s3c-hsudc.c (35127B)
1// SPDX-License-Identifier: GPL-2.0 2/* linux/drivers/usb/gadget/s3c-hsudc.c 3 * 4 * Copyright (c) 2010 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * S3C24XX USB 2.0 High-speed USB controller gadget driver 8 * 9 * The S3C24XX USB 2.0 high-speed USB controller supports upto 9 endpoints. 10 * Each endpoint can be configured as either in or out endpoint. Endpoints 11 * can be configured for Bulk or Interrupt transfer mode. 12 */ 13 14#include <linux/kernel.h> 15#include <linux/module.h> 16#include <linux/spinlock.h> 17#include <linux/interrupt.h> 18#include <linux/platform_device.h> 19#include <linux/dma-mapping.h> 20#include <linux/delay.h> 21#include <linux/io.h> 22#include <linux/slab.h> 23#include <linux/clk.h> 24#include <linux/err.h> 25#include <linux/usb/ch9.h> 26#include <linux/usb/gadget.h> 27#include <linux/usb/otg.h> 28#include <linux/prefetch.h> 29#include <linux/platform_data/s3c-hsudc.h> 30#include <linux/regulator/consumer.h> 31#include <linux/pm_runtime.h> 32 33#define S3C_HSUDC_REG(x) (x) 34 35/* Non-Indexed Registers */ 36#define S3C_IR S3C_HSUDC_REG(0x00) /* Index Register */ 37#define S3C_EIR S3C_HSUDC_REG(0x04) /* EP Intr Status */ 38#define S3C_EIR_EP0 (1<<0) 39#define S3C_EIER S3C_HSUDC_REG(0x08) /* EP Intr Enable */ 40#define S3C_FAR S3C_HSUDC_REG(0x0c) /* Gadget Address */ 41#define S3C_FNR S3C_HSUDC_REG(0x10) /* Frame Number */ 42#define S3C_EDR S3C_HSUDC_REG(0x14) /* EP Direction */ 43#define S3C_TR S3C_HSUDC_REG(0x18) /* Test Register */ 44#define S3C_SSR S3C_HSUDC_REG(0x1c) /* System Status */ 45#define S3C_SSR_DTZIEN_EN (0xff8f) 46#define S3C_SSR_ERR (0xff80) 47#define S3C_SSR_VBUSON (1 << 8) 48#define S3C_SSR_HSP (1 << 4) 49#define S3C_SSR_SDE (1 << 3) 50#define S3C_SSR_RESUME (1 << 2) 51#define S3C_SSR_SUSPEND (1 << 1) 52#define S3C_SSR_RESET (1 << 0) 53#define S3C_SCR S3C_HSUDC_REG(0x20) /* System Control */ 54#define S3C_SCR_DTZIEN_EN (1 << 14) 55#define S3C_SCR_RRD_EN (1 << 5) 56#define S3C_SCR_SUS_EN (1 << 1) 57#define S3C_SCR_RST_EN (1 << 0) 58#define S3C_EP0SR S3C_HSUDC_REG(0x24) /* EP0 Status */ 59#define S3C_EP0SR_EP0_LWO (1 << 6) 60#define S3C_EP0SR_STALL (1 << 4) 61#define S3C_EP0SR_TX_SUCCESS (1 << 1) 62#define S3C_EP0SR_RX_SUCCESS (1 << 0) 63#define S3C_EP0CR S3C_HSUDC_REG(0x28) /* EP0 Control */ 64#define S3C_BR(_x) S3C_HSUDC_REG(0x60 + (_x * 4)) 65 66/* Indexed Registers */ 67#define S3C_ESR S3C_HSUDC_REG(0x2c) /* EPn Status */ 68#define S3C_ESR_FLUSH (1 << 6) 69#define S3C_ESR_STALL (1 << 5) 70#define S3C_ESR_LWO (1 << 4) 71#define S3C_ESR_PSIF_ONE (1 << 2) 72#define S3C_ESR_PSIF_TWO (2 << 2) 73#define S3C_ESR_TX_SUCCESS (1 << 1) 74#define S3C_ESR_RX_SUCCESS (1 << 0) 75#define S3C_ECR S3C_HSUDC_REG(0x30) /* EPn Control */ 76#define S3C_ECR_DUEN (1 << 7) 77#define S3C_ECR_FLUSH (1 << 6) 78#define S3C_ECR_STALL (1 << 1) 79#define S3C_ECR_IEMS (1 << 0) 80#define S3C_BRCR S3C_HSUDC_REG(0x34) /* Read Count */ 81#define S3C_BWCR S3C_HSUDC_REG(0x38) /* Write Count */ 82#define S3C_MPR S3C_HSUDC_REG(0x3c) /* Max Pkt Size */ 83 84#define WAIT_FOR_SETUP (0) 85#define DATA_STATE_XMIT (1) 86#define DATA_STATE_RECV (2) 87 88static const char * const s3c_hsudc_supply_names[] = { 89 "vdda", /* analog phy supply, 3.3V */ 90 "vddi", /* digital phy supply, 1.2V */ 91 "vddosc", /* oscillator supply, 1.8V - 3.3V */ 92}; 93 94/** 95 * struct s3c_hsudc_ep - Endpoint representation used by driver. 96 * @ep: USB gadget layer representation of device endpoint. 97 * @name: Endpoint name (as required by ep autoconfiguration). 98 * @dev: Reference to the device controller to which this EP belongs. 99 * @desc: Endpoint descriptor obtained from the gadget driver. 100 * @queue: Transfer request queue for the endpoint. 101 * @stopped: Maintains state of endpoint, set if EP is halted. 102 * @bEndpointAddress: EP address (including direction bit). 