cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

s3c-hsudc.c (35127B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* linux/drivers/usb/gadget/s3c-hsudc.c
      3 *
      4 * Copyright (c) 2010 Samsung Electronics Co., Ltd.
      5 *		http://www.samsung.com/
      6 *
      7 * S3C24XX USB 2.0 High-speed USB controller gadget driver
      8 *
      9 * The S3C24XX USB 2.0 high-speed USB controller supports upto 9 endpoints.
     10 * Each endpoint can be configured as either in or out endpoint. Endpoints
     11 * can be configured for Bulk or Interrupt transfer mode.
     12 */
     13
     14#include <linux/kernel.h>
     15#include <linux/module.h>
     16#include <linux/spinlock.h>
     17#include <linux/interrupt.h>
     18#include <linux/platform_device.h>
     19#include <linux/dma-mapping.h>
     20#include <linux/delay.h>
     21#include <linux/io.h>
     22#include <linux/slab.h>
     23#include <linux/clk.h>
     24#include <linux/err.h>
     25#include <linux/usb/ch9.h>
     26#include <linux/usb/gadget.h>
     27#include <linux/usb/otg.h>
     28#include <linux/prefetch.h>
     29#include <linux/platform_data/s3c-hsudc.h>
     30#include <linux/regulator/consumer.h>
     31#include <linux/pm_runtime.h>
     32
     33#define S3C_HSUDC_REG(x)	(x)
     34
     35/* Non-Indexed Registers */
     36#define S3C_IR				S3C_HSUDC_REG(0x00) /* Index Register */
     37#define S3C_EIR				S3C_HSUDC_REG(0x04) /* EP Intr Status */
     38#define S3C_EIR_EP0			(1<<0)
     39#define S3C_EIER			S3C_HSUDC_REG(0x08) /* EP Intr Enable */
     40#define S3C_FAR				S3C_HSUDC_REG(0x0c) /* Gadget Address */
     41#define S3C_FNR				S3C_HSUDC_REG(0x10) /* Frame Number */
     42#define S3C_EDR				S3C_HSUDC_REG(0x14) /* EP Direction */
     43#define S3C_TR				S3C_HSUDC_REG(0x18) /* Test Register */
     44#define S3C_SSR				S3C_HSUDC_REG(0x1c) /* System Status */
     45#define S3C_SSR_DTZIEN_EN		(0xff8f)
     46#define S3C_SSR_ERR			(0xff80)
     47#define S3C_SSR_VBUSON			(1 << 8)
     48#define S3C_SSR_HSP			(1 << 4)
     49#define S3C_SSR_SDE			(1 << 3)
     50#define S3C_SSR_RESUME			(1 << 2)
     51#define S3C_SSR_SUSPEND			(1 << 1)
     52#define S3C_SSR_RESET			(1 << 0)
     53#define S3C_SCR				S3C_HSUDC_REG(0x20) /* System Control */
     54#define S3C_SCR_DTZIEN_EN		(1 << 14)
     55#define S3C_SCR_RRD_EN			(1 << 5)
     56#define S3C_SCR_SUS_EN			(1 << 1)
     57#define S3C_SCR_RST_EN			(1 << 0)
     58#define S3C_EP0SR			S3C_HSUDC_REG(0x24) /* EP0 Status */
     59#define S3C_EP0SR_EP0_LWO		(1 << 6)
     60#define S3C_EP0SR_STALL			(1 << 4)
     61#define S3C_EP0SR_TX_SUCCESS		(1 << 1)
     62#define S3C_EP0SR_RX_SUCCESS		(1 << 0)
     63#define S3C_EP0CR			S3C_HSUDC_REG(0x28) /* EP0 Control */
     64#define S3C_BR(_x)			S3C_HSUDC_REG(0x60 + (_x * 4))
     65
     66/* Indexed Registers */
     67#define S3C_ESR				S3C_HSUDC_REG(0x2c) /* EPn Status */
     68#define S3C_ESR_FLUSH			(1 << 6)
     69#define S3C_ESR_STALL			(1 << 5)
     70#define S3C_ESR_LWO			(1 << 4)
     71#define S3C_ESR_PSIF_ONE		(1 << 2)
     72#define S3C_ESR_PSIF_TWO		(2 << 2)
     73#define S3C_ESR_TX_SUCCESS		(1 << 1)
     74#define S3C_ESR_RX_SUCCESS		(1 << 0)
     75#define S3C_ECR				S3C_HSUDC_REG(0x30) /* EPn Control */
     76#define S3C_ECR_DUEN			(1 << 7)
     77#define S3C_ECR_FLUSH			(1 << 6)
     78#define S3C_ECR_STALL			(1 << 1)
     79#define S3C_ECR_IEMS			(1 << 0)
     80#define S3C_BRCR			S3C_HSUDC_REG(0x34) /* Read Count */
     81#define S3C_BWCR			S3C_HSUDC_REG(0x38) /* Write Count */
     82#define S3C_MPR				S3C_HSUDC_REG(0x3c) /* Max Pkt Size */
     83
     84#define WAIT_FOR_SETUP			(0)
     85#define DATA_STATE_XMIT			(1)
     86#define DATA_STATE_RECV			(2)
     87
     88static const char * const s3c_hsudc_supply_names[] = {
     89	"vdda",		/* analog phy supply, 3.3V */
     90	"vddi",		/* digital phy supply, 1.2V */
     91	"vddosc",	/* oscillator supply, 1.8V - 3.3V */
     92};
     93
     94/**
     95 * struct s3c_hsudc_ep - Endpoint representation used by driver.
     96 * @ep: USB gadget layer representation of device endpoint.
     97 * @name: Endpoint name (as required by ep autoconfiguration).
     98 * @dev: Reference to the device controller to which this EP belongs.
     99 * @desc: Endpoint descriptor obtained from the gadget driver.
    100 * @queue: Transfer request queue for the endpoint.
    101 * @stopped: Maintains state of endpoint, set if EP is halted.
    102 * @bEndpointAddress: EP address (including direction bit).
    103 * @fifo: Base address of EP FIFO.
    104 */
    105struct s3c_hsudc_ep {
    106	struct usb_ep ep;
    107	char name[20];
    108	struct s3c_hsudc *dev;
    109	struct list_head queue;
    110	u8 stopped;
    111	u8 wedge;
    112	u8 bEndpointAddress;
    113	void __iomem *fifo;
    114};
    115
    116/**
    117 * struct s3c_hsudc_req - Driver encapsulation of USB gadget transfer request.
    118 * @req: Reference to USB gadget transfer request.
    119 * @queue: Used for inserting this request to the endpoint request queue.
    120 */
    121struct s3c_hsudc_req {
    122	struct usb_request req;
    123	struct list_head queue;
    124};
    125
    126/**
    127 * struct s3c_hsudc - Driver's abstraction of the device controller.
    128 * @gadget: Instance of usb_gadget which is referenced by gadget driver.
    129 * @driver: Reference to currently active gadget driver.
