cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

hcd_queue.c (66390B)


      1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
      2/*
      3 * hcd_queue.c - DesignWare HS OTG Controller host queuing routines
      4 *
      5 * Copyright (C) 2004-2013 Synopsys, Inc.
      6 *
      7 * Redistribution and use in source and binary forms, with or without
      8 * modification, are permitted provided that the following conditions
      9 * are met:
     10 * 1. Redistributions of source code must retain the above copyright
     11 *    notice, this list of conditions, and the following disclaimer,
     12 *    without modification.
     13 * 2. Redistributions in binary form must reproduce the above copyright
     14 *    notice, this list of conditions and the following disclaimer in the
     15 *    documentation and/or other materials provided with the distribution.
     16 * 3. The names of the above-listed copyright holders may not be used
     17 *    to endorse or promote products derived from this software without
     18 *    specific prior written permission.
     19 *
     20 * ALTERNATIVELY, this software may be distributed under the terms of the
     21 * GNU General Public License ("GPL") as published by the Free Software
     22 * Foundation; either version 2 of the License, or (at your option) any
     23 * later version.
     24 *
     25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
     26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
     29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     36 */
     37
     38/*
     39 * This file contains the functions to manage Queue Heads and Queue
     40 * Transfer Descriptors for Host mode
     41 */
     42#include <linux/gcd.h>
     43#include <linux/kernel.h>
     44#include <linux/module.h>
     45#include <linux/spinlock.h>
     46#include <linux/interrupt.h>
     47#include <linux/dma-mapping.h>
     48#include <linux/io.h>
     49#include <linux/slab.h>
     50#include <linux/usb.h>
     51
     52#include <linux/usb/hcd.h>
     53#include <linux/usb/ch11.h>
     54
     55#include "core.h"
     56#include "hcd.h"
     57
     58/* Wait this long before releasing periodic reservation */
     59#define DWC2_UNRESERVE_DELAY (msecs_to_jiffies(5))
     60
     61/* If we get a NAK, wait this long before retrying */
     62#define DWC2_RETRY_WAIT_DELAY (1 * NSEC_PER_MSEC)
     63
     64/**
     65 * dwc2_periodic_channel_available() - Checks that a channel is available for a
     66 * periodic transfer
     67 *
     68 * @hsotg: The HCD state structure for the DWC OTG controller
     69 *
     70 * Return: 0 if successful, negative error code otherwise
     71 */
     72static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg)
     73{
     74	/*
     75	 * Currently assuming that there is a dedicated host channel for
     76	 * each periodic transaction plus at least one host channel for
     77	 * non-periodic transactions
     78	 */
     79	int status;
     80	int num_channels;
     81
     82	num_channels = hsotg->params.host_channels;
     83	if ((hsotg->periodic_channels + hsotg->non_periodic_channels <
     84	     num_channels) && (hsotg->periodic_channels < num_channels - 1)) {
     85		status = 0;
     86	} else {
     87		dev_dbg(hsotg->dev,
     88			"%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n",
     89			__func__, num_channels,
     90			hsotg->periodic_channels, hsotg->non_periodic_channels);
     91		status = -ENOSPC;
     92	}
     93
     94	return status;
     95}
     96
     97/**
     98 * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth
     99 * for the specified QH in the periodic schedule
    100 *
    101 * @hsotg: The HCD state structure for the DWC OTG controller
    102 * @qh:    QH containing periodic bandwidth required
    103 *
    104 * Return: 0 if successful, negative error code otherwise
    105 *
    106 * For simplicity, this calculation assumes that all the transfers in the
    107 * periodic schedule may occur in the same (micro)frame
    108 */
    109static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg,
    110					 struct dwc2_qh *qh)
    111{
    112	int status;
    113	s16 max_claimed_usecs;
    114
    115	status = 0;
    116
    117	if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
    118		/*
    119		 * High speed mode
    120		 * Max periodic usecs is 80% x 125 usec = 100 usec
    121		 */
    122		max_claimed_usecs = 100 - qh->host_us;
    123	} else {
    124		/*
    125		 * Full speed mode
    126		 * Max periodic usecs is 90% x 1000 usec = 900 usec
    127		 */
    128		max_claimed_usecs = 900 - qh->host_us;
    129	}
    130
    131	if (hsotg->periodic_usecs > max_claimed_usecs) {
    132		dev_err(hsotg->dev,
    133			"%s: already claimed usecs %d, required usecs %d\n",
    134			__func__, hsotg->periodic_usecs, qh->host_us);
    135		status = -ENOSPC;
    136	}
    137
    138	return status;
    139}
    140
    141/**
    142 * pmap_schedule() - Schedule time in a periodic bitmap (pmap).
    143 *
    144 * @map:             The bitmap representing the schedule; will be updated
    145 *                   upon success.
    146 * @bits_per_period: The schedule represents several periods.  This is how many
    147 *                   bits are in each period.  It's assumed that the beginning
    148 *                   of the schedule will repeat after its end.
    149 * @periods_in_map:  The number of periods in the schedule.
    150 * @num_bits:        The number of bits we need per period we want to reserve
    151 *                   in this function call.
    152 * @interval:        How often we need to be scheduled for the reservation this
    153 *                   time.  1 means every period.  2 means every other period.
    154 *                   ...you get the picture?
    155 * @start:           The bit number to start at.  Normally 0.  Must be within
    156 *                   the interval or we return failure right away.
    157 * @only_one_period: Normally we'll allow picking a start anywhere within the
    158 *                   first interval, since we can still make all repetition
    159 *                   requirements by doing that.  However, if you pass true
    160 *                   here then we'll return failure if we can't fit within
    161 *                   the period that "start" is in.
    162 *
    163 * The idea here is that we want to schedule time for repeating events that all
    164 * want the same resource.  The resource is divided into fixed-sized periods
    165 * and the events want to repeat every "interval" periods.  The schedule
    166 * granularity is one bit.
    167 *
    168 * To keep things "simple", we'll represent our schedule with a bitmap that
    169 * contains a fixed number of periods.  This gets rid of a lot of complexity
    170 * but does mean that we need to handle things specially (and non-ideally) if
    171 * the number of the periods in the schedule doesn't match well with the
    172 * intervals that we're trying to schedule.
    173 *
    174 * Here's an explanation of the scheme we'll implement, assuming 8 periods.
    175 * - If interval is 1, we need to take up space in each of the 8
    176 *   periods we're scheduling.  Easy.
    177 * - If interval is 2, we need to take up space in half of the
    178 *   periods.  Again, easy.
    179 * - If interval is 3, we actually need to fall back to interval 1.
    180 *   Why?  Because we might need time in any period.  AKA for the
    181 *   first 8 periods, we'll be in slot 0, 3, 6.  Then we'll be
    182 *   in slot 1, 4, 7.  Then we'll be in 2, 5.  Then we'll be back to
    183 *   0, 3, and 6.  Since we could be in any frame we need to reserve
    184 *   for all of them.  Sucks, but that's what you gotta do.  Note that
    185 *   if we were instead scheduling 8 * 3 = 24 we'd do much better, but
    186 *   then we need more memory and time to do scheduling.
    187 * - If interval is 4, easy.
    188 * - If interval is 5, we again need interval 1.  The schedule will be
    189 *   0, 5, 2, 7, 4, 1, 6, 3, 0
    190 * - If interval is 6, we need interval 2.  0, 6, 4, 2.
    191 * - If interval is 7, we need interval 1.
    192 * - If interval is 8, we need interval 8.
    193 *
    194 * If you do the math, you'll see that we need to pretend that interval is
    195 * equal to the greatest_common_divisor(interval, periods_in_map).
    196 *
    197 * Note that at the moment this function tends to front-pack the schedule.
    198 * In some cases that's really non-ideal (it's hard to schedule things that
    199 * need to repeat every period).  In other cases it's perfect (you can easily
    200 * schedule bigger, less often repeating things).
    201 *
    202 * Here's the algorithm in action (8 periods, 5 bits per period):
    203 *  |**   |     |**   |     |**   |     |**   |     |   OK 2 bits, intv 2 at 0
    204 *  |*****|  ***|*****|  ***|*****|  ***|*****|  ***|   OK 3 bits, intv 3 at 2
    205 *  |*****|* ***|*****|  ***|*****|* ***|*****|  ***|   OK 1 bits, intv 4 at 5
    206 *  |**   |*    |**   |     |**   |*    |**   |     | Remv 3 bits, intv 3 at 2
    207 *  |***  |*    |***  |     |***  |*    |***  |     |   OK 1 bits, intv 6 at 2
    208 *  |**** |*  * |**** |   * |**** |*  * |**** |   * |   OK 1 bits, intv 1 at 3
    209 *  |**** |**** |**** | *** |**** |**** |**** | *** |   OK 2 bits, intv 2 at 6
    210 *  |*****|*****|*****| ****|*****|*****|*****| ****|   OK 1 bits, intv 1 at 4
    211 *  |*****|*****|*****| ****|*****|*****|*****| ****| FAIL 1 bits, intv 1
    212 *  |  ***|*****|  ***| ****|  ***|*****|  ***| ****| Remv 2 bits, intv 2 at 0
    213 *  |  ***| ****|  ***| ****|  ***| ****|  ***| ****| Remv 1 bits, intv 4 at 5
    214 *  |   **| ****|   **| ****|   **| ****|   **| ****| Remv 1 bits, intv 6 at 2
    215 *  |    *| ** *|    *| ** *|    *| ** *|    *| ** *| Remv 1 bits, intv 1 at 3
    216 *  |    *|    *|    *|    *|    *|    *|    *|    *| Remv 2 bits, intv 2 at 6
    217 *  |     |     |     |     |     |     |     |     | Remv 1 bits, intv 1 at 4
    218 *  |**   |     |**   |     |**   |     |**   |     |   OK 2 bits, intv 2 at 0
    219 *  |***  |     |**   |     |***  |     |**   |     |   OK 1 bits, intv 4 at 2
    220 *  |*****|     |** **|     |*****|     |** **|     |   OK 2 bits, intv 2 at 3
    221 *  |*****|*    |** **|     |*****|*    |** **|     |   OK 1 bits, intv 4 at 5
    222 *  |*****|***  |** **| **  |*****|***  |** **| **  |   OK 2 bits, intv 2 at 6
    223 *  |*****|*****|** **| ****|*****|*****|** **| ****|   OK 2 bits, intv 2 at 8
    224 *  |*****|*****|*****| ****|*****|*****|*****| ****|   OK 1 bits, intv 4 at 12
    225 *
    226 * This function is pretty generic and could be easily abstracted if anything
    227 * needed similar scheduling.
