cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

hcd.h (28809B)


      1/* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
      2/*
      3 * hcd.h - DesignWare HS OTG Controller host-mode declarations
      4 *
      5 * Copyright (C) 2004-2013 Synopsys, Inc.
      6 *
      7 * Redistribution and use in source and binary forms, with or without
      8 * modification, are permitted provided that the following conditions
      9 * are met:
     10 * 1. Redistributions of source code must retain the above copyright
     11 *    notice, this list of conditions, and the following disclaimer,
     12 *    without modification.
     13 * 2. Redistributions in binary form must reproduce the above copyright
     14 *    notice, this list of conditions and the following disclaimer in the
     15 *    documentation and/or other materials provided with the distribution.
     16 * 3. The names of the above-listed copyright holders may not be used
     17 *    to endorse or promote products derived from this software without
     18 *    specific prior written permission.
     19 *
     20 * ALTERNATIVELY, this software may be distributed under the terms of the
     21 * GNU General Public License ("GPL") as published by the Free Software
     22 * Foundation; either version 2 of the License, or (at your option) any
     23 * later version.
     24 *
     25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
     26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
     29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     36 */
     37#ifndef __DWC2_HCD_H__
     38#define __DWC2_HCD_H__
     39
     40/*
     41 * This file contains the structures, constants, and interfaces for the
     42 * Host Contoller Driver (HCD)
     43 *
     44 * The Host Controller Driver (HCD) is responsible for translating requests
     45 * from the USB Driver into the appropriate actions on the DWC_otg controller.
     46 * It isolates the USBD from the specifics of the controller by providing an
     47 * API to the USBD.
     48 */
     49
     50struct dwc2_qh;
     51
     52/**
     53 * struct dwc2_host_chan - Software host channel descriptor
     54 *
     55 * @hc_num:             Host channel number, used for register address lookup
     56 * @dev_addr:           Address of the device
     57 * @ep_num:             Endpoint of the device
     58 * @ep_is_in:           Endpoint direction
     59 * @speed:              Device speed. One of the following values:
     60 *                       - USB_SPEED_LOW
     61 *                       - USB_SPEED_FULL
     62 *                       - USB_SPEED_HIGH
     63 * @ep_type:            Endpoint type. One of the following values:
     64 *                       - USB_ENDPOINT_XFER_CONTROL: 0
     65 *                       - USB_ENDPOINT_XFER_ISOC:    1
     66 *                       - USB_ENDPOINT_XFER_BULK:    2
     67 *                       - USB_ENDPOINT_XFER_INTR:    3
     68 * @max_packet:         Max packet size in bytes
     69 * @data_pid_start:     PID for initial transaction.
     70 *                       0: DATA0
     71 *                       1: DATA2
     72 *                       2: DATA1
     73 *                       3: MDATA (non-Control EP),
     74 *                          SETUP (Control EP)
     75 * @multi_count:        Number of additional periodic transactions per
     76 *                      (micro)frame
     77 * @xfer_buf:           Pointer to current transfer buffer position
     78 * @xfer_dma:           DMA address of xfer_buf
     79 * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
     80 *                      DWORD aligned
     81 * @xfer_len:           Total number of bytes to transfer
     82 * @xfer_count:         Number of bytes transferred so far
     83 * @start_pkt_count:    Packet count at start of transfer
     84 * @xfer_started:       True if the transfer has been started
     85 * @do_ping:            True if a PING request should be issued on this channel
     86 * @error_state:        True if the error count for this transaction is non-zero
     87 * @halt_on_queue:      True if this channel should be halted the next time a
     88 *                      request is queued for the channel. This is necessary in
     89 *                      slave mode if no request queue space is available when
     90 *                      an attempt is made to halt the channel.