    130 * @dev: The device reference used by probe function.
    131 * @lock: Lock to synchronize the usage of Endpoints (EP's are indexed).
    132 * @regs: Remapped base address of controller's register space.
    133 * irq: IRQ number used by the controller.
    134 * uclk: Reference to the controller clock.
    135 * ep0state: Current state of EP0.
    136 * ep: List of endpoints supported by the controller.
    137 */
    138struct s3c_hsudc {
    139	struct usb_gadget gadget;
    140	struct usb_gadget_driver *driver;
    141	struct device *dev;
    142	struct s3c24xx_hsudc_platdata *pd;
    143	struct usb_phy *transceiver;
    144	struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsudc_supply_names)];
    145	spinlock_t lock;
    146	void __iomem *regs;
    147	int irq;
    148	struct clk *uclk;
    149	int ep0state;
    150	struct s3c_hsudc_ep ep[];
    151};
    152
    153#define ep_maxpacket(_ep)	((_ep)->ep.maxpacket)
    154#define ep_is_in(_ep)		((_ep)->bEndpointAddress & USB_DIR_IN)
    155#define ep_index(_ep)		((_ep)->bEndpointAddress & \
    156					USB_ENDPOINT_NUMBER_MASK)
    157
    158static const char driver_name[] = "s3c-udc";
    159static const char ep0name[] = "ep0-control";
    160
    161static inline struct s3c_hsudc_req *our_req(struct usb_request *req)
    162{
    163	return container_of(req, struct s3c_hsudc_req, req);
    164}
    165
    166static inline struct s3c_hsudc_ep *our_ep(struct usb_ep *ep)
    167{
    168	return container_of(ep, struct s3c_hsudc_ep, ep);
    169}
    170
    171static inline struct s3c_hsudc *to_hsudc(struct usb_gadget *gadget)
    172{
    173	return container_of(gadget, struct s3c_hsudc, gadget);
    174}
    175
    176static inline void set_index(struct s3c_hsudc *hsudc, int ep_addr)
    177{
    178	ep_addr &= USB_ENDPOINT_NUMBER_MASK;
    179	writel(ep_addr, hsudc->regs + S3C_IR);
    180}
    181
    182static inline void __orr32(void __iomem *ptr, u32 val)
    183{
    184	writel(readl(ptr) | val, ptr);
    185}
    186
    187/**
    188 * s3c_hsudc_complete_request - Complete a transfer request.
    189 * @hsep: Endpoint to which the request belongs.
    190 * @hsreq: Transfer request to be completed.
    191 * @status: Transfer completion status for the transfer request.
    192 */
    193static void s3c_hsudc_complete_request(struct s3c_hsudc_ep *hsep,
    194				struct s3c_hsudc_req *hsreq, int status)
    195{
    196	unsigned int stopped = hsep->stopped;
    197	struct s3c_hsudc *hsudc = hsep->dev;
    198
    199	list_del_init(&hsreq->queue);
    200	hsreq->req.status = status;
    201
    202	if (!ep_index(hsep)) {
    203		hsudc->ep0state = WAIT_FOR_SETUP;
    204		hsep->bEndpointAddress &= ~USB_DIR_IN;
    205	}
    206
    207	hsep->stopped = 1;
    208	spin_unlock(&hsudc->lock);
    209	usb_gadget_giveback_request(&hsep->ep, &hsreq->req);
    210	spin_lock(&hsudc->lock);
    211	hsep->stopped = stopped;
    212}
    213
    214/**
    215 * s3c_hsudc_nuke_ep - Terminate all requests queued for a endpoint.
    216 * @hsep: Endpoint for which queued requests have to be terminated.
    217 * @status: Transfer completion status for the transfer request.
    218 */
    219static void s3c_hsudc_nuke_ep(struct s3c_hsudc_ep *hsep, int status)
    220{
    221	struct s3c_hsudc_req *hsreq;
    222
    223	while (!list_empty(&hsep->queue)) {
    224		hsreq = list_entry(hsep->queue.next,
    225				struct s3c_hsudc_req, queue);
    226		s3c_hsudc_complete_request(hsep, hsreq, status);
    227	}
    228}
    229
    230/**
    231 * s3c_hsudc_stop_activity - Stop activity on all endpoints.
    232 * @hsudc: Device controller for which EP activity is to be stopped.
    233 *
    234 * All the endpoints are stopped and any pending transfer requests if any on
    235 * the endpoint are terminated.
    236 */
    237static void s3c_hsudc_stop_activity(struct s3c_hsudc *hsudc)
    238{
    239	struct s3c_hsudc_ep *hsep;
    240	int epnum;
    241
    242	hsudc->gadget.speed = USB_SPEED_UNKNOWN;
    243
    244	for (epnum = 0; epnum < hsudc->pd->epnum; epnum++) {
    245		hsep = &hsudc->ep[epnum];
    246		hsep->stopped = 1;
    247		s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
    248	}
    249}
    250
    251/**
    252 * s3c_hsudc_read_setup_pkt - Read the received setup packet from EP0 fifo.
    253 * @hsudc: Device controller from which setup packet is to be read.
    254 * @buf: The buffer into which the setup packet is read.
    255 *
    256 * The setup packet received in the EP0 fifo is read and stored into a
    257 * given buffer address.
    258 */
    259
    260static void s3c_hsudc_read_setup_pkt(struct s3c_hsudc *hsudc, u16 *buf)
    261{
    262	int count;
    263
    264	count = readl(hsudc->regs + S3C_BRCR);
    265	while (count--)
    266		*buf++ = (u16)readl(hsudc->regs + S3C_BR(0));
    267
    268	writel(S3C_EP0SR_RX_SUCCESS, hsudc->regs + S3C_EP0SR);
    269}
    270
    271/**
    272 * s3c_hsudc_write_fifo - Write next chunk of transfer data to EP fifo.
    273 * @hsep: Endpoint to which the data is to be written.
    274 * @hsreq: Transfer request from which the next chunk of data is written.
    275 *
    276 * Write the next chunk of data from a transfer request to the endpoint FIFO.
    277 * If the transfer request completes, 1 is returned, otherwise 0 is returned.
    278 */
    279static int s3c_hsudc_write_fifo(struct s3c_hsudc_ep *hsep,
    280				struct s3c_hsudc_req *hsreq)
    281{
    282	u16 *buf;
    283	u32 max = ep_maxpacket(hsep);
    284	u32 count, length;
    285	bool is_last;
    286	void __iomem *fifo = hsep->fifo;
    287
    288	buf = hsreq->req.buf + hsreq->req.actual;
    289	prefetch(buf);
    290
    291	length = hsreq->req.length - hsreq->req.actual;
    292	length = min(length, max);
    293	hsreq->req.actual += length;
    294
    295	writel(length, hsep->dev->regs + S3C_BWCR);
    296	for (count = 0; count < length; count += 2)
    297		writel(*buf++, fifo);
    298
    299	if (count != max) {
    300		is_last = true;
    301	} else {
    302		if (hsreq->req.length != hsreq->req.actual || hsreq->req.zero)
    303			is_last = false;
    304		else
    305			is_last = true;
    306	}
    307
    308	if (is_last) {
    309		s3c_hsudc_complete_request(hsep, hsreq, 0);
    310		return 1;
    311	}
    312
    313	return 0;
    314}
    315
    316/**
    317 * s3c_hsudc_read_fifo - Read the next chunk of data from EP fifo.