103 * @fifo: Base address of EP FIFO. 104 */ 105struct s3c_hsudc_ep { 106 struct usb_ep ep; 107 char name[20]; 108 struct s3c_hsudc *dev; 109 struct list_head queue; 110 u8 stopped; 111 u8 wedge; 112 u8 bEndpointAddress; 113 void __iomem *fifo; 114}; 115 116/** 117 * struct s3c_hsudc_req - Driver encapsulation of USB gadget transfer request. 118 * @req: Reference to USB gadget transfer request. 119 * @queue: Used for inserting this request to the endpoint request queue. 120 */ 121struct s3c_hsudc_req { 122 struct usb_request req; 123 struct list_head queue; 124}; 125 126/** 127 * struct s3c_hsudc - Driver's abstraction of the device controller. 128 * @gadget: Instance of usb_gadget which is referenced by gadget driver. 129 * @driver: Reference to currently active gadget driver. 130 * @dev: The device reference used by probe function. 131 * @lock: Lock to synchronize the usage of Endpoints (EP's are indexed). 132 * @regs: Remapped base address of controller's register space. 133 * irq: IRQ number used by the controller. 134 * uclk: Reference to the controller clock. 135 * ep0state: Current state of EP0. 136 * ep: List of endpoints supported by the controller. 137 */ 138struct s3c_hsudc { 139 struct usb_gadget gadget; 140 struct usb_gadget_driver *driver; 141 struct device *dev; 142 struct s3c24xx_hsudc_platdata *pd; 143 struct usb_phy *transceiver; 144 struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsudc_supply_names)]; 145 spinlock_t lock; 146 void __iomem *regs; 147 int irq; 148 struct clk *uclk; 149 int ep0state; 150 struct s3c_hsudc_ep ep[]; 151}; 152 153#define ep_maxpacket(_ep) ((_ep)->ep.maxpacket) 154#define ep_is_in(_ep) ((_ep)->bEndpointAddress & USB_DIR_IN) 155#define ep_index(_ep) ((_ep)->bEndpointAddress & \ 156 USB_ENDPOINT_NUMBER_MASK) 157 158static const char driver_name[] = "s3c-udc"; 159static const char ep0name[] = "ep0-control"; 160 161static inline struct s3c_hsudc_req *our_req(struct usb_request *req) 162{ 163 return container_of(req, struct s3c_hsudc_req, req); 164} 165 166static inline struct s3c_hsudc_ep *our_ep(struct usb_ep *ep) 167{ 168 return container_of(ep, struct s3c_hsudc_ep, ep); 169} 170 171static inline struct s3c_hsudc *to_hsudc(struct usb_gadget *gadget) 172{ 173 return container_of(gadget, struct s3c_hsudc, gadget); 174} 175 176static inline void set_index(struct s3c_hsudc *hsudc, int ep_addr) 177{ 178 ep_addr &= USB_ENDPOINT_NUMBER_MASK; 179 writel(ep_addr, hsudc->regs + S3C_IR); 180} 181 182static inline void __orr32(void __iomem *ptr, u32 val) 183{ 184 writel(readl(ptr) | val, ptr); 185} 186 187/** 188 * s3c_hsudc_complete_request - Complete a transfer request. 189 * @hsep: Endpoint to which the request belongs. 190 * @hsreq: Transfer request to be completed. 191 * @status: Transfer completion status for the transfer request. 192 */ 193static void s3c_hsudc_complete_request(struct s3c_hsudc_ep *hsep, 194 struct s3c_hsudc_req *hsreq, int status) 195{ 196 unsigned int stopped = hsep->stopped; 197 struct s3c_hsudc *hsudc = hsep->dev; 198 199 list_del_init(&hsreq->queue); 200 hsreq->req.status = status; 201 202 if (!ep_index(hsep)) { 203 hsudc->ep0state = WAIT_FOR_SETUP; 204 hsep->bEndpointAddress &= ~USB_DIR_IN; 205 } 206 207 hsep->stopped = 1; 208 spin_unlock(&hsudc->lock); 209 usb_gadget_giveback_request(&hsep->ep, &hsreq->req); 210 spin_lock(&hsudc->lock); 211 hsep->stopped = stopped; 212} 213 214/** 215 * s3c_hsudc_nuke_ep - Terminate all requests queued for a endpoint. 216 * @hsep: Endpoint for which queued requests have to be terminated. 217 * @status: Transfer completion status for the transfer request. 218 */ 219static void s3c_hsudc_nuke_ep(struct s3c_hsudc_ep *hsep, int status) 220{ 221 struct s3c_hsudc_req *hsreq; 222 223 while (!list_empty(&hsep->queue)) { 224 hsreq = list_entry(hsep->queue.next, 225 struct s3c_hsudc_req, queue); 226 s3c_hsudc_complete_request(hsep, hsreq, status); 227 } 228} 229 230/** 231 * s3c_hsudc_stop_activity - Stop activity on all endpoints. 232 * @hsudc: Device controller for which EP activity is to be stopped. 