     91 * @halt_pending:       True if the host channel has been halted, but the core
     92 *                      is not finished flushing queued requests
     93 * @do_split:           Enable split for the channel
     94 * @complete_split:     Enable complete split
     95 * @hub_addr:           Address of high speed hub for the split
     96 * @hub_port:           Port of the low/full speed device for the split
     97 * @xact_pos:           Split transaction position. One of the following values:
     98 *                       - DWC2_HCSPLT_XACTPOS_MID
     99 *                       - DWC2_HCSPLT_XACTPOS_BEGIN
    100 *                       - DWC2_HCSPLT_XACTPOS_END
    101 *                       - DWC2_HCSPLT_XACTPOS_ALL
    102 * @requests:           Number of requests issued for this channel since it was
    103 *                      assigned to the current transfer (not counting PINGs)
    104 * @schinfo:            Scheduling micro-frame bitmap
    105 * @ntd:                Number of transfer descriptors for the transfer
    106 * @halt_status:        Reason for halting the host channel
    107 * @hcint:               Contents of the HCINT register when the interrupt came
    108 * @qh:                 QH for the transfer being processed by this channel
    109 * @hc_list_entry:      For linking to list of host channels
    110 * @desc_list_addr:     Current QH's descriptor list DMA address
    111 * @desc_list_sz:       Current QH's descriptor list size
    112 * @split_order_list_entry: List entry for keeping track of the order of splits
    113 *
    114 * This structure represents the state of a single host channel when acting in
    115 * host mode. It contains the data items needed to transfer packets to an
    116 * endpoint via a host channel.
    117 */
    118struct dwc2_host_chan {
    119	u8 hc_num;
    120
    121	unsigned dev_addr:7;
    122	unsigned ep_num:4;
    123	unsigned ep_is_in:1;
    124	unsigned speed:4;
    125	unsigned ep_type:2;
    126	unsigned max_packet:11;
    127	unsigned data_pid_start:2;
    128#define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
    129#define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
    130#define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
    131#define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
    132#define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
    133
    134	unsigned multi_count:2;
    135
    136	u8 *xfer_buf;
    137	dma_addr_t xfer_dma;
    138	dma_addr_t align_buf;
    139	u32 xfer_len;
    140	u32 xfer_count;
    141	u16 start_pkt_count;
    142	u8 xfer_started;
    143	u8 do_ping;
    144	u8 error_state;
    145	u8 halt_on_queue;
    146	u8 halt_pending;
    147	u8 do_split;
    148	u8 complete_split;
    149	u8 hub_addr;
    150	u8 hub_port;
    151	u8 xact_pos;
    152#define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
    153#define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
    154#define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
    155#define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
    156
    157	u8 requests;
    158	u8 schinfo;
    159	u16 ntd;
    160	enum dwc2_halt_status halt_status;
    161	u32 hcint;
    162	struct dwc2_qh *qh;
    163	struct list_head hc_list_entry;
    164	dma_addr_t desc_list_addr;
    165	u32 desc_list_sz;
    166	struct list_head split_order_list_entry;
    167};
    168
    169struct dwc2_hcd_pipe_info {
    170	u8 dev_addr;
    171	u8 ep_num;
    172	u8 pipe_type;
    173	u8 pipe_dir;
    174	u16 maxp;
    175	u16 maxp_mult;
    176};
    177
    178struct dwc2_hcd_iso_packet_desc {
    179	u32 offset;
    180	u32 length;
    181	u32 actual_length;
    182	u32 status;
    183};
    184
    185struct dwc2_qtd;
    186
    187struct dwc2_hcd_urb {
    188	void *priv;
    189	struct dwc2_qtd *qtd;
    190	void *buf;
    191	dma_addr_t dma;
    192	void *setup_packet;
    193	dma_addr_t setup_dma;
    194	u32 length;
    195	u32 actual_length;
    196	u32 status;
    197	u32 error_count;
    198	u32 packet_count;
    199	u32 flags;
    200	u16 interval;
    201	struct dwc2_hcd_pipe_info pipe_info;
    202	struct dwc2_hcd_iso_packet_desc iso_descs[];
    203};
    204
    205/* Phases for control transfers */
    206enum dwc2_control_phase {
    207	DWC2_CONTROL_SETUP,
    208	DWC2_CONTROL_DATA,
    209	DWC2_CONTROL_STATUS,
    210};
    211
    212/* Transaction types */
    213enum dwc2_transaction_type {
    214	DWC2_TRANSACTION_NONE,
    215	DWC2_TRANSACTION_PERIODIC,
    216	DWC2_TRANSACTION_NON_PERIODIC,
    217	DWC2_TRANSACTION_ALL,
    218};
    219
    220/* The number of elements per LS bitmap (per port on multi_tt) */
    221#define DWC2_ELEMENTS_PER_LS_BITMAP	DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
    222						     BITS_PER_LONG)
    223
    224/**
    225 * struct dwc2_tt - dwc2 data associated with a usb_tt
    226 *
    227 * @refcount:           Number of Queue Heads (QHs) holding a reference.
