to 65,535
    618 *                      Actual maximum value is autodetected and also
    619 *                      the default.
    620 * @max_packet_count:   The maximum number of packets in a transfer
    621 *                       15 to 511
    622 *                      Actual maximum value is autodetected and also
    623 *                      the default.
    624 * @host_channels:      The number of host channel registers to use
    625 *                       1 to 16
    626 *                      Actual maximum value is autodetected and also
    627 *                      the default.
    628 * @dev_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
    629 *			     in device mode when dynamic FIFO sizing is enabled
    630 *			     16 to 32768
    631 *			     Actual maximum value is autodetected and also
    632 *			     the default.
    633 * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
    634 *                      speed PHY. This parameter is only applicable if phy_type
    635 *                      is FS.
    636 *                       0 - No (default)
    637 *                       1 - Yes
    638 * @acg_enable:		For enabling Active Clock Gating in the controller
    639 *                       0 - Disable
    640 *                       1 - Enable
    641 * @lpm_mode:		For enabling Link Power Management in the controller
    642 *                       0 - Disable
    643 *                       1 - Enable
    644 * @rx_fifo_size:	Number of 4-byte words in the  Rx FIFO when dynamic
    645 *			FIFO sizing is enabled 16 to 32768
    646 *			Actual maximum value is autodetected and also
    647 *			the default.
    648 * @service_interval_mode: For enabling service interval based scheduling in the
    649 *                         controller.
    650 *                           0 - Disable
    651 *                           1 - Enable
    652 */
    653struct dwc2_hw_params {
    654	unsigned op_mode:3;
    655	unsigned arch:2;
    656	unsigned dma_desc_enable:1;
    657	unsigned enable_dynamic_fifo:1;
    658	unsigned en_multiple_tx_fifo:1;
    659	unsigned rx_fifo_size:16;
    660	unsigned host_nperio_tx_fifo_size:16;
    661	unsigned dev_nperio_tx_fifo_size:16;
    662	unsigned host_perio_tx_fifo_size:16;
    663	unsigned nperio_tx_q_depth:3;
    664	unsigned host_perio_tx_q_depth:3;
    665	unsigned dev_token_q_depth:5;
    666	unsigned max_transfer_size:26;
    667	unsigned max_packet_count:11;
    668	unsigned host_channels:5;
    669	unsigned hs_phy_type:2;
    670	unsigned fs_phy_type:2;
    671	unsigned i2c_enable:1;
    672	unsigned acg_enable:1;
    673	unsigned num_dev_ep:4;
    674	unsigned num_dev_in_eps : 4;
    675	unsigned num_dev_perio_in_ep:4;
    676	unsigned total_fifo_size:16;
    677	unsigned power_optimized:1;
    678	unsigned hibernation:1;
    679	unsigned utmi_phy_data_width:2;
    680	unsigned lpm_mode:1;
    681	unsigned ipg_isoc_en:1;
    682	unsigned service_interval_mode:1;
    683	u32 snpsid;
    684	u32 dev_ep_dirs;
    685	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
    686};
    687
    688/* Size of control and EP0 buffers */
    689#define DWC2_CTRL_BUFF_SIZE 8
    690
    691/**
    692 * struct dwc2_gregs_backup - Holds global registers state before
    693 * entering partial power down
    694 * @gotgctl:		Backup of GOTGCTL register
    695 * @gintmsk:		Backup of GINTMSK register
    696 * @gahbcfg:		Backup of GAHBCFG register
    697 * @gusbcfg:		Backup of GUSBCFG register
    698 * @grxfsiz:		Backup of GRXFSIZ register
    699 * @gnptxfsiz:		Backup of GNPTXFSIZ register
    700 * @gi2cctl:		Backup of GI2CCTL register
    701 * @glpmcfg:		Backup of GLPMCFG register
    702 * @gdfifocfg:		Backup of GDFIFOCFG register
    703 * @pcgcctl:		Backup of PCGCCTL register
    704 * @pcgcctl1:		Backup of PCGCCTL1 register
    705 * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
    706 * @gpwrdn:		Backup of GPWRDN register
    707 * @valid:		True if registers values backuped.
