cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

lpc32xx_udc.c (83112B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/*
      3 * USB Gadget driver for LPC32xx
      4 *
      5 * Authors:
      6 *    Kevin Wells <kevin.wells@nxp.com>
      7 *    Mike James
      8 *    Roland Stigge <stigge@antcom.de>
      9 *
     10 * Copyright (C) 2006 Philips Semiconductors
     11 * Copyright (C) 2009 NXP Semiconductors
     12 * Copyright (C) 2012 Roland Stigge
     13 *
     14 * Note: This driver is based on original work done by Mike James for
     15 *       the LPC3180.
     16 */
     17
     18#include <linux/clk.h>
     19#include <linux/delay.h>
     20#include <linux/dma-mapping.h>
     21#include <linux/dmapool.h>
     22#include <linux/i2c.h>
     23#include <linux/interrupt.h>
     24#include <linux/module.h>
     25#include <linux/of.h>
     26#include <linux/platform_device.h>
     27#include <linux/prefetch.h>
     28#include <linux/proc_fs.h>
     29#include <linux/slab.h>
     30#include <linux/usb/ch9.h>
     31#include <linux/usb/gadget.h>
     32#include <linux/usb/isp1301.h>
     33
     34#ifdef CONFIG_USB_GADGET_DEBUG_FILES
     35#include <linux/debugfs.h>
     36#include <linux/seq_file.h>
     37#endif
     38
     39/*
     40 * USB device configuration structure
     41 */
     42typedef void (*usc_chg_event)(int);
     43struct lpc32xx_usbd_cfg {
     44	int vbus_drv_pol;   /* 0=active low drive for VBUS via ISP1301 */
     45	usc_chg_event conn_chgb; /* Connection change event (optional) */
     46	usc_chg_event susp_chgb; /* Suspend/resume event (optional) */
     47	usc_chg_event rmwk_chgb; /* Enable/disable remote wakeup */
     48};
     49
     50/*
     51 * controller driver data structures
     52 */
     53
     54/* 16 endpoints (not to be confused with 32 hardware endpoints) */
     55#define	NUM_ENDPOINTS	16
     56
     57/*
     58 * IRQ indices make reading the code a little easier
     59 */
     60#define IRQ_USB_LP	0
     61#define IRQ_USB_HP	1
     62#define IRQ_USB_DEVDMA	2
     63#define IRQ_USB_ATX	3
     64
     65#define EP_OUT 0 /* RX (from host) */
     66#define EP_IN 1 /* TX (to host) */
     67
     68/* Returns the interrupt mask for the selected hardware endpoint */
     69#define EP_MASK_SEL(ep, dir) (1 << (((ep) * 2) + dir))
     70
     71#define EP_INT_TYPE 0
     72#define EP_ISO_TYPE 1
     73#define EP_BLK_TYPE 2
     74#define EP_CTL_TYPE 3
     75
     76/* EP0 states */
     77#define WAIT_FOR_SETUP 0 /* Wait for setup packet */
     78#define DATA_IN        1 /* Expect dev->host transfer */
     79#define DATA_OUT       2 /* Expect host->dev transfer */
     80
     81/* DD (DMA Descriptor) structure, requires word alignment, this is already
     82 * defined in the LPC32XX USB device header file, but this version is slightly
     83 * modified to tag some work data with each DMA descriptor. */
     84struct lpc32xx_usbd_dd_gad {
     85	u32 dd_next_phy;
     86	u32 dd_setup;
     87	u32 dd_buffer_addr;
     88	u32 dd_status;
     89	u32 dd_iso_ps_mem_addr;
     90	u32 this_dma;
     91	u32 iso_status[6]; /* 5 spare */
     92	u32 dd_next_v;
     93};
     94
     95/*
     96 * Logical endpoint structure
     97 */
     98struct lpc32xx_ep {
     99	struct usb_ep		ep;
    100	struct list_head	queue;
    101	struct lpc32xx_udc	*udc;
    102
    103	u32			hwep_num_base; /* Physical hardware EP */
    104	u32			hwep_num; /* Maps to hardware endpoint */
    105	u32			maxpacket;
    106	u32			lep;
    107
    108	bool			is_in;
    109	bool			req_pending;
    110	u32			eptype;
    111
    112	u32                     totalints;
    113
    114	bool			wedge;
    115};
    116
    117enum atx_type {
    118	ISP1301,
    119	STOTG04,
    120};
    121
    122/*
    123 * Common UDC structure
    124 */
    125struct lpc32xx_udc {
    126	struct usb_gadget	gadget;
    127	struct usb_gadget_driver *driver;
    128	struct platform_device	*pdev;
    129	struct device		*dev;
    130	spinlock_t		lock;
    131	struct i2c_client	*isp1301_i2c_client;
    132
    133	/* Board and device specific */
    134	struct lpc32xx_usbd_cfg	*board;
    135	void __iomem		*udp_baseaddr;
    136	int			udp_irq[4];
    137	struct clk		*usb_slv_clk;
    138
    139	/* DMA support */
    140	u32			*udca_v_base;
    141	u32			udca_p_base;
    142	struct dma_pool		*dd_cache;
    143
    144	/* Common EP and control data */
    145	u32			enabled_devints;
    146	u32			enabled_hwepints;
    147	u32			dev_status;
    148	u32			realized_eps;
    149
    150	/* VBUS detection, pullup, and power flags */
    151	u8			vbus;
    152	u8			last_vbus;
    153	int			pullup;
    154	int			poweron;
    155	enum atx_type		atx;
    156
    157	/* Work queues related to I2C support */
    158	struct work_struct	pullup_job;
    159	struct work_struct	power_job;
    160
    161	/* USB device peripheral - various */
    162	struct lpc32xx_ep	ep[NUM_ENDPOINTS];
    163	bool			enabled;
    164	bool			clocked;
    165	bool			suspended;
    166	int                     ep0state;
    167	atomic_t                enabled_ep_cnt;
    168	wait_queue_head_t       ep_disable_wait_queue;
    169};
    170
    171/*
    172 * Endpoint request
    173 */
    174struct lpc32xx_request {
    175	struct usb_request	req;
    176	struct list_head	queue;
    177	struct lpc32xx_usbd_dd_gad *dd_desc_ptr;
    178	bool			mapped;
    179	bool			send_zlp;
    180};
    181
    182static inline struct lpc32xx_udc *to_udc(struct usb_gadget *g)
    183{
    184	return container_of(g, struct lpc32xx_udc, gadget);
    185}
    186
    187#define ep_dbg(epp, fmt, arg...) \
    188	dev_dbg(epp->udc->dev, "%s: " fmt, __func__, ## arg)
    189#define ep_err(epp, fmt, arg...) \
    190	dev_err(epp->udc->dev, "%s: " fmt, __func__, ## arg)
    191#define ep_info(epp, fmt, arg...) \
    192	dev_info(epp->udc->dev, "%s: " fmt, __func__, ## arg)
    193#define ep_warn(epp, fmt, arg...) \
    194	dev_warn(epp->udc->dev, "%s:" fmt, __func__, ## arg)
    195
    196#define UDCA_BUFF_SIZE (128)
    197
    198/**********************************************************************
    199 * USB device controller register offsets
    200 **********************************************************************/
    201
    202#define USBD_DEVINTST(x)	((x) + 0x200)
    203#define USBD_DEVINTEN(x)	((x) + 0x204)
    204#define USBD_DEVINTCLR(x)	((x) + 0x208)
    205#define USBD_DEVINTSET(x)	((x) + 0x20C)
    206#define USBD_CMDCODE(x)		((x) + 0x210)
    207#define USBD_CMDDATA(x)		((x) + 0x214)
    208#define USBD_RXDATA(x)		((x) + 0x218)
    209#define USBD_TXDATA(x)		((x) + 0x21C)
    210#define USBD_RXPLEN(x)		((x) + 0x220)
    211#define USBD_TXPLEN(x)		((x) + 0x224)
    212#define USBD_CTRL(x)		((x) + 0x228)
    213#define USBD_DEVINTPRI(x)	((x) + 0x22C)
    214#define USBD_EPINTST(x)		((x) + 0x230)
    215#define USBD_EPINTEN(x)		((x) + 0x234)
    216#define USBD_EPINTCLR(x)	((x) + 0x238)
    217#define USBD_EPINTSET(x)	((x) + 0x23C)
    218#define USBD_EPINTPRI(x)	((x) + 0x240)
    219#define USBD_REEP(x)		((x) + 0x244)
    220#define USBD_EPIND(x)		((x) + 0x248)
    221#define USBD_EPMAXPSIZE(x)	((x) + 0x24C)
    222/* DMA support registers only below */
    223/* Set, clear, or get enabled state of the DMA request status. If
    224 * enabled, an IN or OUT token will start a DMA transfer for the EP */
    225#define USBD_DMARST(x)		((x) + 0x250)
    226#define USBD_DMARCLR(x)		((x) + 0x254)
    227#define USBD_DMARSET(x)		((x) + 0x258)
    228/* DMA UDCA head pointer */
    229#define USBD_UDCAH(x)		((x) + 0x280)
    230/* EP DMA status, enable, and disable. This is used to specifically
    231 * enabled or disable DMA for a specific EP */
    232#define USBD_EPDMAST(x)		((x) + 0x284)
    233#define USBD_EPDMAEN(x)		((x) + 0x288)
    234#define USBD_EPDMADIS(x)	((x) + 0x28C)
    235/* DMA master interrupts enable and pending interrupts */
    236#define USBD_DMAINTST(x)	((x) + 0x290)
    237#define USBD_DMAINTEN(x)	((x) + 0x294)
    238/* DMA end of transfer interrupt enable, disable, status */
    239#define USBD_EOTINTST(x)	((x) + 0x2A0)
    240#define USBD_EOTINTCLR(x)	((x) + 0x2A4)
    241#define USBD_EOTINTSET(x)	((x) + 0x2A8)
    242/* New DD request interrupt enable, disable, status */
    243#define USBD_NDDRTINTST(x)	((x) + 0x2AC)
    244#define USBD_NDDRTINTCLR(x)	((x) + 0x2B0)
    245#define USBD_NDDRTINTSET(x)	((x) + 0x2B4)
    246/* DMA error interrupt enable, disable, status */
    247#define USBD_SYSERRTINTST(x)	((x) + 0x2B8)
    248#define USBD_SYSERRTINTCLR(x)	((x) + 0x2BC)
    249#define USBD_SYSERRTINTSET(x)	((x) + 0x2C0)
    250
    251/**********************************************************************
    252 * USBD_DEVINTST/USBD_DEVINTEN/USBD_DEVINTCLR/USBD_DEVINTSET/
    253 * USBD_DEVINTPRI register definitions
    254 **********************************************************************/
    255#define USBD_ERR_INT		(1 << 9)
    256#define USBD_EP_RLZED		(1 << 8)
    257#define USBD_TXENDPKT		(1 << 7)
    258#define USBD_RXENDPKT		(1 << 6)
    259#define USBD_CDFULL		(1 << 5)
    260#define USBD_CCEMPTY		(1 << 4)
    261#define USBD_DEV_STAT		(1 << 3)
    262#define USBD_EP_SLOW		(1 << 2)
    263#define USBD_EP_FAST		(1 << 1)
    264#define USBD_FRAME		(1 << 0)
    265
    266/**********************************************************************
    267 * USBD_EPINTST/USBD_EPINTEN/USBD_EPINTCLR/USBD_EPINTSET/
    268 * USBD_EPINTPRI register definitions
    269 **********************************************************************/
    270/* End point selection macro (RX) */
    271#define USBD_RX_EP_SEL(e)	(1 << ((e) << 1))
    272
    273/* End point selection macro (TX) */
    274#define USBD_TX_EP_SEL(e)	(1 << (((e) << 1) + 1))
    275
    276/**********************************************************************
    277 * USBD_REEP/USBD_DMARST/USBD_DMARCLR/USBD_DMARSET/USBD_EPDMAST/
    278 * USBD_EPDMAEN/USBD_EPDMADIS/
    279 * USBD_NDDRTINTST/USBD_NDDRTINTCLR/USBD_NDDRTINTSET/
    280 * USBD_EOTINTST/USBD_EOTINTCLR/USBD_EOTINTSET/
    281 * USBD_SYSERRTINTST/USBD_SYSERRTINTCLR/USBD_SYSERRTINTSET
    282 * register definitions
    283 **********************************************************************/
    284/* Endpoint selection macro */
    285#define USBD_EP_SEL(e)		(1 << (e))
    286
    287/**********************************************************************
    288 * SBD_DMAINTST/USBD_DMAINTEN
    289 **********************************************************************/
    290#define USBD_SYS_ERR_INT	(1 << 2)
    291#define USBD_NEW_DD_INT		(1 << 1)
    292#define USBD_EOT_INT		(1 << 0)
    293
    294/**********************************************************************
    295 * USBD_RXPLEN register definitions
    296 **********************************************************************/
    297#define USBD_PKT_RDY		(1 << 11)
    298#define USBD_DV			(1 << 10)
    299#define USBD_PK_LEN_MASK	0x3FF
    300
    301/**********************************************************************
    302 * USBD_CTRL register definitions
    303 **********************************************************************/
    304#define USBD_LOG_ENDPOINT(e)	((e) << 2)
    305#define USBD_WR_EN		(1 << 1)
    306#define USBD_RD_EN		(1 << 0)
    307
    308/**********************************************************************
    309 * USBD_CMDCODE register definitions
    310 **********************************************************************/
    311#define USBD_CMD_CODE(c)	((c) << 16)
    312#define USBD_CMD_PHASE(p)	((p) << 8)
    313
    314/**********************************************************************
    315 * USBD_DMARST/USBD_DMARCLR/USBD_DMARSET register definitions
    316 **********************************************************************/
    317#define USBD_DMAEP(e)		(1 << (e))
    318
    319/* DD (DMA Descriptor) structure, requires word alignment */
    320struct lpc32xx_usbd_dd {
    321	u32 *dd_next;
    322	u32 dd_setup;
    323	u32 dd_buffer_addr;
    324	u32 dd_status;
    325	u32 dd_iso_ps_mem_addr;
    326};
    327
    328/* dd_setup bit defines */
    329#define DD_SETUP_ATLE_DMA_MODE	0x01
    330#define DD_SETUP_NEXT_DD_VALID	0x04
    331#define DD_SETUP_ISO_EP		0x10
    332#define DD_SETUP_PACKETLEN(n)	(((n) & 0x7FF) << 5)
    333#define DD_SETUP_DMALENBYTES(n)	(((n) & 0xFFFF) << 16)
    334
    335/* dd_status bit defines */
    336#define DD_STATUS_DD_RETIRED	0x01
    337#define DD_STATUS_STS_MASK	0x1E
    338#define DD_STATUS_STS_NS	0x00 /* Not serviced */
    339#define DD_STATUS_STS_BS	0x02 /* Being serviced */
    340#define DD_STATUS_STS_NC	0x04 /* Normal completion */
    341#define DD_STATUS_STS_DUR	0x06 /* Data underrun (short packet) */
    342#define DD_STATUS_STS_DOR	0x08 /* Data overrun */
    343#define DD_STATUS_STS_SE	0x12 /* System error */
    344#define DD_STATUS_PKT_VAL	0x20 /* Packet valid */
    345#define DD_STATUS_LSB_EX	0x40 /* LS byte extracted (ATLE) */
    346#define DD_STATUS_MSB_EX	0x80 /* MS byte extracted (ATLE) */
    347#define DD_STATUS_MLEN(n)	(((n) >> 8) & 0x3F)
    348#define DD_STATUS_CURDMACNT(n)	(((n) >> 16) & 0xFFFF)
    349
    350/*
    351 *
    352 * Protocol engine bits below
    353 *
    354 */
    355/* Device Interrupt Bit Definitions */
    356#define FRAME_INT		0x00000001
    357#define EP_FAST_INT		0x00000002
    358#define EP_SLOW_INT		0x00000004
    359#define DEV_STAT_INT		0x00000008
    360#define CCEMTY_INT		0x00000010
    361#define CDFULL_INT		0x00000020
    362#define RxENDPKT_INT		0x00000040
    363#define TxENDPKT_INT		0x00000080
    364#define EP_RLZED_INT		0x00000100
    365#define ERR_INT			0x00000200
    366
    367/* Rx & Tx Packet Length Definitions */
    368#define PKT_LNGTH_MASK		0x000003FF
    369#define PKT_DV			0x00000400
    370#define PKT_RDY			0x00000800
    371
    372/* USB Control Definitions */
    373#define CTRL_RD_EN		0x00000001
    374#define CTRL_WR_EN		0x00000002
    375
    376/* Command Codes */
    377#define CMD_SET_ADDR		0x00D00500
    378#define CMD_CFG_DEV		0x00D80500
    379#define CMD_SET_MODE		0x00F30500
    380#define CMD_RD_FRAME		0x00F50500
    381#define DAT_RD_FRAME		0x00F50200
    382#define CMD_RD_TEST		0x00FD0500
    383#define DAT_RD_TEST		0x00FD0200
    384#define CMD_SET_DEV_STAT	0x00FE0500
    385#define CMD_GET_DEV_STAT	0x00FE0500
    386#define DAT_GET_DEV_STAT	0x00FE0200
    387#define CMD_GET_ERR_CODE	0x00FF0500
    388#define DAT_GET_ERR_CODE	0x00FF0200
    389#define CMD_RD_ERR_STAT		0x00FB0500
    390#define DAT_RD_ERR_STAT		0x00FB0200
    391#define DAT_WR_BYTE(x)		(0x00000100 | ((x) << 16))
    392#define CMD_SEL_EP(x)		(0x00000500 | ((x) << 16))