    318 * @hsep: Endpoint from which the data is to be read.
    319 * @hsreq: Transfer request to which the next chunk of data read is written.
    320 *
    321 * Read the next chunk of data from the endpoint FIFO and a write it to the
    322 * transfer request buffer. If the transfer request completes, 1 is returned,
    323 * otherwise 0 is returned.
    324 */
    325static int s3c_hsudc_read_fifo(struct s3c_hsudc_ep *hsep,
    326				struct s3c_hsudc_req *hsreq)
    327{
    328	struct s3c_hsudc *hsudc = hsep->dev;
    329	u32 csr, offset;
    330	u16 *buf, word;
    331	u32 buflen, rcnt, rlen;
    332	void __iomem *fifo = hsep->fifo;
    333	u32 is_short = 0;
    334
    335	offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
    336	csr = readl(hsudc->regs + offset);
    337	if (!(csr & S3C_ESR_RX_SUCCESS))
    338		return -EINVAL;
    339
    340	buf = hsreq->req.buf + hsreq->req.actual;
    341	prefetchw(buf);
    342	buflen = hsreq->req.length - hsreq->req.actual;
    343
    344	rcnt = readl(hsudc->regs + S3C_BRCR);
    345	rlen = (csr & S3C_ESR_LWO) ? (rcnt * 2 - 1) : (rcnt * 2);
    346
    347	hsreq->req.actual += min(rlen, buflen);
    348	is_short = (rlen < hsep->ep.maxpacket);
    349
    350	while (rcnt-- != 0) {
    351		word = (u16)readl(fifo);
    352		if (buflen) {
    353			*buf++ = word;
    354			buflen--;
    355		} else {
    356			hsreq->req.status = -EOVERFLOW;
    357		}
    358	}
    359
    360	writel(S3C_ESR_RX_SUCCESS, hsudc->regs + offset);
    361
    362	if (is_short || hsreq->req.actual == hsreq->req.length) {
    363		s3c_hsudc_complete_request(hsep, hsreq, 0);
    364		return 1;
    365	}
    366
    367	return 0;
    368}
    369
    370/**
    371 * s3c_hsudc_epin_intr - Handle in-endpoint interrupt.
    372 * @hsudc - Device controller for which the interrupt is to be handled.
    373 * @ep_idx - Endpoint number on which an interrupt is pending.
    374 *
    375 * Handles interrupt for a in-endpoint. The interrupts that are handled are
    376 * stall and data transmit complete interrupt.
    377 */
    378static void s3c_hsudc_epin_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
    379{
    380	struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
    381	struct s3c_hsudc_req *hsreq;
    382	u32 csr;
    383
    384	csr = readl(hsudc->regs + S3C_ESR);
    385	if (csr & S3C_ESR_STALL) {
    386		writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
    387		return;
    388	}
    389
    390	if (csr & S3C_ESR_TX_SUCCESS) {
    391		writel(S3C_ESR_TX_SUCCESS, hsudc->regs + S3C_ESR);
    392		if (list_empty(&hsep->queue))
    393			return;
    394
    395		hsreq = list_entry(hsep->queue.next,
    396				struct s3c_hsudc_req, queue);
    397		if ((s3c_hsudc_write_fifo(hsep, hsreq) == 0) &&
    398				(csr & S3C_ESR_PSIF_TWO))
    399			s3c_hsudc_write_fifo(hsep, hsreq);
    400	}
    401}
    402
    403/**
    404 * s3c_hsudc_epout_intr - Handle out-endpoint interrupt.
    405 * @hsudc - Device controller for which the interrupt is to be handled.
    406 * @ep_idx - Endpoint number on which an interrupt is pending.
    407 *
    408 * Handles interrupt for a out-endpoint. The interrupts that are handled are
    409 * stall, flush and data ready interrupt.
    410 */
    411static void s3c_hsudc_epout_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
    412{
    413	struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
    414	struct s3c_hsudc_req *hsreq;
    415	u32 csr;
    416
    417	csr = readl(hsudc->regs + S3C_ESR);
    418	if (csr & S3C_ESR_STALL) {
    419		writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
    420		return;
    421	}
    422
    423	if (csr & S3C_ESR_FLUSH) {
    424		__orr32(hsudc->regs + S3C_ECR, S3C_ECR_FLUSH);
    425		return;
    426	}
    427
    428	if (csr & S3C_ESR_RX_SUCCESS) {
    429		if (list_empty(&hsep->queue))
    430			return;
    431
    432		hsreq = list_entry(hsep->queue.next,
    433				struct s3c_hsudc_req, queue);
    434		if (((s3c_hsudc_read_fifo(hsep, hsreq)) == 0) &&
    435				(csr & S3C_ESR_PSIF_TWO))
    436			s3c_hsudc_read_fifo(hsep, hsreq);
    437	}
    438}
    439
    440/** s3c_hsudc_set_halt - Set or clear a endpoint halt.
    441 * @_ep: Endpoint on which halt has to be set or cleared.
    442 * @value: 1 for setting halt on endpoint, 0 to clear halt.
    443 *
    444 * Set or clear endpoint halt. If halt is set, the endpoint is stopped.
    445 * If halt is cleared, for in-endpoints, if there are any pending
    446 * transfer requests, transfers are started.
    447 */
    448static int s3c_hsudc_set_halt(struct usb_ep *_ep, int value)
    449{
    450	struct s3c_hsudc_ep *hsep = our_ep(_ep);
    451	struct s3c_hsudc *hsudc = hsep->dev;
    452	struct s3c_hsudc_req *hsreq;
    453	unsigned long irqflags;
    454	u32 ecr;
    455	u32 offset;
    456
    457	if (value && ep_is_in(hsep) && !list_empty(&hsep->queue))
    458		return -EAGAIN;
    459
    460	spin_lock_irqsave(&hsudc->lock, irqflags);
    461	set_index(hsudc, ep_index(hsep));
    462	offset = (ep_index(hsep)) ? S3C_ECR : S3C_EP0CR;
    463	ecr = readl(hsudc->regs + offset);
    464
    465	if (value) {
    466		ecr |= S3C_ECR_STALL;
    467		if (ep_index(hsep))
    468			ecr |= S3C_ECR_FLUSH;
    469		hsep->stopped = 1;
    470	} else {
    471		ecr &= ~S3C_ECR_STALL;
    472		hsep->stopped = hsep->wedge = 0;
    473	}
    474	writel(ecr, hsudc->regs + offset);
    475
    476	if (ep_is_in(hsep) && !list_empty(&hsep->queue) && !value) {
    477		hsreq = list_entry(hsep->queue.next,
    478			struct s3c_hsudc_req, queue);
    479		if (hsreq)
    480			s3c_hsudc_write_fifo(hsep, hsreq);
    481	}
    482
    483	spin_unlock_irqrestore(&hsudc->lock, irqflags);
    484	return 0;
    485}
    486
    487/** s3c_hsudc_set_wedge - Sets the halt feature with the clear requests ignored
    488 * @_ep: Endpoint on which wedge has to be set.