    708 */
    709struct dwc2_gregs_backup {
    710	u32 gotgctl;
    711	u32 gintmsk;
    712	u32 gahbcfg;
    713	u32 gusbcfg;
    714	u32 grxfsiz;
    715	u32 gnptxfsiz;
    716	u32 gi2cctl;
    717	u32 glpmcfg;
    718	u32 pcgcctl;
    719	u32 pcgcctl1;
    720	u32 gdfifocfg;
    721	u32 gpwrdn;
    722	bool valid;
    723};
    724
    725/**
    726 * struct dwc2_dregs_backup - Holds device registers state before
    727 * entering partial power down
    728 * @dcfg:		Backup of DCFG register
    729 * @dctl:		Backup of DCTL register
    730 * @daintmsk:		Backup of DAINTMSK register
    731 * @diepmsk:		Backup of DIEPMSK register
    732 * @doepmsk:		Backup of DOEPMSK register
    733 * @diepctl:		Backup of DIEPCTL register
    734 * @dieptsiz:		Backup of DIEPTSIZ register
    735 * @diepdma:		Backup of DIEPDMA register
    736 * @doepctl:		Backup of DOEPCTL register
    737 * @doeptsiz:		Backup of DOEPTSIZ register
    738 * @doepdma:		Backup of DOEPDMA register
    739 * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
    740 * @valid:      True if registers values backuped.
    741 */
    742struct dwc2_dregs_backup {
    743	u32 dcfg;
    744	u32 dctl;
    745	u32 daintmsk;
    746	u32 diepmsk;
    747	u32 doepmsk;
    748	u32 diepctl[MAX_EPS_CHANNELS];
    749	u32 dieptsiz[MAX_EPS_CHANNELS];
    750	u32 diepdma[MAX_EPS_CHANNELS];
    751	u32 doepctl[MAX_EPS_CHANNELS];
    752	u32 doeptsiz[MAX_EPS_CHANNELS];
    753	u32 doepdma[MAX_EPS_CHANNELS];
    754	u32 dtxfsiz[MAX_EPS_CHANNELS];
    755	bool valid;
    756};
    757
    758/**
    759 * struct dwc2_hregs_backup - Holds host registers state before
    760 * entering partial power down
    761 * @hcfg:		Backup of HCFG register
    762 * @haintmsk:		Backup of HAINTMSK register
    763 * @hcintmsk:		Backup of HCINTMSK register
    764 * @hprt0:		Backup of HPTR0 register
    765 * @hfir:		Backup of HFIR register
    766 * @hptxfsiz:		Backup of HPTXFSIZ register
    767 * @valid:      True if registers values backuped.
    768 */
    769struct dwc2_hregs_backup {
    770	u32 hcfg;
    771	u32 haintmsk;
    772	u32 hcintmsk[MAX_EPS_CHANNELS];
    773	u32 hprt0;
    774	u32 hfir;
    775	u32 hptxfsiz;
    776	bool valid;
    777};
    778
    779/*
    780 * Constants related to high speed periodic scheduling
    781 *
    782 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
    783 * reservation point of view it's assumed that the schedule goes right back to
    784 * the beginning after the end of the schedule.
    785 *
    786 * What does that mean for scheduling things with a long interval?  It means
    787 * we'll reserve time for them in every possible microframe that they could
    788 * ever be scheduled in.  ...but we'll still only actually schedule them as
    789 * often as they were requested.
    790 *
    791 * We keep our schedule in a "bitmap" structure.  This simplifies having
    792 * to keep track of and merge intervals: we just let the bitmap code do most
    793 * of the heavy lifting.  In a way scheduling is much like memory allocation.
    794 *
    795 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
    796 * supposed to schedule for periodic transfers).  That's according to spec.
    797 *
    798 * Note that though we only schedule 80% of each microframe, the bitmap that we
    799 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
    800 * space for each uFrame).
    801 *
    802 * Requirements:
    803 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
    804 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
    805 *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
    806 *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
    807 */
    808#define DWC2_US_PER_UFRAME		125
    809#define DWC2_HS_PERIODIC_US_PER_UFRAME	100
    810
    811#define DWC2_HS_SCHEDULE_UFRAMES	8
    812#define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
    813					 DWC2_HS_PERIODIC_US_PER_UFRAME)
    814
    815/*
    816 * Constants related to low speed scheduling
    817 *
    818 * For high speed we schedule every 1us.  For low speed that's a bit overkill,
    819 * so we make up a unit called a "slice" that's worth 25us.  There are 40
    820 * slices in a full frame and we can schedule 36 of those (90%) for periodic
    821 * transfers.
    822 *
    823 * Our low speed schedule can be as short as 1 frame or could be longer.  When
    824 * we only schedule 1 frame it means that we'll need to reserve a time every
    825 * frame even for things that only transfer very rarely, so something that runs
    826 * every 2048 frames will get time reserved in every frame.  Our low speed
    827 * schedule can be longer and we'll be able to handle more overlap, but that
    828 * will come at increased memory cost and increased time to schedule.
    829 *
    830 * Note: one other advantage of a short low speed schedule is that if we mess
    831 * up and miss scheduling we can jump in and use any of the slots that we
    832 * happened to reserve.
    833 *
    834 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
    835 * the schedule.  There will be one schedule per TT.