    393#define DAT_SEL_EP(x)		(0x00000200 | ((x) << 16))
    394#define CMD_SEL_EP_CLRI(x)	(0x00400500 | ((x) << 16))
    395#define DAT_SEL_EP_CLRI(x)	(0x00400200 | ((x) << 16))
    396#define CMD_SET_EP_STAT(x)	(0x00400500 | ((x) << 16))
    397#define CMD_CLR_BUF		0x00F20500
    398#define DAT_CLR_BUF		0x00F20200
    399#define CMD_VALID_BUF		0x00FA0500
    400
    401/* Device Address Register Definitions */
    402#define DEV_ADDR_MASK		0x7F
    403#define DEV_EN			0x80
    404
    405/* Device Configure Register Definitions */
    406#define CONF_DVICE		0x01
    407
    408/* Device Mode Register Definitions */
    409#define AP_CLK			0x01
    410#define INAK_CI			0x02
    411#define INAK_CO			0x04
    412#define INAK_II			0x08
    413#define INAK_IO			0x10
    414#define INAK_BI			0x20
    415#define INAK_BO			0x40
    416
    417/* Device Status Register Definitions */
    418#define DEV_CON			0x01
    419#define DEV_CON_CH		0x02
    420#define DEV_SUS			0x04
    421#define DEV_SUS_CH		0x08
    422#define DEV_RST			0x10
    423
    424/* Error Code Register Definitions */
    425#define ERR_EC_MASK		0x0F
    426#define ERR_EA			0x10
    427
    428/* Error Status Register Definitions */
    429#define ERR_PID			0x01
    430#define ERR_UEPKT		0x02
    431#define ERR_DCRC		0x04
    432#define ERR_TIMOUT		0x08
    433#define ERR_EOP			0x10
    434#define ERR_B_OVRN		0x20
    435#define ERR_BTSTF		0x40
    436#define ERR_TGL			0x80
    437
    438/* Endpoint Select Register Definitions */
    439#define EP_SEL_F		0x01
    440#define EP_SEL_ST		0x02
    441#define EP_SEL_STP		0x04
    442#define EP_SEL_PO		0x08
    443#define EP_SEL_EPN		0x10
    444#define EP_SEL_B_1_FULL		0x20
    445#define EP_SEL_B_2_FULL		0x40
    446
    447/* Endpoint Status Register Definitions */
    448#define EP_STAT_ST		0x01
    449#define EP_STAT_DA		0x20
    450#define EP_STAT_RF_MO		0x40
    451#define EP_STAT_CND_ST		0x80
    452
    453/* Clear Buffer Register Definitions */
    454#define CLR_BUF_PO		0x01
    455
    456/* DMA Interrupt Bit Definitions */
    457#define EOT_INT			0x01
    458#define NDD_REQ_INT		0x02
    459#define SYS_ERR_INT		0x04
    460
    461#define	DRIVER_VERSION	"1.03"
    462static const char driver_name[] = "lpc32xx_udc";
    463
    464/*
    465 *
    466 * proc interface support
    467 *
    468 */
    469#ifdef CONFIG_USB_GADGET_DEBUG_FILES
    470static char *epnames[] = {"INT", "ISO", "BULK", "CTRL"};
    471static const char debug_filename[] = "driver/udc";
    472
    473static void proc_ep_show(struct seq_file *s, struct lpc32xx_ep *ep)
    474{
    475	struct lpc32xx_request *req;
    476
    477	seq_printf(s, "\n");
    478	seq_printf(s, "%12s, maxpacket %4d %3s",
    479			ep->ep.name, ep->ep.maxpacket,
    480			ep->is_in ? "in" : "out");
    481	seq_printf(s, " type %4s", epnames[ep->eptype]);
    482	seq_printf(s, " ints: %12d", ep->totalints);
    483
    484	if (list_empty(&ep->queue))
    485		seq_printf(s, "\t(queue empty)\n");
    486	else {
    487		list_for_each_entry(req, &ep->queue, queue) {
    488			u32 length = req->req.actual;
    489
    490			seq_printf(s, "\treq %p len %d/%d buf %p\n",
    491				   &req->req, length,
    492				   req->req.length, req->req.buf);
    493		}
    494	}
    495}
    496
    497static int udc_show(struct seq_file *s, void *unused)
    498{
    499	struct lpc32xx_udc *udc = s->private;
    500	struct lpc32xx_ep *ep;
    501	unsigned long flags;
    502
    503	seq_printf(s, "%s: version %s\n", driver_name, DRIVER_VERSION);
    504
    505	spin_lock_irqsave(&udc->lock, flags);
    506
    507	seq_printf(s, "vbus %s, pullup %s, %s powered%s, gadget %s\n\n",
    508		   udc->vbus ? "present" : "off",
    509		   udc->enabled ? (udc->vbus ? "active" : "enabled") :
    510		   "disabled",
    511		   udc->gadget.is_selfpowered ? "self" : "VBUS",
    512		   udc->suspended ? ", suspended" : "",
    513		   udc->driver ? udc->driver->driver.name : "(none)");
    514
    515	if (udc->enabled && udc->vbus) {
    516		proc_ep_show(s, &udc->ep[0]);
    517		list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list)
    518			proc_ep_show(s, ep);
    519	}
    520
    521	spin_unlock_irqrestore(&udc->lock, flags);
    522
    523	return 0;
    524}
    525
    526DEFINE_SHOW_ATTRIBUTE(udc);
    527
    528static void create_debug_file(struct lpc32xx_udc *udc)
    529{
    530	debugfs_create_file(debug_filename, 0, NULL, udc, &udc_fops);
    531}
    532
    533static void remove_debug_file(struct lpc32xx_udc *udc)
    534{
    535	debugfs_remove(debugfs_lookup(debug_filename, NULL));
    536}
    537
    538#else
    539static inline void create_debug_file(struct lpc32xx_udc *udc) {}
    540static inline void remove_debug_file(struct lpc32xx_udc *udc) {}
    541#endif
    542
    543/* Primary initialization sequence for the ISP1301 transceiver */
    544static void isp1301_udc_configure(struct lpc32xx_udc *udc)
    545{
    546	u8 value;
    547	s32 vendor, product;
    548
    549	vendor = i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x00);
    550	product = i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x02);
    551
    552	if (vendor == 0x0483 && product == 0xa0c4)
    553		udc->atx = STOTG04;
    554
    555	/* LPC32XX only supports DAT_SE0 USB mode */
    556	/* This sequence is important */
    557
    558	/* Disable transparent UART mode first */
    559	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
    560		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
    561		MC1_UART_EN);
    562
    563	/* Set full speed and SE0 mode */
    564	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
    565		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
    566	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
    567		ISP1301_I2C_MODE_CONTROL_1, (MC1_SPEED_REG | MC1_DAT_SE0));
    568
    569	/*
    570	 * The PSW_OE enable bit state is reversed in the ISP1301 User's Guide
    571	 */
    572	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
    573		(ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
    574
    575	value = MC2_BI_DI;
    576	if (udc->atx != STOTG04)
    577		value |= MC2_SPD_SUSP_CTRL;
    578	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
    579		ISP1301_I2C_MODE_CONTROL_2, value);
    580
    581	/* Driver VBUS_DRV high or low depending on board setup */
    582	if (udc->board->vbus_drv_pol != 0)
    583		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
    584			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DRV);
    585	else
    586		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
    587			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
    588			OTG1_VBUS_DRV);
    589
    590	/* Bi-directional mode with suspend control
    591	 * Enable both pulldowns for now - the pullup will be enable when VBUS
    592	 * is detected */
    593	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
    594		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
    595	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
    596		ISP1301_I2C_OTG_CONTROL_1,
    597		(0 | OTG1_DM_PULLDOWN | OTG1_DP_PULLDOWN));
    598
    599	/* Discharge VBUS (just in case) */
    600	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
    601		ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
    602	msleep(1);
    603	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
    604		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
    605		OTG1_VBUS_DISCHRG);
    606
    607	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
    608		ISP1301_I2C_INTERRUPT_LATCH | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
    609
    610	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
    611		ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
    612	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
    613		ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
    614
    615	dev_info(udc->dev, "ISP1301 Vendor ID  : 0x%04x\n", vendor);
    616	dev_info(udc->dev, "ISP1301 Product ID : 0x%04x\n", product);
    617	dev_info(udc->dev, "ISP1301 Version ID : 0x%04x\n",
    618		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x14));
    619
    620}
    621
    622/* Enables or disables the USB device pullup via the ISP1301 transceiver */
    623static void isp1301_pullup_set(struct lpc32xx_udc *udc)
    624{
    625	if (udc->pullup)
    626		/* Enable pullup for bus signalling */
    627		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
    628			ISP1301_I2C_OTG_CONTROL_1, OTG1_DP_PULLUP);
    629	else
    630		/* Enable pullup for bus signalling */
    631		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
    632			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
    633			OTG1_DP_PULLUP);
    634}
    635
    636static void pullup_work(struct work_struct *work)
    637{
    638	struct lpc32xx_udc *udc =
    639		container_of(work, struct lpc32xx_udc, pullup_job);
    640
    641	isp1301_pullup_set(udc);
    642}
    643
    644static void isp1301_pullup_enable(struct lpc32xx_udc *udc, int en_pullup,
    645				  int block)
    646{
    647	if (en_pullup == udc->pullup)
    648		return;
    649
    650	udc->pullup = en_pullup;
    651	if (block)
    652		isp1301_pullup_set(udc);
    653	else
    654		/* defer slow i2c pull up setting */
    655		schedule_work(&udc->pullup_job);
    656}
    657
    658#ifdef CONFIG_PM
    659/* Powers up or down the ISP1301 transceiver */
    660static void isp1301_set_powerstate(struct lpc32xx_udc *udc, int enable)
    661{
    662	/* There is no "global power down" register for stotg04 */
    663	if (udc->atx == STOTG04)
    664		return;
    665
    666	if (enable != 0)
    667		/* Power up ISP1301 - this ISP1301 will automatically wakeup
    668		   when VBUS is detected */
    669		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
    670			ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR,
    671			MC2_GLOBAL_PWR_DN);
    672	else
    673		/* Power down ISP1301 */
    674		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
    675			ISP1301_I2C_MODE_CONTROL_2, MC2_GLOBAL_PWR_DN);
    676}
    677
    678static void power_work(struct work_struct *work)
    679{
    680	struct lpc32xx_udc *udc =
    681		container_of(work, struct lpc32xx_udc, power_job);
    682
    683	isp1301_set_powerstate(udc, udc->poweron);
    684}
    685#endif
    686
    687/*
    688 *
    689 * USB protocol engine command/data read/write helper functions
    690 *
    691 */
    692/* Issues a single command to the USB device state machine */
    693static void udc_protocol_cmd_w(struct lpc32xx_udc *udc, u32 cmd)
    694{
    695	u32 pass = 0;
    696	int to;
    697
    698	/* EP may lock on CLRI if this read isn't done */
    699	u32 tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
    700	(void) tmp;
    701
    702	while (pass == 0) {
    703		writel(USBD_CCEMPTY, USBD_DEVINTCLR(udc->udp_baseaddr));
    704
    705		/* Write command code */
    706		writel(cmd, USBD_CMDCODE(udc->udp_baseaddr));
    707		to = 10000;
    708		while (((readl(USBD_DEVINTST(udc->udp_baseaddr)) &
    709			 USBD_CCEMPTY) == 0) && (to > 0)) {
    710			to--;
    711		}
    712
    713		if (to > 0)
    714			pass = 1;
    715
    716		cpu_relax();
    717	}
    718}
    719
    720/* Issues 2 commands (or command and data) to the USB device state machine */
    721static inline void udc_protocol_cmd_data_w(struct lpc32xx_udc *udc, u32 cmd,
    722					   u32 data)
    723{
    724	udc_protocol_cmd_w(udc, cmd);
    725	udc_protocol_cmd_w(udc, data);
    726}
    727
    728/* Issues a single command to the USB device state machine and reads
    729 * response data */
    730static u32 udc_protocol_cmd_r(struct lpc32xx_udc *udc, u32 cmd)
    731{
    732	int to = 1000;
    733
    734	/* Write a command and read data from the protocol engine */
    735	writel((USBD_CDFULL | USBD_CCEMPTY),
    736		     USBD_DEVINTCLR(udc->udp_baseaddr));
    737
    738	/* Write command code */
    739	udc_protocol_cmd_w(udc, cmd);
    740
    741	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) & USBD_CDFULL))
    742	       && (to > 0))
    743		to--;
    744	if (!to)
    745		dev_dbg(udc->dev,
    746			"Protocol engine didn't receive response (CDFULL)\n");
    747
    748	return readl(USBD_CMDDATA(udc->udp_baseaddr));
    749}
    750
    751/*
    752 *
    753 * USB device interrupt mask support functions
    754 *
    755 */
    756/* Enable one or more USB device interrupts */
    757static inline void uda_enable_devint(struct lpc32xx_udc *udc, u32 devmask)
    758{
    759	udc->enabled_devints |= devmask;
    760	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
    761}
    762
    763/* Disable one or more USB device interrupts */
    764static inline void uda_disable_devint(struct lpc32xx_udc *udc, u32 mask)
    765{
    766	udc->enabled_devints &= ~mask;
    767	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
    768}
    769
    770/* Clear one or more USB device interrupts */
    771static inline void uda_clear_devint(struct lpc32xx_udc *udc, u32 mask)
    772{
    773	writel(mask, USBD_DEVINTCLR(udc->udp_baseaddr));
    774}
    775
    776/*
    777 *
    778 * Endpoint interrupt disable/enable functions
    779 *
    780 */
    781/* Enable one or more USB endpoint interrupts */
    782static void uda_enable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
    783{
    784	udc->enabled_hwepints |= (1 << hwep);
    785	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
    786}
    787
    788/* Disable one or more USB endpoint interrupts */
    789static void uda_disable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
    790{
    791	udc->enabled_hwepints &= ~(1 << hwep);
    792	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
    793}
    794
    795/* Clear one or more USB endpoint interrupts */
    796static inline void uda_clear_hwepint(struct lpc32xx_udc *udc, u32 hwep)
    797{
    798	writel((1 << hwep), USBD_EPINTCLR(udc->udp_baseaddr));
    799}
    800
    801/* Enable DMA for the HW channel */
    802static inline void udc_ep_dma_enable(struct lpc32xx_udc *udc, u32 hwep)
    803{
    804	writel((1 << hwep), USBD_EPDMAEN(udc->udp_baseaddr));
    805}
    806
    807/* Disable DMA for the HW channel */
    808static inline void udc_ep_dma_disable(struct lpc32xx_udc *udc, u32 hwep)
    809{
    810	writel((1 << hwep), USBD_EPDMADIS(udc->udp_baseaddr));
    811}
    812
    813/*
    814 *
    815 * Endpoint realize/unrealize functions
    816 *
    817 */
    818/* Before an endpoint can be used, it needs to be realized
    819 * in the USB protocol engine - this realizes the endpoint.