    228 * @usb_tt:             Pointer back to the official usb_tt.
    229 * @periodic_bitmaps:   Bitmap for which parts of the 1ms frame are accounted
    230 *                      for already.  Each is DWC2_ELEMENTS_PER_LS_BITMAP
    231 *			elements (so sizeof(long) times that in bytes).
    232 *
    233 * This structure is stored in the hcpriv of the official usb_tt.
    234 */
    235struct dwc2_tt {
    236	int refcount;
    237	struct usb_tt *usb_tt;
    238	unsigned long periodic_bitmaps[];
    239};
    240
    241/**
    242 * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
    243 *
    244 * @start_schedule_us:  The start time on the main bus schedule.  Note that
    245 *                         the main bus schedule is tightly packed and this
    246 *			   time should be interpreted as tightly packed (so
    247 *			   uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
    248 *			   instead of 125 us).
    249 * @duration_us:           How long this transfer goes.
    250 */
    251
    252struct dwc2_hs_transfer_time {
    253	u32 start_schedule_us;
    254	u16 duration_us;
    255};
    256
    257/**
    258 * struct dwc2_qh - Software queue head structure
    259 *
    260 * @hsotg:              The HCD state structure for the DWC OTG controller
    261 * @ep_type:            Endpoint type. One of the following values:
    262 *                       - USB_ENDPOINT_XFER_CONTROL
    263 *                       - USB_ENDPOINT_XFER_BULK
    264 *                       - USB_ENDPOINT_XFER_INT
    265 *                       - USB_ENDPOINT_XFER_ISOC
    266 * @ep_is_in:           Endpoint direction
    267 * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
    268 * @maxp_mult:          Multiplier for maxp
    269 * @dev_speed:          Device speed. One of the following values:
    270 *                       - USB_SPEED_LOW
    271 *                       - USB_SPEED_FULL
    272 *                       - USB_SPEED_HIGH
    273 * @data_toggle:        Determines the PID of the next data packet for
    274 *                      non-controltransfers. Ignored for control transfers.
    275 *                      One of the following values:
    276 *                       - DWC2_HC_PID_DATA0
    277 *                       - DWC2_HC_PID_DATA1
    278 * @ping_state:         Ping state
    279 * @do_split:           Full/low speed endpoint on high-speed hub requires split
    280 * @td_first:           Index of first activated isochronous transfer descriptor
    281 * @td_last:            Index of last activated isochronous transfer descriptor
    282 * @host_us:            Bandwidth in microseconds per transfer as seen by host
    283 * @device_us:          Bandwidth in microseconds per transfer as seen by device
    284 * @host_interval:      Interval between transfers as seen by the host.  If
    285 *                      the host is high speed and the device is low speed this
    286 *                      will be 8 times device interval.
    287 * @device_interval:    Interval between transfers as seen by the device.
    288 *                      interval.
    289 * @next_active_frame:  (Micro)frame _before_ we next need to put something on
    290 *                      the bus.  We'll move the qh to active here.  If the
    291 *                      host is in high speed mode this will be a uframe.  If
    292 *                      the host is in low speed mode this will be a full frame.
    293 * @start_active_frame: If we are partway through a split transfer, this will be
    294 *			what next_active_frame was when we started.  Otherwise
    295 *			it should always be the same as next_active_frame.
    296 * @num_hs_transfers:   Number of transfers in hs_transfers.