    836 *
    837 * Requirements:
    838 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
    839 */
    840#define DWC2_US_PER_SLICE	25
    841#define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
    842
    843#define DWC2_ROUND_US_TO_SLICE(us) \
    844				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
    845				 DWC2_US_PER_SLICE)
    846
    847#define DWC2_LS_PERIODIC_US_PER_FRAME \
    848				900
    849#define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
    850				(DWC2_LS_PERIODIC_US_PER_FRAME / \
    851				 DWC2_US_PER_SLICE)
    852
    853#define DWC2_LS_SCHEDULE_FRAMES	1
    854#define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
    855				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
    856
    857/**
    858 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
    859 * and periodic schedules
    860 *
    861 * These are common for both host and peripheral modes:
    862 *
    863 * @dev:                The struct device pointer
    864 * @regs:		Pointer to controller regs
    865 * @hw_params:          Parameters that were autodetected from the
    866 *                      hardware registers
    867 * @params:	Parameters that define how the core should be configured
    868 * @op_state:           The operational State, during transitions (a_host=>
    869 *                      a_peripheral and b_device=>b_host) this may not match
    870 *                      the core, but allows the software to determine
    871 *                      transitions
    872 * @dr_mode:            Requested mode of operation, one of following:
    873 *                      - USB_DR_MODE_PERIPHERAL
    874 *                      - USB_DR_MODE_HOST
    875 *                      - USB_DR_MODE_OTG
    876 * @role_sw:		usb_role_switch handle
    877 * @role_sw_default_mode: default operation mode of controller while usb role
    878 *			is USB_ROLE_NONE
    879 * @hcd_enabled:	Host mode sub-driver initialization indicator.
    880 * @gadget_enabled:	Peripheral mode sub-driver initialization indicator.
    881 * @ll_hw_enabled:	Status of low-level hardware resources.
    882 * @hibernated:		True if core is hibernated
    883 * @in_ppd:		True if core is partial power down mode.
    884 * @bus_suspended:	True if bus is suspended
    885 * @reset_phy_on_wake:	Quirk saying that we should assert PHY reset on a
    886 *			remote wakeup.
    887 * @phy_off_for_suspend: Status of whether we turned the PHY off at suspend.
    888 * @need_phy_for_wake:	Quirk saying that we should keep the PHY on at
    889 *			suspend if we need USB to wake us up.
    890 * @frame_number:       Frame number read from the core. For both device
    891 *			and host modes. The value ranges are from 0
    892 *			to HFNUM_MAX_FRNUM.
    893 * @phy:                The otg phy transceiver structure for phy control.
    894 * @uphy:               The otg phy transceiver structure for old USB phy
    895 *                      control.
    896 * @plat:               The platform specific configuration data. This can be
    897 *                      removed once all SoCs support usb transceiver.
    898 * @supplies:           Definition of USB power supplies
    899 * @vbus_supply:        Regulator supplying vbus.
    900 * @usb33d:		Optional 3.3v regulator used on some stm32 devices to
    901 *			supply ID and VBUS detection hardware.
    902 * @lock:		Spinlock that protects all the driver data structures
    903 * @priv:		Stores a pointer to the struct usb_hcd
    904 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
    905 *                      transfer are in process of being queued
    906 * @srp_success:        Stores status of SRP request in the case of a FS PHY
    907 *                      with an I2C interface
    908 * @wq_otg:             Workqueue object used for handling of some interrupts
    909 * @wf_otg:             Work object for handling Connector ID Status Change
    910 *                      interrupt
    911 * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
    912 * @lx_state:           Lx state of connected device
    913 * @gr_backup: Backup of global registers during suspend
    914 * @dr_backup: Backup of device registers during suspend
    915 * @hr_backup: Backup of host registers during suspend
    916 * @needs_byte_swap:		Specifies whether the opposite endianness.
    917 *
    918 * These are for host mode:
    919 *
    920 * @flags:              Flags for handling root port state changes
    921 * @flags.d32:          Contain all root port flags
    922 * @flags.b:            Separate root port flags from each other
    923 * @flags.b.port_connect_status_change: True if root port connect status
    924 *                      changed
    925 * @flags.b.port_connect_status: True if device connected to root port
    926 * @flags.b.port_reset_change: True if root port reset status changed
    927 * @flags.b.port_enable_change: True if root port enable status changed
    928 * @flags.b.port_suspend_change: True if root port suspend status changed
    929 * @flags.b.port_over_current_change: True if root port over current state
    930 *                       changed.
    931 * @flags.b.port_l1_change: True if root port l1 status changed
    932 * @flags.b.reserved:   Reserved bits of root port register
    933 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
    934 *                      Transfers associated with these QHs are not currently
    935 *                      assigned to a host channel.