    228 *
    229 * Returns either -ENOSPC or a >= 0 start bit which should be passed to the
    230 * unschedule routine.  The map bitmap will be updated on a non-error result.
    231 */
    232static int pmap_schedule(unsigned long *map, int bits_per_period,
    233			 int periods_in_map, int num_bits,
    234			 int interval, int start, bool only_one_period)
    235{
    236	int interval_bits;
    237	int to_reserve;
    238	int first_end;
    239	int i;
    240
    241	if (num_bits > bits_per_period)
    242		return -ENOSPC;
    243
    244	/* Adjust interval as per description */
    245	interval = gcd(interval, periods_in_map);
    246
    247	interval_bits = bits_per_period * interval;
    248	to_reserve = periods_in_map / interval;
    249
    250	/* If start has gotten us past interval then we can't schedule */
    251	if (start >= interval_bits)
    252		return -ENOSPC;
    253
    254	if (only_one_period)
    255		/* Must fit within same period as start; end at begin of next */
    256		first_end = (start / bits_per_period + 1) * bits_per_period;
    257	else
    258		/* Can fit anywhere in the first interval */
    259		first_end = interval_bits;
    260
    261	/*
    262	 * We'll try to pick the first repetition, then see if that time
    263	 * is free for each of the subsequent repetitions.  If it's not
    264	 * we'll adjust the start time for the next search of the first
    265	 * repetition.
    266	 */
    267	while (start + num_bits <= first_end) {
    268		int end;
    269
    270		/* Need to stay within this period */
    271		end = (start / bits_per_period + 1) * bits_per_period;
    272
    273		/* Look for num_bits us in this microframe starting at start */
    274		start = bitmap_find_next_zero_area(map, end, start, num_bits,
    275						   0);
    276
    277		/*
    278		 * We should get start >= end if we fail.  We might be
    279		 * able to check the next microframe depending on the
    280		 * interval, so continue on (start already updated).
    281		 */
    282		if (start >= end) {
    283			start = end;
    284			continue;
    285		}
    286
    287		/* At this point we have a valid point for first one */
    288		for (i = 1; i < to_reserve; i++) {
    289			int ith_start = start + interval_bits * i;
    290			int ith_end = end + interval_bits * i;
    291			int ret;
    292
    293			/* Use this as a dumb "check if bits are 0" */
    294			ret = bitmap_find_next_zero_area(
    295				map, ith_start + num_bits, ith_start, num_bits,
    296				0);
    297
    298			/* We got the right place, continue checking */
    299			if (ret == ith_start)
    300				continue;
    301
    302			/* Move start up for next time and exit for loop */
    303			ith_start = bitmap_find_next_zero_area(
    304				map, ith_end, ith_start, num_bits, 0);
    305			if (ith_start >= ith_end)
    306				/* Need a while new period next time */
    307				start = end;
    308			else
    309				start = ith_start - interval_bits * i;
    310			break;
    311		}
    312
    313		/* If didn't exit the for loop with a break, we have success */
    314		if (i == to_reserve)
    315			break;
    316	}
    317
    318	if (start + num_bits > first_end)
    319		return -ENOSPC;
    320
    321	for (i = 0; i < to_reserve; i++) {
    322		int ith_start = start + interval_bits * i;
    323
    324		bitmap_set(map, ith_start, num_bits);
    325	}
    326
    327	return start;
    328}
    329
    330/**
    331 * pmap_unschedule() - Undo work done by pmap_schedule()
    332 *
    333 * @map:             See pmap_schedule().
    334 * @bits_per_period: See pmap_schedule().
    335 * @periods_in_map:  See pmap_schedule().
    336 * @num_bits:        The number of bits that was passed to schedule.
    337 * @interval:        The interval that was passed to schedule.
    338 * @start:           The return value from pmap_schedule().
    339 */
    340static void pmap_unschedule(unsigned long *map, int bits_per_period,
    341			    int periods_in_map, int num_bits,
    342			    int interval, int start)
    343{
    344	int interval_bits;
    345	int to_release;
    346	int i;
    347
    348	/* Adjust interval as per description in pmap_schedule() */
    349	interval = gcd(interval, periods_in_map);
    350
    351	interval_bits = bits_per_period * interval;
    352	to_release = periods_in_map / interval;
    353
    354	for (i = 0; i < to_release; i++) {
    355		int ith_start = start + interval_bits * i;
    356
    357		bitmap_clear(map, ith_start, num_bits);
    358	}
    359}
    360
    361/**
    362 * dwc2_get_ls_map() - Get the map used for the given qh
    363 *
    364 * @hsotg: The HCD state structure for the DWC OTG controller.
    365 * @qh:    QH for the periodic transfer.
    366 *
    367 * We'll always get the periodic map out of our TT.  Note that even if we're
    368 * running the host straight in low speed / full speed mode it appears as if
    369 * a TT is allocated for us, so we'll use it.  If that ever changes we can
    370 * add logic here to get a map out of "hsotg" if !qh->do_split.
    371 *
    372 * Returns: the map or NULL if a map couldn't be found.
    373 */
    374static unsigned long *dwc2_get_ls_map(struct dwc2_hsotg *hsotg,
    375				      struct dwc2_qh *qh)
    376{
    377	unsigned long *map;
    378
    379	/* Don't expect to be missing a TT and be doing low speed scheduling */
    380	if (WARN_ON(!qh->dwc_tt))
    381		return NULL;
    382
    383	/* Get the map and adjust if this is a multi_tt hub */
    384	map = qh->dwc_tt->periodic_bitmaps;
    385	if (qh->dwc_tt->usb_tt->multi)
    386		map += DWC2_ELEMENTS_PER_LS_BITMAP * (qh->ttport - 1);
    387
    388	return map;
    389}
    390
    391#ifdef DWC2_PRINT_SCHEDULE
    392/*
    393 * cat_printf() - A printf() + strcat() helper
    394 *
    395 * This is useful for concatenating a bunch of strings where each string is
    396 * constructed using printf.
    397 *
    398 * @buf:   The destination buffer; will be updated to point after the printed
    399 *         data.
    400 * @size:  The number of bytes in the buffer (includes space for '\0').
    401 * @fmt:   The format for printf.
    402 * @...:   The args for printf.
    403 */
    404static __printf(3, 4)
    405void cat_printf(char **buf, size_t *size, const char *fmt, ...)
    406{
    407	va_list args;
    408	int i;
    409
    410	if (*size == 0)
    411		return;
    412
    413	va_start(args, fmt);
    414	i = vsnprintf(*buf, *size, fmt, args);
    415	va_end(args);
    416
    417	if (i >= *size) {
    418		(*buf)[*size - 1] = '\0';
    419		*buf += *size;
    420		*size = 0;
    421	} else {
    422		*buf += i;
    423		*size -= i;
    424	}
    425}
    426
    427/*
    428 * pmap_print() - Print the given periodic map
    429 *
    430 * Will attempt to print out the periodic schedule.
    431 *
    432 * @map:             See pmap_schedule().
    433 * @bits_per_period: See pmap_schedule().
    434 * @periods_in_map:  See pmap_schedule().
    435 * @period_name:     The name of 1 period, like "uFrame"
    436 * @units:           The name of the units, like "us".
    437 * @print_fn:        The function to call for printing.
    438 * @print_data:      Opaque data to pass to the print function.
    439 */
    440static void pmap_print(unsigned long *map, int bits_per_period,
    441		       int periods_in_map, const char *period_name,
    442		       const char *units,
    443		       void (*print_fn)(const char *str, void *data),
    444		       void *print_data)
    445{
    446	int period;
    447
    448	for (period = 0; period < periods_in_map; period++) {
    449		char tmp[64];
    450		char *buf = tmp;
    451		size_t buf_size = sizeof(tmp);
    452		int period_start = period * bits_per_period;
    453		int period_end = period_start + bits_per_period;
    454		int start = 0;
    455		int count = 0;
    456		bool printed = false;
    457		int i;
    458
    459		for (i = period_start; i < period_end + 1; i++) {
    460			/* Handle case when ith bit is set */
    461			if (i < period_end &&
    462			    bitmap_find_next_zero_area(map, i + 1,
    463						       i, 1, 0) != i) {
    464				if (count == 0)
    465					start = i - period_start;
    466				count++;
    467				continue;
    468			}
    469
    470			/* ith bit isn't set; don't care if count == 0 */
    471			if (count == 0)
    472				continue;
    473
    474			if (!printed)
    475				cat_printf(&buf, &buf_size, "%s %d: ",
    476					   period_name, period);
    477			else
    478				cat_printf(&buf, &buf_size, ", ");
    479			printed = true;
    480
    481			cat_printf(&buf, &buf_size, "%d %s -%3d %s", start,
    482				   units, start + count - 1, units);
    483			count = 0;
    484		}
    485
    486		if (printed)
    487			print_fn(tmp, print_data);
    488	}
    489}
    490
    491struct dwc2_qh_print_data {
    492	struct dwc2_hsotg *hsotg;
    493	struct dwc2_qh *qh;
    494};
    495
    496/**
    497 * dwc2_qh_print() - Helper function for dwc2_qh_schedule_print()
    498 *
    499 * @str:  The string to print
    500 * @data: A pointer to a struct dwc2_qh_print_data
    501 */
    502static void dwc2_qh_print(const char *str, void *data)
    503{
    504	struct dwc2_qh_print_data *print_data = data;
    505
    506	dwc2_sch_dbg(print_data->hsotg, "QH=%p ...%s\n", print_data->qh, str);
    507}
    508
    509/**
    510 * dwc2_qh_schedule_print() - Print the periodic schedule
    511 *
    512 * @hsotg: The HCD state structure for the DWC OTG controller.
    513 * @qh:    QH to print.
    514 */
    515static void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
    516				   struct dwc2_qh *qh)
    517{
    518	struct dwc2_qh_print_data print_data = { hsotg, qh };
    519	int i;
    520
    521	/*
    522	 * The printing functions are quite slow and inefficient.
    523	 * If we don't have tracing turned on, don't run unless the special
    524	 * define is turned on.