233 * 234 * All the endpoints are stopped and any pending transfer requests if any on 235 * the endpoint are terminated. 236 */ 237static void s3c_hsudc_stop_activity(struct s3c_hsudc *hsudc) 238{ 239 struct s3c_hsudc_ep *hsep; 240 int epnum; 241 242 hsudc->gadget.speed = USB_SPEED_UNKNOWN; 243 244 for (epnum = 0; epnum < hsudc->pd->epnum; epnum++) { 245 hsep = &hsudc->ep[epnum]; 246 hsep->stopped = 1; 247 s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN); 248 } 249} 250 251/** 252 * s3c_hsudc_read_setup_pkt - Read the received setup packet from EP0 fifo. 253 * @hsudc: Device controller from which setup packet is to be read. 254 * @buf: The buffer into which the setup packet is read. 255 * 256 * The setup packet received in the EP0 fifo is read and stored into a 257 * given buffer address. 258 */ 259 260static void s3c_hsudc_read_setup_pkt(struct s3c_hsudc *hsudc, u16 *buf) 261{ 262 int count; 263 264 count = readl(hsudc->regs + S3C_BRCR); 265 while (count--) 266 *buf++ = (u16)readl(hsudc->regs + S3C_BR(0)); 267 268 writel(S3C_EP0SR_RX_SUCCESS, hsudc->regs + S3C_EP0SR); 269} 270 271/** 272 * s3c_hsudc_write_fifo - Write next chunk of transfer data to EP fifo. 273 * @hsep: Endpoint to which the data is to be written. 274 * @hsreq: Transfer request from which the next chunk of data is written. 275 * 276 * Write the next chunk of data from a transfer request to the endpoint FIFO. 277 * If the transfer request completes, 1 is returned, otherwise 0 is returned. 278 */ 279static int s3c_hsudc_write_fifo(struct s3c_hsudc_ep *hsep, 280 struct s3c_hsudc_req *hsreq) 281{ 282 u16 *buf; 283 u32 max = ep_maxpacket(hsep); 284 u32 count, length; 285 bool is_last; 286 void __iomem *fifo = hsep->fifo; 287 288 buf = hsreq->req.buf + hsreq->req.actual; 289 prefetch(buf); 290 291 length = hsreq->req.length - hsreq->req.actual; 292 length = min(length, max); 293 hsreq->req.actual += length; 294 295 writel(length, hsep->dev->regs + S3C_BWCR); 296 for (count = 0; count < length; count += 2) 297 writel(*buf++, fifo); 298 299 if (count != max) { 300 is_last = true; 301 } else { 302 if (hsreq->req.length != hsreq->req.actual || hsreq->req.zero) 303 is_last = false; 304 else 305 is_last = true; 306 } 307 308 if (is_last) { 309 s3c_hsudc_complete_request(hsep, hsreq, 0); 310 return 1; 311 } 312 313 return 0; 314} 315 316/** 317 * s3c_hsudc_read_fifo - Read the next chunk of data from EP fifo. 318 * @hsep: Endpoint from which the data is to be read. 319 * @hsreq: Transfer request to which the next chunk of data read is written. 320 * 321 * Read the next chunk of data from the endpoint FIFO and a write it to the 322 * transfer request buffer. If the transfer request completes, 1 is returned, 323 * otherwise 0 is returned. 324 */ 325static int s3c_hsudc_read_fifo(struct s3c_hsudc_ep *hsep, 326 struct s3c_hsudc_req *hsreq) 327{ 328 struct s3c_hsudc *hsudc = hsep->dev; 329 u32 csr, offset; 330 u16 *buf, word; 331 u32 buflen, rcnt, rlen; 332 void __iomem *fifo = hsep->fifo; 333 u32 is_short = 0; 334 335 offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR; 336 csr = readl(hsudc->regs + offset); 337 if (!(csr & S3C_ESR_RX_SUCCESS)) 338 return -EINVAL; 339 340 buf = hsreq->req.buf + hsreq->req.actual; 341 prefetchw(buf); 342 buflen = hsreq->req.length - hsreq->req.actual; 343 344 rcnt = readl(hsudc->regs + S3C_BRCR); 345 rlen = (csr & S3C_ESR_LWO) ? (rcnt * 2 - 1) : (rcnt * 2); 346 347 hsreq->req.actual += min(rlen, buflen); 348 is_short = (rlen < hsep->ep.maxpacket); 349 350 while (rcnt-- != 0) { 351 word = (u16)readl(fifo); 352 if (buflen) { 353 *buf++ = word; 354 buflen--; 355 } else { 356 hsreq->req.status = -EOVERFLOW; 357 } 358 } 359 360 writel(S3C_ESR_RX_SUCCESS, hsudc->regs + offset); 361 362 if (is_short || hsreq->req.actual == hsreq->req.length) { 363 s3c_hsudc_complete_request(hsep, hsreq, 0); 364 return 1; 365 } 366 367 return 0; 368} 369 370/** 371 * s3c_hsudc_epin_intr - Handle in-endpoint interrupt. 372 * @hsudc - Device controller for which the interrupt is to be handled. 