    936 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
    937 *                      Transfers associated with these QHs are currently
    938 *                      assigned to a host channel.
    939 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
    940 *                      non-periodic schedule
    941 * @non_periodic_sched_waiting: Waiting QHs in the non-periodic schedule.
    942 *                      Transfers associated with these QHs are not currently
    943 *                      assigned to a host channel.
    944 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
    945 *                      list of QHs for periodic transfers that are _not_
    946 *                      scheduled for the next frame. Each QH in the list has an
    947 *                      interval counter that determines when it needs to be
    948 *                      scheduled for execution. This scheduling mechanism
    949 *                      allows only a simple calculation for periodic bandwidth
    950 *                      used (i.e. must assume that all periodic transfers may
    951 *                      need to execute in the same frame). However, it greatly
    952 *                      simplifies scheduling and should be sufficient for the
    953 *                      vast majority of OTG hosts, which need to connect to a
    954 *                      small number of peripherals at one time. Items move from
    955 *                      this list to periodic_sched_ready when the QH interval
    956 *                      counter is 0 at SOF.
    957 * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
    958 *                      the next frame, but have not yet been assigned to host
    959 *                      channels. Items move from this list to
    960 *                      periodic_sched_assigned as host channels become
    961 *                      available during the current frame.
    962 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
    963 *                      frame that are assigned to host channels. Items move
    964 *                      from this list to periodic_sched_queued as the
    965 *                      transactions for the QH are queued to the DWC_otg
    966 *                      controller.
    967 * @periodic_sched_queued: List of periodic QHs that have been queued for
    968 *                      execution. Items move from this list to either
    969 *                      periodic_sched_inactive or periodic_sched_ready when the
    970 *                      channel associated with the transfer is released. If the
    971 *                      interval for the QH is 1, the item moves to
    972 *                      periodic_sched_ready because it must be rescheduled for
    973 *                      the next frame. Otherwise, the item moves to
    974 *                      periodic_sched_inactive.
    975 * @split_order:        List keeping track of channels doing splits, in order.
    976 * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
    977 *                      This value is in microseconds per (micro)frame. The
    978 *                      assumption is that all periodic transfers may occur in
    979 *                      the same (micro)frame.
    980 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
    981 *                      host is in high speed mode; low speed schedules are
    982 *                      stored elsewhere since we need one per TT.
    983 * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
    984 *                      SOF enable/disable.
    985 * @free_hc_list:       Free host channels in the controller. This is a list of
    986 *                      struct dwc2_host_chan items.
    987 * @periodic_channels:  Number of host channels assigned to periodic transfers.
    988 *                      Currently assuming that there is a dedicated host
    989 *                      channel for each periodic transaction and at least one
    990 *                      host channel is available for non-periodic transactions.
    991 * @non_periodic_channels: Number of host channels assigned to non-periodic
    992 *                      transfers
    993 * @available_host_channels: Number of host channels available for the
    994 *			     microframe scheduler to use
    995 * @hc_ptr_array:       Array of pointers to the host channel descriptors.
    996 *                      Allows accessing a host channel descriptor given the
    997 *                      host channel number. This is useful in interrupt
    998 *                      handlers.
    999 * @status_buf:         Buffer used for data received during the status phase of
   1000 *                      a control transfer.
   1001 * @status_buf_dma:     DMA address for status_buf
   1002 * @start_work:         Delayed work for handling host A-cable connection
   1003 * @reset_work:         Delayed work for handling a port reset
   1004 * @phy_reset_work:     Work structure for doing a PHY reset
   1005 * @otg_port:           OTG port number
   1006 * @frame_list:         Frame list
   1007 * @frame_list_dma:     Frame list DMA address
   1008 * @frame_list_sz:      Frame list size
   1009 * @desc_gen_cache:     Kmem cache for generic descriptors
   1010 * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
   1011 * @unaligned_cache:    Kmem cache for DMA mode to handle non-aligned buf
   1012 *
   1013 * These are for peripheral mode:
   1014 *
   1015 * @driver:             USB gadget driver
   1016 * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
   1017 * @num_of_eps:         Number of available EPs (excluding EP0)
   1018 * @debug_root:         Root directrory for debugfs.
   1019 * @ep0_reply:          Request used for ep0 reply.
   1020 * @ep0_buff:           Buffer for EP0 reply data, if needed.
   1021 * @ctrl_buff:          Buffer for EP0 control requests.
   1022 * @ctrl_req:           Request for EP0 control packets.