    525	 */
    526
    527	if (qh->schedule_low_speed) {
    528		unsigned long *map = dwc2_get_ls_map(hsotg, qh);
    529
    530		dwc2_sch_dbg(hsotg, "QH=%p LS/FS trans: %d=>%d us @ %d us",
    531			     qh, qh->device_us,
    532			     DWC2_ROUND_US_TO_SLICE(qh->device_us),
    533			     DWC2_US_PER_SLICE * qh->ls_start_schedule_slice);
    534
    535		if (map) {
    536			dwc2_sch_dbg(hsotg,
    537				     "QH=%p Whole low/full speed map %p now:\n",
    538				     qh, map);
    539			pmap_print(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
    540				   DWC2_LS_SCHEDULE_FRAMES, "Frame ", "slices",
    541				   dwc2_qh_print, &print_data);
    542		}
    543	}
    544
    545	for (i = 0; i < qh->num_hs_transfers; i++) {
    546		struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + i;
    547		int uframe = trans_time->start_schedule_us /
    548			     DWC2_HS_PERIODIC_US_PER_UFRAME;
    549		int rel_us = trans_time->start_schedule_us %
    550			     DWC2_HS_PERIODIC_US_PER_UFRAME;
    551
    552		dwc2_sch_dbg(hsotg,
    553			     "QH=%p HS trans #%d: %d us @ uFrame %d + %d us\n",
    554			     qh, i, trans_time->duration_us, uframe, rel_us);
    555	}
    556	if (qh->num_hs_transfers) {
    557		dwc2_sch_dbg(hsotg, "QH=%p Whole high speed map now:\n", qh);
    558		pmap_print(hsotg->hs_periodic_bitmap,
    559			   DWC2_HS_PERIODIC_US_PER_UFRAME,
    560			   DWC2_HS_SCHEDULE_UFRAMES, "uFrame", "us",
    561			   dwc2_qh_print, &print_data);
    562	}
    563}
    564#else
    565static inline void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
    566					  struct dwc2_qh *qh) {};
    567#endif
    568
    569/**
    570 * dwc2_ls_pmap_schedule() - Schedule a low speed QH
    571 *
    572 * @hsotg:        The HCD state structure for the DWC OTG controller.
    573 * @qh:           QH for the periodic transfer.
    574 * @search_slice: We'll start trying to schedule at the passed slice.
    575 *                Remember that slices are the units of the low speed
    576 *                schedule (think 25us or so).
    577 *
    578 * Wraps pmap_schedule() with the right parameters for low speed scheduling.
    579 *
    580 * Normally we schedule low speed devices on the map associated with the TT.
    581 *
    582 * Returns: 0 for success or an error code.
    583 */
    584static int dwc2_ls_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
    585				 int search_slice)
    586{
    587	int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
    588	unsigned long *map = dwc2_get_ls_map(hsotg, qh);
    589	int slice;
    590
    591	if (!map)
    592		return -EINVAL;
    593
    594	/*
    595	 * Schedule on the proper low speed map with our low speed scheduling
    596	 * parameters.  Note that we use the "device_interval" here since
    597	 * we want the low speed interval and the only way we'd be in this
    598	 * function is if the device is low speed.
    599	 *
    600	 * If we happen to be doing low speed and high speed scheduling for the
    601	 * same transaction (AKA we have a split) we always do low speed first.
    602	 * That means we can always pass "false" for only_one_period (that
    603	 * parameters is only useful when we're trying to get one schedule to
    604	 * match what we already planned in the other schedule).
    605	 */
    606	slice = pmap_schedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
    607			      DWC2_LS_SCHEDULE_FRAMES, slices,
    608			      qh->device_interval, search_slice, false);
    609
    610	if (slice < 0)
    611		return slice;
    612
    613	qh->ls_start_schedule_slice = slice;
    614	return 0;
    615}
    616
    617/**
    618 * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_ls_pmap_schedule()
    619 *
    620 * @hsotg:       The HCD state structure for the DWC OTG controller.
    621 * @qh:          QH for the periodic transfer.
    622 */
    623static void dwc2_ls_pmap_unschedule(struct dwc2_hsotg *hsotg,
    624				    struct dwc2_qh *qh)
    625{
    626	int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
    627	unsigned long *map = dwc2_get_ls_map(hsotg, qh);
    628
    629	/* Schedule should have failed, so no worries about no error code */
    630	if (!map)
    631		return;
    632
    633	pmap_unschedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
    634			DWC2_LS_SCHEDULE_FRAMES, slices, qh->device_interval,
    635			qh->ls_start_schedule_slice);
    636}
    637
    638/**
    639 * dwc2_hs_pmap_schedule - Schedule in the main high speed schedule
    640 *
    641 * This will schedule something on the main dwc2 schedule.
    642 *
    643 * We'll start looking in qh->hs_transfers[index].start_schedule_us.  We'll
    644 * update this with the result upon success.  We also use the duration from
    645 * the same structure.
    646 *
    647 * @hsotg:           The HCD state structure for the DWC OTG controller.
    648 * @qh:              QH for the periodic transfer.
    649 * @only_one_period: If true we will limit ourselves to just looking at
    650 *                   one period (aka one 100us chunk).  This is used if we have
    651 *                   already scheduled something on the low speed schedule and
    652 *                   need to find something that matches on the high speed one.
    653 * @index:           The index into qh->hs_transfers that we're working with.
    654 *
    655 * Returns: 0 for success or an error code.  Upon success the
    656 *          dwc2_hs_transfer_time specified by "index" will be updated.
    657 */
    658static int dwc2_hs_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
    659				 bool only_one_period, int index)
    660{
    661	struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
    662	int us;
    663
    664	us = pmap_schedule(hsotg->hs_periodic_bitmap,
    665			   DWC2_HS_PERIODIC_US_PER_UFRAME,
    666			   DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
    667			   qh->host_interval, trans_time->start_schedule_us,
    668			   only_one_period);
    669
    670	if (us < 0)
    671		return us;
    672
    673	trans_time->start_schedule_us = us;
    674	return 0;
    675}
    676
    677/**
    678 * dwc2_hs_pmap_unschedule() - Undo work done by dwc2_hs_pmap_schedule()
    679 *
    680 * @hsotg:       The HCD state structure for the DWC OTG controller.
    681 * @qh:          QH for the periodic transfer.
    682 * @index:       Transfer index
    683 */
    684static void dwc2_hs_pmap_unschedule(struct dwc2_hsotg *hsotg,
    685				    struct dwc2_qh *qh, int index)
    686{
    687	struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
    688
    689	pmap_unschedule(hsotg->hs_periodic_bitmap,
    690			DWC2_HS_PERIODIC_US_PER_UFRAME,
    691			DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
    692			qh->host_interval, trans_time->start_schedule_us);
    693}
    694
    695/**
    696 * dwc2_uframe_schedule_split - Schedule a QH for a periodic split xfer.
    697 *
    698 * This is the most complicated thing in USB.  We have to find matching time
    699 * in both the global high speed schedule for the port and the low speed
    700 * schedule for the TT associated with the given device.
    701 *
    702 * Being here means that the host must be running in high speed mode and the
    703 * device is in low or full speed mode (and behind a hub).
    704 *
    705 * @hsotg:       The HCD state structure for the DWC OTG controller.
    706 * @qh:          QH for the periodic transfer.
    707 */
    708static int dwc2_uframe_schedule_split(struct dwc2_hsotg *hsotg,
    709				      struct dwc2_qh *qh)
    710{
    711	int bytecount = qh->maxp_mult * qh->maxp;
    712	int ls_search_slice;
    713	int err = 0;
    714	int host_interval_in_sched;
    715
    716	/*
    717	 * The interval (how often to repeat) in the actual host schedule.
    718	 * See pmap_schedule() for gcd() explanation.
    719	 */
    720	host_interval_in_sched = gcd(qh->host_interval,
    721				     DWC2_HS_SCHEDULE_UFRAMES);
    722
    723	/*
    724	 * We always try to find space in the low speed schedule first, then
    725	 * try to find high speed time that matches.  If we don't, we'll bump
    726	 * up the place we start searching in the low speed schedule and try
    727	 * again.  To start we'll look right at the beginning of the low speed
    728	 * schedule.
    729	 *
    730	 * Note that this will tend to front-load the high speed schedule.
    731	 * We may eventually want to try to avoid this by either considering
    732	 * both schedules together or doing some sort of round robin.
    733	 */
    734	ls_search_slice = 0;
    735
    736	while (ls_search_slice < DWC2_LS_SCHEDULE_SLICES) {
    737		int start_s_uframe;
    738		int ssplit_s_uframe;
    739		int second_s_uframe;
    740		int rel_uframe;
    741		int first_count;
    742		int middle_count;
    743		int end_count;
    744		int first_data_bytes;
    745		int other_data_bytes;
    746		int i;
    747
    748		if (qh->schedule_low_speed) {
    749			err = dwc2_ls_pmap_schedule(hsotg, qh, ls_search_slice);
    750
    751			/*
    752			 * If we got an error here there's no other magic we
    753			 * can do, so bail.  All the looping above is only
    754			 * helpful to redo things if we got a low speed slot
    755			 * and then couldn't find a matching high speed slot.
    756			 */
    757			if (err)
    758				return err;
    759		} else {
    760			/* Must be missing the tt structure?  Why? */
    761			WARN_ON_ONCE(1);
    762		}
    763
    764		/*
    765		 * This will give us a number 0 - 7 if
    766		 * DWC2_LS_SCHEDULE_FRAMES == 1, or 0 - 15 if == 2, or ...
    767		 */
    768		start_s_uframe = qh->ls_start_schedule_slice /
    769				 DWC2_SLICES_PER_UFRAME;
    770
    771		/* Get a number that's always 0 - 7 */
    772		rel_uframe = (start_s_uframe % 8);
    773
    774		/*
    775		 * If we were going to start in uframe 7 then we would need to
    776		 * issue a start split in uframe 6, which spec says is not OK.
    777		 * Move on to the next full frame (assuming there is one).
    778		 *
    779		 * See 11.18.4 Host Split Transaction Scheduling Requirements
    780		 * bullet 1.
    781		 */
    782		if (rel_uframe == 7) {
    783			if (qh->schedule_low_speed)
    784				dwc2_ls_pmap_unschedule(hsotg, qh);
    785			ls_search_slice =
    786				(qh->ls_start_schedule_slice /
    787				 DWC2_LS_PERIODIC_SLICES_PER_FRAME + 1) *
    788				DWC2_LS_PERIODIC_SLICES_PER_FRAME;
    789			continue;
    790		}
    791
    792		/*
    793		 * For ISOC in:
    794		 * - start split            (frame -1)
    795		 * - complete split w/ data (frame +1)
    796		 * - complete split w/ data (frame +2)
    797		 * - ...
    798		 * - complete split w/ data (frame +num_data_packets)
    799		 * - complete split w/ data (frame +num_data_packets+1)
    800		 * - complete split w/ data (frame +num_data_packets+2, max 8)
    801		 *   ...though if frame was "0" then max is 7...
    802		 *
    803		 * For ISOC out we might need to do:
    804		 * - start split w/ data    (frame -1)
    805		 * - start split w/ data    (frame +0)
    806		 * - ...