    489 *
    490 * Sets the halt feature with the clear requests ignored.
    491 */
    492static int s3c_hsudc_set_wedge(struct usb_ep *_ep)
    493{
    494	struct s3c_hsudc_ep *hsep = our_ep(_ep);
    495
    496	if (!hsep)
    497		return -EINVAL;
    498
    499	hsep->wedge = 1;
    500	return usb_ep_set_halt(_ep);
    501}
    502
    503/** s3c_hsudc_handle_reqfeat - Handle set feature or clear feature requests.
    504 * @_ep: Device controller on which the set/clear feature needs to be handled.
    505 * @ctrl: Control request as received on the endpoint 0.
    506 *
    507 * Handle set feature or clear feature control requests on the control endpoint.
    508 */
    509static int s3c_hsudc_handle_reqfeat(struct s3c_hsudc *hsudc,
    510					struct usb_ctrlrequest *ctrl)
    511{
    512	struct s3c_hsudc_ep *hsep;
    513	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
    514	u8 ep_num = ctrl->wIndex & USB_ENDPOINT_NUMBER_MASK;
    515
    516	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
    517		hsep = &hsudc->ep[ep_num];
    518		switch (le16_to_cpu(ctrl->wValue)) {
    519		case USB_ENDPOINT_HALT:
    520			if (set || !hsep->wedge)
    521				s3c_hsudc_set_halt(&hsep->ep, set);
    522			return 0;
    523		}
    524	}
    525
    526	return -ENOENT;
    527}
    528
    529/**
    530 * s3c_hsudc_process_req_status - Handle get status control request.
    531 * @hsudc: Device controller on which get status request has be handled.
    532 * @ctrl: Control request as received on the endpoint 0.
    533 *
    534 * Handle get status control request received on control endpoint.
    535 */
    536static void s3c_hsudc_process_req_status(struct s3c_hsudc *hsudc,
    537					struct usb_ctrlrequest *ctrl)
    538{
    539	struct s3c_hsudc_ep *hsep0 = &hsudc->ep[0];
    540	struct s3c_hsudc_req hsreq;
    541	struct s3c_hsudc_ep *hsep;
    542	__le16 reply;
    543	u8 epnum;
    544
    545	switch (ctrl->bRequestType & USB_RECIP_MASK) {
    546	case USB_RECIP_DEVICE:
    547		reply = cpu_to_le16(0);
    548		break;
    549
    550	case USB_RECIP_INTERFACE:
    551		reply = cpu_to_le16(0);
    552		break;
    553
    554	case USB_RECIP_ENDPOINT:
    555		epnum = le16_to_cpu(ctrl->wIndex) & USB_ENDPOINT_NUMBER_MASK;
    556		hsep = &hsudc->ep[epnum];
    557		reply = cpu_to_le16(hsep->stopped ? 1 : 0);
    558		break;
    559	}
    560
    561	INIT_LIST_HEAD(&hsreq.queue);
    562	hsreq.req.length = 2;
    563	hsreq.req.buf = &reply;
    564	hsreq.req.actual = 0;
    565	hsreq.req.complete = NULL;
    566	s3c_hsudc_write_fifo(hsep0, &hsreq);
    567}
    568
    569/**
    570 * s3c_hsudc_process_setup - Process control request received on endpoint 0.
    571 * @hsudc: Device controller on which control request has been received.
    572 *
    573 * Read the control request received on endpoint 0, decode it and handle
    574 * the request.
    575 */
    576static void s3c_hsudc_process_setup(struct s3c_hsudc *hsudc)
    577{
    578	struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
    579	struct usb_ctrlrequest ctrl = {0};
    580	int ret;
    581
    582	s3c_hsudc_nuke_ep(hsep, -EPROTO);
    583	s3c_hsudc_read_setup_pkt(hsudc, (u16 *)&ctrl);
    584
    585	if (ctrl.bRequestType & USB_DIR_IN) {
    586		hsep->bEndpointAddress |= USB_DIR_IN;
    587		hsudc->ep0state = DATA_STATE_XMIT;
    588	} else {
    589		hsep->bEndpointAddress &= ~USB_DIR_IN;
    590		hsudc->ep0state = DATA_STATE_RECV;
    591	}
    592
    593	switch (ctrl.bRequest) {
    594	case USB_REQ_SET_ADDRESS:
    595		if (ctrl.bRequestType != (USB_TYPE_STANDARD | USB_RECIP_DEVICE))
    596			break;
    597		hsudc->ep0state = WAIT_FOR_SETUP;
    598		return;
    599
    600	case USB_REQ_GET_STATUS:
    601		if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
    602			break;
    603		s3c_hsudc_process_req_status(hsudc, &ctrl);
    604		return;
    605
    606	case USB_REQ_SET_FEATURE:
    607	case USB_REQ_CLEAR_FEATURE:
    608		if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
    609			break;
    610		s3c_hsudc_handle_reqfeat(hsudc, &ctrl);
    611		hsudc->ep0state = WAIT_FOR_SETUP;
    612		return;
    613	}
    614
    615	if (hsudc->driver) {
    616		spin_unlock(&hsudc->lock);
    617		ret = hsudc->driver->setup(&hsudc->gadget, &ctrl);
    618		spin_lock(&hsudc->lock);
    619
    620		if (ctrl.bRequest == USB_REQ_SET_CONFIGURATION) {
    621			hsep->bEndpointAddress &= ~USB_DIR_IN;
    622			hsudc->ep0state = WAIT_FOR_SETUP;
    623		}
    624
    625		if (ret < 0) {
    626			dev_err(hsudc->dev, "setup failed, returned %d\n",
    627						ret);
    628			s3c_hsudc_set_halt(&hsep->ep, 1);
    629			hsudc->ep0state = WAIT_FOR_SETUP;
    630			hsep->bEndpointAddress &= ~USB_DIR_IN;
    631		}
    632	}
    633}
    634
    635/** s3c_hsudc_handle_ep0_intr - Handle endpoint 0 interrupt.
    636 * @hsudc: Device controller on which endpoint 0 interrupt has occurred.
    637 *
    638 * Handle endpoint 0 interrupt when it occurs. EP0 interrupt could occur
    639 * when a stall handshake is sent to host or data is sent/received on
    640 * endpoint 0.