   1023 * @ep0_state:          EP0 control transfers state
   1024 * @delayed_status:		true when gadget driver asks for delayed status
   1025 * @test_mode:          USB test mode requested by the host
   1026 * @remote_wakeup_allowed: True if device is allowed to wake-up host by
   1027 *                      remote-wakeup signalling
   1028 * @setup_desc_dma:	EP0 setup stage desc chain DMA address
   1029 * @setup_desc:		EP0 setup stage desc chain pointer
   1030 * @ctrl_in_desc_dma:	EP0 IN data phase desc chain DMA address
   1031 * @ctrl_in_desc:	EP0 IN data phase desc chain pointer
   1032 * @ctrl_out_desc_dma:	EP0 OUT data phase desc chain DMA address
   1033 * @ctrl_out_desc:	EP0 OUT data phase desc chain pointer
   1034 * @irq:		Interrupt request line number
   1035 * @clk:		Pointer to otg clock
   1036 * @reset:		Pointer to dwc2 reset controller
   1037 * @reset_ecc:          Pointer to dwc2 optional reset controller in Stratix10.
   1038 * @regset:		A pointer to a struct debugfs_regset32, which contains
   1039 *			a pointer to an array of register definitions, the
   1040 *			array size and the base address where the register bank
   1041 *			is to be found.
   1042 * @last_frame_num:	Number of last frame. Range from 0 to  32768
   1043 * @frame_num_array:    Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
   1044 *			defined, for missed SOFs tracking. Array holds that
   1045 *			frame numbers, which not equal to last_frame_num +1
   1046 * @last_frame_num_array:   Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
   1047 *			    defined, for missed SOFs tracking.
   1048 *			    If current_frame_number != last_frame_num+1
   1049 *			    then last_frame_num added to this array
   1050 * @frame_num_idx:	Actual size of frame_num_array and last_frame_num_array
   1051 * @dumped_frame_num_array:	1 - if missed SOFs frame numbers dumbed
   1052 *				0 - if missed SOFs frame numbers not dumbed
   1053 * @fifo_mem:			Total internal RAM for FIFOs (bytes)
   1054 * @fifo_map:		Each bit intend for concrete fifo. If that bit is set,
   1055 *			then that fifo is used
   1056 * @gadget:		Represents a usb gadget device
   1057 * @connected:		Used in slave mode. True if device connected with host
   1058 * @eps_in:		The IN endpoints being supplied to the gadget framework
   1059 * @eps_out:		The OUT endpoints being supplied to the gadget framework
   1060 * @new_connection:	Used in host mode. True if there are new connected
   1061 *			device
   1062 * @enabled:		Indicates the enabling state of controller
   1063 *
   1064 */
   1065struct dwc2_hsotg {
   1066	struct device *dev;
   1067	void __iomem *regs;
   1068	/** Params detected from hardware */
   1069	struct dwc2_hw_params hw_params;
   1070	/** Params to actually use */
   1071	struct dwc2_core_params params;
   1072	enum usb_otg_state op_state;
   1073	enum usb_dr_mode dr_mode;
   1074	struct usb_role_switch *role_sw;
   1075	enum usb_dr_mode role_sw_default_mode;
   1076	unsigned int hcd_enabled:1;
   1077	unsigned int gadget_enabled:1;
   1078	unsigned int ll_hw_enabled:1;
   1079	unsigned int hibernated:1;
   1080	unsigned int in_ppd:1;
   1081	bool bus_suspended;
   1082	unsigned int reset_phy_on_wake:1;
   1083	unsigned int need_phy_for_wake:1;
   1084	unsigned int phy_off_for_suspend:1;
   1085	u16 frame_number;
   1086
   1087	struct phy *phy;
   1088	struct usb_phy *uphy;
   1089	struct dwc2_hsotg_plat *plat;
   1090	struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
   1091	struct regulator *vbus_supply;
   1092	struct regulator *usb33d;
   1093
   1094	spinlock_t lock;
   1095	void *priv;
   1096	int     irq;
   1097	struct clk *clk;
   1098	struct reset_control *reset;
   1099	struct reset_control *reset_ecc;
   1100
   1101	unsigned int queuing_high_bandwidth:1;
   1102	unsigned int srp_success:1;
   1103
   1104	struct workqueue_struct *wq_otg;
   1105	struct work_struct wf_otg;
   1106	struct timer_list wkp_timer;
   1107	enum dwc2_lx_state lx_state;
   1108	struct dwc2_gregs_backup gr_backup;
   1109	struct dwc2_dregs_backup dr_backup;
   1110	struct dwc2_hregs_backup hr_backup;
   1111
   1112	struct dentry *debug_root;
   1113	struct debugfs_regset32 *regset;
   1114	bool needs_byte_swap;
   1115
   1116	/* DWC OTG HW Release versions */
   1117#define DWC2_CORE_REV_2_71a	0x4f54271a
   1118#define DWC2_CORE_REV_2_72a     0x4f54272a
   1119#define DWC2_CORE_REV_2_80a	0x4f54280a
   1120#define DWC2_CORE_REV_2_90a	0x4f54290a
   1121#define DWC2_CORE_REV_2_91a	0x4f54291a