    807		 * - start split w/ data    (frame +num_data_packets-2)
    808		 *
    809		 * For INTERRUPT in we might need to do:
    810		 * - start split            (frame -1)
    811		 * - complete split w/ data (frame +1)
    812		 * - complete split w/ data (frame +2)
    813		 * - complete split w/ data (frame +3, max 8)
    814		 *
    815		 * For INTERRUPT out we might need to do:
    816		 * - start split w/ data    (frame -1)
    817		 * - complete split         (frame +1)
    818		 * - complete split         (frame +2)
    819		 * - complete split         (frame +3, max 8)
    820		 *
    821		 * Start adjusting!
    822		 */
    823		ssplit_s_uframe = (start_s_uframe +
    824				   host_interval_in_sched - 1) %
    825				  host_interval_in_sched;
    826		if (qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in)
    827			second_s_uframe = start_s_uframe;
    828		else
    829			second_s_uframe = start_s_uframe + 1;
    830
    831		/* First data transfer might not be all 188 bytes. */
    832		first_data_bytes = 188 -
    833			DIV_ROUND_UP(188 * (qh->ls_start_schedule_slice %
    834					    DWC2_SLICES_PER_UFRAME),
    835				     DWC2_SLICES_PER_UFRAME);
    836		if (first_data_bytes > bytecount)
    837			first_data_bytes = bytecount;
    838		other_data_bytes = bytecount - first_data_bytes;
    839
    840		/*
    841		 * For now, skip OUT xfers where first xfer is partial
    842		 *
    843		 * Main dwc2 code assumes:
    844		 * - INT transfers never get split in two.
    845		 * - ISOC transfers can always transfer 188 bytes the first
    846		 *   time.
    847		 *
    848		 * Until that code is fixed, try again if the first transfer
    849		 * couldn't transfer everything.
    850		 *
    851		 * This code can be removed if/when the rest of dwc2 handles
    852		 * the above cases.  Until it's fixed we just won't be able
    853		 * to schedule quite as tightly.
    854		 */
    855		if (!qh->ep_is_in &&
    856		    (first_data_bytes != min_t(int, 188, bytecount))) {
    857			dwc2_sch_dbg(hsotg,
    858				     "QH=%p avoiding broken 1st xfer (%d, %d)\n",
    859				     qh, first_data_bytes, bytecount);
    860			if (qh->schedule_low_speed)
    861				dwc2_ls_pmap_unschedule(hsotg, qh);
    862			ls_search_slice = (start_s_uframe + 1) *
    863				DWC2_SLICES_PER_UFRAME;
    864			continue;
    865		}
    866
    867		/* Start by assuming transfers for the bytes */
    868		qh->num_hs_transfers = 1 + DIV_ROUND_UP(other_data_bytes, 188);
    869
    870		/*
    871		 * Everything except ISOC OUT has extra transfers.  Rules are
    872		 * complicated.  See 11.18.4 Host Split Transaction Scheduling
    873		 * Requirements bullet 3.
    874		 */
    875		if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
    876			if (rel_uframe == 6)
    877				qh->num_hs_transfers += 2;
    878			else
    879				qh->num_hs_transfers += 3;
    880
    881			if (qh->ep_is_in) {
    882				/*
    883				 * First is start split, middle/end is data.
    884				 * Allocate full data bytes for all data.
    885				 */
    886				first_count = 4;
    887				middle_count = bytecount;
    888				end_count = bytecount;
    889			} else {
    890				/*
    891				 * First is data, middle/end is complete.
    892				 * First transfer and second can have data.
    893				 * Rest should just have complete split.
    894				 */
    895				first_count = first_data_bytes;
    896				middle_count = max_t(int, 4, other_data_bytes);
    897				end_count = 4;
    898			}
    899		} else {
    900			if (qh->ep_is_in) {
    901				int last;
    902
    903				/* Account for the start split */
    904				qh->num_hs_transfers++;
    905
    906				/* Calculate "L" value from spec */
    907				last = rel_uframe + qh->num_hs_transfers + 1;
    908
    909				/* Start with basic case */
    910				if (last <= 6)
    911					qh->num_hs_transfers += 2;
    912				else
    913					qh->num_hs_transfers += 1;
    914
    915				/* Adjust downwards */
    916				if (last >= 6 && rel_uframe == 0)
    917					qh->num_hs_transfers--;
    918
    919				/* 1st = start; rest can contain data */
    920				first_count = 4;
    921				middle_count = min_t(int, 188, bytecount);
    922				end_count = middle_count;
    923			} else {
    924				/* All contain data, last might be smaller */
    925				first_count = first_data_bytes;
    926				middle_count = min_t(int, 188,
    927						     other_data_bytes);
    928				end_count = other_data_bytes % 188;
    929			}
    930		}
    931
    932		/* Assign durations per uFrame */
    933		qh->hs_transfers[0].duration_us = HS_USECS_ISO(first_count);
    934		for (i = 1; i < qh->num_hs_transfers - 1; i++)
    935			qh->hs_transfers[i].duration_us =
    936				HS_USECS_ISO(middle_count);
    937		if (qh->num_hs_transfers > 1)
    938			qh->hs_transfers[qh->num_hs_transfers - 1].duration_us =
    939				HS_USECS_ISO(end_count);
    940
    941		/*
    942		 * Assign start us.  The call below to dwc2_hs_pmap_schedule()
    943		 * will start with these numbers but may adjust within the same
    944		 * microframe.
    945		 */
    946		qh->hs_transfers[0].start_schedule_us =
    947			ssplit_s_uframe * DWC2_HS_PERIODIC_US_PER_UFRAME;
    948		for (i = 1; i < qh->num_hs_transfers; i++)
    949			qh->hs_transfers[i].start_schedule_us =
    950				((second_s_uframe + i - 1) %
    951				 DWC2_HS_SCHEDULE_UFRAMES) *
    952				DWC2_HS_PERIODIC_US_PER_UFRAME;
    953
    954		/* Try to schedule with filled in hs_transfers above */
    955		for (i = 0; i < qh->num_hs_transfers; i++) {
    956			err = dwc2_hs_pmap_schedule(hsotg, qh, true, i);
    957			if (err)
    958				break;
    959		}
    960
    961		/* If we scheduled all w/out breaking out then we're all good */
    962		if (i == qh->num_hs_transfers)
    963			break;
    964
    965		for (; i >= 0; i--)
    966			dwc2_hs_pmap_unschedule(hsotg, qh, i);
    967
    968		if (qh->schedule_low_speed)
    969			dwc2_ls_pmap_unschedule(hsotg, qh);
    970
    971		/* Try again starting in the next microframe */
    972		ls_search_slice = (start_s_uframe + 1) * DWC2_SLICES_PER_UFRAME;
    973	}
    974
    975	if (ls_search_slice >= DWC2_LS_SCHEDULE_SLICES)
    976		return -ENOSPC;
    977
    978	return 0;
    979}
    980
    981/**
    982 * dwc2_uframe_schedule_hs - Schedule a QH for a periodic high speed xfer.
    983 *
    984 * Basically this just wraps dwc2_hs_pmap_schedule() to provide a clean
    985 * interface.
    986 *
    987 * @hsotg:       The HCD state structure for the DWC OTG controller.
    988 * @qh:          QH for the periodic transfer.
    989 */
    990static int dwc2_uframe_schedule_hs(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
    991{
    992	/* In non-split host and device time are the same */
    993	WARN_ON(qh->host_us != qh->device_us);
    994	WARN_ON(qh->host_interval != qh->device_interval);
    995	WARN_ON(qh->num_hs_transfers != 1);
    996
    997	/* We'll have one transfer; init start to 0 before calling scheduler */
    998	qh->hs_transfers[0].start_schedule_us = 0;
    999	qh->hs_transfers[0].duration_us = qh->host_us;
   1000
   1001	return dwc2_hs_pmap_schedule(hsotg, qh, false, 0);
   1002}
   1003
   1004/**
   1005 * dwc2_uframe_schedule_ls - Schedule a QH for a periodic low/full speed xfer.
   1006 *
   1007 * Basically this just wraps dwc2_ls_pmap_schedule() to provide a clean
   1008 * interface.
   1009 *
   1010 * @hsotg:       The HCD state structure for the DWC OTG controller.
   1011 * @qh:          QH for the periodic transfer.
   1012 */
   1013static int dwc2_uframe_schedule_ls(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
   1014{
   1015	/* In non-split host and device time are the same */
   1016	WARN_ON(qh->host_us != qh->device_us);
   1017	WARN_ON(qh->host_interval != qh->device_interval);
   1018	WARN_ON(!qh->schedule_low_speed);
   1019
   1020	/* Run on the main low speed schedule (no split = no hub = no TT) */
   1021	return dwc2_ls_pmap_schedule(hsotg, qh, 0);
   1022}
   1023
   1024/**
   1025 * dwc2_uframe_schedule - Schedule a QH for a periodic xfer.
   1026 *
   1027 * Calls one of the 3 sub-function depending on what type of transfer this QH
   1028 * is for.  Also adds some printing.
   1029 *
   1030 * @hsotg:       The HCD state structure for the DWC OTG controller.
   1031 * @qh:          QH for the periodic transfer.
   1032 */
   1033static int dwc2_uframe_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
   1034{
   1035	int ret;
   1036
   1037	if (qh->dev_speed == USB_SPEED_HIGH)
   1038		ret = dwc2_uframe_schedule_hs(hsotg, qh);
   1039	else if (!qh->do_split)
   1040		ret = dwc2_uframe_schedule_ls(hsotg, qh);
   1041	else
   1042		ret = dwc2_uframe_schedule_split(hsotg, qh);
   1043
   1044	if (ret)
   1045		dwc2_sch_dbg(hsotg, "QH=%p Failed to schedule %d\n", qh, ret);
   1046	else
   1047		dwc2_qh_schedule_print(hsotg, qh);
   1048
   1049	return ret;
   1050}
   1051
   1052/**
   1053 * dwc2_uframe_unschedule - Undoes dwc2_uframe_schedule().
   1054 *
   1055 * @hsotg:       The HCD state structure for the DWC OTG controller.
   1056 * @qh:          QH for the periodic transfer.
   1057 */
   1058static void dwc2_uframe_unschedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
   1059{
   1060	int i;
   1061
   1062	for (i = 0; i < qh->num_hs_transfers; i++)
   1063		dwc2_hs_pmap_unschedule(hsotg, qh, i);
   1064
   1065	if (qh->schedule_low_speed)
   1066		dwc2_ls_pmap_unschedule(hsotg, qh);
   1067
   1068	dwc2_sch_dbg(hsotg, "QH=%p Unscheduled\n", qh);
   1069}
   1070
   1071/**
   1072 * dwc2_pick_first_frame() - Choose 1st frame for qh that's already scheduled
   1073 *
   1074 * Takes a qh that has already been scheduled (which means we know we have the
   1075 * bandwdith reserved for us) and set the next_active_frame and the
   1076 * start_active_frame.