    820 * The interrupt (FIFO or DMA) is not enabled with this function */
    821static void udc_realize_hwep(struct lpc32xx_udc *udc, u32 hwep,
    822			     u32 maxpacket)
    823{
    824	int to = 1000;
    825
    826	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
    827	writel(hwep, USBD_EPIND(udc->udp_baseaddr));
    828	udc->realized_eps |= (1 << hwep);
    829	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
    830	writel(maxpacket, USBD_EPMAXPSIZE(udc->udp_baseaddr));
    831
    832	/* Wait until endpoint is realized in hardware */
    833	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) &
    834		  USBD_EP_RLZED)) && (to > 0))
    835		to--;
    836	if (!to)
    837		dev_dbg(udc->dev, "EP not correctly realized in hardware\n");
    838
    839	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
    840}
    841
    842/* Unrealize an EP */
    843static void udc_unrealize_hwep(struct lpc32xx_udc *udc, u32 hwep)
    844{
    845	udc->realized_eps &= ~(1 << hwep);
    846	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
    847}
    848
    849/*
    850 *
    851 * Endpoint support functions
    852 *
    853 */
    854/* Select and clear endpoint interrupt */
    855static u32 udc_selep_clrint(struct lpc32xx_udc *udc, u32 hwep)
    856{
    857	udc_protocol_cmd_w(udc, CMD_SEL_EP_CLRI(hwep));
    858	return udc_protocol_cmd_r(udc, DAT_SEL_EP_CLRI(hwep));
    859}
    860
    861/* Disables the endpoint in the USB protocol engine */
    862static void udc_disable_hwep(struct lpc32xx_udc *udc, u32 hwep)
    863{
    864	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
    865				DAT_WR_BYTE(EP_STAT_DA));
    866}
    867
    868/* Stalls the endpoint - endpoint will return STALL */
    869static void udc_stall_hwep(struct lpc32xx_udc *udc, u32 hwep)
    870{
    871	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
    872				DAT_WR_BYTE(EP_STAT_ST));
    873}
    874
    875/* Clear stall or reset endpoint */
    876static void udc_clrstall_hwep(struct lpc32xx_udc *udc, u32 hwep)
    877{
    878	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
    879				DAT_WR_BYTE(0));
    880}
    881
    882/* Select an endpoint for endpoint status, clear, validate */
    883static void udc_select_hwep(struct lpc32xx_udc *udc, u32 hwep)
    884{
    885	udc_protocol_cmd_w(udc, CMD_SEL_EP(hwep));
    886}
    887
    888/*
    889 *
    890 * Endpoint buffer management functions
    891 *
    892 */
    893/* Clear the current endpoint's buffer */
    894static void udc_clr_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
    895{
    896	udc_select_hwep(udc, hwep);
    897	udc_protocol_cmd_w(udc, CMD_CLR_BUF);
    898}
    899
    900/* Validate the current endpoint's buffer */
    901static void udc_val_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
    902{
    903	udc_select_hwep(udc, hwep);
    904	udc_protocol_cmd_w(udc, CMD_VALID_BUF);
    905}
    906
    907static inline u32 udc_clearep_getsts(struct lpc32xx_udc *udc, u32 hwep)
    908{
    909	/* Clear EP interrupt */
    910	uda_clear_hwepint(udc, hwep);
    911	return udc_selep_clrint(udc, hwep);
    912}
    913
    914/*
    915 *
    916 * USB EP DMA support
    917 *
    918 */
    919/* Allocate a DMA Descriptor */
    920static struct lpc32xx_usbd_dd_gad *udc_dd_alloc(struct lpc32xx_udc *udc)
    921{
    922	dma_addr_t			dma;
    923	struct lpc32xx_usbd_dd_gad	*dd;
    924
    925	dd = dma_pool_alloc(udc->dd_cache, GFP_ATOMIC | GFP_DMA, &dma);
    926	if (dd)
    927		dd->this_dma = dma;
    928
    929	return dd;
    930}
    931
    932/* Free a DMA Descriptor */
    933static void udc_dd_free(struct lpc32xx_udc *udc, struct lpc32xx_usbd_dd_gad *dd)
    934{
    935	dma_pool_free(udc->dd_cache, dd, dd->this_dma);
    936}
    937
    938/*
    939 *
    940 * USB setup and shutdown functions
    941 *
    942 */
    943/* Enables or disables most of the USB system clocks when low power mode is
    944 * needed. Clocks are typically started on a connection event, and disabled
    945 * when a cable is disconnected */
    946static void udc_clk_set(struct lpc32xx_udc *udc, int enable)
    947{
    948	if (enable != 0) {
    949		if (udc->clocked)
    950			return;
    951
    952		udc->clocked = 1;
    953		clk_prepare_enable(udc->usb_slv_clk);
    954	} else {
    955		if (!udc->clocked)
    956			return;
    957
    958		udc->clocked = 0;
    959		clk_disable_unprepare(udc->usb_slv_clk);
    960	}
    961}
    962
    963/* Set/reset USB device address */
    964static void udc_set_address(struct lpc32xx_udc *udc, u32 addr)
    965{
    966	/* Address will be latched at the end of the status phase, or
    967	   latched immediately if function is called twice */
    968	udc_protocol_cmd_data_w(udc, CMD_SET_ADDR,
    969				DAT_WR_BYTE(DEV_EN | addr));
    970}
    971
    972/* Setup up a IN request for DMA transfer - this consists of determining the
    973 * list of DMA addresses for the transfer, allocating DMA Descriptors,
    974 * installing the DD into the UDCA, and then enabling the DMA for that EP */
    975static int udc_ep_in_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
    976{
    977	struct lpc32xx_request *req;
    978	u32 hwep = ep->hwep_num;
    979
    980	ep->req_pending = 1;
    981
    982	/* There will always be a request waiting here */
    983	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
    984
    985	/* Place the DD Descriptor into the UDCA */
    986	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
    987
    988	/* Enable DMA and interrupt for the HW EP */
    989	udc_ep_dma_enable(udc, hwep);
    990
    991	/* Clear ZLP if last packet is not of MAXP size */
    992	if (req->req.length % ep->ep.maxpacket)
    993		req->send_zlp = 0;
    994
    995	return 0;
    996}
    997
    998/* Setup up a OUT request for DMA transfer - this consists of determining the
    999 * list of DMA addresses for the transfer, allocating DMA Descriptors,
   1000 * installing the DD into the UDCA, and then enabling the DMA for that EP */
   1001static int udc_ep_out_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
   1002{
   1003	struct lpc32xx_request *req;
   1004	u32 hwep = ep->hwep_num;
   1005
   1006	ep->req_pending = 1;
   1007
   1008	/* There will always be a request waiting here */
   1009	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
   1010
   1011	/* Place the DD Descriptor into the UDCA */
   1012	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
   1013
   1014	/* Enable DMA and interrupt for the HW EP */
   1015	udc_ep_dma_enable(udc, hwep);
   1016	return 0;
   1017}
   1018
   1019static void udc_disable(struct lpc32xx_udc *udc)
   1020{
   1021	u32 i;
   1022
   1023	/* Disable device */
   1024	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
   1025	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(0));
   1026
   1027	/* Disable all device interrupts (including EP0) */
   1028	uda_disable_devint(udc, 0x3FF);
   1029
   1030	/* Disable and reset all endpoint interrupts */
   1031	for (i = 0; i < 32; i++) {
   1032		uda_disable_hwepint(udc, i);
   1033		uda_clear_hwepint(udc, i);
   1034		udc_disable_hwep(udc, i);
   1035		udc_unrealize_hwep(udc, i);
   1036		udc->udca_v_base[i] = 0;
   1037
   1038		/* Disable and clear all interrupts and DMA */
   1039		udc_ep_dma_disable(udc, i);
   1040		writel((1 << i), USBD_EOTINTCLR(udc->udp_baseaddr));
   1041		writel((1 << i), USBD_NDDRTINTCLR(udc->udp_baseaddr));
   1042		writel((1 << i), USBD_SYSERRTINTCLR(udc->udp_baseaddr));
   1043		writel((1 << i), USBD_DMARCLR(udc->udp_baseaddr));
   1044	}
   1045
   1046	/* Disable DMA interrupts */
   1047	writel(0, USBD_DMAINTEN(udc->udp_baseaddr));
   1048
   1049	writel(0, USBD_UDCAH(udc->udp_baseaddr));
   1050}
   1051
   1052static void udc_enable(struct lpc32xx_udc *udc)
   1053{
   1054	u32 i;
   1055	struct lpc32xx_ep *ep = &udc->ep[0];
   1056
   1057	/* Start with known state */
   1058	udc_disable(udc);
   1059
   1060	/* Enable device */
   1061	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(DEV_CON));
   1062
   1063	/* EP interrupts on high priority, FRAME interrupt on low priority */
   1064	writel(USBD_EP_FAST, USBD_DEVINTPRI(udc->udp_baseaddr));
   1065	writel(0xFFFF, USBD_EPINTPRI(udc->udp_baseaddr));
   1066
   1067	/* Clear any pending device interrupts */
   1068	writel(0x3FF, USBD_DEVINTCLR(udc->udp_baseaddr));
   1069
   1070	/* Setup UDCA - not yet used (DMA) */
   1071	writel(udc->udca_p_base, USBD_UDCAH(udc->udp_baseaddr));
   1072
   1073	/* Only enable EP0 in and out for now, EP0 only works in FIFO mode */
   1074	for (i = 0; i <= 1; i++) {
   1075		udc_realize_hwep(udc, i, ep->ep.maxpacket);
   1076		uda_enable_hwepint(udc, i);
   1077		udc_select_hwep(udc, i);
   1078		udc_clrstall_hwep(udc, i);
   1079		udc_clr_buffer_hwep(udc, i);
   1080	}
   1081
   1082	/* Device interrupt setup */
   1083	uda_clear_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
   1084			       USBD_EP_FAST));
   1085	uda_enable_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
   1086				USBD_EP_FAST));
   1087
   1088	/* Set device address to 0 - called twice to force a latch in the USB
   1089	   engine without the need of a setup packet status closure */
   1090	udc_set_address(udc, 0);
   1091	udc_set_address(udc, 0);
   1092
   1093	/* Enable master DMA interrupts */
   1094	writel((USBD_SYS_ERR_INT | USBD_EOT_INT),
   1095		     USBD_DMAINTEN(udc->udp_baseaddr));
   1096
   1097	udc->dev_status = 0;
   1098}
   1099
   1100/*
   1101 *
   1102 * USB device board specific events handled via callbacks
   1103 *
   1104 */
   1105/* Connection change event - notify board function of change */
   1106static void uda_power_event(struct lpc32xx_udc *udc, u32 conn)
   1107{
   1108	/* Just notify of a connection change event (optional) */
   1109	if (udc->board->conn_chgb != NULL)
   1110		udc->board->conn_chgb(conn);
   1111}
   1112
   1113/* Suspend/resume event - notify board function of change */
   1114static void uda_resm_susp_event(struct lpc32xx_udc *udc, u32 conn)
   1115{
   1116	/* Just notify of a Suspend/resume change event (optional) */
   1117	if (udc->board->susp_chgb != NULL)
   1118		udc->board->susp_chgb(conn);
   1119
   1120	if (conn)
   1121		udc->suspended = 0;
   1122	else
   1123		udc->suspended = 1;
   1124}
   1125
   1126/* Remote wakeup enable/disable - notify board function of change */
   1127static void uda_remwkp_cgh(struct lpc32xx_udc *udc)
   1128{
   1129	if (udc->board->rmwk_chgb != NULL)
   1130		udc->board->rmwk_chgb(udc->dev_status &
   1131				      (1 << USB_DEVICE_REMOTE_WAKEUP));
   1132}
   1133
   1134/* Reads data from FIFO, adjusts for alignment and data size */
   1135static void udc_pop_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
   1136{
   1137	int n, i, bl;
   1138	u16 *p16;
   1139	u32 *p32, tmp, cbytes;
   1140
   1141	/* Use optimal data transfer method based on source address and size */
   1142	switch (((uintptr_t) data) & 0x3) {
   1143	case 0: /* 32-bit aligned */
   1144		p32 = (u32 *) data;
   1145		cbytes = (bytes & ~0x3);
   1146
   1147		/* Copy 32-bit aligned data first */
   1148		for (n = 0; n < cbytes; n += 4)
   1149			*p32++ = readl(USBD_RXDATA(udc->udp_baseaddr));
   1150
   1151		/* Handle any remaining bytes */
   1152		bl = bytes - cbytes;
   1153		if (bl) {
   1154			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
   1155			for (n = 0; n < bl; n++)
   1156				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
   1157
   1158		}
   1159		break;
   1160
   1161	case 1: /* 8-bit aligned */
   1162	case 3:
   1163		/* Each byte has to be handled independently */
   1164		for (n = 0; n < bytes; n += 4) {
   1165			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
   1166
   1167			bl = bytes - n;
   1168			if (bl > 4)
   1169				bl = 4;
   1170
   1171			for (i = 0; i < bl; i++)
   1172				data[n + i] = (u8) ((tmp >> (i * 8)) & 0xFF);
   1173		}
   1174		break;
   1175
   1176	case 2: /* 16-bit aligned */
   1177		p16 = (u16 *) data;
   1178		cbytes = (bytes & ~0x3);
   1179
   1180		/* Copy 32-bit sized objects first with 16-bit alignment */
   1181		for (n = 0; n < cbytes; n += 4) {
   1182			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
   1183			*p16++ = (u16)(tmp & 0xFFFF);
   1184			*p16++ = (u16)((tmp >> 16) & 0xFFFF);
   1185		}
   1186
   1187		/* Handle any remaining bytes */
   1188		bl = bytes - cbytes;
   1189		if (bl) {
   1190			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
   1191			for (n = 0; n < bl; n++)
   1192				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
   1193		}
   1194		break;
   1195	}
   1196}
   1197
   1198/* Read data from the FIFO for an endpoint. This function is for endpoints (such
   1199 * as EP0) that don't use DMA. This function should only be called if a packet
   1200 * is known to be ready to read for the endpoint. Note that the endpoint must
   1201 * be selected in the protocol engine prior to this call. */
   1202static u32 udc_read_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
   1203			 u32 bytes)
   1204{
   1205	u32 tmpv;
   1206	int to = 1000;
   1207	u32 tmp, hwrep = ((hwep & 0x1E) << 1) | CTRL_RD_EN;
   1208
   1209	/* Setup read of endpoint */
   1210	writel(hwrep, USBD_CTRL(udc->udp_baseaddr));
   1211