373 * @ep_idx - Endpoint number on which an interrupt is pending. 374 * 375 * Handles interrupt for a in-endpoint. The interrupts that are handled are 376 * stall and data transmit complete interrupt. 377 */ 378static void s3c_hsudc_epin_intr(struct s3c_hsudc *hsudc, u32 ep_idx) 379{ 380 struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx]; 381 struct s3c_hsudc_req *hsreq; 382 u32 csr; 383 384 csr = readl(hsudc->regs + S3C_ESR); 385 if (csr & S3C_ESR_STALL) { 386 writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR); 387 return; 388 } 389 390 if (csr & S3C_ESR_TX_SUCCESS) { 391 writel(S3C_ESR_TX_SUCCESS, hsudc->regs + S3C_ESR); 392 if (list_empty(&hsep->queue)) 393 return; 394 395 hsreq = list_entry(hsep->queue.next, 396 struct s3c_hsudc_req, queue); 397 if ((s3c_hsudc_write_fifo(hsep, hsreq) == 0) && 398 (csr & S3C_ESR_PSIF_TWO)) 399 s3c_hsudc_write_fifo(hsep, hsreq); 400 } 401} 402 403/** 404 * s3c_hsudc_epout_intr - Handle out-endpoint interrupt. 405 * @hsudc - Device controller for which the interrupt is to be handled. 406 * @ep_idx - Endpoint number on which an interrupt is pending. 407 * 408 * Handles interrupt for a out-endpoint. The interrupts that are handled are 409 * stall, flush and data ready interrupt. 410 */ 411static void s3c_hsudc_epout_intr(struct s3c_hsudc *hsudc, u32 ep_idx) 412{ 413 struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx]; 414 struct s3c_hsudc_req *hsreq; 415 u32 csr; 416 417 csr = readl(hsudc->regs + S3C_ESR); 418 if (csr & S3C_ESR_STALL) { 419 writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR); 420 return; 421 } 422 423 if (csr & S3C_ESR_FLUSH) { 424 __orr32(hsudc->regs + S3C_ECR, S3C_ECR_FLUSH); 425 return; 426 } 427 428 if (csr & S3C_ESR_RX_SUCCESS) { 429 if (list_empty(&hsep->queue)) 430 return; 431 432 hsreq = list_entry(hsep->queue.next, 433 struct s3c_hsudc_req, queue); 434 if (((s3c_hsudc_read_fifo(hsep, hsreq)) == 0) && 435 (csr & S3C_ESR_PSIF_TWO)) 436 s3c_hsudc_read_fifo(hsep, hsreq); 437 } 438} 439 440/** s3c_hsudc_set_halt - Set or clear a endpoint halt. 441 * @_ep: Endpoint on which halt has to be set or cleared. 442 * @value: 1 for setting halt on endpoint, 0 to clear halt. 443 * 444 * Set or clear endpoint halt. If halt is set, the endpoint is stopped. 445 * If halt is cleared, for in-endpoints, if there are any pending 446 * transfer requests, transfers are started. 447 */ 448static int s3c_hsudc_set_halt(struct usb_ep *_ep, int value) 449{ 450 struct s3c_hsudc_ep *hsep = our_ep(_ep); 451 struct s3c_hsudc *hsudc = hsep->dev; 452 struct s3c_hsudc_req *hsreq; 453 unsigned long irqflags; 454 u32 ecr; 455 u32 offset; 456 457 if (value && ep_is_in(hsep) && !list_empty(&hsep->queue)) 458 return -EAGAIN; 459 460 spin_lock_irqsave(&hsudc->lock, irqflags); 461 set_index(hsudc, ep_index(hsep)); 462 offset = (ep_index(hsep)) ? S3C_ECR : S3C_EP0CR; 463 ecr = readl(hsudc->regs + offset); 464 465 if (value) { 466 ecr |= S3C_ECR_STALL; 467 if (ep_index(hsep)) 468 ecr |= S3C_ECR_FLUSH; 469 hsep->stopped = 1; 470 } else { 471 ecr &= ~S3C_ECR_STALL; 472 hsep->stopped = hsep->wedge = 0; 473 } 474 writel(ecr, hsudc->regs + offset); 475 476 if (ep_is_in(hsep) && !list_empty(&hsep->queue) && !value) { 477 hsreq = list_entry(hsep->queue.next, 478 struct s3c_hsudc_req, queue); 479 if (hsreq) 480 s3c_hsudc_write_fifo(hsep, hsreq); 481 } 482 483 spin_unlock_irqrestore(&hsudc->lock, irqflags); 484 return 0; 485} 486 487/** s3c_hsudc_set_wedge - Sets the halt feature with the clear requests ignored 488 * @_ep: Endpoint on which wedge has to be set. 489 * 490 * Sets the halt feature with the clear requests ignored. 491 */ 492static int s3c_hsudc_set_wedge(struct usb_ep *_ep) 493{ 494 struct s3c_hsudc_ep *hsep = our_ep(_ep); 495 496 if (!hsep) 497 return -EINVAL; 498 499 hsep->wedge = 1; 500 return usb_ep_set_halt(_ep); 501} 502 503/** s3c_hsudc_handle_reqfeat - Handle set feature or clear feature requests. 504 * @_ep: Device controller on which the set/clear feature needs to be handled. 