   1077 *
   1078 * This is expected to be called on qh's that weren't previously actively
   1079 * running.  It just picks the next frame that we can fit into without any
   1080 * thought about the past.
   1081 *
   1082 * @hsotg: The HCD state structure for the DWC OTG controller
   1083 * @qh:    QH for a periodic endpoint
   1084 *
   1085 */
   1086static void dwc2_pick_first_frame(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
   1087{
   1088	u16 frame_number;
   1089	u16 earliest_frame;
   1090	u16 next_active_frame;
   1091	u16 relative_frame;
   1092	u16 interval;
   1093
   1094	/*
   1095	 * Use the real frame number rather than the cached value as of the
   1096	 * last SOF to give us a little extra slop.
   1097	 */
   1098	frame_number = dwc2_hcd_get_frame_number(hsotg);
   1099
   1100	/*
   1101	 * We wouldn't want to start any earlier than the next frame just in
   1102	 * case the frame number ticks as we're doing this calculation.
   1103	 *
   1104	 * NOTE: if we could quantify how long till we actually get scheduled
   1105	 * we might be able to avoid the "+ 1" by looking at the upper part of
   1106	 * HFNUM (the FRREM field).  For now we'll just use the + 1 though.
   1107	 */
   1108	earliest_frame = dwc2_frame_num_inc(frame_number, 1);
   1109	next_active_frame = earliest_frame;
   1110
   1111	/* Get the "no microframe schduler" out of the way... */
   1112	if (!hsotg->params.uframe_sched) {
   1113		if (qh->do_split)
   1114			/* Splits are active at microframe 0 minus 1 */
   1115			next_active_frame |= 0x7;
   1116		goto exit;
   1117	}
   1118
   1119	if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
   1120		/*
   1121		 * We're either at high speed or we're doing a split (which
   1122		 * means we're talking high speed to a hub).  In any case
   1123		 * the first frame should be based on when the first scheduled
   1124		 * event is.
   1125		 */
   1126		WARN_ON(qh->num_hs_transfers < 1);
   1127
   1128		relative_frame = qh->hs_transfers[0].start_schedule_us /
   1129				 DWC2_HS_PERIODIC_US_PER_UFRAME;
   1130
   1131		/* Adjust interval as per high speed schedule */
   1132		interval = gcd(qh->host_interval, DWC2_HS_SCHEDULE_UFRAMES);
   1133
   1134	} else {
   1135		/*
   1136		 * Low or full speed directly on dwc2.  Just about the same
   1137		 * as high speed but on a different schedule and with slightly
   1138		 * different adjustments.  Note that this works because when
   1139		 * the host and device are both low speed then frames in the
   1140		 * controller tick at low speed.
   1141		 */
   1142		relative_frame = qh->ls_start_schedule_slice /
   1143				 DWC2_LS_PERIODIC_SLICES_PER_FRAME;
   1144		interval = gcd(qh->host_interval, DWC2_LS_SCHEDULE_FRAMES);
   1145	}
   1146
   1147	/* Scheduler messed up if frame is past interval */
   1148	WARN_ON(relative_frame >= interval);
   1149
   1150	/*
   1151	 * We know interval must divide (HFNUM_MAX_FRNUM + 1) now that we've
   1152	 * done the gcd(), so it's safe to move to the beginning of the current
   1153	 * interval like this.
   1154	 *
   1155	 * After this we might be before earliest_frame, but don't worry,
   1156	 * we'll fix it...
   1157	 */
   1158	next_active_frame = (next_active_frame / interval) * interval;
   1159
   1160	/*
   1161	 * Actually choose to start at the frame number we've been
   1162	 * scheduled for.
   1163	 */
   1164	next_active_frame = dwc2_frame_num_inc(next_active_frame,
   1165					       relative_frame);
   1166
   1167	/*
   1168	 * We actually need 1 frame before since the next_active_frame is
   1169	 * the frame number we'll be put on the ready list and we won't be on
   1170	 * the bus until 1 frame later.
   1171	 */
   1172	next_active_frame = dwc2_frame_num_dec(next_active_frame, 1);
   1173
   1174	/*
   1175	 * By now we might actually be before the earliest_frame.  Let's move
   1176	 * up intervals until we're not.
   1177	 */
   1178	while (dwc2_frame_num_gt(earliest_frame, next_active_frame))
   1179		next_active_frame = dwc2_frame_num_inc(next_active_frame,
   1180						       interval);
   1181
   1182exit:
   1183	qh->next_active_frame = next_active_frame;
   1184	qh->start_active_frame = next_active_frame;
   1185
   1186	dwc2_sch_vdbg(hsotg, "QH=%p First fn=%04x nxt=%04x\n",
   1187		      qh, frame_number, qh->next_active_frame);
   1188}
   1189
   1190/**
   1191 * dwc2_do_reserve() - Make a periodic reservation
   1192 *
   1193 * Try to allocate space in the periodic schedule.  Depending on parameters
   1194 * this might use the microframe scheduler or the dumb scheduler.
   1195 *
   1196 * @hsotg: The HCD state structure for the DWC OTG controller
   1197 * @qh:    QH for the periodic transfer.
   1198 *
   1199 * Returns: 0 upon success; error upon failure.
   1200 */
   1201static int dwc2_do_reserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
   1202{
   1203	int status;
   1204
   1205	if (hsotg->params.uframe_sched) {
   1206		status = dwc2_uframe_schedule(hsotg, qh);
   1207	} else {
   1208		status = dwc2_periodic_channel_available(hsotg);
   1209		if (status) {
   1210			dev_info(hsotg->dev,
   1211				 "%s: No host channel available for periodic transfer\n",
   1212				 __func__);
   1213			return status;
   1214		}
   1215
   1216		status = dwc2_check_periodic_bandwidth(hsotg, qh);
   1217	}
   1218
   1219	if (status) {
   1220		dev_dbg(hsotg->dev,
   1221			"%s: Insufficient periodic bandwidth for periodic transfer\n",
   1222			__func__);
   1223		return status;
   1224	}
   1225
   1226	if (!hsotg->params.uframe_sched)
   1227		/* Reserve periodic channel */
   1228		hsotg->periodic_channels++;
   1229
   1230	/* Update claimed usecs per (micro)frame */
   1231	hsotg->periodic_usecs += qh->host_us;
   1232
   1233	dwc2_pick_first_frame(hsotg, qh);
   1234
   1235	return 0;
   1236}
   1237
   1238/**
   1239 * dwc2_do_unreserve() - Actually release the periodic reservation
   1240 *
   1241 * This function actually releases the periodic bandwidth that was reserved
   1242 * by the given qh.
   1243 *
   1244 * @hsotg: The HCD state structure for the DWC OTG controller
   1245 * @qh:    QH for the periodic transfer.
   1246 */
   1247static void dwc2_do_unreserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
   1248{
   1249	assert_spin_locked(&hsotg->lock);
   1250
   1251	WARN_ON(!qh->unreserve_pending);
   1252
   1253	/* No more unreserve pending--we're doing it */
   1254	qh->unreserve_pending = false;
   1255
   1256	if (WARN_ON(!list_empty(&qh->qh_list_entry)))
   1257		list_del_init(&qh->qh_list_entry);
   1258
   1259	/* Update claimed usecs per (micro)frame */
   1260	hsotg->periodic_usecs -= qh->host_us;
   1261
   1262	if (hsotg->params.uframe_sched) {
   1263		dwc2_uframe_unschedule(hsotg, qh);
   1264	} else {
   1265		/* Release periodic channel reservation */
   1266		hsotg->periodic_channels--;
   1267	}
   1268}
   1269
   1270/**
   1271 * dwc2_unreserve_timer_fn() - Timer function to release periodic reservation
   1272 *
   1273 * According to the kernel doc for usb_submit_urb() (specifically the part about
   1274 * "Reserved Bandwidth Transfers"), we need to keep a reservation active as
   1275 * long as a device driver keeps submitting.  Since we're using HCD_BH to give
   1276 * back the URB we need to give the driver a little bit of time before we
   1277 * release the reservation.  This worker is called after the appropriate
   1278 * delay.
   1279 *
   1280 * @t: Address to a qh unreserve_work.
   1281 */
   1282static void dwc2_unreserve_timer_fn(struct timer_list *t)
   1283{
   1284	struct dwc2_qh *qh = from_timer(qh, t, unreserve_timer);
   1285	struct dwc2_hsotg *hsotg = qh->hsotg;
   1286	unsigned long flags;
   1287
   1288	/*
   1289	 * Wait for the lock, or for us to be scheduled again.  We
   1290	 * could be scheduled again if:
   1291	 * - We started executing but didn't get the lock yet.
   1292	 * - A new reservation came in, but cancel didn't take effect
   1293	 *   because we already started executing.
   1294	 * - The timer has been kicked again.
   1295	 * In that case cancel and wait for the next call.
   1296	 */
   1297	while (!spin_trylock_irqsave(&hsotg->lock, flags)) {
   1298		if (timer_pending(&qh->unreserve_timer))
   1299			return;
   1300	}
   1301
   1302	/*
   1303	 * Might be no more unreserve pending if:
   1304	 * - We started executing but didn't get the lock yet.
   1305	 * - A new reservation came in, but cancel didn't take effect
   1306	 *   because we already started executing.
   1307	 *
   1308	 * We can't put this in the loop above because unreserve_pending needs
   1309	 * to be accessed under lock, so we can only check it once we got the
   1310	 * lock.
   1311	 */
   1312	if (qh->unreserve_pending)
   1313		dwc2_do_unreserve(hsotg, qh);
   1314
   1315	spin_unlock_irqrestore(&hsotg->lock, flags);
   1316}
   1317
   1318/**
   1319 * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a
   1320 * host channel is large enough to handle the maximum data transfer in a single
   1321 * (micro)frame for a periodic transfer
   1322 *
   1323 * @hsotg: The HCD state structure for the DWC OTG controller
   1324 * @qh:    QH for a periodic endpoint
   1325 *
   1326 * Return: 0 if successful, negative error code otherwise
   1327 */
   1328static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg,
   1329				    struct dwc2_qh *qh)
   1330{
   1331	u32 max_xfer_size;
   1332	u32 max_channel_xfer_size;
   1333	int status = 0;
   1334
   1335	max_xfer_size = qh->maxp * qh->maxp_mult;
   1336	max_channel_xfer_size = hsotg->params.max_transfer_size;
   1337
   1338	if (max_xfer_size > max_channel_xfer_size) {
   1339		dev_err(hsotg->dev,
   1340			"%s: Periodic xfer length %d > max xfer length for channel %d\n",
   1341			__func__, max_xfer_size, max_channel_xfer_size);
   1342		status = -ENOSPC;
   1343	}
   1344
   1345	return status;
   1346}
   1347
   1348/**
   1349 * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in
   1350 * the periodic schedule
   1351 *
   1352 * @hsotg: The HCD state structure for the DWC OTG controller
   1353 * @qh:    QH for the periodic transfer. The QH should already contain the
   1354 *         scheduling information.