   1122#define DWC2_CORE_REV_2_92a	0x4f54292a
   1123#define DWC2_CORE_REV_2_94a	0x4f54294a
   1124#define DWC2_CORE_REV_3_00a	0x4f54300a
   1125#define DWC2_CORE_REV_3_10a	0x4f54310a
   1126#define DWC2_CORE_REV_4_00a	0x4f54400a
   1127#define DWC2_CORE_REV_4_20a	0x4f54420a
   1128#define DWC2_FS_IOT_REV_1_00a	0x5531100a
   1129#define DWC2_HS_IOT_REV_1_00a	0x5532100a
   1130#define DWC2_CORE_REV_MASK	0x0000ffff
   1131
   1132	/* DWC OTG HW Core ID */
   1133#define DWC2_OTG_ID		0x4f540000
   1134#define DWC2_FS_IOT_ID		0x55310000
   1135#define DWC2_HS_IOT_ID		0x55320000
   1136
   1137#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
   1138	union dwc2_hcd_internal_flags {
   1139		u32 d32;
   1140		struct {
   1141			unsigned port_connect_status_change:1;
   1142			unsigned port_connect_status:1;
   1143			unsigned port_reset_change:1;
   1144			unsigned port_enable_change:1;
   1145			unsigned port_suspend_change:1;
   1146			unsigned port_over_current_change:1;
   1147			unsigned port_l1_change:1;
   1148			unsigned reserved:25;
   1149		} b;
   1150	} flags;
   1151
   1152	struct list_head non_periodic_sched_inactive;
   1153	struct list_head non_periodic_sched_waiting;
   1154	struct list_head non_periodic_sched_active;
   1155	struct list_head *non_periodic_qh_ptr;
   1156	struct list_head periodic_sched_inactive;
   1157	struct list_head periodic_sched_ready;
   1158	struct list_head periodic_sched_assigned;
   1159	struct list_head periodic_sched_queued;
   1160	struct list_head split_order;
   1161	u16 periodic_usecs;
   1162	DECLARE_BITMAP(hs_periodic_bitmap, DWC2_HS_SCHEDULE_US);
   1163	u16 periodic_qh_count;
   1164	bool new_connection;
   1165
   1166	u16 last_frame_num;
   1167
   1168#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
   1169#define FRAME_NUM_ARRAY_SIZE 1000
   1170	u16 *frame_num_array;
   1171	u16 *last_frame_num_array;
   1172	int frame_num_idx;
   1173	int dumped_frame_num_array;
   1174#endif
   1175
   1176	struct list_head free_hc_list;
   1177	int periodic_channels;
   1178	int non_periodic_channels;
   1179	int available_host_channels;
   1180	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
   1181	u8 *status_buf;
   1182	dma_addr_t status_buf_dma;
   1183#define DWC2_HCD_STATUS_BUF_SIZE 64
   1184
   1185	struct delayed_work start_work;
   1186	struct delayed_work reset_work;
   1187	struct work_struct phy_reset_work;
   1188	u8 otg_port;
   1189	u32 *frame_list;
   1190	dma_addr_t frame_list_dma;
   1191	u32 frame_list_sz;
   1192	struct kmem_cache *desc_gen_cache;
   1193	struct kmem_cache *desc_hsisoc_cache;
   1194	struct kmem_cache *unaligned_cache;
   1195#define DWC2_KMEM_UNALIGNED_BUF_SIZE 1024
   1196
   1197#endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
   1198
   1199#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
   1200	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
   1201	/* Gadget structures */
   1202	struct usb_gadget_driver *driver;
   1203	int fifo_mem;
   1204	unsigned int dedicated_fifos:1;
   1205	unsigned char num_of_eps;
   1206	u32 fifo_map;
   1207
   1208	struct usb_request *ep0_reply;
   1209	struct usb_request *ctrl_req;
   1210	void *ep0_buff;
   1211	void *ctrl_buff;
   1212	enum dwc2_ep0_state ep0_state;
   1213	unsigned delayed_status : 1;
   1214	u8 test_mode;
   1215
   1216	dma_addr_t setup_desc_dma[2];
   1217	struct dwc2_dma_desc *setup_desc[2];
   1218	dma_addr_t ctrl_in_desc_dma;
   1219	struct dwc2_dma_desc *ctrl_in_desc;
   1220	dma_addr_t ctrl_out_desc_dma;
   1221	struct dwc2_dma_desc *ctrl_out_desc;
   1222
   1223	struct usb_gadget gadget;
   1224	unsigned int enabled:1;
   1225	unsigned int connected:1;
   1226	unsigned int remote_wakeup_allowed:1;
   1227	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
   1228	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
   1229#endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
   1230};
   1231
   1232/* Normal architectures just use readl/write */
   1233static inline u32 dwc2_readl(struct dwc2_hsotg *hsotg, u32 offset)
   1234{
   1235	u32 val;
   1236
   1237	val = readl(hsotg->regs + offset);
   1238	if (hsotg->needs_byte_swap)
   1239		return swab32(val);
   1240	else
   1241		return val;
   1242}
   1243
   1244static inline void dwc2_writel(struct dwc2_hsotg *hsotg, u32 value, u32 offset)
   1245{
   1246	if (hsotg->needs_byte_swap)
   1247		writel(swab32(value), hsotg->regs + offset);
   1248	else
   1249		writel(value, hsotg->regs + offset);
   1250
   1251#ifdef DWC2_LOG_WRITES