    641 */
    642static void s3c_hsudc_handle_ep0_intr(struct s3c_hsudc *hsudc)
    643{
    644	struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
    645	struct s3c_hsudc_req *hsreq;
    646	u32 csr = readl(hsudc->regs + S3C_EP0SR);
    647	u32 ecr;
    648
    649	if (csr & S3C_EP0SR_STALL) {
    650		ecr = readl(hsudc->regs + S3C_EP0CR);
    651		ecr &= ~(S3C_ECR_STALL | S3C_ECR_FLUSH);
    652		writel(ecr, hsudc->regs + S3C_EP0CR);
    653
    654		writel(S3C_EP0SR_STALL, hsudc->regs + S3C_EP0SR);
    655		hsep->stopped = 0;
    656
    657		s3c_hsudc_nuke_ep(hsep, -ECONNABORTED);
    658		hsudc->ep0state = WAIT_FOR_SETUP;
    659		hsep->bEndpointAddress &= ~USB_DIR_IN;
    660		return;
    661	}
    662
    663	if (csr & S3C_EP0SR_TX_SUCCESS) {
    664		writel(S3C_EP0SR_TX_SUCCESS, hsudc->regs + S3C_EP0SR);
    665		if (ep_is_in(hsep)) {
    666			if (list_empty(&hsep->queue))
    667				return;
    668
    669			hsreq = list_entry(hsep->queue.next,
    670					struct s3c_hsudc_req, queue);
    671			s3c_hsudc_write_fifo(hsep, hsreq);
    672		}
    673	}
    674
    675	if (csr & S3C_EP0SR_RX_SUCCESS) {
    676		if (hsudc->ep0state == WAIT_FOR_SETUP)
    677			s3c_hsudc_process_setup(hsudc);
    678		else {
    679			if (!ep_is_in(hsep)) {
    680				if (list_empty(&hsep->queue))
    681					return;
    682				hsreq = list_entry(hsep->queue.next,
    683					struct s3c_hsudc_req, queue);
    684				s3c_hsudc_read_fifo(hsep, hsreq);
    685			}
    686		}
    687	}
    688}
    689
    690/**
    691 * s3c_hsudc_ep_enable - Enable a endpoint.
    692 * @_ep: The endpoint to be enabled.
    693 * @desc: Endpoint descriptor.
    694 *
    695 * Enables a endpoint when called from the gadget driver. Endpoint stall if
    696 * any is cleared, transfer type is configured and endpoint interrupt is
    697 * enabled.
    698 */
    699static int s3c_hsudc_ep_enable(struct usb_ep *_ep,
    700				const struct usb_endpoint_descriptor *desc)
    701{
    702	struct s3c_hsudc_ep *hsep;
    703	struct s3c_hsudc *hsudc;
    704	unsigned long flags;
    705	u32 ecr = 0;
    706
    707	hsep = our_ep(_ep);
    708	if (!_ep || !desc || _ep->name == ep0name
    709		|| desc->bDescriptorType != USB_DT_ENDPOINT
    710		|| hsep->bEndpointAddress != desc->bEndpointAddress
    711		|| ep_maxpacket(hsep) < usb_endpoint_maxp(desc))
    712		return -EINVAL;
    713
    714	if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK
    715		&& usb_endpoint_maxp(desc) != ep_maxpacket(hsep))
    716		|| !desc->wMaxPacketSize)
    717		return -ERANGE;
    718
    719	hsudc = hsep->dev;
    720	if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
    721		return -ESHUTDOWN;
    722
    723	spin_lock_irqsave(&hsudc->lock, flags);
    724
    725	set_index(hsudc, hsep->bEndpointAddress);
    726	ecr |= ((usb_endpoint_xfer_int(desc)) ? S3C_ECR_IEMS : S3C_ECR_DUEN);
    727	writel(ecr, hsudc->regs + S3C_ECR);
    728
    729	hsep->stopped = hsep->wedge = 0;
    730	hsep->ep.desc = desc;
    731	hsep->ep.maxpacket = usb_endpoint_maxp(desc);
    732
    733	s3c_hsudc_set_halt(_ep, 0);
    734	__set_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
    735
    736	spin_unlock_irqrestore(&hsudc->lock, flags);
    737	return 0;
    738}
    739
    740/**
    741 * s3c_hsudc_ep_disable - Disable a endpoint.
    742 * @_ep: The endpoint to be disabled.
    743 * @desc: Endpoint descriptor.
    744 *
    745 * Disables a endpoint when called from the gadget driver.
    746 */
    747static int s3c_hsudc_ep_disable(struct usb_ep *_ep)
    748{
    749	struct s3c_hsudc_ep *hsep = our_ep(_ep);
    750	struct s3c_hsudc *hsudc = hsep->dev;
    751	unsigned long flags;
    752
    753	if (!_ep || !hsep->ep.desc)
    754		return -EINVAL;
    755
    756	spin_lock_irqsave(&hsudc->lock, flags);
    757
    758	set_index(hsudc, hsep->bEndpointAddress);
    759	__clear_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
    760
    761	s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
    762
    763	hsep->ep.desc = NULL;
    764	hsep->stopped = 1;
    765
    766	spin_unlock_irqrestore(&hsudc->lock, flags);
    767	return 0;
    768}
    769
    770/**
    771 * s3c_hsudc_alloc_request - Allocate a new request.
    772 * @_ep: Endpoint for which request is allocated (not used).
    773 * @gfp_flags: Flags used for the allocation.
    774 *
    775 * Allocates a single transfer request structure when called from gadget driver.
    776 */
    777static struct usb_request *s3c_hsudc_alloc_request(struct usb_ep *_ep,
    778						gfp_t gfp_flags)
    779{
    780	struct s3c_hsudc_req *hsreq;
    781
    782	hsreq = kzalloc(sizeof(*hsreq), gfp_flags);
    783	if (!hsreq)
    784		return NULL;
    785
    786	INIT_LIST_HEAD(&hsreq->queue);
    787	return &hsreq->req;
    788}
    789
    790/**
    791 * s3c_hsudc_free_request - Deallocate a request.
    792 * @ep: Endpoint for which request is deallocated (not used).
    793 * @_req: Request to be deallocated.
    794 *
    795 * Allocates a single transfer request structure when called from gadget driver.
    796 */
    797static void s3c_hsudc_free_request(struct usb_ep *ep, struct usb_request *_req)
    798{
    799	struct s3c_hsudc_req *hsreq;
    800
    801	hsreq = our_req(_req);
    802	WARN_ON(!list_empty(&hsreq->queue));
    803	kfree(hsreq);
    804}
    805
    806/**
    807 * s3c_hsudc_queue - Queue a transfer request for the endpoint.
    808 * @_ep: Endpoint for which the request is queued.
    809 * @_req: Request to be queued.
    810 * @gfp_flags: Not used.
    811 *
    812 * Start or enqueue a request for a endpoint when called from gadget driver.