   1355 *
   1356 * Return: 0 if successful, negative error code otherwise
   1357 */
   1358static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
   1359{
   1360	int status;
   1361
   1362	status = dwc2_check_max_xfer_size(hsotg, qh);
   1363	if (status) {
   1364		dev_dbg(hsotg->dev,
   1365			"%s: Channel max transfer size too small for periodic transfer\n",
   1366			__func__);
   1367		return status;
   1368	}
   1369
   1370	/* Cancel pending unreserve; if canceled OK, unreserve was pending */
   1371	if (del_timer(&qh->unreserve_timer))
   1372		WARN_ON(!qh->unreserve_pending);
   1373
   1374	/*
   1375	 * Only need to reserve if there's not an unreserve pending, since if an
   1376	 * unreserve is pending then by definition our old reservation is still
   1377	 * valid.  Unreserve might still be pending even if we didn't cancel if
   1378	 * dwc2_unreserve_timer_fn() already started.  Code in the timer handles
   1379	 * that case.
   1380	 */
   1381	if (!qh->unreserve_pending) {
   1382		status = dwc2_do_reserve(hsotg, qh);
   1383		if (status)
   1384			return status;
   1385	} else {
   1386		/*
   1387		 * It might have been a while, so make sure that frame_number
   1388		 * is still good.  Note: we could also try to use the similar
   1389		 * dwc2_next_periodic_start() but that schedules much more
   1390		 * tightly and we might need to hurry and queue things up.
   1391		 */
   1392		if (dwc2_frame_num_le(qh->next_active_frame,
   1393				      hsotg->frame_number))
   1394			dwc2_pick_first_frame(hsotg, qh);
   1395	}
   1396
   1397	qh->unreserve_pending = 0;
   1398
   1399	if (hsotg->params.dma_desc_enable)
   1400		/* Don't rely on SOF and start in ready schedule */
   1401		list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
   1402	else
   1403		/* Always start in inactive schedule */
   1404		list_add_tail(&qh->qh_list_entry,
   1405			      &hsotg->periodic_sched_inactive);
   1406
   1407	return 0;
   1408}
   1409
   1410/**
   1411 * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer
   1412 * from the periodic schedule
   1413 *
   1414 * @hsotg: The HCD state structure for the DWC OTG controller
   1415 * @qh:	   QH for the periodic transfer
   1416 */
   1417static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg,
   1418				     struct dwc2_qh *qh)
   1419{
   1420	bool did_modify;
   1421
   1422	assert_spin_locked(&hsotg->lock);
   1423
   1424	/*
   1425	 * Schedule the unreserve to happen in a little bit.  Cases here:
   1426	 * - Unreserve worker might be sitting there waiting to grab the lock.
   1427	 *   In this case it will notice it's been schedule again and will
   1428	 *   quit.
   1429	 * - Unreserve worker might not be scheduled.
   1430	 *
   1431	 * We should never already be scheduled since dwc2_schedule_periodic()
   1432	 * should have canceled the scheduled unreserve timer (hence the
   1433	 * warning on did_modify).
   1434	 *
   1435	 * We add + 1 to the timer to guarantee that at least 1 jiffy has
   1436	 * passed (otherwise if the jiffy counter might tick right after we
   1437	 * read it and we'll get no delay).
   1438	 */
   1439	did_modify = mod_timer(&qh->unreserve_timer,
   1440			       jiffies + DWC2_UNRESERVE_DELAY + 1);
   1441	WARN_ON(did_modify);
   1442	qh->unreserve_pending = 1;
   1443
   1444	list_del_init(&qh->qh_list_entry);
   1445}
   1446
   1447/**
   1448 * dwc2_wait_timer_fn() - Timer function to re-queue after waiting
   1449 *
   1450 * As per the spec, a NAK indicates that "a function is temporarily unable to
   1451 * transmit or receive data, but will eventually be able to do so without need
   1452 * of host intervention".
   1453 *
   1454 * That means that when we encounter a NAK we're supposed to retry.
   1455 *
   1456 * ...but if we retry right away (from the interrupt handler that saw the NAK)
   1457 * then we can end up with an interrupt storm (if the other side keeps NAKing
   1458 * us) because on slow enough CPUs it could take us longer to get out of the
   1459 * interrupt routine than it takes for the device to send another NAK.  That
   1460 * leads to a constant stream of NAK interrupts and the CPU locks.
   1461 *
   1462 * ...so instead of retrying right away in the case of a NAK we'll set a timer
   1463 * to retry some time later.  This function handles that timer and moves the
   1464 * qh back to the "inactive" list, then queues transactions.
   1465 *
   1466 * @t: Pointer to wait_timer in a qh.
   1467 *
   1468 * Return: HRTIMER_NORESTART to not automatically restart this timer.
   1469 */
   1470static enum hrtimer_restart dwc2_wait_timer_fn(struct hrtimer *t)
   1471{
   1472	struct dwc2_qh *qh = container_of(t, struct dwc2_qh, wait_timer);
   1473	struct dwc2_hsotg *hsotg = qh->hsotg;
   1474	unsigned long flags;
   1475
   1476	spin_lock_irqsave(&hsotg->lock, flags);
   1477
   1478	/*
   1479	 * We'll set wait_timer_cancel to true if we want to cancel this
   1480	 * operation in dwc2_hcd_qh_unlink().
   1481	 */
   1482	if (!qh->wait_timer_cancel) {
   1483		enum dwc2_transaction_type tr_type;
   1484
   1485		qh->want_wait = false;
   1486
   1487		list_move(&qh->qh_list_entry,
   1488			  &hsotg->non_periodic_sched_inactive);
   1489
   1490		tr_type = dwc2_hcd_select_transactions(hsotg);
   1491		if (tr_type != DWC2_TRANSACTION_NONE)
   1492			dwc2_hcd_queue_transactions(hsotg, tr_type);
   1493	}
   1494
   1495	spin_unlock_irqrestore(&hsotg->lock, flags);
   1496	return HRTIMER_NORESTART;
   1497}
   1498
   1499/**
   1500 * dwc2_qh_init() - Initializes a QH structure
   1501 *
   1502 * @hsotg: The HCD state structure for the DWC OTG controller
   1503 * @qh:    The QH to init
   1504 * @urb:   Holds the information about the device/endpoint needed to initialize
   1505 *         the QH
   1506 * @mem_flags: Flags for allocating memory.
   1507 */
   1508static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
   1509			 struct dwc2_hcd_urb *urb, gfp_t mem_flags)
   1510{
   1511	int dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
   1512	u8 ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info);
   1513	bool ep_is_in = !!dwc2_hcd_is_pipe_in(&urb->pipe_info);
   1514	bool ep_is_isoc = (ep_type == USB_ENDPOINT_XFER_ISOC);
   1515	bool ep_is_int = (ep_type == USB_ENDPOINT_XFER_INT);
   1516	u32 hprt = dwc2_readl(hsotg, HPRT0);
   1517	u32 prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
   1518	bool do_split = (prtspd == HPRT0_SPD_HIGH_SPEED &&
   1519			 dev_speed != USB_SPEED_HIGH);
   1520	int maxp = dwc2_hcd_get_maxp(&urb->pipe_info);
   1521	int maxp_mult = dwc2_hcd_get_maxp_mult(&urb->pipe_info);
   1522	int bytecount = maxp_mult * maxp;
   1523	char *speed, *type;
   1524
   1525	/* Initialize QH */
   1526	qh->hsotg = hsotg;
   1527	timer_setup(&qh->unreserve_timer, dwc2_unreserve_timer_fn, 0);
   1528	hrtimer_init(&qh->wait_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
   1529	qh->wait_timer.function = &dwc2_wait_timer_fn;
   1530	qh->ep_type = ep_type;
   1531	qh->ep_is_in = ep_is_in;
   1532
   1533	qh->data_toggle = DWC2_HC_PID_DATA0;
   1534	qh->maxp = maxp;
   1535	qh->maxp_mult = maxp_mult;
   1536	INIT_LIST_HEAD(&qh->qtd_list);
   1537	INIT_LIST_HEAD(&qh->qh_list_entry);
   1538
   1539	qh->do_split = do_split;
   1540	qh->dev_speed = dev_speed;
   1541
   1542	if (ep_is_int || ep_is_isoc) {
   1543		/* Compute scheduling parameters once and save them */
   1544		int host_speed = do_split ? USB_SPEED_HIGH : dev_speed;
   1545		struct dwc2_tt *dwc_tt = dwc2_host_get_tt_info(hsotg, urb->priv,
   1546							       mem_flags,
   1547							       &qh->ttport);
   1548		int device_ns;
   1549
   1550		qh->dwc_tt = dwc_tt;
   1551
   1552		qh->host_us = NS_TO_US(usb_calc_bus_time(host_speed, ep_is_in,
   1553				       ep_is_isoc, bytecount));
   1554		device_ns = usb_calc_bus_time(dev_speed, ep_is_in,
   1555					      ep_is_isoc, bytecount);
   1556
   1557		if (do_split && dwc_tt)
   1558			device_ns += dwc_tt->usb_tt->think_time;
   1559		qh->device_us = NS_TO_US(device_ns);
   1560
   1561		qh->device_interval = urb->interval;
   1562		qh->host_interval = urb->interval * (do_split ? 8 : 1);
   1563
   1564		/*
   1565		 * Schedule low speed if we're running the host in low or
   1566		 * full speed OR if we've got a "TT" to deal with to access this
   1567		 * device.