   1252	pr_info("info:: wrote %08x to %p\n", value, hsotg->regs + offset);
   1253#endif
   1254}
   1255
   1256static inline void dwc2_readl_rep(struct dwc2_hsotg *hsotg, u32 offset,
   1257				  void *buffer, unsigned int count)
   1258{
   1259	if (count) {
   1260		u32 *buf = buffer;
   1261
   1262		do {
   1263			u32 x = dwc2_readl(hsotg, offset);
   1264			*buf++ = x;
   1265		} while (--count);
   1266	}
   1267}
   1268
   1269static inline void dwc2_writel_rep(struct dwc2_hsotg *hsotg, u32 offset,
   1270				   const void *buffer, unsigned int count)
   1271{
   1272	if (count) {
   1273		const u32 *buf = buffer;
   1274
   1275		do {
   1276			dwc2_writel(hsotg, *buf++, offset);
   1277		} while (--count);
   1278	}
   1279}
   1280
   1281/* Reasons for halting a host channel */
   1282enum dwc2_halt_status {
   1283	DWC2_HC_XFER_NO_HALT_STATUS,
   1284	DWC2_HC_XFER_COMPLETE,
   1285	DWC2_HC_XFER_URB_COMPLETE,
   1286	DWC2_HC_XFER_ACK,
   1287	DWC2_HC_XFER_NAK,
   1288	DWC2_HC_XFER_NYET,
   1289	DWC2_HC_XFER_STALL,
   1290	DWC2_HC_XFER_XACT_ERR,
   1291	DWC2_HC_XFER_FRAME_OVERRUN,
   1292	DWC2_HC_XFER_BABBLE_ERR,
   1293	DWC2_HC_XFER_DATA_TOGGLE_ERR,
   1294	DWC2_HC_XFER_AHB_ERR,
   1295	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
   1296	DWC2_HC_XFER_URB_DEQUEUE,
   1297};
   1298
   1299/* Core version information */
   1300static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
   1301{
   1302	return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
   1303}
   1304
   1305static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
   1306{
   1307	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
   1308}
   1309
   1310static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
   1311{
   1312	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
   1313}
   1314
   1315/*
   1316 * The following functions support initialization of the core driver component
   1317 * and the DWC_otg controller
   1318 */
   1319int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
   1320int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg);
   1321int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, int rem_wakeup,
   1322				 bool restore);
   1323int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host);
   1324int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
   1325		int reset, int is_host);
   1326void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg);
   1327int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy);
   1328
   1329void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host);
   1330void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
   1331
   1332bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
   1333
   1334int dwc2_check_core_version(struct dwc2_hsotg *hsotg);
   1335
   1336/*
   1337 * Common core Functions.
   1338 * The following functions support managing the DWC_otg controller in either
   1339 * device or host mode.
   1340 */
   1341void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
   1342void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
   1343void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
   1344
   1345void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
   1346void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
   1347
   1348void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup,
   1349			     int is_host);
   1350int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg);
   1351int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg);
   1352
   1353void dwc2_enable_acg(struct dwc2_hsotg *hsotg);
   1354
   1355/* This function should be called on every hardware interrupt. */
   1356irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
   1357
   1358/* The device ID match table */
   1359extern const struct of_device_id dwc2_of_match_table[];
   1360extern const struct acpi_device_id dwc2_acpi_match[];
   1361
   1362int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
   1363int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
   1364
   1365/* Common polling functions */
   1366int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
   1367			    u32 timeout);
   1368int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
   1369			      u32 timeout);
   1370/* Parameters */
   1371int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
   1372int dwc2_init_params(struct dwc2_hsotg *hsotg);
   1373
   1374/*
   1375 * The following functions check the controller's OTG operation mode
   1376 * capability (GHWCFG2.OTG_MODE).