   1212	/* Wait until packet is ready */
   1213	while ((((tmpv = readl(USBD_RXPLEN(udc->udp_baseaddr))) &
   1214		 PKT_RDY) == 0)	&& (to > 0))
   1215		to--;
   1216	if (!to)
   1217		dev_dbg(udc->dev, "No packet ready on FIFO EP read\n");
   1218
   1219	/* Mask out count */
   1220	tmp = tmpv & PKT_LNGTH_MASK;
   1221	if (bytes < tmp)
   1222		tmp = bytes;
   1223
   1224	if ((tmp > 0) && (data != NULL))
   1225		udc_pop_fifo(udc, (u8 *) data, tmp);
   1226
   1227	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
   1228
   1229	/* Clear the buffer */
   1230	udc_clr_buffer_hwep(udc, hwep);
   1231
   1232	return tmp;
   1233}
   1234
   1235/* Stuffs data into the FIFO, adjusts for alignment and data size */
   1236static void udc_stuff_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
   1237{
   1238	int n, i, bl;
   1239	u16 *p16;
   1240	u32 *p32, tmp, cbytes;
   1241
   1242	/* Use optimal data transfer method based on source address and size */
   1243	switch (((uintptr_t) data) & 0x3) {
   1244	case 0: /* 32-bit aligned */
   1245		p32 = (u32 *) data;
   1246		cbytes = (bytes & ~0x3);
   1247
   1248		/* Copy 32-bit aligned data first */
   1249		for (n = 0; n < cbytes; n += 4)
   1250			writel(*p32++, USBD_TXDATA(udc->udp_baseaddr));
   1251
   1252		/* Handle any remaining bytes */
   1253		bl = bytes - cbytes;
   1254		if (bl) {
   1255			tmp = 0;
   1256			for (n = 0; n < bl; n++)
   1257				tmp |= data[cbytes + n] << (n * 8);
   1258
   1259			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
   1260		}
   1261		break;
   1262
   1263	case 1: /* 8-bit aligned */
   1264	case 3:
   1265		/* Each byte has to be handled independently */
   1266		for (n = 0; n < bytes; n += 4) {
   1267			bl = bytes - n;
   1268			if (bl > 4)
   1269				bl = 4;
   1270
   1271			tmp = 0;
   1272			for (i = 0; i < bl; i++)
   1273				tmp |= data[n + i] << (i * 8);
   1274
   1275			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
   1276		}
   1277		break;
   1278
   1279	case 2: /* 16-bit aligned */
   1280		p16 = (u16 *) data;
   1281		cbytes = (bytes & ~0x3);
   1282
   1283		/* Copy 32-bit aligned data first */
   1284		for (n = 0; n < cbytes; n += 4) {
   1285			tmp = *p16++ & 0xFFFF;
   1286			tmp |= (*p16++ & 0xFFFF) << 16;
   1287			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
   1288		}
   1289
   1290		/* Handle any remaining bytes */
   1291		bl = bytes - cbytes;
   1292		if (bl) {
   1293			tmp = 0;
   1294			for (n = 0; n < bl; n++)
   1295				tmp |= data[cbytes + n] << (n * 8);
   1296
   1297			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
   1298		}
   1299		break;
   1300	}
   1301}
   1302
   1303/* Write data to the FIFO for an endpoint. This function is for endpoints (such
   1304 * as EP0) that don't use DMA. Note that the endpoint must be selected in the
   1305 * protocol engine prior to this call. */
   1306static void udc_write_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
   1307			   u32 bytes)
   1308{
   1309	u32 hwwep = ((hwep & 0x1E) << 1) | CTRL_WR_EN;
   1310
   1311	if ((bytes > 0) && (data == NULL))
   1312		return;
   1313
   1314	/* Setup write of endpoint */
   1315	writel(hwwep, USBD_CTRL(udc->udp_baseaddr));
   1316
   1317	writel(bytes, USBD_TXPLEN(udc->udp_baseaddr));
   1318
   1319	/* Need at least 1 byte to trigger TX */
   1320	if (bytes == 0)
   1321		writel(0, USBD_TXDATA(udc->udp_baseaddr));
   1322	else
   1323		udc_stuff_fifo(udc, (u8 *) data, bytes);
   1324
   1325	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
   1326
   1327	udc_val_buffer_hwep(udc, hwep);
   1328}
   1329
   1330/* USB device reset - resets USB to a default state with just EP0
   1331   enabled */
   1332static void uda_usb_reset(struct lpc32xx_udc *udc)
   1333{
   1334	u32 i = 0;
   1335	/* Re-init device controller and EP0 */
   1336	udc_enable(udc);
   1337	udc->gadget.speed = USB_SPEED_FULL;
   1338
   1339	for (i = 1; i < NUM_ENDPOINTS; i++) {
   1340		struct lpc32xx_ep *ep = &udc->ep[i];
   1341		ep->req_pending = 0;
   1342	}
   1343}
   1344
   1345/* Send a ZLP on EP0 */
   1346static void udc_ep0_send_zlp(struct lpc32xx_udc *udc)
   1347{
   1348	udc_write_hwep(udc, EP_IN, NULL, 0);
   1349}
   1350
   1351/* Get current frame number */
   1352static u16 udc_get_current_frame(struct lpc32xx_udc *udc)
   1353{
   1354	u16 flo, fhi;
   1355
   1356	udc_protocol_cmd_w(udc, CMD_RD_FRAME);
   1357	flo = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
   1358	fhi = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
   1359
   1360	return (fhi << 8) | flo;
   1361}
   1362
   1363/* Set the device as configured - enables all endpoints */
   1364static inline void udc_set_device_configured(struct lpc32xx_udc *udc)
   1365{
   1366	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(CONF_DVICE));
   1367}
   1368
   1369/* Set the device as unconfigured - disables all endpoints */
   1370static inline void udc_set_device_unconfigured(struct lpc32xx_udc *udc)
   1371{
   1372	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
   1373}
   1374
   1375/* reinit == restore initial software state */
   1376static void udc_reinit(struct lpc32xx_udc *udc)
   1377{
   1378	u32 i;
   1379
   1380	INIT_LIST_HEAD(&udc->gadget.ep_list);
   1381	INIT_LIST_HEAD(&udc->gadget.ep0->ep_list);
   1382
   1383	for (i = 0; i < NUM_ENDPOINTS; i++) {
   1384		struct lpc32xx_ep *ep = &udc->ep[i];
   1385
   1386		if (i != 0)
   1387			list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
   1388		usb_ep_set_maxpacket_limit(&ep->ep, ep->maxpacket);
   1389		INIT_LIST_HEAD(&ep->queue);
   1390		ep->req_pending = 0;
   1391	}
   1392
   1393	udc->ep0state = WAIT_FOR_SETUP;
   1394}
   1395
   1396/* Must be called with lock */
   1397static void done(struct lpc32xx_ep *ep, struct lpc32xx_request *req, int status)
   1398{
   1399	struct lpc32xx_udc *udc = ep->udc;
   1400
   1401	list_del_init(&req->queue);
   1402	if (req->req.status == -EINPROGRESS)
   1403		req->req.status = status;
   1404	else
   1405		status = req->req.status;
   1406
   1407	if (ep->lep) {
   1408		usb_gadget_unmap_request(&udc->gadget, &req->req, ep->is_in);
   1409
   1410		/* Free DDs */
   1411		udc_dd_free(udc, req->dd_desc_ptr);
   1412	}
   1413
   1414	if (status && status != -ESHUTDOWN)
   1415		ep_dbg(ep, "%s done %p, status %d\n", ep->ep.name, req, status);
   1416
   1417	ep->req_pending = 0;
   1418	spin_unlock(&udc->lock);
   1419	usb_gadget_giveback_request(&ep->ep, &req->req);
   1420	spin_lock(&udc->lock);
   1421}
   1422
   1423/* Must be called with lock */
   1424static void nuke(struct lpc32xx_ep *ep, int status)
   1425{
   1426	struct lpc32xx_request *req;
   1427
   1428	while (!list_empty(&ep->queue)) {
   1429		req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
   1430		done(ep, req, status);
   1431	}
   1432
   1433	if (status == -ESHUTDOWN) {
   1434		uda_disable_hwepint(ep->udc, ep->hwep_num);
   1435		udc_disable_hwep(ep->udc, ep->hwep_num);
   1436	}
   1437}
   1438
   1439/* IN endpoint 0 transfer */
   1440static int udc_ep0_in_req(struct lpc32xx_udc *udc)
   1441{
   1442	struct lpc32xx_request *req;
   1443	struct lpc32xx_ep *ep0 = &udc->ep[0];
   1444	u32 tsend, ts = 0;
   1445
   1446	if (list_empty(&ep0->queue))
   1447		/* Nothing to send */
   1448		return 0;
   1449	else
   1450		req = list_entry(ep0->queue.next, struct lpc32xx_request,
   1451				 queue);
   1452
   1453	tsend = ts = req->req.length - req->req.actual;
   1454	if (ts == 0) {
   1455		/* Send a ZLP */
   1456		udc_ep0_send_zlp(udc);
   1457		done(ep0, req, 0);
   1458		return 1;
   1459	} else if (ts > ep0->ep.maxpacket)
   1460		ts = ep0->ep.maxpacket; /* Just send what we can */
   1461
   1462	/* Write data to the EP0 FIFO and start transfer */
   1463	udc_write_hwep(udc, EP_IN, (req->req.buf + req->req.actual), ts);
   1464
   1465	/* Increment data pointer */
   1466	req->req.actual += ts;
   1467
   1468	if (tsend >= ep0->ep.maxpacket)
   1469		return 0; /* Stay in data transfer state */
   1470
   1471	/* Transfer request is complete */
   1472	udc->ep0state = WAIT_FOR_SETUP;
   1473	done(ep0, req, 0);
   1474	return 1;
   1475}
   1476
   1477/* OUT endpoint 0 transfer */
   1478static int udc_ep0_out_req(struct lpc32xx_udc *udc)
   1479{
   1480	struct lpc32xx_request *req;
   1481	struct lpc32xx_ep *ep0 = &udc->ep[0];
   1482	u32 tr, bufferspace;
   1483
   1484	if (list_empty(&ep0->queue))
   1485		return 0;
   1486	else
   1487		req = list_entry(ep0->queue.next, struct lpc32xx_request,
   1488				 queue);
   1489
   1490	if (req) {
   1491		if (req->req.length == 0) {
   1492			/* Just dequeue request */
   1493			done(ep0, req, 0);
   1494			udc->ep0state = WAIT_FOR_SETUP;
   1495			return 1;
   1496		}
   1497
   1498		/* Get data from FIFO */
   1499		bufferspace = req->req.length - req->req.actual;
   1500		if (bufferspace > ep0->ep.maxpacket)
   1501			bufferspace = ep0->ep.maxpacket;
   1502
   1503		/* Copy data to buffer */
   1504		prefetchw(req->req.buf + req->req.actual);
   1505		tr = udc_read_hwep(udc, EP_OUT, req->req.buf + req->req.actual,
   1506				   bufferspace);
   1507		req->req.actual += bufferspace;
   1508
   1509		if (tr < ep0->ep.maxpacket) {
   1510			/* This is the last packet */
   1511			done(ep0, req, 0);
   1512			udc->ep0state = WAIT_FOR_SETUP;
   1513			return 1;
   1514		}
   1515	}
   1516
   1517	return 0;
   1518}
   1519
   1520/* Must be called with lock */
   1521static void stop_activity(struct lpc32xx_udc *udc)
   1522{
   1523	struct usb_gadget_driver *driver = udc->driver;
   1524	int i;
   1525
   1526	if (udc->gadget.speed == USB_SPEED_UNKNOWN)
   1527		driver = NULL;
   1528
   1529	udc->gadget.speed = USB_SPEED_UNKNOWN;
   1530	udc->suspended = 0;
   1531
   1532	for (i = 0; i < NUM_ENDPOINTS; i++) {
   1533		struct lpc32xx_ep *ep = &udc->ep[i];
   1534		nuke(ep, -ESHUTDOWN);
   1535	}
   1536	if (driver) {
   1537		spin_unlock(&udc->lock);
   1538		driver->disconnect(&udc->gadget);
   1539		spin_lock(&udc->lock);
   1540	}
   1541
   1542	isp1301_pullup_enable(udc, 0, 0);
   1543	udc_disable(udc);
   1544	udc_reinit(udc);
   1545}
   1546
   1547/*
   1548 * Activate or kill host pullup
   1549 * Can be called with or without lock
   1550 */
   1551static void pullup(struct lpc32xx_udc *udc, int is_on)
   1552{
   1553	if (!udc->clocked)
   1554		return;
   1555
   1556	if (!udc->enabled || !udc->vbus)
   1557		is_on = 0;
   1558
   1559	if (is_on != udc->pullup)
   1560		isp1301_pullup_enable(udc, is_on, 0);
   1561}
   1562
   1563/* Must be called without lock */
   1564static int lpc32xx_ep_disable(struct usb_ep *_ep)
   1565{
   1566	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
   1567	struct lpc32xx_udc *udc = ep->udc;
   1568	unsigned long	flags;
   1569
   1570	if ((ep->hwep_num_base == 0) || (ep->hwep_num == 0))
   1571		return -EINVAL;
   1572	spin_lock_irqsave(&udc->lock, flags);
   1573
   1574	nuke(ep, -ESHUTDOWN);
   1575
   1576	/* Clear all DMA statuses for this EP */
   1577	udc_ep_dma_disable(udc, ep->hwep_num);
   1578	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
   1579	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
   1580	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
   1581	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
   1582
   1583	/* Remove the DD pointer in the UDCA */
   1584	udc->udca_v_base[ep->hwep_num] = 0;
   1585
   1586	/* Disable and reset endpoint and interrupt */
   1587	uda_clear_hwepint(udc, ep->hwep_num);
   1588	udc_unrealize_hwep(udc, ep->hwep_num);
   1589
   1590	ep->hwep_num = 0;
   1591
   1592	spin_unlock_irqrestore(&udc->lock, flags);
   1593
   1594	atomic_dec(&udc->enabled_ep_cnt);
   1595	wake_up(&udc->ep_disable_wait_queue);
   1596
   1597	return 0;
   1598}
   1599
   1600/* Must be called without lock */
   1601static int lpc32xx_ep_enable(struct usb_ep *_ep,
   1602			     const struct usb_endpoint_descriptor *desc)
   1603{
   1604	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
   1605	struct lpc32xx_udc *udc;
   1606	u16 maxpacket;
   1607	u32 tmp;
   1608	unsigned long flags;
   1609
   1610	/* Verify EP data */
   1611	if ((!_ep) || (!ep) || (!desc) ||
   1612	    (desc->bDescriptorType != USB_DT_ENDPOINT))
   1613		return -EINVAL;
   1614
   1615	udc = ep->udc;
   1616	maxpacket = usb_endpoint_maxp(desc);
   1617	if ((maxpacket == 0) || (maxpacket > ep->maxpacket)) {
   1618		dev_dbg(udc->dev, "bad ep descriptor's packet size\n");
   1619		return -EINVAL;
   1620	}
   1621
   1622	/* Don't touch EP0 */
   1623	if (ep->hwep_num_base == 0) {
   1624		dev_dbg(udc->dev, "Can't re-enable EP0!!!\n");
   1625		return -EINVAL;
   1626	}
   1627
   1628	/* Is driver ready? */
   1629	if ((!udc->driver) || (udc->gadget.speed == USB_SPEED_UNKNOWN)) {
   1630		dev_dbg(udc->dev, "bogus device state\n");
   1631		return -ESHUTDOWN;
   1632	}
   1633
   1634	tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
   1635	switch (tmp) {
   1636	case USB_ENDPOINT_XFER_CONTROL:
   1637		return -EINVAL;
   1638
   1639	case USB_ENDPOINT_XFER_INT:
   1640		if (maxpacket > ep->maxpacket) {
   1641			dev_dbg(udc->dev,
   1642				"Bad INT endpoint maxpacket %d\n", maxpacket);
   1643			return -EINVAL;
   1644		}
   1645		break;
   1646
   1647	case USB_ENDPOINT_XFER_BULK:
   1648		switch (maxpacket) {
   1649		case 8:
   1650		case 16:
   1651		case 32:
   1652		case 64:
   1653			break;
   1654
   1655		default:
   1656			dev_dbg(udc->dev,
   1657				"Bad BULK endpoint maxpacket %d\n", maxpacket);
   1658			return -EINVAL;
   1659		}
   1660		break;
   1661
   1662	case USB_ENDPOINT_XFER_ISOC:
   1663		break;
   1664	}
   1665	spin_lock_irqsave(&udc->lock, flags);
   1666
   1667	/* Initialize endpoint to match the selected descriptor */
   1668	ep->is_in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
   1669	ep->ep.maxpacket = maxpacket;
   1670
   1671	/* Map hardware endpoint from base and direction */
   1672	if (ep->is_in)
   1673		/* IN endpoints are offset 1 from the OUT endpoint */
   1674		ep->hwep_num = ep->hwep_num_base + EP_IN;
   1675	else
   1676		ep->hwep_num = ep->hwep_num_base;
   1677
   1678	ep_dbg(ep, "EP enabled: %s, HW:%d, MP:%d IN:%d\n", ep->ep.name,
   1679	       ep->hwep_num, maxpacket, (ep->is_in == 1));
   1680
   1681	/* Realize the endpoint, interrupt is enabled later when
   1682	 * buffers are queued, IN EPs will NAK until buffers are ready */
   1683	udc_realize_hwep(udc, ep->hwep_num, ep->ep.maxpacket);
   1684	udc_clr_buffer_hwep(udc, ep->hwep_num);
   1685	uda_disable_hwepint(udc, ep->hwep_num);
   1686	udc_clrstall_hwep(udc, ep->hwep_num);
   1687
   1688	/* Clear all DMA statuses for this EP */
   1689	udc_ep_dma_disable(udc, ep->hwep_num);
   1690	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
   1691	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
   1692	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
   1693	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
   1694
   1695	spin_unlock_irqrestore(&udc->lock, flags);
   1696
   1697	atomic_inc(&udc->enabled_ep_cnt);
   1698	return 0;
   1699}
   1700
   1701/*
   1702 * Allocate a USB request list
   1703 * Can be called with or without lock
   1704 */
   1705static struct usb_request *lpc32xx_ep_alloc_request(struct usb_ep *_ep,
   1706						    gfp_t gfp_flags)
   1707{
   1708	struct lpc32xx_request *req;
   1709
   1710	req = kzalloc(sizeof(struct lpc32xx_request), gfp_flags);
   1711	if (!req)
   1712		return NULL;
   1713
   1714	INIT_LIST_HEAD(&req->queue);
   1715	return &req->req;
   1716}
   1717
   1718/*
   1719 * De-allocate a USB request list
   1720 * Can be called with or without lock
   1721 */
   1722static void lpc32xx_ep_free_request(struct usb_ep *_ep,
   1723				    struct usb_request *_req)
   1724{
   1725	struct lpc32xx_request *req;
   1726
   1727	req = container_of(_req, struct lpc32xx_request, req);
   1728	BUG_ON(!list_empty(&req->queue));
   1729	kfree(req);
   1730}
   1731
   1732/* Must be called without lock */
   1733static int lpc32xx_ep_queue(struct usb_ep *_ep,
   1734			    struct usb_request *_req, gfp_t gfp_flags)
   1735{
   1736	struct lpc32xx_request *req;
   1737	struct lpc32xx_ep *ep;
   1738	struct lpc32xx_udc *udc;
   1739	unsigned long flags;
   1740	int status = 0;
   1741
   1742	req = container_of(_req, struct lpc32xx_request, req);
   1743	ep = container_of(_ep, struct lpc32xx_ep, ep);
   1744
   1745	if (!_ep || !_req || !_req->complete || !_req->buf ||
   1746	    !list_empty(&req->queue))
   1747		return -EINVAL;
   1748
   1749	udc = ep->udc;
   1750
   1751	if (udc->gadget.speed == USB_SPEED_UNKNOWN)
   1752		return -EPIPE;
   1753
   1754	if (ep->lep) {
   1755		struct lpc32xx_usbd_dd_gad *dd;
   1756
   1757		status = usb_gadget_map_request(&udc->gadget, _req, ep->is_in);
   1758		if (status)
   1759			return status;
   1760
   1761		/* For the request, build a list of DDs */
   1762		dd = udc_dd_alloc(udc);
   1763		if (!dd) {
   1764			/* Error allocating DD */
   1765			return -ENOMEM;
   1766		}
   1767		req->dd_desc_ptr = dd;
   1768
   1769		/* Setup the DMA descriptor */
   1770		dd->dd_next_phy = dd->dd_next_v = 0;
   1771		dd->dd_buffer_addr = req->req.dma;
   1772		dd->dd_status = 0;
   1773
   1774		/* Special handling for ISO EPs */
   1775		if (ep->eptype == EP_ISO_TYPE) {
   1776			dd->dd_setup = DD_SETUP_ISO_EP |
   1777				DD_SETUP_PACKETLEN(0) |
   1778				DD_SETUP_DMALENBYTES(1);
   1779			dd->dd_iso_ps_mem_addr = dd->this_dma + 24;
   1780			if (ep->is_in)
   1781				dd->iso_status[0] = req->req.length;
   1782			else
   1783				dd->iso_status[0] = 0;
   1784		} else
   1785			dd->dd_setup = DD_SETUP_PACKETLEN(ep->ep.maxpacket) |
   1786				DD_SETUP_DMALENBYTES(req->req.length);
   1787	}
   1788
   1789	ep_dbg(ep, "%s queue req %p len %d buf %p (in=%d) z=%d\n", _ep->name,
   1790	       _req, _req->length, _req->buf, ep->is_in, _req->zero);
   1791
   1792	spin_lock_irqsave(&udc->lock, flags);
   1793
   1794	_req->status = -EINPROGRESS;
   1795	_req->actual = 0;
   1796	req->send_zlp = _req->zero;
   1797
   1798	/* Kickstart empty queues */
   1799	if (list_empty(&ep->queue)) {
   1800		list_add_tail(&req->queue, &ep->queue);
   1801
   1802		if (ep->hwep_num_base == 0) {
   1803			/* Handle expected data direction */
   1804			if (ep->is_in) {
   1805				/* IN packet to host */
   1806				udc->ep0state = DATA_IN;
   1807				status = udc_ep0_in_req(udc);
   1808			} else {
   1809				/* OUT packet from host */
   1810				udc->ep0state = DATA_OUT;
   1811				status = udc_ep0_out_req(udc);
   1812			}
   1813		} else if (ep->is_in) {
   1814			/* IN packet to host and kick off transfer */
   1815			if (!ep->req_pending)
   1816				udc_ep_in_req_dma(udc, ep);
   1817		} else
   1818			/* OUT packet from host and kick off list */
   1819			if (!ep->req_pending)
   1820				udc_ep_out_req_dma(udc, ep);
   1821	} else
   1822		list_add_tail(&req->queue, &ep->queue);
   1823
   1824	spin_unlock_irqrestore(&udc->lock, flags);
   1825
   1826	return (status < 0) ? status : 0;
   1827}
   1828
   1829/* Must be called without lock */
   1830static int lpc32xx_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
   1831{
   1832	struct lpc32xx_ep *ep;
   1833	struct lpc32xx_request *req = NULL, *iter;
   1834	unsigned long flags;
   1835
   1836	ep = container_of(_ep, struct lpc32xx_ep, ep);
   1837	if (!_ep || ep->hwep_num_base == 0)
   1838		return -EINVAL;
   1839
   1840	spin_lock_irqsave(&ep->udc->lock, flags);
   1841
   1842	/* make sure it's actually queued on this endpoint */
   1843	list_for_each_entry(iter, &ep->queue, queue) {
   1844		if (&iter->req != _req)
   1845			continue;
   1846		req = iter;
   1847		break;
   1848	}
   1849	if (!req) {
   1850		spin_unlock_irqrestore(&ep->udc->lock, flags);
   1851		return -EINVAL;
   1852	}
   1853
   1854	done(ep, req, -ECONNRESET);
   1855
   1856	spin_unlock_irqrestore(&ep->udc->lock, flags);
   1857
   1858	return 0;
   1859}
   1860
   1861/* Must be called without lock */
   1862static int lpc32xx_ep_set_halt(struct usb_ep *_ep, int value)
   1863{
   1864	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
   1865	struct lpc32xx_udc *udc;
   1866	unsigned long flags;
   1867
   1868	if ((!ep) || (ep->hwep_num <= 1))
   1869		return -EINVAL;
   1870
   1871	/* Don't halt an IN EP */
   1872	if (ep->is_in)
   1873		return -EAGAIN;
   1874
   1875	udc = ep->udc;
   1876	spin_lock_irqsave(&udc->lock, flags);
   1877
   1878	if (value == 1) {
   1879		/* stall */
   1880		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
   1881					DAT_WR_BYTE(EP_STAT_ST));
   1882	} else {
   1883		/* End stall */
   1884		ep->wedge = 0;
   1885		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
   1886					DAT_WR_BYTE(0));
   1887	}
   1888
   1889	spin_unlock_irqrestore(&udc->lock, flags);
   1890
   1891	return 0;
   1892}
   1893
   1894/* set the halt feature and ignores clear requests */
   1895static int lpc32xx_ep_set_wedge(struct usb_ep *_ep)
   1896{
   1897	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
   1898
   1899	if (!_ep || !ep->udc)
   1900		return -EINVAL;
   1901
   1902	ep->wedge = 1;
   1903
   1904	return usb_ep_set_halt(_ep);
   1905}
   1906
   1907static const struct usb_ep_ops lpc32xx_ep_ops = {
   1908	.enable		= lpc32xx_ep_enable,
   1909	.disable	= lpc32xx_ep_disable,
   1910	.alloc_request	= lpc32xx_ep_alloc_request,
   1911	.free_request	= lpc32xx_ep_free_request,
   1912	.queue		= lpc32xx_ep_queue,
   1913	.dequeue	= lpc32xx_ep_dequeue,
   1914	.set_halt	= lpc32xx_ep_set_halt,
   1915	.set_wedge	= lpc32xx_ep_set_wedge,
   1916};
   1917
   1918/* Send a ZLP on a non-0 IN EP */
   1919static void udc_send_in_zlp(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
   1920{
   1921	/* Clear EP status */
   1922	udc_clearep_getsts(udc, ep->hwep_num);
   1923
   1924	/* Send ZLP via FIFO mechanism */
   1925	udc_write_hwep(udc, ep->hwep_num, NULL, 0);
   1926}
   1927
   1928/*
   1929 * Handle EP completion for ZLP
   1930 * This function will only be called when a delayed ZLP needs to be sent out
   1931 * after a DMA transfer has filled both buffers.
   1932 */
   1933static void udc_handle_eps(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
   1934{
   1935	u32 epstatus;
   1936	struct lpc32xx_request *req;
   1937
   1938	if (ep->hwep_num <= 0)
   1939		return;
   1940
   1941	uda_clear_hwepint(udc, ep->hwep_num);
   1942
   1943	/* If this interrupt isn't enabled, return now */
   1944	if (!(udc->enabled_hwepints & (1 << ep->hwep_num)))
   1945		return;
   1946
   1947	/* Get endpoint status */
   1948	epstatus = udc_clearep_getsts(udc, ep->hwep_num);
   1949
   1950	/*
   1951	 * This should never happen, but protect against writing to the
   1952	 * buffer when full.
   1953	 */
   1954	if (epstatus & EP_SEL_F)
   1955		return;
   1956
   1957	if (ep->is_in) {
   1958		udc_send_in_zlp(udc, ep);
   1959		uda_disable_hwepint(udc, ep->hwep_num);
   1960	} else
   1961		return;
   1962
   1963	/* If there isn't a request waiting, something went wrong */
   1964	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
   1965	if (req) {
   1966		done(ep, req, 0);
   1967
   1968		/* Start another request if ready */
   1969		if (!list_empty(&ep->queue)) {
   1970			if (ep->is_in)
   1971				udc_ep_in_req_dma(udc, ep);
   1972			else
   1973				udc_ep_out_req_dma(udc, ep);
   1974		} else
   1975			ep->req_pending = 0;
   1976	}
   1977}
   1978
   1979
   1980/* DMA end of transfer completion */
   1981static void udc_handle_dma_ep(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
   1982{
   1983	u32 status;
   1984	struct lpc32xx_request *req;
   1985	struct lpc32xx_usbd_dd_gad *dd;
   1986
   1987#ifdef CONFIG_USB_GADGET_DEBUG_FILES
   1988	ep->totalints++;
   1989#endif
   1990
   1991	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
   1992	if (!req) {
   1993		ep_err(ep, "DMA interrupt on no req!\n");
   1994		return;
   1995	}
   1996	dd = req->dd_desc_ptr;
   1997
   1998	/* DMA descriptor should always be retired for this call */
   1999	if (!(dd->dd_status & DD_STATUS_DD_RETIRED))
   2000		ep_warn(ep, "DMA descriptor did not retire\n");
   2001
   2002	/* Disable DMA */
   2003	udc_ep_dma_disable(udc, ep->hwep_num);
   2004	writel((1 << ep->hwep_num), USBD_EOTINTCLR(udc->udp_baseaddr));
   2005	writel((1 << ep->hwep_num), USBD_NDDRTINTCLR(udc->udp_baseaddr));
   2006
   2007	/* System error? */
   2008	if (readl(USBD_SYSERRTINTST(udc->udp_baseaddr)) &
   2009	    (1 << ep->hwep_num)) {
   2010		writel((1 << ep->hwep_num),
   2011			     USBD_SYSERRTINTCLR(udc->udp_baseaddr));
   2012		ep_err(ep, "AHB critical error!\n");
   2013		ep->req_pending = 0;
   2014
   2015		/* The error could have occurred on a packet of a multipacket
   2016		 * transfer, so recovering the transfer is not possible. Close
   2017		 * the request with an error */
   2018		done(ep, req, -ECONNABORTED);
   2019		return;
   2020	}
   2021
   2022	/* Handle the current DD's status */
   2023	status = dd->dd_status;
   2024	switch (status & DD_STATUS_STS_MASK) {
   2025	case DD_STATUS_STS_NS:
   2026		/* DD not serviced? This shouldn't happen! */
   2027		ep->req_pending = 0;
   2028		ep_err(ep, "DMA critical EP error: DD not serviced (0x%x)!\n",
   2029		       status);
   2030
   2031		done(ep, req, -ECONNABORTED);
   2032		return;
   2033
   2034	case DD_STATUS_STS_BS:
   2035		/* Interrupt only fires on EOT - This shouldn't happen! */
   2036		ep->req_pending = 0;
   2037		ep_err(ep, "DMA critical EP error: EOT prior to service completion (0x%x)!\n",
   2038		       status);
   2039		done(ep, req, -ECONNABORTED);
   2040		return;
   2041
   2042	case DD_STATUS_STS_NC:
   2043	case DD_STATUS_STS_DUR:
   2044		/* Really just a short packet, not an underrun */
   2045		/* This is a good status and what we expect */
   2046		break;
   2047
   2048	default:
   2049		/* Data overrun, system error, or unknown */
   2050		ep->req_pending = 0;
   2051		ep_err(ep, "DMA critical EP error: System error (0x%x)!\n",
   2052		       status);
   2053		done(ep, req, -ECONNABORTED);
   2054		return;
   2055	}
   2056
   2057	/* ISO endpoints are handled differently */
   2058	if (ep->eptype == EP_ISO_TYPE) {
   2059		if (ep->is_in)
   2060			req->req.actual = req->req.length;
   2061		else
   2062			req->req.actual = dd->iso_status[0] & 0xFFFF;
   2063	} else
   2064		req->req.actual += DD_STATUS_CURDMACNT(status);
   2065
   2066	/* Send a ZLP if necessary. This will be done for non-int
   2067	 * packets which have a size that is a divisor of MAXP */
   2068	if (req->send_zlp) {
   2069		/*
   2070		 * If at least 1 buffer is available, send the ZLP now.