505 * @ctrl: Control request as received on the endpoint 0. 506 * 507 * Handle set feature or clear feature control requests on the control endpoint. 508 */ 509static int s3c_hsudc_handle_reqfeat(struct s3c_hsudc *hsudc, 510 struct usb_ctrlrequest *ctrl) 511{ 512 struct s3c_hsudc_ep *hsep; 513 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 514 u8 ep_num = ctrl->wIndex & USB_ENDPOINT_NUMBER_MASK; 515 516 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) { 517 hsep = &hsudc->ep[ep_num]; 518 switch (le16_to_cpu(ctrl->wValue)) { 519 case USB_ENDPOINT_HALT: 520 if (set || !hsep->wedge) 521 s3c_hsudc_set_halt(&hsep->ep, set); 522 return 0; 523 } 524 } 525 526 return -ENOENT; 527} 528 529/** 530 * s3c_hsudc_process_req_status - Handle get status control request. 531 * @hsudc: Device controller on which get status request has be handled. 532 * @ctrl: Control request as received on the endpoint 0. 533 * 534 * Handle get status control request received on control endpoint. 535 */ 536static void s3c_hsudc_process_req_status(struct s3c_hsudc *hsudc, 537 struct usb_ctrlrequest *ctrl) 538{ 539 struct s3c_hsudc_ep *hsep0 = &hsudc->ep[0]; 540 struct s3c_hsudc_req hsreq; 541 struct s3c_hsudc_ep *hsep; 542 __le16 reply; 543 u8 epnum; 544 545 switch (ctrl->bRequestType & USB_RECIP_MASK) { 546 case USB_RECIP_DEVICE: 547 reply = cpu_to_le16(0); 548 break; 549 550 case USB_RECIP_INTERFACE: 551 reply = cpu_to_le16(0); 552 break; 553 554 case USB_RECIP_ENDPOINT: 555 epnum = le16_to_cpu(ctrl->wIndex) & USB_ENDPOINT_NUMBER_MASK; 556 hsep = &hsudc->ep[epnum]; 557 reply = cpu_to_le16(hsep->stopped ? 1 : 0); 558 break; 559 } 560 561 INIT_LIST_HEAD(&hsreq.queue); 562 hsreq.req.length = 2; 563 hsreq.req.buf = &reply; 564 hsreq.req.actual = 0; 565 hsreq.req.complete = NULL; 566 s3c_hsudc_write_fifo(hsep0, &hsreq); 567} 568 569/** 570 * s3c_hsudc_process_setup - Process control request received on endpoint 0. 571 * @hsudc: Device controller on which control request has been received. 572 * 573 * Read the control request received on endpoint 0, decode it and handle 574 * the request. 575 */ 576static void s3c_hsudc_process_setup(struct s3c_hsudc *hsudc) 577{ 578 struct s3c_hsudc_ep *hsep = &hsudc->ep[0]; 579 struct usb_ctrlrequest ctrl = {0}; 580 int ret; 581 582 s3c_hsudc_nuke_ep(hsep, -EPROTO); 583 s3c_hsudc_read_setup_pkt(hsudc, (u16 *)&ctrl); 584 585 if (ctrl.bRequestType & USB_DIR_IN) { 586 hsep->bEndpointAddress |= USB_DIR_IN; 587 hsudc->ep0state = DATA_STATE_XMIT; 588 } else { 589 hsep->bEndpointAddress &= ~USB_DIR_IN; 590 hsudc->ep0state = DATA_STATE_RECV; 591 } 592 593 switch (ctrl.bRequest) { 594 case USB_REQ_SET_ADDRESS: 595 if (ctrl.bRequestType != (USB_TYPE_STANDARD | USB_RECIP_DEVICE)) 596 break; 597 hsudc->ep0state = WAIT_FOR_SETUP; 598 return; 599 600 case USB_REQ_GET_STATUS: 601 if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD) 602 break; 603 s3c_hsudc_process_req_status(hsudc, &ctrl); 604 return; 605 606 case USB_REQ_SET_FEATURE: 607 case USB_REQ_CLEAR_FEATURE: 608 if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD) 609 break; 610 s3c_hsudc_handle_reqfeat(hsudc, &ctrl); 611 hsudc->ep0state = WAIT_FOR_SETUP; 612 return; 613 } 614 615 if (hsudc->driver) { 616 spin_unlock(&hsudc->lock); 617 ret = hsudc->driver->setup(&hsudc->gadget, &ctrl); 618 spin_lock(&hsudc->lock); 619 620 if (ctrl.bRequest == USB_REQ_SET_CONFIGURATION) { 621 hsep->bEndpointAddress &= ~USB_DIR_IN; 622 hsudc->ep0state = WAIT_FOR_SETUP; 623 } 624 625 if (ret < 0) { 626 dev_err(hsudc->dev, "setup failed, returned %d\n", 627 ret); 628 s3c_hsudc_set_halt(&hsep->ep, 1); 629 hsudc->ep0state = WAIT_FOR_SETUP; 630 hsep->bEndpointAddress &= ~USB_DIR_IN; 631 } 632 } 633} 634 635/** s3c_hsudc_handle_ep0_intr - Handle endpoint 0 interrupt. 636 * @hsudc: Device controller on which endpoint 0 interrupt has occurred. 637 * 638 * Handle endpoint 0 interrupt when it occurs. EP0 interrupt could occur 639 * when a stall handshake is sent to host or data is sent/received on 640 * endpoint 0. 