    297 *                      Normally this is 1 but can be more than one for splits.
    298 *                      Always >= 1 unless the host is in low/full speed mode.
    299 * @hs_transfers:       Transfers that are scheduled as seen by the high speed
    300 *                      bus.  Not used if host is in low or full speed mode (but
    301 *                      note that it IS USED if the device is low or full speed
    302 *                      as long as the HOST is in high speed mode).
    303 * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
    304 *                           schedule that's being used by this device.  This
    305 *			     will be on the periodic_bitmap in a
    306 *                           "struct dwc2_tt".  Not used if this device is high
    307 *                           speed.  Note that this is in "schedule slice" which
    308 *                           is tightly packed.
    309 * @ntd:                Actual number of transfer descriptors in a list
    310 * @dw_align_buf:       Used instead of original buffer if its physical address
    311 *                      is not dword-aligned
    312 * @dw_align_buf_dma:   DMA address for dw_align_buf
    313 * @qtd_list:           List of QTDs for this QH
    314 * @channel:            Host channel currently processing transfers for this QH
    315 * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
    316 *                      schedule
    317 * @desc_list:          List of transfer descriptors
    318 * @desc_list_dma:      Physical address of desc_list
    319 * @desc_list_sz:       Size of descriptors list
    320 * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
    321 *                      descriptor and indicates original XferSize value for the
    322 *                      descriptor
    323 * @unreserve_timer:    Timer for releasing periodic reservation.
    324 * @wait_timer:         Timer used to wait before re-queuing.
    325 * @dwc_tt:            Pointer to our tt info (or NULL if no tt).
    326 * @ttport:             Port number within our tt.
    327 * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
    328 * @unreserve_pending:  True if we planned to unreserve but haven't yet.
    329 * @schedule_low_speed: True if we have a low/full speed component (either the
    330 *			host is in low/full speed mode or do_split).
    331 * @want_wait:          We should wait before re-queuing; only matters for non-
    332 *                      periodic transfers and is ignored for periodic ones.
    333 * @wait_timer_cancel:  Set to true to cancel the wait_timer.
    334 *
    335 * @tt_buffer_dirty:	True if EP's TT buffer is not clean.
    336 * A Queue Head (QH) holds the static characteristics of an endpoint and
    337 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
    338 * be entered in either the non-periodic or periodic schedule.
    339 */
    340struct dwc2_qh {
    341	struct dwc2_hsotg *hsotg;
    342	u8 ep_type;
    343	u8 ep_is_in;
    344	u16 maxp;
    345	u16 maxp_mult;
    346	u8 dev_speed;
    347	u8 data_toggle;
    348	u8 ping_state;
    349	u8 do_split;
    350	u8 td_first;
    351	u8 td_last;
    352	u16 host_us;
    353	u16 device_us;
    354	u16 host_interval;
    355	u16 device_interval;
    356	u16 next_active_frame;
    357	u16 start_active_frame;
    358	s16 num_hs_transfers;
    359	struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
    360	u32 ls_start_schedule_slice;
    361	u16 ntd;
    362	u8 *dw_align_buf;
    363	dma_addr_t dw_align_buf_dma;
    364	struct list_head qtd_list;
    365	struct dwc2_host_chan *channel;
    366	struct list_head qh_list_entry;
    367	struct dwc2_dma_desc *desc_list;
    368	dma_addr_t desc_list_dma;
    369	u32 desc_list_sz;
    370	u32 *n_bytes;
    371	struct timer_list unreserve_timer;
    372	struct hrtimer wait_timer;
    373	struct dwc2_tt *dwc_tt;
    374	int ttport;
    375	unsigned tt_buffer_dirty:1;
    376	unsigned unreserve_pending:1;
    377	unsigned schedule_low_speed:1;
    378	unsigned want_wait:1;
    379	unsigned wait_timer_cancel:1;
    380};
    381
    382/**
    383 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
    384 *
    385 * @control_phase:      Current phase for control transfers (Setup, Data, or
    386 *                      Status)
    387 * @in_process:         Indicates if this QTD is currently processed by HW
    388 * @data_toggle:        Determines the PID of the next data packet for the
    389 *                      data phase of control transfers. Ignored for other
    390 *                      transfer types. One of the following values:
    391 *                       - DWC2_HC_PID_DATA0
    392 *                       - DWC2_HC_PID_DATA1
    393 * @complete_split:     Keeps track of the current split type for FS/LS
    394 *                      endpoints on a HS Hub
    395 * @isoc_split_pos:     Position of the ISOC split in full/low speed
    396 * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
    397 *                      transfer. A frame descriptor describes the buffer
    398 *                      position and length of the data to be transferred in the
    399 *                      next scheduled (micro)frame of an isochronous transfer.