    813 */
    814static int s3c_hsudc_queue(struct usb_ep *_ep, struct usb_request *_req,
    815			gfp_t gfp_flags)
    816{
    817	struct s3c_hsudc_req *hsreq;
    818	struct s3c_hsudc_ep *hsep;
    819	struct s3c_hsudc *hsudc;
    820	unsigned long flags;
    821	u32 offset;
    822	u32 csr;
    823
    824	hsreq = our_req(_req);
    825	if ((!_req || !_req->complete || !_req->buf ||
    826		!list_empty(&hsreq->queue)))
    827		return -EINVAL;
    828
    829	hsep = our_ep(_ep);
    830	hsudc = hsep->dev;
    831	if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
    832		return -ESHUTDOWN;
    833
    834	spin_lock_irqsave(&hsudc->lock, flags);
    835	set_index(hsudc, hsep->bEndpointAddress);
    836
    837	_req->status = -EINPROGRESS;
    838	_req->actual = 0;
    839
    840	if (!ep_index(hsep) && _req->length == 0) {
    841		hsudc->ep0state = WAIT_FOR_SETUP;
    842		s3c_hsudc_complete_request(hsep, hsreq, 0);
    843		spin_unlock_irqrestore(&hsudc->lock, flags);
    844		return 0;
    845	}
    846
    847	if (list_empty(&hsep->queue) && !hsep->stopped) {
    848		offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
    849		if (ep_is_in(hsep)) {
    850			csr = readl(hsudc->regs + offset);
    851			if (!(csr & S3C_ESR_TX_SUCCESS) &&
    852				(s3c_hsudc_write_fifo(hsep, hsreq) == 1))
    853				hsreq = NULL;
    854		} else {
    855			csr = readl(hsudc->regs + offset);
    856			if ((csr & S3C_ESR_RX_SUCCESS)
    857				   && (s3c_hsudc_read_fifo(hsep, hsreq) == 1))
    858				hsreq = NULL;
    859		}
    860	}
    861
    862	if (hsreq)
    863		list_add_tail(&hsreq->queue, &hsep->queue);
    864
    865	spin_unlock_irqrestore(&hsudc->lock, flags);
    866	return 0;
    867}
    868
    869/**
    870 * s3c_hsudc_dequeue - Dequeue a transfer request from an endpoint.
    871 * @_ep: Endpoint from which the request is dequeued.
    872 * @_req: Request to be dequeued.
    873 *
    874 * Dequeue a request from a endpoint when called from gadget driver.
    875 */
    876static int s3c_hsudc_dequeue(struct usb_ep *_ep, struct usb_request *_req)
    877{
    878	struct s3c_hsudc_ep *hsep = our_ep(_ep);
    879	struct s3c_hsudc *hsudc = hsep->dev;
    880	struct s3c_hsudc_req *hsreq = NULL, *iter;
    881	unsigned long flags;
    882
    883	hsep = our_ep(_ep);
    884	if (!_ep || hsep->ep.name == ep0name)
    885		return -EINVAL;
    886
    887	spin_lock_irqsave(&hsudc->lock, flags);
    888
    889	list_for_each_entry(iter, &hsep->queue, queue) {
    890		if (&iter->req != _req)
    891			continue;
    892		hsreq = iter;
    893		break;
    894	}
    895	if (!hsreq) {
    896		spin_unlock_irqrestore(&hsudc->lock, flags);
    897		return -EINVAL;
    898	}
    899
    900	set_index(hsudc, hsep->bEndpointAddress);
    901	s3c_hsudc_complete_request(hsep, hsreq, -ECONNRESET);
    902
    903	spin_unlock_irqrestore(&hsudc->lock, flags);
    904	return 0;
    905}
    906
    907static const struct usb_ep_ops s3c_hsudc_ep_ops = {
    908	.enable = s3c_hsudc_ep_enable,
    909	.disable = s3c_hsudc_ep_disable,
    910	.alloc_request = s3c_hsudc_alloc_request,
    911	.free_request = s3c_hsudc_free_request,
    912	.queue = s3c_hsudc_queue,
    913	.dequeue = s3c_hsudc_dequeue,
    914	.set_halt = s3c_hsudc_set_halt,
    915	.set_wedge = s3c_hsudc_set_wedge,
    916};
    917
    918/**
    919 * s3c_hsudc_initep - Initialize a endpoint to default state.
    920 * @hsudc - Reference to the device controller.
    921 * @hsep - Endpoint to be initialized.
    922 * @epnum - Address to be assigned to the endpoint.
    923 *
    924 * Initialize a endpoint with default configuration.
    925 */
    926static void s3c_hsudc_initep(struct s3c_hsudc *hsudc,
    927				struct s3c_hsudc_ep *hsep, int epnum)
    928{
    929	char *dir;
    930
    931	if ((epnum % 2) == 0) {
    932		dir = "out";
    933	} else {
    934		dir = "in";
    935		hsep->bEndpointAddress = USB_DIR_IN;
    936	}
    937
    938	hsep->bEndpointAddress |= epnum;
    939	if (epnum)
    940		snprintf(hsep->name, sizeof(hsep->name), "ep%d%s", epnum, dir);
    941	else
    942		snprintf(hsep->name, sizeof(hsep->name), "%s", ep0name);
    943
    944	INIT_LIST_HEAD(&hsep->queue);
    945	INIT_LIST_HEAD(&hsep->ep.ep_list);
    946	if (epnum)
    947		list_add_tail(&hsep->ep.ep_list, &hsudc->gadget.ep_list);
    948
    949	hsep->dev = hsudc;
    950	hsep->ep.name = hsep->name;
    951	usb_ep_set_maxpacket_limit(&hsep->ep, epnum ? 512 : 64);
    952	hsep->ep.ops = &s3c_hsudc_ep_ops;
    953	hsep->fifo = hsudc->regs + S3C_BR(epnum);
    954	hsep->ep.desc = NULL;
    955	hsep->stopped = 0;
    956	hsep->wedge = 0;
    957
    958	if (epnum == 0) {
    959		hsep->ep.caps.type_control = true;
    960		hsep->ep.caps.dir_in = true;
    961		hsep->ep.caps.dir_out = true;
    962	} else {
    963		hsep->ep.caps.type_iso = true;
    964		hsep->ep.caps.type_bulk = true;
    965		hsep->ep.caps.type_int = true;
    966	}
    967
    968	if (epnum & 1)
    969		hsep->ep.caps.dir_in = true;
    970	else
    971		hsep->ep.caps.dir_out = true;
    972
    973	set_index(hsudc, epnum);
    974	writel(hsep->ep.maxpacket, hsudc->regs + S3C_MPR);
    975}
    976
    977/**
    978 * s3c_hsudc_setup_ep - Configure all endpoints to default state.
    979 * @hsudc: Reference to device controller.
    980 *
    981 * Configures all endpoints to default state.
    982 */
    983static void s3c_hsudc_setup_ep(struct s3c_hsudc *hsudc)
    984{
    985	int epnum;
    986
    987	hsudc->ep0state = WAIT_FOR_SETUP;
    988	INIT_LIST_HEAD(&hsudc->gadget.ep_list);
    989	for (epnum = 0; epnum < hsudc->pd->epnum; epnum++)
    990		s3c_hsudc_initep(hsudc, &hsudc->ep[epnum], epnum);
    991}
    992
    993/**
    994 * s3c_hsudc_reconfig - Reconfigure the device controller to default state.