641 */ 642static void s3c_hsudc_handle_ep0_intr(struct s3c_hsudc *hsudc) 643{ 644 struct s3c_hsudc_ep *hsep = &hsudc->ep[0]; 645 struct s3c_hsudc_req *hsreq; 646 u32 csr = readl(hsudc->regs + S3C_EP0SR); 647 u32 ecr; 648 649 if (csr & S3C_EP0SR_STALL) { 650 ecr = readl(hsudc->regs + S3C_EP0CR); 651 ecr &= ~(S3C_ECR_STALL | S3C_ECR_FLUSH); 652 writel(ecr, hsudc->regs + S3C_EP0CR); 653 654 writel(S3C_EP0SR_STALL, hsudc->regs + S3C_EP0SR); 655 hsep->stopped = 0; 656 657 s3c_hsudc_nuke_ep(hsep, -ECONNABORTED); 658 hsudc->ep0state = WAIT_FOR_SETUP; 659 hsep->bEndpointAddress &= ~USB_DIR_IN; 660 return; 661 } 662 663 if (csr & S3C_EP0SR_TX_SUCCESS) { 664 writel(S3C_EP0SR_TX_SUCCESS, hsudc->regs + S3C_EP0SR); 665 if (ep_is_in(hsep)) { 666 if (list_empty(&hsep->queue)) 667 return; 668 669 hsreq = list_entry(hsep->queue.next, 670 struct s3c_hsudc_req, queue); 671 s3c_hsudc_write_fifo(hsep, hsreq); 672 } 673 } 674 675 if (csr & S3C_EP0SR_RX_SUCCESS) { 676 if (hsudc->ep0state == WAIT_FOR_SETUP) 677 s3c_hsudc_process_setup(hsudc); 678 else { 679 if (!ep_is_in(hsep)) { 680 if (list_empty(&hsep->queue)) 681 return; 682 hsreq = list_entry(hsep->queue.next, 683 struct s3c_hsudc_req, queue); 684 s3c_hsudc_read_fifo(hsep, hsreq); 685 } 686 } 687 } 688} 689 690/** 691 * s3c_hsudc_ep_enable - Enable a endpoint. 692 * @_ep: The endpoint to be enabled. 693 * @desc: Endpoint descriptor. 694 * 695 * Enables a endpoint when called from the gadget driver. Endpoint stall if 696 * any is cleared, transfer type is configured and endpoint interrupt is 697 * enabled. 698 */ 699static int s3c_hsudc_ep_enable(struct usb_ep *_ep, 700 const struct usb_endpoint_descriptor *desc) 701{ 702 struct s3c_hsudc_ep *hsep; 703 struct s3c_hsudc *hsudc; 704 unsigned long flags; 705 u32 ecr = 0; 706 707 hsep = our_ep(_ep); 708 if (!_ep || !desc || _ep->name == ep0name 709 || desc->bDescriptorType != USB_DT_ENDPOINT 710 || hsep->bEndpointAddress != desc->bEndpointAddress 711 || ep_maxpacket(hsep) < usb_endpoint_maxp(desc)) 712 return -EINVAL; 713 714 if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK 715 && usb_endpoint_maxp(desc) != ep_maxpacket(hsep)) 716 || !desc->wMaxPacketSize) 717 return -ERANGE; 718 719 hsudc = hsep->dev; 720 if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN) 721 return -ESHUTDOWN; 722 723 spin_lock_irqsave(&hsudc->lock, flags); 724 725 set_index(hsudc, hsep->bEndpointAddress); 726 ecr |= ((usb_endpoint_xfer_int(desc)) ? S3C_ECR_IEMS : S3C_ECR_DUEN); 727 writel(ecr, hsudc->regs + S3C_ECR); 728 729 hsep->stopped = hsep->wedge = 0; 730 hsep->ep.desc = desc; 731 hsep->ep.maxpacket = usb_endpoint_maxp(desc); 732 733 s3c_hsudc_set_halt(_ep, 0); 734 __set_bit(ep_index(hsep), hsudc->regs + S3C_EIER); 735 736 spin_unlock_irqrestore(&hsudc->lock, flags); 737 return 0; 738} 739 740/** 741 * s3c_hsudc_ep_disable - Disable a endpoint. 742 * @_ep: The endpoint to be disabled. 743 * @desc: Endpoint descriptor. 744 * 745 * Disables a endpoint when called from the gadget driver. 746 */ 747static int s3c_hsudc_ep_disable(struct usb_ep *_ep) 748{ 749 struct s3c_hsudc_ep *hsep = our_ep(_ep); 750 struct s3c_hsudc *hsudc = hsep->dev; 751 unsigned long flags; 752 753 if (!_ep || !hsep->ep.desc) 754 return -EINVAL; 755 756 spin_lock_irqsave(&hsudc->lock, flags); 757 758 set_index(hsudc, hsep->bEndpointAddress); 759 __clear_bit(ep_index(hsep), hsudc->regs + S3C_EIER); 760 761 s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN); 762 763 hsep->ep.desc = NULL; 764 hsep->stopped = 1; 765 766 spin_unlock_irqrestore(&hsudc->lock, flags); 767 return 0; 768} 769 770/** 771 * s3c_hsudc_alloc_request - Allocate a new request. 772 * @_ep: Endpoint for which request is allocated (not used). 773 * @gfp_flags: Flags used for the allocation. 774 * 775 * Allocates a single transfer request structure when called from gadget driver. 