    400 *                      It also holds status for that transaction. The frame
    401 *                      index starts at 0.
    402 * @isoc_split_offset:  Position of the ISOC split in the buffer for the
    403 *                      current frame
    404 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
    405 * @error_count:        Holds the number of bus errors that have occurred for
    406 *                      a transaction within this transfer
    407 * @n_desc:             Number of DMA descriptors for this QTD
    408 * @isoc_frame_index_last: Last activated frame (packet) index, used in
    409 *                      descriptor DMA mode only
    410 * @num_naks:           Number of NAKs received on this QTD.
    411 * @urb:                URB for this transfer
    412 * @qh:                 Queue head for this QTD
    413 * @qtd_list_entry:     For linking to the QH's list of QTDs
    414 * @isoc_td_first:	Index of first activated isochronous transfer
    415 *			descriptor in Descriptor DMA mode
    416 * @isoc_td_last:	Index of last activated isochronous transfer
    417 *			descriptor in Descriptor DMA mode
    418 *
    419 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
    420 * interrupt, or isochronous transfer. A single QTD is created for each URB
    421 * (of one of these types) submitted to the HCD. The transfer associated with
    422 * a QTD may require one or multiple transactions.
    423 *
    424 * A QTD is linked to a Queue Head, which is entered in either the
    425 * non-periodic or periodic schedule for execution. When a QTD is chosen for
    426 * execution, some or all of its transactions may be executed. After
    427 * execution, the state of the QTD is updated. The QTD may be retired if all
    428 * its transactions are complete or if an error occurred. Otherwise, it
    429 * remains in the schedule so more transactions can be executed later.
    430 */
    431struct dwc2_qtd {
    432	enum dwc2_control_phase control_phase;
    433	u8 in_process;
    434	u8 data_toggle;
    435	u8 complete_split;
    436	u8 isoc_split_pos;
    437	u16 isoc_frame_index;
    438	u16 isoc_split_offset;
    439	u16 isoc_td_last;
    440	u16 isoc_td_first;
    441	u32 ssplit_out_xfer_count;
    442	u8 error_count;
    443	u8 n_desc;
    444	u16 isoc_frame_index_last;
    445	u16 num_naks;
    446	struct dwc2_hcd_urb *urb;
    447	struct dwc2_qh *qh;
    448	struct list_head qtd_list_entry;
    449};
    450
    451#ifdef DEBUG
    452struct hc_xfer_info {
    453	struct dwc2_hsotg *hsotg;
    454	struct dwc2_host_chan *chan;
    455};
    456#endif
    457
    458u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
    459
    460/* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
    461static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
    462{
    463	return (struct usb_hcd *)hsotg->priv;
    464}
    465
    466/*
    467 * Inline used to disable one channel interrupt. Channel interrupts are
    468 * disabled when the channel is halted or released by the interrupt handler.
    469 * There is no need to handle further interrupts of that type until the
    470 * channel is re-assigned. In fact, subsequent handling may cause crashes
    471 * because the channel structures are cleaned up when the channel is released.
    472 */
    473static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
    474{
    475	u32 mask = dwc2_readl(hsotg, HCINTMSK(chnum));
    476
    477	mask &= ~intr;
    478	dwc2_writel(hsotg, mask, HCINTMSK(chnum));
    479}
    480
    481void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
    482void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
    483		  enum dwc2_halt_status halt_status);
    484void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
    485				 struct dwc2_host_chan *chan);
    486
    487/*
    488 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
    489 * are read as 1, they won't clear when written back.