   2071		 * Otherwise, the ZLP send needs to be deferred until a
   2072		 * buffer is available.
   2073		 */
   2074		if (udc_clearep_getsts(udc, ep->hwep_num) & EP_SEL_F) {
   2075			udc_clearep_getsts(udc, ep->hwep_num);
   2076			uda_enable_hwepint(udc, ep->hwep_num);
   2077			udc_clearep_getsts(udc, ep->hwep_num);
   2078
   2079			/* Let the EP interrupt handle the ZLP */
   2080			return;
   2081		} else
   2082			udc_send_in_zlp(udc, ep);
   2083	}
   2084
   2085	/* Transfer request is complete */
   2086	done(ep, req, 0);
   2087
   2088	/* Start another request if ready */
   2089	udc_clearep_getsts(udc, ep->hwep_num);
   2090	if (!list_empty((&ep->queue))) {
   2091		if (ep->is_in)
   2092			udc_ep_in_req_dma(udc, ep);
   2093		else
   2094			udc_ep_out_req_dma(udc, ep);
   2095	} else
   2096		ep->req_pending = 0;
   2097
   2098}
   2099
   2100/*
   2101 *
   2102 * Endpoint 0 functions
   2103 *
   2104 */
   2105static void udc_handle_dev(struct lpc32xx_udc *udc)
   2106{
   2107	u32 tmp;
   2108
   2109	udc_protocol_cmd_w(udc, CMD_GET_DEV_STAT);
   2110	tmp = udc_protocol_cmd_r(udc, DAT_GET_DEV_STAT);
   2111
   2112	if (tmp & DEV_RST)
   2113		uda_usb_reset(udc);
   2114	else if (tmp & DEV_CON_CH)
   2115		uda_power_event(udc, (tmp & DEV_CON));
   2116	else if (tmp & DEV_SUS_CH) {
   2117		if (tmp & DEV_SUS) {
   2118			if (udc->vbus == 0)
   2119				stop_activity(udc);
   2120			else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
   2121				 udc->driver) {
   2122				/* Power down transceiver */
   2123				udc->poweron = 0;
   2124				schedule_work(&udc->pullup_job);
   2125				uda_resm_susp_event(udc, 1);
   2126			}
   2127		} else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
   2128			   udc->driver && udc->vbus) {
   2129			uda_resm_susp_event(udc, 0);
   2130			/* Power up transceiver */
   2131			udc->poweron = 1;
   2132			schedule_work(&udc->pullup_job);
   2133		}
   2134	}
   2135}
   2136
   2137static int udc_get_status(struct lpc32xx_udc *udc, u16 reqtype, u16 wIndex)
   2138{
   2139	struct lpc32xx_ep *ep;
   2140	u32 ep0buff = 0, tmp;
   2141
   2142	switch (reqtype & USB_RECIP_MASK) {
   2143	case USB_RECIP_INTERFACE:
   2144		break; /* Not supported */
   2145
   2146	case USB_RECIP_DEVICE:
   2147		ep0buff = udc->gadget.is_selfpowered;
   2148		if (udc->dev_status & (1 << USB_DEVICE_REMOTE_WAKEUP))
   2149			ep0buff |= (1 << USB_DEVICE_REMOTE_WAKEUP);
   2150		break;
   2151
   2152	case USB_RECIP_ENDPOINT:
   2153		tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
   2154		ep = &udc->ep[tmp];
   2155		if ((tmp == 0) || (tmp >= NUM_ENDPOINTS))
   2156			return -EOPNOTSUPP;
   2157
   2158		if (wIndex & USB_DIR_IN) {
   2159			if (!ep->is_in)
   2160				return -EOPNOTSUPP; /* Something's wrong */
   2161		} else if (ep->is_in)
   2162			return -EOPNOTSUPP; /* Not an IN endpoint */
   2163
   2164		/* Get status of the endpoint */
   2165		udc_protocol_cmd_w(udc, CMD_SEL_EP(ep->hwep_num));
   2166		tmp = udc_protocol_cmd_r(udc, DAT_SEL_EP(ep->hwep_num));
   2167
   2168		if (tmp & EP_SEL_ST)
   2169			ep0buff = (1 << USB_ENDPOINT_HALT);
   2170		else
   2171			ep0buff = 0;
   2172		break;
   2173
   2174	default:
   2175		break;
   2176	}
   2177
   2178	/* Return data */
   2179	udc_write_hwep(udc, EP_IN, &ep0buff, 2);
   2180
   2181	return 0;
   2182}
   2183
   2184static void udc_handle_ep0_setup(struct lpc32xx_udc *udc)
   2185{
   2186	struct lpc32xx_ep *ep, *ep0 = &udc->ep[0];
   2187	struct usb_ctrlrequest ctrlpkt;
   2188	int i, bytes;
   2189	u16 wIndex, wValue, reqtype, req, tmp;
   2190
   2191	/* Nuke previous transfers */
   2192	nuke(ep0, -EPROTO);
   2193
   2194	/* Get setup packet */
   2195	bytes = udc_read_hwep(udc, EP_OUT, (u32 *) &ctrlpkt, 8);
   2196	if (bytes != 8) {
   2197		ep_warn(ep0, "Incorrectly sized setup packet (s/b 8, is %d)!\n",
   2198			bytes);
   2199		return;
   2200	}
   2201
   2202	/* Native endianness */
   2203	wIndex = le16_to_cpu(ctrlpkt.wIndex);
   2204	wValue = le16_to_cpu(ctrlpkt.wValue);
   2205	reqtype = le16_to_cpu(ctrlpkt.bRequestType);
   2206
   2207	/* Set direction of EP0 */
   2208	if (likely(reqtype & USB_DIR_IN))
   2209		ep0->is_in = 1;
   2210	else
   2211		ep0->is_in = 0;
   2212
   2213	/* Handle SETUP packet */
   2214	req = le16_to_cpu(ctrlpkt.bRequest);
   2215	switch (req) {
   2216	case USB_REQ_CLEAR_FEATURE:
   2217	case USB_REQ_SET_FEATURE:
   2218		switch (reqtype) {
   2219		case (USB_TYPE_STANDARD | USB_RECIP_DEVICE):
   2220			if (wValue != USB_DEVICE_REMOTE_WAKEUP)
   2221				goto stall; /* Nothing else handled */
   2222
   2223			/* Tell board about event */
   2224			if (req == USB_REQ_CLEAR_FEATURE)
   2225				udc->dev_status &=
   2226					~(1 << USB_DEVICE_REMOTE_WAKEUP);
   2227			else
   2228				udc->dev_status |=
   2229					(1 << USB_DEVICE_REMOTE_WAKEUP);
   2230			uda_remwkp_cgh(udc);
   2231			goto zlp_send;
   2232
   2233		case (USB_TYPE_STANDARD | USB_RECIP_ENDPOINT):
   2234			tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
   2235			if ((wValue != USB_ENDPOINT_HALT) ||
   2236			    (tmp >= NUM_ENDPOINTS))
   2237				break;
   2238
   2239			/* Find hardware endpoint from logical endpoint */
   2240			ep = &udc->ep[tmp];
   2241			tmp = ep->hwep_num;
   2242			if (tmp == 0)
   2243				break;
   2244
   2245			if (req == USB_REQ_SET_FEATURE)
   2246				udc_stall_hwep(udc, tmp);
   2247			else if (!ep->wedge)
   2248				udc_clrstall_hwep(udc, tmp);
   2249
   2250			goto zlp_send;
   2251
   2252		default:
   2253			break;
   2254		}
   2255		break;
   2256
   2257	case USB_REQ_SET_ADDRESS:
   2258		if (reqtype == (USB_TYPE_STANDARD | USB_RECIP_DEVICE)) {
   2259			udc_set_address(udc, wValue);
   2260			goto zlp_send;
   2261		}
   2262		break;
   2263
   2264	case USB_REQ_GET_STATUS:
   2265		udc_get_status(udc, reqtype, wIndex);
   2266		return;
   2267
   2268	default:
   2269		break; /* Let GadgetFS handle the descriptor instead */
   2270	}
   2271
   2272	if (likely(udc->driver)) {
   2273		/* device-2-host (IN) or no data setup command, process
   2274		 * immediately */
   2275		spin_unlock(&udc->lock);
   2276		i = udc->driver->setup(&udc->gadget, &ctrlpkt);
   2277
   2278		spin_lock(&udc->lock);
   2279		if (req == USB_REQ_SET_CONFIGURATION) {
   2280			/* Configuration is set after endpoints are realized */
   2281			if (wValue) {
   2282				/* Set configuration */
   2283				udc_set_device_configured(udc);
   2284
   2285				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
   2286							DAT_WR_BYTE(AP_CLK |
   2287							INAK_BI | INAK_II));
   2288			} else {
   2289				/* Clear configuration */
   2290				udc_set_device_unconfigured(udc);
   2291
   2292				/* Disable NAK interrupts */
   2293				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
   2294							DAT_WR_BYTE(AP_CLK));
   2295			}
   2296		}
   2297
   2298		if (i < 0) {
   2299			/* setup processing failed, force stall */
   2300			dev_dbg(udc->dev,
   2301				"req %02x.%02x protocol STALL; stat %d\n",
   2302				reqtype, req, i);
   2303			udc->ep0state = WAIT_FOR_SETUP;
   2304			goto stall;
   2305		}
   2306	}
   2307
   2308	if (!ep0->is_in)
   2309		udc_ep0_send_zlp(udc); /* ZLP IN packet on data phase */
   2310
   2311	return;
   2312
   2313stall:
   2314	udc_stall_hwep(udc, EP_IN);
   2315	return;
   2316
   2317zlp_send:
   2318	udc_ep0_send_zlp(udc);
   2319	return;
   2320}
   2321
   2322/* IN endpoint 0 transfer */
   2323static void udc_handle_ep0_in(struct lpc32xx_udc *udc)
   2324{
   2325	struct lpc32xx_ep *ep0 = &udc->ep[0];
   2326	u32 epstatus;
   2327
   2328	/* Clear EP interrupt */
   2329	epstatus = udc_clearep_getsts(udc, EP_IN);
   2330
   2331#ifdef CONFIG_USB_GADGET_DEBUG_FILES
   2332	ep0->totalints++;
   2333#endif
   2334
   2335	/* Stalled? Clear stall and reset buffers */
   2336	if (epstatus & EP_SEL_ST) {
   2337		udc_clrstall_hwep(udc, EP_IN);
   2338		nuke(ep0, -ECONNABORTED);
   2339		udc->ep0state = WAIT_FOR_SETUP;
   2340		return;
   2341	}
   2342
   2343	/* Is a buffer available? */
   2344	if (!(epstatus & EP_SEL_F)) {
   2345		/* Handle based on current state */
   2346		if (udc->ep0state == DATA_IN)
   2347			udc_ep0_in_req(udc);
   2348		else {
   2349			/* Unknown state for EP0 oe end of DATA IN phase */
   2350			nuke(ep0, -ECONNABORTED);
   2351			udc->ep0state = WAIT_FOR_SETUP;
   2352		}
   2353	}
   2354}
   2355
   2356/* OUT endpoint 0 transfer */
   2357static void udc_handle_ep0_out(struct lpc32xx_udc *udc)
   2358{
   2359	struct lpc32xx_ep *ep0 = &udc->ep[0];
   2360	u32 epstatus;
   2361
   2362	/* Clear EP interrupt */
   2363	epstatus = udc_clearep_getsts(udc, EP_OUT);
   2364
   2365
   2366#ifdef CONFIG_USB_GADGET_DEBUG_FILES
   2367	ep0->totalints++;
   2368#endif
   2369
   2370	/* Stalled? */
   2371	if (epstatus & EP_SEL_ST) {
   2372		udc_clrstall_hwep(udc, EP_OUT);
   2373		nuke(ep0, -ECONNABORTED);
   2374		udc->ep0state = WAIT_FOR_SETUP;
   2375		return;
   2376	}
   2377
   2378	/* A NAK may occur if a packet couldn't be received yet */
   2379	if (epstatus & EP_SEL_EPN)
   2380		return;
   2381	/* Setup packet incoming? */
   2382	if (epstatus & EP_SEL_STP) {
   2383		nuke(ep0, 0);
   2384		udc->ep0state = WAIT_FOR_SETUP;
   2385	}
   2386
   2387	/* Data available? */
   2388	if (epstatus & EP_SEL_F)
   2389		/* Handle based on current state */
   2390		switch (udc->ep0state) {
   2391		case WAIT_FOR_SETUP:
   2392			udc_handle_ep0_setup(udc);
   2393			break;
   2394
   2395		case DATA_OUT:
   2396			udc_ep0_out_req(udc);
   2397			break;
   2398
   2399		default:
   2400			/* Unknown state for EP0 */
   2401			nuke(ep0, -ECONNABORTED);
   2402			udc->ep0state = WAIT_FOR_SETUP;
   2403		}
   2404}
   2405
   2406/* Must be called without lock */
   2407static int lpc32xx_get_frame(struct usb_gadget *gadget)
   2408{
   2409	int frame;
   2410	unsigned long flags;
   2411	struct lpc32xx_udc *udc = to_udc(gadget);
   2412
   2413	if (!udc->clocked)
   2414		return -EINVAL;
   2415
   2416	spin_lock_irqsave(&udc->lock, flags);
   2417
   2418	frame = (int) udc_get_current_frame(udc);
   2419
   2420	spin_unlock_irqrestore(&udc->lock, flags);
   2421
   2422	return frame;
   2423}
   2424
   2425static int lpc32xx_wakeup(struct usb_gadget *gadget)
   2426{
   2427	return -ENOTSUPP;
   2428}
   2429
   2430static int lpc32xx_set_selfpowered(struct usb_gadget *gadget, int is_on)
   2431{
   2432	gadget->is_selfpowered = (is_on != 0);
   2433
   2434	return 0;
   2435}
   2436
   2437/*
   2438 * vbus is here!  turn everything on that's ready
   2439 * Must be called without lock
   2440 */
   2441static int lpc32xx_vbus_session(struct usb_gadget *gadget, int is_active)
   2442{
   2443	unsigned long flags;
   2444	struct lpc32xx_udc *udc = to_udc(gadget);
   2445
   2446	spin_lock_irqsave(&udc->lock, flags);
   2447
   2448	/* Doesn't need lock */
   2449	if (udc->driver) {
   2450		udc_clk_set(udc, 1);
   2451		udc_enable(udc);
   2452		pullup(udc, is_active);
   2453	} else {
   2454		stop_activity(udc);
   2455		pullup(udc, 0);
   2456
   2457		spin_unlock_irqrestore(&udc->lock, flags);
   2458		/*
   2459		 *  Wait for all the endpoints to disable,
   2460		 *  before disabling clocks. Don't wait if
   2461		 *  endpoints are not enabled.