   1568		 */
   1569		qh->schedule_low_speed = prtspd != HPRT0_SPD_HIGH_SPEED ||
   1570					 dwc_tt;
   1571
   1572		if (do_split) {
   1573			/* We won't know num transfers until we schedule */
   1574			qh->num_hs_transfers = -1;
   1575		} else if (dev_speed == USB_SPEED_HIGH) {
   1576			qh->num_hs_transfers = 1;
   1577		} else {
   1578			qh->num_hs_transfers = 0;
   1579		}
   1580
   1581		/* We'll schedule later when we have something to do */
   1582	}
   1583
   1584	switch (dev_speed) {
   1585	case USB_SPEED_LOW:
   1586		speed = "low";
   1587		break;
   1588	case USB_SPEED_FULL:
   1589		speed = "full";
   1590		break;
   1591	case USB_SPEED_HIGH:
   1592		speed = "high";
   1593		break;
   1594	default:
   1595		speed = "?";
   1596		break;
   1597	}
   1598
   1599	switch (qh->ep_type) {
   1600	case USB_ENDPOINT_XFER_ISOC:
   1601		type = "isochronous";
   1602		break;
   1603	case USB_ENDPOINT_XFER_INT:
   1604		type = "interrupt";
   1605		break;
   1606	case USB_ENDPOINT_XFER_CONTROL:
   1607		type = "control";
   1608		break;
   1609	case USB_ENDPOINT_XFER_BULK:
   1610		type = "bulk";
   1611		break;
   1612	default:
   1613		type = "?";
   1614		break;
   1615	}
   1616
   1617	dwc2_sch_dbg(hsotg, "QH=%p Init %s, %s speed, %d bytes:\n", qh, type,
   1618		     speed, bytecount);
   1619	dwc2_sch_dbg(hsotg, "QH=%p ...addr=%d, ep=%d, %s\n", qh,
   1620		     dwc2_hcd_get_dev_addr(&urb->pipe_info),
   1621		     dwc2_hcd_get_ep_num(&urb->pipe_info),
   1622		     ep_is_in ? "IN" : "OUT");
   1623	if (ep_is_int || ep_is_isoc) {
   1624		dwc2_sch_dbg(hsotg,
   1625			     "QH=%p ...duration: host=%d us, device=%d us\n",
   1626			     qh, qh->host_us, qh->device_us);
   1627		dwc2_sch_dbg(hsotg, "QH=%p ...interval: host=%d, device=%d\n",
   1628			     qh, qh->host_interval, qh->device_interval);
   1629		if (qh->schedule_low_speed)
   1630			dwc2_sch_dbg(hsotg, "QH=%p ...low speed schedule=%p\n",
   1631				     qh, dwc2_get_ls_map(hsotg, qh));
   1632	}
   1633}
   1634
   1635/**
   1636 * dwc2_hcd_qh_create() - Allocates and initializes a QH
   1637 *
   1638 * @hsotg:        The HCD state structure for the DWC OTG controller
   1639 * @urb:          Holds the information about the device/endpoint needed
   1640 *                to initialize the QH
   1641 * @mem_flags:   Flags for allocating memory.
   1642 *
   1643 * Return: Pointer to the newly allocated QH, or NULL on error
   1644 */
   1645struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
   1646				   struct dwc2_hcd_urb *urb,
   1647					  gfp_t mem_flags)
   1648{
   1649	struct dwc2_qh *qh;
   1650
   1651	if (!urb->priv)
   1652		return NULL;
   1653
   1654	/* Allocate memory */
   1655	qh = kzalloc(sizeof(*qh), mem_flags);
   1656	if (!qh)
   1657		return NULL;
   1658
   1659	dwc2_qh_init(hsotg, qh, urb, mem_flags);
   1660
   1661	if (hsotg->params.dma_desc_enable &&
   1662	    dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) {
   1663		dwc2_hcd_qh_free(hsotg, qh);
   1664		return NULL;
   1665	}
   1666
   1667	return qh;
   1668}
   1669
   1670/**
   1671 * dwc2_hcd_qh_free() - Frees the QH
   1672 *
   1673 * @hsotg: HCD instance
   1674 * @qh:    The QH to free
   1675 *
   1676 * QH should already be removed from the list. QTD list should already be empty
   1677 * if called from URB Dequeue.
   1678 *
   1679 * Must NOT be called with interrupt disabled or spinlock held
   1680 */
   1681void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
   1682{
   1683	/* Make sure any unreserve work is finished. */
   1684	if (del_timer_sync(&qh->unreserve_timer)) {
   1685		unsigned long flags;
   1686
   1687		spin_lock_irqsave(&hsotg->lock, flags);
   1688		dwc2_do_unreserve(hsotg, qh);
   1689		spin_unlock_irqrestore(&hsotg->lock, flags);
   1690	}
   1691
   1692	/*
   1693	 * We don't have the lock so we can safely wait until the wait timer
   1694	 * finishes.  Of course, at this point in time we'd better have set
   1695	 * wait_timer_active to false so if this timer was still pending it
   1696	 * won't do anything anyway, but we want it to finish before we free
   1697	 * memory.
   1698	 */
   1699	hrtimer_cancel(&qh->wait_timer);
   1700
   1701	dwc2_host_put_tt_info(hsotg, qh->dwc_tt);
   1702
   1703	if (qh->desc_list)
   1704		dwc2_hcd_qh_free_ddma(hsotg, qh);
   1705	else if (hsotg->unaligned_cache && qh->dw_align_buf)
   1706		kmem_cache_free(hsotg->unaligned_cache, qh->dw_align_buf);
   1707
   1708	kfree(qh);
   1709}
   1710
   1711/**
   1712 * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic
   1713 * schedule if it is not already in the schedule. If the QH is already in
   1714 * the schedule, no action is taken.
   1715 *
   1716 * @hsotg: The HCD state structure for the DWC OTG controller
   1717 * @qh:    The QH to add
   1718 *
   1719 * Return: 0 if successful, negative error code otherwise
   1720 */
   1721int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
   1722{
   1723	int status;
   1724	u32 intr_mask;
   1725	ktime_t delay;
   1726
   1727	if (dbg_qh(qh))
   1728		dev_vdbg(hsotg->dev, "%s()\n", __func__);
   1729
   1730	if (!list_empty(&qh->qh_list_entry))
   1731		/* QH already in a schedule */
   1732		return 0;
   1733
   1734	/* Add the new QH to the appropriate schedule */
   1735	if (dwc2_qh_is_non_per(qh)) {
   1736		/* Schedule right away */
   1737		qh->start_active_frame = hsotg->frame_number;
   1738		qh->next_active_frame = qh->start_active_frame;
   1739
   1740		if (qh->want_wait) {
   1741			list_add_tail(&qh->qh_list_entry,
   1742				      &hsotg->non_periodic_sched_waiting);
   1743			qh->wait_timer_cancel = false;
   1744			delay = ktime_set(0, DWC2_RETRY_WAIT_DELAY);
   1745			hrtimer_start(&qh->wait_timer, delay, HRTIMER_MODE_REL);
   1746		} else {
   1747			list_add_tail(&qh->qh_list_entry,
   1748				      &hsotg->non_periodic_sched_inactive);
   1749		}
   1750		return 0;
   1751	}
   1752
   1753	status = dwc2_schedule_periodic(hsotg, qh);
   1754	if (status)
   1755		return status;
   1756	if (!hsotg->periodic_qh_count) {
   1757		intr_mask = dwc2_readl(hsotg, GINTMSK);
   1758		intr_mask |= GINTSTS_SOF;
   1759		dwc2_writel(hsotg, intr_mask, GINTMSK);
   1760	}
   1761	hsotg->periodic_qh_count++;
   1762
   1763	return 0;
   1764}
   1765
   1766/**
   1767 * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic
   1768 * schedule. Memory is not freed.
   1769 *
   1770 * @hsotg: The HCD state structure
   1771 * @qh:    QH to remove from schedule
   1772 */
   1773void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
   1774{
   1775	u32 intr_mask;
   1776
   1777	dev_vdbg(hsotg->dev, "%s()\n", __func__);
   1778
   1779	/* If the wait_timer is pending, this will stop it from acting */
   1780	qh->wait_timer_cancel = true;
   1781
   1782	if (list_empty(&qh->qh_list_entry))
   1783		/* QH is not in a schedule */
   1784		return;
   1785
   1786	if (dwc2_qh_is_non_per(qh)) {
   1787		if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry)
   1788			hsotg->non_periodic_qh_ptr =
   1789					hsotg->non_periodic_qh_ptr->next;
   1790		list_del_init(&qh->qh_list_entry);
   1791		return;
   1792	}
   1793
   1794	dwc2_deschedule_periodic(hsotg, qh);
   1795	hsotg->periodic_qh_count--;
   1796	if (!hsotg->periodic_qh_count &&
   1797	    !hsotg->params.dma_desc_enable) {
   1798		intr_mask = dwc2_readl(hsotg, GINTMSK);
   1799		intr_mask &= ~GINTSTS_SOF;
   1800		dwc2_writel(hsotg, intr_mask, GINTMSK);
   1801	}
   1802}
   1803
   1804/**
   1805 * dwc2_next_for_periodic_split() - Set next_active_frame midway thru a split.
   1806 *
   1807 * This is called for setting next_active_frame for periodic splits for all but
   1808 * the first packet of the split.  Confusing?  I thought so...
   1809 *
   1810 * Periodic splits are single low/full speed transfers that we end up splitting
   1811 * up into several high speed transfers.  They always fit into one full (1 ms)
   1812 * frame but might be split over several microframes (125 us each).  We to put
   1813 * each of the parts on a very specific high speed frame.
   1814 *
   1815 * This function figures out where the next active uFrame needs to be.
   1816 *
   1817 * @hsotg:        The HCD state structure
   1818 * @qh:           QH for the periodic transfer.
   1819 * @frame_number: The current frame number.
   1820 *
   1821 * Return: number missed by (or 0 if we didn't miss).
   1822 */
   1823static int dwc2_next_for_periodic_split(struct dwc2_hsotg *hsotg,
   1824					struct dwc2_qh *qh, u16 frame_number)
   1825{
   1826	u16 old_frame = qh->next_active_frame;
   1827	u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
   1828	int missed = 0;
   1829	u16 incr;
   1830
   1831	/*
   1832	 * See dwc2_uframe_schedule_split() for split scheduling.
   1833	 *
   1834	 * Basically: increment 1 normally, but 2 right after the start split
   1835	 * (except for ISOC out).
   1836	 */
   1837	if (old_frame == qh->start_active_frame &&
   1838	    !(qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in))
   1839		incr = 2;
   1840	else
   1841		incr = 1;
   1842
   1843	qh->next_active_frame = dwc2_frame_num_inc(old_frame, incr);
   1844
   1845	/*
   1846	 * Note that it's OK for frame_number to be 1 frame past
   1847	 * next_active_frame.  Remember that next_active_frame is supposed to
   1848	 * be 1 frame _before_ when we want to be scheduled.  If we're 1 frame
   1849	 * past it just means schedule ASAP.