   1377 *
   1378 * These functions can be used before the internal hsotg->hw_params
   1379 * are read in and cached so they always read directly from the
   1380 * GHWCFG2 register.
   1381 */
   1382unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
   1383bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
   1384bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
   1385bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
   1386
   1387/*
   1388 * Returns the mode of operation, host or device
   1389 */
   1390static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
   1391{
   1392	return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
   1393}
   1394
   1395static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
   1396{
   1397	return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
   1398}
   1399
   1400int dwc2_drd_init(struct dwc2_hsotg *hsotg);
   1401void dwc2_drd_suspend(struct dwc2_hsotg *hsotg);
   1402void dwc2_drd_resume(struct dwc2_hsotg *hsotg);
   1403void dwc2_drd_exit(struct dwc2_hsotg *hsotg);
   1404
   1405/*
   1406 * Dump core registers and SPRAM
   1407 */
   1408void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
   1409void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
   1410void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
   1411
   1412/* Gadget defines */
   1413#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
   1414	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
   1415int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
   1416int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
   1417int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
   1418int dwc2_gadget_init(struct dwc2_hsotg *hsotg);
   1419void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
   1420				       bool reset);
   1421void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg);
   1422void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
   1423void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
   1424int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
   1425#define dwc2_is_device_connected(hsotg) (hsotg->connected)
   1426#define dwc2_is_device_enabled(hsotg) (hsotg->enabled)
   1427int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
   1428int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup);
   1429int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg);
   1430int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
   1431				 int rem_wakeup, int reset);
   1432int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg);
   1433int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
   1434					bool restore);
   1435void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg);
   1436void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
   1437				   int rem_wakeup);
   1438int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
   1439int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
   1440int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
   1441void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg);
   1442void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg);
   1443static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg)
   1444{ hsotg->fifo_map = 0; }
   1445#else
   1446static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
   1447{ return 0; }
   1448static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
   1449{ return 0; }
   1450static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
   1451{ return 0; }
   1452static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
   1453{ return 0; }
   1454static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
   1455						     bool reset) {}
   1456static inline void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) {}
   1457static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
   1458static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
   1459static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
   1460					   int testmode)
   1461{ return 0; }
   1462#define dwc2_is_device_connected(hsotg) (0)
   1463#define dwc2_is_device_enabled(hsotg) (0)
   1464static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
   1465{ return 0; }
   1466static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg,
   1467						int remote_wakeup)
   1468{ return 0; }
   1469static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
   1470{ return 0; }
   1471static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
   1472					       int rem_wakeup, int reset)
   1473{ return 0; }
   1474static inline int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
   1475{ return 0; }
   1476static inline int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
   1477						      bool restore)
   1478{ return 0; }
   1479static inline void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
   1480static inline void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
   1481						 int rem_wakeup) {}
   1482static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
   1483{ return 0; }
   1484static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
   1485{ return 0; }
   1486static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
   1487{ return 0; }
   1488static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {}
   1489static inline void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) {}
   1490static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg) {}
   1491#endif
   1492
   1493#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
   1494int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
   1495int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
   1496void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
   1497void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
   1498void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
   1499int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup);
   1500int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex);
   1501int dwc2_port_resume(struct dwc2_hsotg *hsotg);
   1502int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
   1503int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
   1504int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg);
   1505int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
   1506			       int rem_wakeup, int reset);
   1507int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg);
   1508int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
   1509				      int rem_wakeup, bool restore);
   1510void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg);
   1511void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup);
   1512bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2);
   1513static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg)
   1514{ schedule_work(&hsotg->phy_reset_work); }
   1515#else
   1516static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
   1517{ return 0; }
   1518static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
   1519						   int us)
   1520{ return 0; }
   1521static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
   1522static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
   1523static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
   1524static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
   1525static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
   1526{ return 0; }
   1527static inline int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
   1528{ return 0; }
   1529static inline int dwc2_port_resume(struct dwc2_hsotg *hsotg)
   1530{ return 0; }
   1531static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
   1532{ return 0; }
   1533static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
   1534{ return 0; }
   1535static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
   1536{ return 0; }
   1537static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
   1538{ return 0; }
   1539static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
   1540					     int rem_wakeup, int reset)
   1541{ return 0; }
   1542static inline int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
   1543{ return 0; }
   1544static inline int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
   1545						    int rem_wakeup, bool restore)
   1546{ return 0; }
   1547static inline void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
   1548static inline void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg,
   1549					       int rem_wakeup) {}
   1550static inline bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
   1551{ return false; }
   1552static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) {}
   1553
   1554#endif
   1555
   1556#endif /* __DWC2_CORE_H__ */