   2462		 */
   2463		if (atomic_read(&udc->enabled_ep_cnt))
   2464			wait_event_interruptible(udc->ep_disable_wait_queue,
   2465				 (atomic_read(&udc->enabled_ep_cnt) == 0));
   2466
   2467		spin_lock_irqsave(&udc->lock, flags);
   2468
   2469		udc_clk_set(udc, 0);
   2470	}
   2471
   2472	spin_unlock_irqrestore(&udc->lock, flags);
   2473
   2474	return 0;
   2475}
   2476
   2477/* Can be called with or without lock */
   2478static int lpc32xx_pullup(struct usb_gadget *gadget, int is_on)
   2479{
   2480	struct lpc32xx_udc *udc = to_udc(gadget);
   2481
   2482	/* Doesn't need lock */
   2483	pullup(udc, is_on);
   2484
   2485	return 0;
   2486}
   2487
   2488static int lpc32xx_start(struct usb_gadget *, struct usb_gadget_driver *);
   2489static int lpc32xx_stop(struct usb_gadget *);
   2490
   2491static const struct usb_gadget_ops lpc32xx_udc_ops = {
   2492	.get_frame		= lpc32xx_get_frame,
   2493	.wakeup			= lpc32xx_wakeup,
   2494	.set_selfpowered	= lpc32xx_set_selfpowered,
   2495	.vbus_session		= lpc32xx_vbus_session,
   2496	.pullup			= lpc32xx_pullup,
   2497	.udc_start		= lpc32xx_start,
   2498	.udc_stop		= lpc32xx_stop,
   2499};
   2500
   2501static void nop_release(struct device *dev)
   2502{
   2503	/* nothing to free */
   2504}
   2505
   2506static const struct lpc32xx_udc controller_template = {
   2507	.gadget = {
   2508		.ops	= &lpc32xx_udc_ops,
   2509		.name	= driver_name,
   2510		.dev	= {
   2511			.init_name = "gadget",
   2512			.release = nop_release,
   2513		}
   2514	},
   2515	.ep[0] = {
   2516		.ep = {
   2517			.name	= "ep0",
   2518			.ops	= &lpc32xx_ep_ops,
   2519			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL,
   2520					USB_EP_CAPS_DIR_ALL),
   2521		},
   2522		.maxpacket	= 64,
   2523		.hwep_num_base	= 0,
   2524		.hwep_num	= 0, /* Can be 0 or 1, has special handling */
   2525		.lep		= 0,
   2526		.eptype		= EP_CTL_TYPE,
   2527	},
   2528	.ep[1] = {
   2529		.ep = {
   2530			.name	= "ep1-int",
   2531			.ops	= &lpc32xx_ep_ops,
   2532			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
   2533					USB_EP_CAPS_DIR_ALL),
   2534		},
   2535		.maxpacket	= 64,
   2536		.hwep_num_base	= 2,
   2537		.hwep_num	= 0, /* 2 or 3, will be set later */
   2538		.lep		= 1,
   2539		.eptype		= EP_INT_TYPE,
   2540	},
   2541	.ep[2] = {
   2542		.ep = {
   2543			.name	= "ep2-bulk",
   2544			.ops	= &lpc32xx_ep_ops,
   2545			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
   2546					USB_EP_CAPS_DIR_ALL),
   2547		},
   2548		.maxpacket	= 64,
   2549		.hwep_num_base	= 4,
   2550		.hwep_num	= 0, /* 4 or 5, will be set later */
   2551		.lep		= 2,
   2552		.eptype		= EP_BLK_TYPE,
   2553	},
   2554	.ep[3] = {
   2555		.ep = {
   2556			.name	= "ep3-iso",
   2557			.ops	= &lpc32xx_ep_ops,
   2558			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
   2559					USB_EP_CAPS_DIR_ALL),
   2560		},
   2561		.maxpacket	= 1023,
   2562		.hwep_num_base	= 6,
   2563		.hwep_num	= 0, /* 6 or 7, will be set later */
   2564		.lep		= 3,
   2565		.eptype		= EP_ISO_TYPE,
   2566	},
   2567	.ep[4] = {
   2568		.ep = {
   2569			.name	= "ep4-int",
   2570			.ops	= &lpc32xx_ep_ops,
   2571			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
   2572					USB_EP_CAPS_DIR_ALL),
   2573		},
   2574		.maxpacket	= 64,
   2575		.hwep_num_base	= 8,
   2576		.hwep_num	= 0, /* 8 or 9, will be set later */
   2577		.lep		= 4,
   2578		.eptype		= EP_INT_TYPE,
   2579	},
   2580	.ep[5] = {
   2581		.ep = {
   2582			.name	= "ep5-bulk",
   2583			.ops	= &lpc32xx_ep_ops,
   2584			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
   2585					USB_EP_CAPS_DIR_ALL),
   2586		},
   2587		.maxpacket	= 64,
   2588		.hwep_num_base	= 10,
   2589		.hwep_num	= 0, /* 10 or 11, will be set later */
   2590		.lep		= 5,
   2591		.eptype		= EP_BLK_TYPE,
   2592	},
   2593	.ep[6] = {
   2594		.ep = {
   2595			.name	= "ep6-iso",
   2596			.ops	= &lpc32xx_ep_ops,
   2597			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
   2598					USB_EP_CAPS_DIR_ALL),
   2599		},
   2600		.maxpacket	= 1023,
   2601		.hwep_num_base	= 12,
   2602		.hwep_num	= 0, /* 12 or 13, will be set later */
   2603		.lep		= 6,
   2604		.eptype		= EP_ISO_TYPE,
   2605	},
   2606	.ep[7] = {
   2607		.ep = {
   2608			.name	= "ep7-int",
   2609			.ops	= &lpc32xx_ep_ops,
   2610			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
   2611					USB_EP_CAPS_DIR_ALL),
   2612		},
   2613		.maxpacket	= 64,
   2614		.hwep_num_base	= 14,
   2615		.hwep_num	= 0,
   2616		.lep		= 7,
   2617		.eptype		= EP_INT_TYPE,
   2618	},
   2619	.ep[8] = {
   2620		.ep = {
   2621			.name	= "ep8-bulk",
   2622			.ops	= &lpc32xx_ep_ops,
   2623			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
   2624					USB_EP_CAPS_DIR_ALL),
   2625		},
   2626		.maxpacket	= 64,
   2627		.hwep_num_base	= 16,
   2628		.hwep_num	= 0,
   2629		.lep		= 8,
   2630		.eptype		= EP_BLK_TYPE,
   2631	},
   2632	.ep[9] = {
   2633		.ep = {
   2634			.name	= "ep9-iso",
   2635			.ops	= &lpc32xx_ep_ops,
   2636			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
   2637					USB_EP_CAPS_DIR_ALL),
   2638		},
   2639		.maxpacket	= 1023,
   2640		.hwep_num_base	= 18,
   2641		.hwep_num	= 0,
   2642		.lep		= 9,
   2643		.eptype		= EP_ISO_TYPE,
   2644	},
   2645	.ep[10] = {
   2646		.ep = {
   2647			.name	= "ep10-int",
   2648			.ops	= &lpc32xx_ep_ops,
   2649			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
   2650					USB_EP_CAPS_DIR_ALL),
   2651		},
   2652		.maxpacket	= 64,
   2653		.hwep_num_base	= 20,
   2654		.hwep_num	= 0,
   2655		.lep		= 10,
   2656		.eptype		= EP_INT_TYPE,
   2657	},
   2658	.ep[11] = {
   2659		.ep = {
   2660			.name	= "ep11-bulk",
   2661			.ops	= &lpc32xx_ep_ops,
   2662			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
   2663					USB_EP_CAPS_DIR_ALL),
   2664		},
   2665		.maxpacket	= 64,
   2666		.hwep_num_base	= 22,
   2667		.hwep_num	= 0,
   2668		.lep		= 11,
   2669		.eptype		= EP_BLK_TYPE,
   2670	},
   2671	.ep[12] = {
   2672		.ep = {
   2673			.name	= "ep12-iso",
   2674			.ops	= &lpc32xx_ep_ops,
   2675			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
   2676					USB_EP_CAPS_DIR_ALL),
   2677		},
   2678		.maxpacket	= 1023,
   2679		.hwep_num_base	= 24,
   2680		.hwep_num	= 0,
   2681		.lep		= 12,
   2682		.eptype		= EP_ISO_TYPE,
   2683	},
   2684	.ep[13] = {
   2685		.ep = {
   2686			.name	= "ep13-int",
   2687			.ops	= &lpc32xx_ep_ops,
   2688			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
   2689					USB_EP_CAPS_DIR_ALL),
   2690		},
   2691		.maxpacket	= 64,
   2692		.hwep_num_base	= 26,
   2693		.hwep_num	= 0,
   2694		.lep		= 13,
   2695		.eptype		= EP_INT_TYPE,
   2696	},
   2697	.ep[14] = {
   2698		.ep = {
   2699			.name	= "ep14-bulk",
   2700			.ops	= &lpc32xx_ep_ops,
   2701			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
   2702					USB_EP_CAPS_DIR_ALL),
   2703		},
   2704		.maxpacket	= 64,
   2705		.hwep_num_base	= 28,
   2706		.hwep_num	= 0,
   2707		.lep		= 14,
   2708		.eptype		= EP_BLK_TYPE,
   2709	},
   2710	.ep[15] = {
   2711		.ep = {
   2712			.name	= "ep15-bulk",
   2713			.ops	= &lpc32xx_ep_ops,
   2714			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
   2715					USB_EP_CAPS_DIR_ALL),
   2716		},
   2717		.maxpacket	= 1023,
   2718		.hwep_num_base	= 30,
   2719		.hwep_num	= 0,
   2720		.lep		= 15,
   2721		.eptype		= EP_BLK_TYPE,
   2722	},
   2723};
   2724
   2725/* ISO and status interrupts */
   2726static irqreturn_t lpc32xx_usb_lp_irq(int irq, void *_udc)
   2727{
   2728	u32 tmp, devstat;
   2729	struct lpc32xx_udc *udc = _udc;
   2730
   2731	spin_lock(&udc->lock);
   2732
   2733	/* Read the device status register */
   2734	devstat = readl(USBD_DEVINTST(udc->udp_baseaddr));
   2735
   2736	devstat &= ~USBD_EP_FAST;
   2737	writel(devstat, USBD_DEVINTCLR(udc->udp_baseaddr));
   2738	devstat = devstat & udc->enabled_devints;
   2739
   2740	/* Device specific handling needed? */
   2741	if (devstat & USBD_DEV_STAT)
   2742		udc_handle_dev(udc);
   2743
   2744	/* Start of frame? (devstat & FRAME_INT):
   2745	 * The frame interrupt isn't really needed for ISO support,
   2746	 * as the driver will queue the necessary packets */
   2747
   2748	/* Error? */
   2749	if (devstat & ERR_INT) {
   2750		/* All types of errors, from cable removal during transfer to
   2751		 * misc protocol and bit errors. These are mostly for just info,
   2752		 * as the USB hardware will work around these. If these errors
   2753		 * happen alot, something is wrong. */
   2754		udc_protocol_cmd_w(udc, CMD_RD_ERR_STAT);
   2755		tmp = udc_protocol_cmd_r(udc, DAT_RD_ERR_STAT);
   2756		dev_dbg(udc->dev, "Device error (0x%x)!\n", tmp);
   2757	}
   2758
   2759	spin_unlock(&udc->lock);
   2760
   2761	return IRQ_HANDLED;
   2762}
   2763
   2764/* EP interrupts */
   2765static irqreturn_t lpc32xx_usb_hp_irq(int irq, void *_udc)
   2766{
   2767	u32 tmp;
   2768	struct lpc32xx_udc *udc = _udc;
   2769
   2770	spin_lock(&udc->lock);
   2771
   2772	/* Read the device status register */
   2773	writel(USBD_EP_FAST, USBD_DEVINTCLR(udc->udp_baseaddr));
   2774
   2775	/* Endpoints */
   2776	tmp = readl(USBD_EPINTST(udc->udp_baseaddr));
   2777
   2778	/* Special handling for EP0 */
   2779	if (tmp & (EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
   2780		/* Handle EP0 IN */
   2781		if (tmp & (EP_MASK_SEL(0, EP_IN)))
   2782			udc_handle_ep0_in(udc);
   2783
   2784		/* Handle EP0 OUT */
   2785		if (tmp & (EP_MASK_SEL(0, EP_OUT)))
   2786			udc_handle_ep0_out(udc);
   2787	}
   2788
   2789	/* All other EPs */
   2790	if (tmp & ~(EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
   2791		int i;
   2792
   2793		/* Handle other EP interrupts */
   2794		for (i = 1; i < NUM_ENDPOINTS; i++) {
   2795			if (tmp & (1 << udc->ep[i].hwep_num))
   2796				udc_handle_eps(udc, &udc->ep[i]);
   2797		}
   2798	}
   2799
   2800	spin_unlock(&udc->lock);
   2801
   2802	return IRQ_HANDLED;
   2803}
   2804
   2805static irqreturn_t lpc32xx_usb_devdma_irq(int irq, void *_udc)
   2806{
   2807	struct lpc32xx_udc *udc = _udc;
   2808
   2809	int i;
   2810	u32 tmp;
   2811
   2812	spin_lock(&udc->lock);
   2813
   2814	/* Handle EP DMA EOT interrupts */
   2815	tmp = readl(USBD_EOTINTST(udc->udp_baseaddr)) |
   2816		(readl(USBD_EPDMAST(udc->udp_baseaddr)) &
   2817		 readl(USBD_NDDRTINTST(udc->udp_baseaddr))) |
   2818		readl(USBD_SYSERRTINTST(udc->udp_baseaddr));
   2819	for (i = 1; i < NUM_ENDPOINTS; i++) {
   2820		if (tmp & (1 << udc->ep[i].hwep_num))
   2821			udc_handle_dma_ep(udc, &udc->ep[i]);
   2822	}
   2823
   2824	spin_unlock(&udc->lock);
   2825
   2826	return IRQ_HANDLED;
   2827}
   2828
   2829/*
   2830 *
   2831 * VBUS detection, pullup handler, and Gadget cable state notification
   2832 *
   2833 */
   2834static void vbus_work(struct lpc32xx_udc *udc)
   2835{
   2836	u8 value;
   2837
   2838	if (udc->enabled != 0) {
   2839		/* Discharge VBUS real quick */
   2840		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
   2841			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
   2842
   2843		/* Give VBUS some time (100mS) to discharge */
   2844		msleep(100);
   2845
   2846		/* Disable VBUS discharge resistor */
   2847		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
   2848			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
   2849			OTG1_VBUS_DISCHRG);
   2850
   2851		/* Clear interrupt */
   2852		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
   2853			ISP1301_I2C_INTERRUPT_LATCH |
   2854			ISP1301_I2C_REG_CLEAR_ADDR, ~0);
   2855
   2856		/* Get the VBUS status from the transceiver */
   2857		value = i2c_smbus_read_byte_data(udc->isp1301_i2c_client,
   2858						 ISP1301_I2C_INTERRUPT_SOURCE);
   2859
   2860		/* VBUS on or off? */
   2861		if (value & INT_SESS_VLD)
   2862			udc->vbus = 1;
   2863		else
   2864			udc->vbus = 0;
   2865
   2866		/* VBUS changed? */
   2867		if (udc->last_vbus != udc->vbus) {
   2868			udc->last_vbus = udc->vbus;
   2869			lpc32xx_vbus_session(&udc->gadget, udc->vbus);
   2870		}
   2871	}
   2872}
   2873
   2874static irqreturn_t lpc32xx_usb_vbus_irq(int irq, void *_udc)
   2875{
   2876	struct lpc32xx_udc *udc = _udc;
   2877
   2878	vbus_work(udc);
   2879
   2880	return IRQ_HANDLED;
   2881}
   2882
   2883static int lpc32xx_start(struct usb_gadget *gadget,
   2884			 struct usb_gadget_driver *driver)
   2885{
   2886	struct lpc32xx_udc *udc = to_udc(gadget);
   2887
   2888	if (!driver || driver->max_speed < USB_SPEED_FULL || !driver->setup) {
   2889		dev_err(udc->dev, "bad parameter.\n");
   2890		return -EINVAL;
   2891	}
   2892
   2893	if (udc->driver) {
   2894		dev_err(udc->dev, "UDC already has a gadget driver\n");
   2895		return -EBUSY;
   2896	}
   2897
   2898	udc->driver = driver;
   2899	udc->gadget.dev.of_node = udc->dev->of_node;
   2900	udc->enabled = 1;
   2901	udc->gadget.is_selfpowered = 1;
   2902	udc->vbus = 0;
   2903
   2904	/* Force VBUS process once to check for cable insertion */
   2905	udc->last_vbus = udc->vbus = 0;
   2906	vbus_work(udc);
   2907
   2908	/* enable interrupts */
   2909	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
   2910		ISP1301_I2C_INTERRUPT_FALLING, INT_SESS_VLD | INT_VBUS_VLD);
   2911	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
   2912		ISP1301_I2C_INTERRUPT_RISING, INT_SESS_VLD | INT_VBUS_VLD);
   2913
   2914	return 0;
   2915}
   2916
   2917static int lpc32xx_stop(struct usb_gadget *gadget)
   2918{
   2919	struct lpc32xx_udc *udc = to_udc(gadget);
   2920
   2921	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
   2922		ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
   2923	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
   2924		ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
   2925
   2926	if (udc->clocked) {
   2927		spin_lock(&udc->lock);
   2928		stop_activity(udc);
   2929		spin_unlock(&udc->lock);
   2930
   2931		/*
   2932		 *  Wait for all the endpoints to disable,
   2933		 *  before disabling clocks. Don't wait if
   2934		 *  endpoints are not enabled.