    995 * @hsudc: Reference to device controller.
    996 *
    997 * Reconfigures the device controller registers to a default state.
    998 */
    999static void s3c_hsudc_reconfig(struct s3c_hsudc *hsudc)
   1000{
   1001	writel(0xAA, hsudc->regs + S3C_EDR);
   1002	writel(1, hsudc->regs + S3C_EIER);
   1003	writel(0, hsudc->regs + S3C_TR);
   1004	writel(S3C_SCR_DTZIEN_EN | S3C_SCR_RRD_EN | S3C_SCR_SUS_EN |
   1005			S3C_SCR_RST_EN, hsudc->regs + S3C_SCR);
   1006	writel(0, hsudc->regs + S3C_EP0CR);
   1007
   1008	s3c_hsudc_setup_ep(hsudc);
   1009}
   1010
   1011/**
   1012 * s3c_hsudc_irq - Interrupt handler for device controller.
   1013 * @irq: Not used.
   1014 * @_dev: Reference to the device controller.
   1015 *
   1016 * Interrupt handler for the device controller. This handler handles controller
   1017 * interrupts and endpoint interrupts.
   1018 */
   1019static irqreturn_t s3c_hsudc_irq(int irq, void *_dev)
   1020{
   1021	struct s3c_hsudc *hsudc = _dev;
   1022	struct s3c_hsudc_ep *hsep;
   1023	u32 ep_intr;
   1024	u32 sys_status;
   1025	u32 ep_idx;
   1026
   1027	spin_lock(&hsudc->lock);
   1028
   1029	sys_status = readl(hsudc->regs + S3C_SSR);
   1030	ep_intr = readl(hsudc->regs + S3C_EIR) & 0x3FF;
   1031
   1032	if (!ep_intr && !(sys_status & S3C_SSR_DTZIEN_EN)) {
   1033		spin_unlock(&hsudc->lock);
   1034		return IRQ_HANDLED;
   1035	}
   1036
   1037	if (sys_status) {
   1038		if (sys_status & S3C_SSR_VBUSON)
   1039			writel(S3C_SSR_VBUSON, hsudc->regs + S3C_SSR);
   1040
   1041		if (sys_status & S3C_SSR_ERR)
   1042			writel(S3C_SSR_ERR, hsudc->regs + S3C_SSR);
   1043
   1044		if (sys_status & S3C_SSR_SDE) {
   1045			writel(S3C_SSR_SDE, hsudc->regs + S3C_SSR);
   1046			hsudc->gadget.speed = (sys_status & S3C_SSR_HSP) ?
   1047				USB_SPEED_HIGH : USB_SPEED_FULL;
   1048		}
   1049
   1050		if (sys_status & S3C_SSR_SUSPEND) {
   1051			writel(S3C_SSR_SUSPEND, hsudc->regs + S3C_SSR);
   1052			if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
   1053				&& hsudc->driver && hsudc->driver->suspend)
   1054				hsudc->driver->suspend(&hsudc->gadget);
   1055		}
   1056
   1057		if (sys_status & S3C_SSR_RESUME) {
   1058			writel(S3C_SSR_RESUME, hsudc->regs + S3C_SSR);
   1059			if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
   1060				&& hsudc->driver && hsudc->driver->resume)
   1061				hsudc->driver->resume(&hsudc->gadget);
   1062		}
   1063
   1064		if (sys_status & S3C_SSR_RESET) {
   1065			writel(S3C_SSR_RESET, hsudc->regs + S3C_SSR);
   1066			for (ep_idx = 0; ep_idx < hsudc->pd->epnum; ep_idx++) {
   1067				hsep = &hsudc->ep[ep_idx];
   1068				hsep->stopped = 1;
   1069				s3c_hsudc_nuke_ep(hsep, -ECONNRESET);
   1070			}
   1071			s3c_hsudc_reconfig(hsudc);
   1072			hsudc->ep0state = WAIT_FOR_SETUP;
   1073		}
   1074	}
   1075
   1076	if (ep_intr & S3C_EIR_EP0) {
   1077		writel(S3C_EIR_EP0, hsudc->regs + S3C_EIR);
   1078		set_index(hsudc, 0);
   1079		s3c_hsudc_handle_ep0_intr(hsudc);
   1080	}
   1081
   1082	ep_intr >>= 1;
   1083	ep_idx = 1;
   1084	while (ep_intr) {
   1085		if (ep_intr & 1)  {
   1086			hsep = &hsudc->ep[ep_idx];
   1087			set_index(hsudc, ep_idx);
   1088			writel(1 << ep_idx, hsudc->regs + S3C_EIR);
   1089			if (ep_is_in(hsep))
   1090				s3c_hsudc_epin_intr(hsudc, ep_idx);
   1091			else
   1092				s3c_hsudc_epout_intr(hsudc, ep_idx);
   1093		}
   1094		ep_intr >>= 1;
   1095		ep_idx++;
   1096	}
   1097
   1098	spin_unlock(&hsudc->lock);
   1099	return IRQ_HANDLED;
   1100}
   1101
   1102static int s3c_hsudc_start(struct usb_gadget *gadget,
   1103		struct usb_gadget_driver *driver)
   1104{
   1105	struct s3c_hsudc *hsudc = to_hsudc(gadget);
   1106	int ret;
   1107
   1108	if (!driver
   1109		|| driver->max_speed < USB_SPEED_FULL
   1110		|| !driver->setup)
   1111		return -EINVAL;
   1112
   1113	if (!hsudc)
   1114		return -ENODEV;
   1115
   1116	if (hsudc->driver)
   1117		return -EBUSY;
   1118
   1119	hsudc->driver = driver;
   1120
   1121	ret = regulator_bulk_enable(ARRAY_SIZE(hsudc->supplies),
   1122				    hsudc->supplies);
   1123	if (ret != 0) {
   1124		dev_err(hsudc->dev, "failed to enable supplies: %d\n", ret);
   1125		goto err_supplies;
   1126	}
   1127
   1128	/* connect to bus through transceiver */
   1129	if (!IS_ERR_OR_NULL(hsudc->transceiver)) {
   1130		ret = otg_set_peripheral(hsudc->transceiver->otg,
   1131					&hsudc->gadget);
   1132		if (ret) {
   1133			dev_err(hsudc->dev, "%s: can't bind to transceiver\n",
   1134					hsudc->gadget.name);
   1135			goto err_otg;
   1136		}
   1137	}
   1138
   1139	enable_irq(hsudc->irq);
   1140	s3c_hsudc_reconfig(hsudc);
   1141
   1142	pm_runtime_get_sync(hsudc->dev);
   1143
   1144	if (hsudc->pd->phy_init)
   1145		hsudc->pd->phy_init();
   1146	if (hsudc->pd->gpio_init)
   1147		hsudc->pd->gpio_init();
   1148
   1149	return 0;
   1150err_otg:
   1151	regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
   1152err_supplies:
   1153	hsudc->driver = NULL;