   1850	 *
   1851	 * It's _not_ OK, however, if we're more than one frame past.
   1852	 */
   1853	if (dwc2_frame_num_gt(prev_frame_number, qh->next_active_frame)) {
   1854		/*
   1855		 * OOPS, we missed.  That's actually pretty bad since
   1856		 * the hub will be unhappy; try ASAP I guess.
   1857		 */
   1858		missed = dwc2_frame_num_dec(prev_frame_number,
   1859					    qh->next_active_frame);
   1860		qh->next_active_frame = frame_number;
   1861	}
   1862
   1863	return missed;
   1864}
   1865
   1866/**
   1867 * dwc2_next_periodic_start() - Set next_active_frame for next transfer start
   1868 *
   1869 * This is called for setting next_active_frame for a periodic transfer for
   1870 * all cases other than midway through a periodic split.  This will also update
   1871 * start_active_frame.
   1872 *
   1873 * Since we _always_ keep start_active_frame as the start of the previous
   1874 * transfer this is normally pretty easy: we just add our interval to
   1875 * start_active_frame and we've got our answer.
   1876 *
   1877 * The tricks come into play if we miss.  In that case we'll look for the next
   1878 * slot we can fit into.
   1879 *
   1880 * @hsotg:        The HCD state structure
   1881 * @qh:           QH for the periodic transfer.
   1882 * @frame_number: The current frame number.
   1883 *
   1884 * Return: number missed by (or 0 if we didn't miss).
   1885 */
   1886static int dwc2_next_periodic_start(struct dwc2_hsotg *hsotg,
   1887				    struct dwc2_qh *qh, u16 frame_number)
   1888{
   1889	int missed = 0;
   1890	u16 interval = qh->host_interval;
   1891	u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
   1892
   1893	qh->start_active_frame = dwc2_frame_num_inc(qh->start_active_frame,
   1894						    interval);
   1895
   1896	/*
   1897	 * The dwc2_frame_num_gt() function used below won't work terribly well
   1898	 * with if we just incremented by a really large intervals since the
   1899	 * frame counter only goes to 0x3fff.  It's terribly unlikely that we
   1900	 * will have missed in this case anyway.  Just go to exit.  If we want
   1901	 * to try to do better we'll need to keep track of a bigger counter
   1902	 * somewhere in the driver and handle overflows.
   1903	 */
   1904	if (interval >= 0x1000)
   1905		goto exit;
   1906
   1907	/*
   1908	 * Test for misses, which is when it's too late to schedule.
   1909	 *
   1910	 * A few things to note:
   1911	 * - We compare against prev_frame_number since start_active_frame
   1912	 *   and next_active_frame are always 1 frame before we want things
   1913	 *   to be active and we assume we can still get scheduled in the
   1914	 *   current frame number.
   1915	 * - It's possible for start_active_frame (now incremented) to be
   1916	 *   next_active_frame if we got an EO MISS (even_odd miss) which
   1917	 *   basically means that we detected there wasn't enough time for
   1918	 *   the last packet and dwc2_hc_set_even_odd_frame() rescheduled us
   1919	 *   at the last second.  We want to make sure we don't schedule
   1920	 *   another transfer for the same frame.  My test webcam doesn't seem
   1921	 *   terribly upset by missing a transfer but really doesn't like when
   1922	 *   we do two transfers in the same frame.
   1923	 * - Some misses are expected.  Specifically, in order to work
   1924	 *   perfectly dwc2 really needs quite spectacular interrupt latency
   1925	 *   requirements.  It needs to be able to handle its interrupts
   1926	 *   completely within 125 us of them being asserted. That not only
   1927	 *   means that the dwc2 interrupt handler needs to be fast but it
   1928	 *   means that nothing else in the system has to block dwc2 for a long
   1929	 *   time.  We can help with the dwc2 parts of this, but it's hard to
   1930	 *   guarantee that a system will have interrupt latency < 125 us, so
   1931	 *   we have to be robust to some misses.
   1932	 */
   1933	if (qh->start_active_frame == qh->next_active_frame ||
   1934	    dwc2_frame_num_gt(prev_frame_number, qh->start_active_frame)) {
   1935		u16 ideal_start = qh->start_active_frame;
   1936		int periods_in_map;
   1937
   1938		/*
   1939		 * Adjust interval as per gcd with map size.
   1940		 * See pmap_schedule() for more details here.
   1941		 */
   1942		if (qh->do_split || qh->dev_speed == USB_SPEED_HIGH)
   1943			periods_in_map = DWC2_HS_SCHEDULE_UFRAMES;
   1944		else
   1945			periods_in_map = DWC2_LS_SCHEDULE_FRAMES;
   1946		interval = gcd(interval, periods_in_map);
   1947
   1948		do {
   1949			qh->start_active_frame = dwc2_frame_num_inc(
   1950				qh->start_active_frame, interval);
   1951		} while (dwc2_frame_num_gt(prev_frame_number,
   1952					   qh->start_active_frame));
   1953
   1954		missed = dwc2_frame_num_dec(qh->start_active_frame,
   1955					    ideal_start);
   1956	}
   1957
   1958exit:
   1959	qh->next_active_frame = qh->start_active_frame;
   1960
   1961	return missed;
   1962}
   1963
   1964/*
   1965 * Deactivates a QH. For non-periodic QHs, removes the QH from the active
   1966 * non-periodic schedule. The QH is added to the inactive non-periodic
   1967 * schedule if any QTDs are still attached to the QH.
   1968 *
   1969 * For periodic QHs, the QH is removed from the periodic queued schedule. If
   1970 * there are any QTDs still attached to the QH, the QH is added to either the
   1971 * periodic inactive schedule or the periodic ready schedule and its next
   1972 * scheduled frame is calculated. The QH is placed in the ready schedule if
   1973 * the scheduled frame has been reached already. Otherwise it's placed in the
   1974 * inactive schedule. If there are no QTDs attached to the QH, the QH is
   1975 * completely removed from the periodic schedule.
   1976 */
   1977void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
   1978			    int sched_next_periodic_split)
   1979{
   1980	u16 old_frame = qh->next_active_frame;
   1981	u16 frame_number;
   1982	int missed;
   1983
   1984	if (dbg_qh(qh))
   1985		dev_vdbg(hsotg->dev, "%s()\n", __func__);
   1986
   1987	if (dwc2_qh_is_non_per(qh)) {
   1988		dwc2_hcd_qh_unlink(hsotg, qh);
   1989		if (!list_empty(&qh->qtd_list))
   1990			/* Add back to inactive/waiting non-periodic schedule */
   1991			dwc2_hcd_qh_add(hsotg, qh);
   1992		return;
   1993	}
   1994
   1995	/*
   1996	 * Use the real frame number rather than the cached value as of the
   1997	 * last SOF just to get us a little closer to reality.  Note that
   1998	 * means we don't actually know if we've already handled the SOF
   1999	 * interrupt for this frame.
   2000	 */
   2001	frame_number = dwc2_hcd_get_frame_number(hsotg);
   2002
   2003	if (sched_next_periodic_split)
   2004		missed = dwc2_next_for_periodic_split(hsotg, qh, frame_number);
   2005	else
   2006		missed = dwc2_next_periodic_start(hsotg, qh, frame_number);
   2007
   2008	dwc2_sch_vdbg(hsotg,
   2009		      "QH=%p next(%d) fn=%04x, sch=%04x=>%04x (%+d) miss=%d %s\n",
   2010		     qh, sched_next_periodic_split, frame_number, old_frame,
   2011		     qh->next_active_frame,
   2012		     dwc2_frame_num_dec(qh->next_active_frame, old_frame),
   2013		missed, missed ? "MISS" : "");
   2014
   2015	if (list_empty(&qh->qtd_list)) {
   2016		dwc2_hcd_qh_unlink(hsotg, qh);
   2017		return;
   2018	}
   2019
   2020	/*
   2021	 * Remove from periodic_sched_queued and move to
   2022	 * appropriate queue
   2023	 *
   2024	 * Note: we purposely use the frame_number from the "hsotg" structure
   2025	 * since we know SOF interrupt will handle future frames.
   2026	 */
   2027	if (dwc2_frame_num_le(qh->next_active_frame, hsotg->frame_number))
   2028		list_move_tail(&qh->qh_list_entry,
   2029			       &hsotg->periodic_sched_ready);
   2030	else
   2031		list_move_tail(&qh->qh_list_entry,
   2032			       &hsotg->periodic_sched_inactive);
   2033}
   2034
   2035/**
   2036 * dwc2_hcd_qtd_init() - Initializes a QTD structure
   2037 *
   2038 * @qtd: The QTD to initialize
   2039 * @urb: The associated URB
   2040 */
   2041void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
   2042{
   2043	qtd->urb = urb;
   2044	if (dwc2_hcd_get_pipe_type(&urb->pipe_info) ==
   2045			USB_ENDPOINT_XFER_CONTROL) {
   2046		/*
   2047		 * The only time the QTD data toggle is used is on the data
   2048		 * phase of control transfers. This phase always starts with
   2049		 * DATA1.
   2050		 */
   2051		qtd->data_toggle = DWC2_HC_PID_DATA1;
   2052		qtd->control_phase = DWC2_CONTROL_SETUP;
   2053	}
   2054
   2055	/* Start split */
   2056	qtd->complete_split = 0;
   2057	qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL;
   2058	qtd->isoc_split_offset = 0;
   2059	qtd->in_process = 0;
   2060
   2061	/* Store the qtd ptr in the urb to reference the QTD */
   2062	urb->qtd = qtd;
   2063}
   2064
   2065/**
   2066 * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH
   2067 *			Caller must hold driver lock.
   2068 *
   2069 * @hsotg:        The DWC HCD structure
   2070 * @qtd:          The QTD to add
   2071 * @qh:           Queue head to add qtd to
   2072 *
   2073 * Return: 0 if successful, negative error code otherwise
   2074 *
   2075 * If the QH to which the QTD is added is not currently scheduled, it is placed
   2076 * into the proper schedule based on its EP type.
   2077 */
   2078int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
   2079		     struct dwc2_qh *qh)
   2080{
   2081	int retval;
   2082
   2083	if (unlikely(!qh)) {
   2084		dev_err(hsotg->dev, "%s: Invalid QH\n", __func__);
   2085		retval = -EINVAL;
   2086		goto fail;
   2087	}
   2088
   2089	retval = dwc2_hcd_qh_add(hsotg, qh);
   2090	if (retval)
   2091		goto fail;
   2092
   2093	qtd->qh = qh;
   2094	list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
   2095
   2096	return 0;
   2097fail:
   2098	return retval;
   2099}