776 */ 777static struct usb_request *s3c_hsudc_alloc_request(struct usb_ep *_ep, 778 gfp_t gfp_flags) 779{ 780 struct s3c_hsudc_req *hsreq; 781 782 hsreq = kzalloc(sizeof(*hsreq), gfp_flags); 783 if (!hsreq) 784 return NULL; 785 786 INIT_LIST_HEAD(&hsreq->queue); 787 return &hsreq->req; 788} 789 790/** 791 * s3c_hsudc_free_request - Deallocate a request. 792 * @ep: Endpoint for which request is deallocated (not used). 793 * @_req: Request to be deallocated. 794 * 795 * Allocates a single transfer request structure when called from gadget driver. 796 */ 797static void s3c_hsudc_free_request(struct usb_ep *ep, struct usb_request *_req) 798{ 799 struct s3c_hsudc_req *hsreq; 800 801 hsreq = our_req(_req); 802 WARN_ON(!list_empty(&hsreq->queue)); 803 kfree(hsreq); 804} 805 806/** 807 * s3c_hsudc_queue - Queue a transfer request for the endpoint. 808 * @_ep: Endpoint for which the request is queued. 809 * @_req: Request to be queued. 810 * @gfp_flags: Not used. 811 * 812 * Start or enqueue a request for a endpoint when called from gadget driver. 813 */ 814static int s3c_hsudc_queue(struct usb_ep *_ep, struct usb_request *_req, 815 gfp_t gfp_flags) 816{ 817 struct s3c_hsudc_req *hsreq; 818 struct s3c_hsudc_ep *hsep; 819 struct s3c_hsudc *hsudc; 820 unsigned long flags; 821 u32 offset; 822 u32 csr; 823 824 hsreq = our_req(_req); 825 if ((!_req || !_req->complete || !_req->buf || 826 !list_empty(&hsreq->queue))) 827 return -EINVAL; 828 829 hsep = our_ep(_ep); 830 hsudc = hsep->dev; 831 if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN) 832 return -ESHUTDOWN; 833 834 spin_lock_irqsave(&hsudc->lock, flags); 835 set_index(hsudc, hsep->bEndpointAddress); 836 837 _req->status = -EINPROGRESS; 838 _req->actual = 0; 839 840 if (!ep_index(hsep) && _req->length == 0) { 841 hsudc->ep0state = WAIT_FOR_SETUP; 842 s3c_hsudc_complete_request(hsep, hsreq, 0); 843 spin_unlock_irqrestore(&hsudc->lock, flags); 844 return 0; 845 } 846 847 if (list_empty(&hsep->queue) && !hsep->stopped) { 848 offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR; 849 if (ep_is_in(hsep)) { 850 csr = readl(hsudc->regs + offset); 851 if (!(csr & S3C_ESR_TX_SUCCESS) && 852 (s3c_hsudc_write_fifo(hsep, hsreq) == 1)) 853 hsreq = NULL; 854 } else { 855 csr = readl(hsudc->regs + offset); 856 if ((csr & S3C_ESR_RX_SUCCESS) 857 && (s3c_hsudc_read_fifo(hsep, hsreq) == 1)) 858 hsreq = NULL; 859 } 860 } 861 862 if (hsreq) 863 list_add_tail(&hsreq->queue, &hsep->queue); 864 865 spin_unlock_irqrestore(&hsudc->lock, flags); 866 return 0; 867} 868 869/** 870 * s3c_hsudc_dequeue - Dequeue a transfer request from an endpoint. 871 * @_ep: Endpoint from which the request is dequeued. 872 * @_req: Request to be dequeued. 873 * 874 * Dequeue a request from a endpoint when called from gadget driver. 875 */ 876static int s3c_hsudc_dequeue(struct usb_ep *_ep, struct usb_request *_req) 877{ 878 struct s3c_hsudc_ep *hsep = our_ep(_ep); 879 struct s3c_hsudc *hsudc = hsep->dev; 880 struct s3c_hsudc_req *hsreq = NULL, *iter; 881 unsigned long flags; 882 883 hsep = our_ep(_ep); 884 if (!_ep || hsep->ep.name == ep0name) 885 return -EINVAL; 886 887 spin_lock_irqsave(&hsudc->lock, flags); 888 889 list_for_each_entry(iter, &hsep->queue, queue) { 890 if (&iter->req != _req) 891 continue; 892 hsreq = iter; 893 break; 894 } 895 if (!hsreq) { 896 spin_unlock_irqrestore(&hsudc->lock, flags); 897 return -EINVAL; 898 } 899 900 set_index(hsudc, hsep->bEndpointAddress); 901 s3c_hsudc_complete_request(hsep, hsreq, -ECONNRESET); 902 903 spin_unlock_irqrestore(&hsudc->lock, flags); 904 return 0; 905} 906 907static const struct usb_ep_ops s3c_hsudc_ep_ops = { 908 .enable = s3c_hsudc_ep_enable, 909 .disable = s3c_hsudc_ep_disable, 910 .alloc_request = s3c_hsudc_alloc_request, 911 .free_request = s3c_hsudc_free_request, 912 .queue = s3c_hsudc_queue, 913 .dequeue = s3c_hsudc_dequeue, 914 .set_halt = s3c_hsudc_set_halt, 915 .set_wedge = s3c_hsudc_set_wedge, 916}; 917 918/** 919 * s3c_hsudc_initep - Initialize a endpoint to default state. 920 * @hsudc - Reference to the device controller. 921 * @hsep - Endpoint to be initialized. 