    490 */
    491static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
    492{
    493	u32 hprt0 = dwc2_readl(hsotg, HPRT0);
    494
    495	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
    496	return hprt0;
    497}
    498
    499static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
    500{
    501	return pipe->ep_num;
    502}
    503
    504static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
    505{
    506	return pipe->pipe_type;
    507}
    508
    509static inline u16 dwc2_hcd_get_maxp(struct dwc2_hcd_pipe_info *pipe)
    510{
    511	return pipe->maxp;
    512}
    513
    514static inline u16 dwc2_hcd_get_maxp_mult(struct dwc2_hcd_pipe_info *pipe)
    515{
    516	return pipe->maxp_mult;
    517}
    518
    519static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
    520{
    521	return pipe->dev_addr;
    522}
    523
    524static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
    525{
    526	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
    527}
    528
    529static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
    530{
    531	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
    532}
    533
    534static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
    535{
    536	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
    537}
    538
    539static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
    540{
    541	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
    542}
    543
    544static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
    545{
    546	return pipe->pipe_dir == USB_DIR_IN;
    547}
    548
    549static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
    550{
    551	return !dwc2_hcd_is_pipe_in(pipe);
    552}
    553
    554int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
    555void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
    556
    557/* Transaction Execution Functions */
    558enum dwc2_transaction_type dwc2_hcd_select_transactions(
    559						struct dwc2_hsotg *hsotg);
    560void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
    561				 enum dwc2_transaction_type tr_type);
    562
    563/* Schedule Queue Functions */
    564/* Implemented in hcd_queue.c */
    565struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
    566				   struct dwc2_hcd_urb *urb,
    567					  gfp_t mem_flags);
    568void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
    569int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
    570void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
    571void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
    572			    int sched_csplit);
    573
    574void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
    575int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
    576		     struct dwc2_qh *qh);
    577
    578/* Unlinks and frees a QTD */
    579static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
    580						struct dwc2_qtd *qtd,
    581						struct dwc2_qh *qh)
    582{
    583	list_del(&qtd->qtd_list_entry);
    584	kfree(qtd);
    585}
    586
    587/* Descriptor DMA support functions */
    588void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
    589			      struct dwc2_qh *qh);
    590void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
    591				 struct dwc2_host_chan *chan, int chnum,
    592					enum dwc2_halt_status halt_status);
    593
    594int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
    595			  gfp_t mem_flags);
    596void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
    597
    598/* Check if QH is non-periodic */
    599#define dwc2_qh_is_non_per(_qh_ptr_) \
    600	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
    601	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
    602
    603#ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
    604static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
    605static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
    606static inline bool dbg_urb(struct urb *urb) { return true; }
    607static inline bool dbg_perio(void) { return true; }
    608#else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
    609static inline bool dbg_hc(struct dwc2_host_chan *hc)
    610{
    611	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
    612	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
    613}
    614
    615static inline bool dbg_qh(struct dwc2_qh *qh)
    616{
    617	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
    618	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
    619}
    620
    621static inline bool dbg_urb(struct urb *urb)
    622{
    623	return usb_pipetype(urb->pipe) == PIPE_BULK ||
    624	       usb_pipetype(urb->pipe) == PIPE_CONTROL;
    625}
    626
    627static inline bool dbg_perio(void) { return false; }
    628#endif
    629
    630/*
    631 * Returns true if frame1 index is greater than frame2 index. The comparison
    632 * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
    633 * frame number when the max index frame number is reached.
    634 */
    635static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
    636{
    637	u16 diff = fr_idx1 - fr_idx2;
    638	u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
    639
    640	return diff && !sign;
    641}
    642
    643/*
    644 * Returns true if frame1 is less than or equal to frame2. The comparison is
    645 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
    646 * frame number when the max frame number is reached.
    647 */
    648static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
    649{
    650	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
    651}
    652
    653/*
    654 * Returns true if frame1 is greater than frame2. The comparison is done
    655 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
    656 * number when the max frame number is reached.