   1154	return ret;
   1155}
   1156
   1157static int s3c_hsudc_stop(struct usb_gadget *gadget)
   1158{
   1159	struct s3c_hsudc *hsudc = to_hsudc(gadget);
   1160	unsigned long flags;
   1161
   1162	if (!hsudc)
   1163		return -ENODEV;
   1164
   1165	spin_lock_irqsave(&hsudc->lock, flags);
   1166	hsudc->gadget.speed = USB_SPEED_UNKNOWN;
   1167	if (hsudc->pd->phy_uninit)
   1168		hsudc->pd->phy_uninit();
   1169
   1170	pm_runtime_put(hsudc->dev);
   1171
   1172	if (hsudc->pd->gpio_uninit)
   1173		hsudc->pd->gpio_uninit();
   1174	s3c_hsudc_stop_activity(hsudc);
   1175	spin_unlock_irqrestore(&hsudc->lock, flags);
   1176
   1177	if (!IS_ERR_OR_NULL(hsudc->transceiver))
   1178		(void) otg_set_peripheral(hsudc->transceiver->otg, NULL);
   1179
   1180	disable_irq(hsudc->irq);
   1181
   1182	regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
   1183	hsudc->driver = NULL;
   1184
   1185	return 0;
   1186}
   1187
   1188static inline u32 s3c_hsudc_read_frameno(struct s3c_hsudc *hsudc)
   1189{
   1190	return readl(hsudc->regs + S3C_FNR) & 0x3FF;
   1191}
   1192
   1193static int s3c_hsudc_gadget_getframe(struct usb_gadget *gadget)
   1194{
   1195	return s3c_hsudc_read_frameno(to_hsudc(gadget));
   1196}
   1197
   1198static int s3c_hsudc_vbus_draw(struct usb_gadget *gadget, unsigned mA)
   1199{
   1200	struct s3c_hsudc *hsudc = to_hsudc(gadget);
   1201
   1202	if (!hsudc)
   1203		return -ENODEV;
   1204
   1205	if (!IS_ERR_OR_NULL(hsudc->transceiver))
   1206		return usb_phy_set_power(hsudc->transceiver, mA);
   1207
   1208	return -EOPNOTSUPP;
   1209}
   1210
   1211static const struct usb_gadget_ops s3c_hsudc_gadget_ops = {
   1212	.get_frame	= s3c_hsudc_gadget_getframe,
   1213	.udc_start	= s3c_hsudc_start,
   1214	.udc_stop	= s3c_hsudc_stop,
   1215	.vbus_draw	= s3c_hsudc_vbus_draw,
   1216};
   1217
   1218static int s3c_hsudc_probe(struct platform_device *pdev)
   1219{
   1220	struct device *dev = &pdev->dev;
   1221	struct s3c_hsudc *hsudc;
   1222	struct s3c24xx_hsudc_platdata *pd = dev_get_platdata(&pdev->dev);
   1223	int ret, i;
   1224
   1225	hsudc = devm_kzalloc(&pdev->dev, struct_size(hsudc, ep, pd->epnum),
   1226			     GFP_KERNEL);
   1227	if (!hsudc)
   1228		return -ENOMEM;
   1229
   1230	platform_set_drvdata(pdev, dev);
   1231	hsudc->dev = dev;
   1232	hsudc->pd = dev_get_platdata(&pdev->dev);
   1233
   1234	hsudc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);
   1235
   1236	for (i = 0; i < ARRAY_SIZE(hsudc->supplies); i++)
   1237		hsudc->supplies[i].supply = s3c_hsudc_supply_names[i];
   1238
   1239	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsudc->supplies),
   1240				 hsudc->supplies);
   1241	if (ret != 0) {
   1242		if (ret != -EPROBE_DEFER)
   1243			dev_err(dev, "failed to request supplies: %d\n", ret);
   1244		goto err_supplies;
   1245	}
   1246
   1247	hsudc->regs = devm_platform_ioremap_resource(pdev, 0);
   1248	if (IS_ERR(hsudc->regs)) {
   1249		ret = PTR_ERR(hsudc->regs);
   1250		goto err_res;
   1251	}
   1252
   1253	spin_lock_init(&hsudc->lock);
   1254
   1255	hsudc->gadget.max_speed = USB_SPEED_HIGH;
   1256	hsudc->gadget.ops = &s3c_hsudc_gadget_ops;
   1257	hsudc->gadget.name = dev_name(dev);
   1258	hsudc->gadget.ep0 = &hsudc->ep[0].ep;
   1259	hsudc->gadget.is_otg = 0;
   1260	hsudc->gadget.is_a_peripheral = 0;
   1261	hsudc->gadget.speed = USB_SPEED_UNKNOWN;
   1262
   1263	s3c_hsudc_setup_ep(hsudc);
   1264
   1265	ret = platform_get_irq(pdev, 0);
   1266	if (ret < 0)
   1267		goto err_res;
   1268	hsudc->irq = ret;
   1269
   1270	ret = devm_request_irq(&pdev->dev, hsudc->irq, s3c_hsudc_irq, 0,
   1271				driver_name, hsudc);
   1272	if (ret < 0) {
   1273		dev_err(dev, "irq request failed\n");
   1274		goto err_res;
   1275	}
   1276
   1277	hsudc->uclk = devm_clk_get(&pdev->dev, "usb-device");
   1278	if (IS_ERR(hsudc->uclk)) {
   1279		dev_err(dev, "failed to find usb-device clock source\n");
   1280		ret = PTR_ERR(hsudc->uclk);
   1281		goto err_res;
   1282	}
   1283	clk_enable(hsudc->uclk);
   1284
   1285	local_irq_disable();
   1286
   1287	disable_irq(hsudc->irq);
   1288	local_irq_enable();
   1289
   1290	ret = usb_add_gadget_udc(&pdev->dev, &hsudc->gadget);
   1291	if (ret)
   1292		goto err_add_udc;
   1293
   1294	pm_runtime_enable(dev);
   1295
   1296	return 0;
   1297err_add_udc:
   1298	clk_disable(hsudc->uclk);
   1299err_res:
   1300	if (!IS_ERR_OR_NULL(hsudc->transceiver))
   1301		usb_put_phy(hsudc->transceiver);
   1302
   1303err_supplies:
   1304	return ret;
   1305}
   1306
   1307static struct platform_driver s3c_hsudc_driver = {
   1308	.driver		= {
   1309		.name	= "s3c-hsudc",
   1310	},
   1311	.probe		= s3c_hsudc_probe,
   1312};
   1313
   1314module_platform_driver(s3c_hsudc_driver);
   1315
   1316MODULE_DESCRIPTION("Samsung S3C24XX USB high-speed controller driver");
   1317MODULE_AUTHOR("Thomas Abraham <thomas.ab@samsung.com>");
   1318MODULE_LICENSE("GPL");
   1319MODULE_ALIAS("platform:s3c-hsudc");