   2935		 */
   2936		if (atomic_read(&udc->enabled_ep_cnt))
   2937			wait_event_interruptible(udc->ep_disable_wait_queue,
   2938				(atomic_read(&udc->enabled_ep_cnt) == 0));
   2939
   2940		spin_lock(&udc->lock);
   2941		udc_clk_set(udc, 0);
   2942		spin_unlock(&udc->lock);
   2943	}
   2944
   2945	udc->enabled = 0;
   2946	udc->driver = NULL;
   2947
   2948	return 0;
   2949}
   2950
   2951static void lpc32xx_udc_shutdown(struct platform_device *dev)
   2952{
   2953	/* Force disconnect on reboot */
   2954	struct lpc32xx_udc *udc = platform_get_drvdata(dev);
   2955
   2956	pullup(udc, 0);
   2957}
   2958
   2959/*
   2960 * Callbacks to be overridden by options passed via OF (TODO)
   2961 */
   2962
   2963static void lpc32xx_usbd_conn_chg(int conn)
   2964{
   2965	/* Do nothing, it might be nice to enable an LED
   2966	 * based on conn state being !0 */
   2967}
   2968
   2969static void lpc32xx_usbd_susp_chg(int susp)
   2970{
   2971	/* Device suspend if susp != 0 */
   2972}
   2973
   2974static void lpc32xx_rmwkup_chg(int remote_wakup_enable)
   2975{
   2976	/* Enable or disable USB remote wakeup */
   2977}
   2978
   2979static struct lpc32xx_usbd_cfg lpc32xx_usbddata = {
   2980	.vbus_drv_pol = 0,
   2981	.conn_chgb = &lpc32xx_usbd_conn_chg,
   2982	.susp_chgb = &lpc32xx_usbd_susp_chg,
   2983	.rmwk_chgb = &lpc32xx_rmwkup_chg,
   2984};
   2985
   2986
   2987static u64 lpc32xx_usbd_dmamask = ~(u32) 0x7F;
   2988
   2989static int lpc32xx_udc_probe(struct platform_device *pdev)
   2990{
   2991	struct device *dev = &pdev->dev;
   2992	struct lpc32xx_udc *udc;
   2993	int retval, i;
   2994	dma_addr_t dma_handle;
   2995	struct device_node *isp1301_node;
   2996
   2997	udc = devm_kmemdup(dev, &controller_template, sizeof(*udc), GFP_KERNEL);
   2998	if (!udc)
   2999		return -ENOMEM;
   3000
   3001	for (i = 0; i <= 15; i++)
   3002		udc->ep[i].udc = udc;
   3003	udc->gadget.ep0 = &udc->ep[0].ep;
   3004
   3005	/* init software state */
   3006	udc->gadget.dev.parent = dev;
   3007	udc->pdev = pdev;
   3008	udc->dev = &pdev->dev;
   3009	udc->enabled = 0;
   3010
   3011	if (pdev->dev.of_node) {
   3012		isp1301_node = of_parse_phandle(pdev->dev.of_node,
   3013						"transceiver", 0);
   3014	} else {
   3015		isp1301_node = NULL;
   3016	}
   3017
   3018	udc->isp1301_i2c_client = isp1301_get_client(isp1301_node);
   3019	of_node_put(isp1301_node);
   3020	if (!udc->isp1301_i2c_client) {
   3021		return -EPROBE_DEFER;
   3022	}
   3023
   3024	dev_info(udc->dev, "ISP1301 I2C device at address 0x%x\n",
   3025		 udc->isp1301_i2c_client->addr);
   3026
   3027	pdev->dev.dma_mask = &lpc32xx_usbd_dmamask;
   3028	retval = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
   3029	if (retval)
   3030		return retval;
   3031
   3032	udc->board = &lpc32xx_usbddata;
   3033
   3034	/*
   3035	 * Resources are mapped as follows:
   3036	 *  IORESOURCE_MEM, base address and size of USB space
   3037	 *  IORESOURCE_IRQ, USB device low priority interrupt number
   3038	 *  IORESOURCE_IRQ, USB device high priority interrupt number
   3039	 *  IORESOURCE_IRQ, USB device interrupt number
   3040	 *  IORESOURCE_IRQ, USB transceiver interrupt number
   3041	 */
   3042
   3043	spin_lock_init(&udc->lock);
   3044
   3045	/* Get IRQs */
   3046	for (i = 0; i < 4; i++) {
   3047		udc->udp_irq[i] = platform_get_irq(pdev, i);
   3048		if (udc->udp_irq[i] < 0)
   3049			return udc->udp_irq[i];
   3050	}
   3051
   3052	udc->udp_baseaddr = devm_platform_ioremap_resource(pdev, 0);
   3053	if (IS_ERR(udc->udp_baseaddr)) {
   3054		dev_err(udc->dev, "IO map failure\n");
   3055		return PTR_ERR(udc->udp_baseaddr);
   3056	}
   3057
   3058	/* Get USB device clock */
   3059	udc->usb_slv_clk = devm_clk_get(&pdev->dev, NULL);
   3060	if (IS_ERR(udc->usb_slv_clk)) {
   3061		dev_err(udc->dev, "failed to acquire USB device clock\n");
   3062		return PTR_ERR(udc->usb_slv_clk);
   3063	}
   3064
   3065	/* Enable USB device clock */
   3066	retval = clk_prepare_enable(udc->usb_slv_clk);
   3067	if (retval < 0) {
   3068		dev_err(udc->dev, "failed to start USB device clock\n");
   3069		return retval;
   3070	}
   3071
   3072	/* Setup deferred workqueue data */
   3073	udc->poweron = udc->pullup = 0;
   3074	INIT_WORK(&udc->pullup_job, pullup_work);
   3075#ifdef CONFIG_PM
   3076	INIT_WORK(&udc->power_job, power_work);
   3077#endif
   3078
   3079	/* All clocks are now on */
   3080	udc->clocked = 1;
   3081
   3082	isp1301_udc_configure(udc);
   3083	/* Allocate memory for the UDCA */
   3084	udc->udca_v_base = dma_alloc_coherent(&pdev->dev, UDCA_BUFF_SIZE,
   3085					      &dma_handle,
   3086					      (GFP_KERNEL | GFP_DMA));
   3087	if (!udc->udca_v_base) {
   3088		dev_err(udc->dev, "error getting UDCA region\n");
   3089		retval = -ENOMEM;
   3090		goto i2c_fail;
   3091	}
   3092	udc->udca_p_base = dma_handle;
   3093	dev_dbg(udc->dev, "DMA buffer(0x%x bytes), P:0x%08x, V:0x%p\n",
   3094		UDCA_BUFF_SIZE, udc->udca_p_base, udc->udca_v_base);
   3095
   3096	/* Setup the DD DMA memory pool */
   3097	udc->dd_cache = dma_pool_create("udc_dd", udc->dev,
   3098					sizeof(struct lpc32xx_usbd_dd_gad),
   3099					sizeof(u32), 0);
   3100	if (!udc->dd_cache) {
   3101		dev_err(udc->dev, "error getting DD DMA region\n");
   3102		retval = -ENOMEM;
   3103		goto dma_alloc_fail;
   3104	}
   3105
   3106	/* Clear USB peripheral and initialize gadget endpoints */
   3107	udc_disable(udc);
   3108	udc_reinit(udc);
   3109
   3110	/* Request IRQs - low and high priority USB device IRQs are routed to
   3111	 * the same handler, while the DMA interrupt is routed elsewhere */
   3112	retval = devm_request_irq(dev, udc->udp_irq[IRQ_USB_LP],
   3113				  lpc32xx_usb_lp_irq, 0, "udc_lp", udc);
   3114	if (retval < 0) {
   3115		dev_err(udc->dev, "LP request irq %d failed\n",
   3116			udc->udp_irq[IRQ_USB_LP]);
   3117		goto irq_req_fail;
   3118	}
   3119	retval = devm_request_irq(dev, udc->udp_irq[IRQ_USB_HP],
   3120				  lpc32xx_usb_hp_irq, 0, "udc_hp", udc);
   3121	if (retval < 0) {
   3122		dev_err(udc->dev, "HP request irq %d failed\n",
   3123			udc->udp_irq[IRQ_USB_HP]);
   3124		goto irq_req_fail;
   3125	}
   3126
   3127	retval = devm_request_irq(dev, udc->udp_irq[IRQ_USB_DEVDMA],
   3128				  lpc32xx_usb_devdma_irq, 0, "udc_dma", udc);
   3129	if (retval < 0) {
   3130		dev_err(udc->dev, "DEV request irq %d failed\n",
   3131			udc->udp_irq[IRQ_USB_DEVDMA]);
   3132		goto irq_req_fail;
   3133	}
   3134
   3135	/* The transceiver interrupt is used for VBUS detection and will
   3136	   kick off the VBUS handler function */
   3137	retval = devm_request_threaded_irq(dev, udc->udp_irq[IRQ_USB_ATX], NULL,
   3138					   lpc32xx_usb_vbus_irq, IRQF_ONESHOT,
   3139					   "udc_otg", udc);
   3140	if (retval < 0) {
   3141		dev_err(udc->dev, "VBUS request irq %d failed\n",
   3142			udc->udp_irq[IRQ_USB_ATX]);
   3143		goto irq_req_fail;
   3144	}
   3145
   3146	/* Initialize wait queue */
   3147	init_waitqueue_head(&udc->ep_disable_wait_queue);
   3148	atomic_set(&udc->enabled_ep_cnt, 0);
   3149
   3150	retval = usb_add_gadget_udc(dev, &udc->gadget);
   3151	if (retval < 0)
   3152		goto add_gadget_fail;
   3153
   3154	dev_set_drvdata(dev, udc);
   3155	device_init_wakeup(dev, 1);
   3156	create_debug_file(udc);
   3157
   3158	/* Disable clocks for now */
   3159	udc_clk_set(udc, 0);
   3160
   3161	dev_info(udc->dev, "%s version %s\n", driver_name, DRIVER_VERSION);
   3162	return 0;
   3163
   3164add_gadget_fail:
   3165irq_req_fail:
   3166	dma_pool_destroy(udc->dd_cache);
   3167dma_alloc_fail:
   3168	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
   3169			  udc->udca_v_base, udc->udca_p_base);
   3170i2c_fail:
   3171	clk_disable_unprepare(udc->usb_slv_clk);
   3172	dev_err(udc->dev, "%s probe failed, %d\n", driver_name, retval);
   3173
   3174	return retval;
   3175}
   3176
   3177static int lpc32xx_udc_remove(struct platform_device *pdev)
   3178{
   3179	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
   3180
   3181	usb_del_gadget_udc(&udc->gadget);
   3182	if (udc->driver)
   3183		return -EBUSY;
   3184
   3185	udc_clk_set(udc, 1);
   3186	udc_disable(udc);
   3187	pullup(udc, 0);
   3188
   3189	device_init_wakeup(&pdev->dev, 0);
   3190	remove_debug_file(udc);
   3191
   3192	dma_pool_destroy(udc->dd_cache);
   3193	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
   3194			  udc->udca_v_base, udc->udca_p_base);
   3195
   3196	clk_disable_unprepare(udc->usb_slv_clk);
   3197
   3198	return 0;
   3199}
   3200
   3201#ifdef CONFIG_PM
   3202static int lpc32xx_udc_suspend(struct platform_device *pdev, pm_message_t mesg)
   3203{
   3204	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
   3205
   3206	if (udc->clocked) {
   3207		/* Power down ISP */
   3208		udc->poweron = 0;
   3209		isp1301_set_powerstate(udc, 0);
   3210
   3211		/* Disable clocking */
   3212		udc_clk_set(udc, 0);
   3213
   3214		/* Keep clock flag on, so we know to re-enable clocks
   3215		   on resume */
   3216		udc->clocked = 1;
   3217
   3218		/* Kill global USB clock */
   3219		clk_disable_unprepare(udc->usb_slv_clk);
   3220	}
   3221
   3222	return 0;
   3223}
   3224
   3225static int lpc32xx_udc_resume(struct platform_device *pdev)
   3226{
   3227	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
   3228
   3229	if (udc->clocked) {
   3230		/* Enable global USB clock */
   3231		clk_prepare_enable(udc->usb_slv_clk);
   3232
   3233		/* Enable clocking */
   3234		udc_clk_set(udc, 1);
   3235
   3236		/* ISP back to normal power mode */
   3237		udc->poweron = 1;
   3238		isp1301_set_powerstate(udc, 1);
   3239	}
   3240
   3241	return 0;
   3242}
   3243#else
   3244#define	lpc32xx_udc_suspend	NULL
   3245#define	lpc32xx_udc_resume	NULL
   3246#endif
   3247
   3248#ifdef CONFIG_OF
   3249static const struct of_device_id lpc32xx_udc_of_match[] = {
   3250	{ .compatible = "nxp,lpc3220-udc", },
   3251	{ },
   3252};
   3253MODULE_DEVICE_TABLE(of, lpc32xx_udc_of_match);
   3254#endif
   3255
   3256static struct platform_driver lpc32xx_udc_driver = {
   3257	.remove		= lpc32xx_udc_remove,
   3258	.shutdown	= lpc32xx_udc_shutdown,
   3259	.suspend	= lpc32xx_udc_suspend,
   3260	.resume		= lpc32xx_udc_resume,
   3261	.driver		= {
   3262		.name	= driver_name,
   3263		.of_match_table = of_match_ptr(lpc32xx_udc_of_match),
   3264	},
   3265};
   3266
   3267module_platform_driver_probe(lpc32xx_udc_driver, lpc32xx_udc_probe);
   3268
   3269MODULE_DESCRIPTION("LPC32XX udc driver");
   3270MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
   3271MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
   3272MODULE_LICENSE("GPL");
   3273MODULE_ALIAS("platform:lpc32xx_udc");