    657 */
    658static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
    659{
    660	return (frame1 != frame2) &&
    661	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
    662}
    663
    664/*
    665 * Increments frame by the amount specified by inc. The addition is done
    666 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
    667 */
    668static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
    669{
    670	return (frame + inc) & HFNUM_MAX_FRNUM;
    671}
    672
    673static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
    674{
    675	return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
    676}
    677
    678static inline u16 dwc2_full_frame_num(u16 frame)
    679{
    680	return (frame & HFNUM_MAX_FRNUM) >> 3;
    681}
    682
    683static inline u16 dwc2_micro_frame_num(u16 frame)
    684{
    685	return frame & 0x7;
    686}
    687
    688/*
    689 * Returns the Core Interrupt Status register contents, ANDed with the Core
    690 * Interrupt Mask register contents
    691 */
    692static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
    693{
    694	return dwc2_readl(hsotg, GINTSTS) &
    695	       dwc2_readl(hsotg, GINTMSK);
    696}
    697
    698static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
    699{
    700	return dwc2_urb->status;
    701}
    702
    703static inline u32 dwc2_hcd_urb_get_actual_length(
    704		struct dwc2_hcd_urb *dwc2_urb)
    705{
    706	return dwc2_urb->actual_length;
    707}
    708
    709static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
    710{
    711	return dwc2_urb->error_count;
    712}
    713
    714static inline void dwc2_hcd_urb_set_iso_desc_params(
    715		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
    716		u32 length)
    717{
    718	dwc2_urb->iso_descs[desc_num].offset = offset;
    719	dwc2_urb->iso_descs[desc_num].length = length;
    720}
    721
    722static inline u32 dwc2_hcd_urb_get_iso_desc_status(
    723		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
    724{
    725	return dwc2_urb->iso_descs[desc_num].status;
    726}
    727
    728static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
    729		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
    730{
    731	return dwc2_urb->iso_descs[desc_num].actual_length;
    732}
    733
    734static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
    735						  struct usb_host_endpoint *ep)
    736{
    737	struct dwc2_qh *qh = ep->hcpriv;
    738
    739	if (qh && !list_empty(&qh->qh_list_entry))
    740		return 1;
    741
    742	return 0;
    743}
    744
    745static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
    746					    struct usb_host_endpoint *ep)
    747{
    748	struct dwc2_qh *qh = ep->hcpriv;
    749
    750	if (!qh) {
    751		WARN_ON(1);
    752		return 0;
    753	}
    754
    755	return qh->host_us;
    756}
    757
    758void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
    759			       struct dwc2_host_chan *chan, int chnum,
    760				      struct dwc2_qtd *qtd);
    761
    762/* HCD Core API */
    763
    764/**
    765 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
    766 *
    767 * @hsotg: The DWC2 HCD
    768 *
    769 * Returns IRQ_HANDLED if interrupt is handled
    770 * Return IRQ_NONE if interrupt is not handled
    771 */
    772irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
    773
    774/**
    775 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
    776 *
    777 * @hsotg: The DWC2 HCD
    778 */
    779void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
    780
    781/**
    782 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
    783 * and 0 otherwise
    784 *
    785 * @hsotg: The DWC2 HCD
    786 */
    787int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
    788
    789/**
    790 * dwc2_hcd_dump_state() - Dumps hsotg state
    791 *
    792 * @hsotg: The DWC2 HCD
    793 *
    794 * NOTE: This function will be removed once the peripheral controller code
    795 * is integrated and the driver is stable
    796 */
    797void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
    798
    799/* URB interface */
    800
    801/* Transfer flags */
    802#define URB_GIVEBACK_ASAP	0x1
    803#define URB_SEND_ZERO_PACKET	0x2
    804
    805/* Host driver callbacks */
    806struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
    807				      void *context, gfp_t mem_flags,
    808				      int *ttport);
    809
    810void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
    811			   struct dwc2_tt *dwc_tt);
    812int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
    813void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
    814			int status);
    815
    816#endif /* __DWC2_HCD_H__ */