922 * @epnum - Address to be assigned to the endpoint. 923 * 924 * Initialize a endpoint with default configuration. 925 */ 926static void s3c_hsudc_initep(struct s3c_hsudc *hsudc, 927 struct s3c_hsudc_ep *hsep, int epnum) 928{ 929 char *dir; 930 931 if ((epnum % 2) == 0) { 932 dir = "out"; 933 } else { 934 dir = "in"; 935 hsep->bEndpointAddress = USB_DIR_IN; 936 } 937 938 hsep->bEndpointAddress |= epnum; 939 if (epnum) 940 snprintf(hsep->name, sizeof(hsep->name), "ep%d%s", epnum, dir); 941 else 942 snprintf(hsep->name, sizeof(hsep->name), "%s", ep0name); 943 944 INIT_LIST_HEAD(&hsep->queue); 945 INIT_LIST_HEAD(&hsep->ep.ep_list); 946 if (epnum) 947 list_add_tail(&hsep->ep.ep_list, &hsudc->gadget.ep_list); 948 949 hsep->dev = hsudc; 950 hsep->ep.name = hsep->name; 951 usb_ep_set_maxpacket_limit(&hsep->ep, epnum ? 512 : 64); 952 hsep->ep.ops = &s3c_hsudc_ep_ops; 953 hsep->fifo = hsudc->regs + S3C_BR(epnum); 954 hsep->ep.desc = NULL; 955 hsep->stopped = 0; 956 hsep->wedge = 0; 957 958 if (epnum == 0) { 959 hsep->ep.caps.type_control = true; 960 hsep->ep.caps.dir_in = true; 961 hsep->ep.caps.dir_out = true; 962 } else { 963 hsep->ep.caps.type_iso = true; 964 hsep->ep.caps.type_bulk = true; 965 hsep->ep.caps.type_int = true; 966 } 967 968 if (epnum & 1) 969 hsep->ep.caps.dir_in = true; 970 else 971 hsep->ep.caps.dir_out = true; 972 973 set_index(hsudc, epnum); 974 writel(hsep->ep.maxpacket, hsudc->regs + S3C_MPR); 975} 976 977/** 978 * s3c_hsudc_setup_ep - Configure all endpoints to default state. 979 * @hsudc: Reference to device controller. 980 * 981 * Configures all endpoints to default state. 982 */ 983static void s3c_hsudc_setup_ep(struct s3c_hsudc *hsudc) 984{ 985 int epnum; 986 987 hsudc->ep0state = WAIT_FOR_SETUP; 988 INIT_LIST_HEAD(&hsudc->gadget.ep_list); 989 for (epnum = 0; epnum < hsudc->pd->epnum; epnum++) 990 s3c_hsudc_initep(hsudc, &hsudc->ep[epnum], epnum); 991} 992 993/** 994 * s3c_hsudc_reconfig - Reconfigure the device controller to default state. 995 * @hsudc: Reference to device controller. 996 * 997 * Reconfigures the device controller registers to a default state. 998 */ 999static void s3c_hsudc_reconfig(struct s3c_hsudc *hsudc) 1000{ 1001 writel(0xAA, hsudc->regs + S3C_EDR); 1002 writel(1, hsudc->regs + S3C_EIER); 1003 writel(0, hsudc->regs + S3C_TR); 1004 writel(S3C_SCR_DTZIEN_EN | S3C_SCR_RRD_EN | S3C_SCR_SUS_EN | 1005 S3C_SCR_RST_EN, hsudc->regs + S3C_SCR); 1006 writel(0, hsudc->regs + S3C_EP0CR); 1007 1008 s3c_hsudc_setup_ep(hsudc); 1009} 1010 1011/** 1012 * s3c_hsudc_irq - Interrupt handler for device controller. 1013 * @irq: Not used. 1014 * @_dev: Reference to the device controller. 1015 * 1016 * Interrupt handler for the device controller. This handler handles controller 1017 * interrupts and endpoint interrupts. 1018 */ 1019static irqreturn_t s3c_hsudc_irq(int irq, void *_dev) 1020{ 1021 struct s3c_hsudc *hsudc = _dev; 1022 struct s3c_hsudc_ep *hsep; 1023 u32 ep_intr; 1024 u32 sys_status; 1025 u32 ep_idx; 1026 1027 spin_lock(&hsudc->lock); 1028 1029 sys_status = readl(hsudc->regs + S3C_SSR); 1030 ep_intr = readl(hsudc->regs + S3C_EIR) & 0x3FF; 1031 1032 if (!ep_intr && !(sys_status & S3C_SSR_DTZIEN_EN)) { 1033 spin_unlock(&hsudc->lock); 1034 return IRQ_HANDLED; 1035 } 1036 1037 if (sys_status) { 1038 if (sys_status & S3C_SSR_VBUSON) 1039 writel(S3C_SSR_VBUSON, hsudc->regs + S3C_SSR); 1040 1041 if (sys_status & S3C_SSR_ERR) 1042 writel(S3C_SSR_ERR, hsudc->regs + S3C_SSR); 1043 1044 if (sys_status & S3C_SSR_SDE) { 1045 writel(S3C_SSR_SDE, hsudc->regs + S3C_SSR); 1046 hsudc->gadget.speed = (sys_status & S3C_SSR_HSP) ? 1047 USB_SPEED_HIGH : USB_SPEED_FULL; 1048 } 1049 1050 if (sys_status & S3C_SSR_SUSPEND) { 1051 writel(S3C_SSR_SUSPEND, hsudc->regs + S3C_SSR); 1052 if (hsudc->gadget.speed != USB_SPEED_UNKNOWN 1053 && hsudc->driver && hsudc->driver->suspend) 1054 hsudc->driver->suspend(&hsudc->gadget); 1055 } 1056 1057 if (sys_status & S3C_SSR_RESUME) { 1058 writel(S3C_SSR_RESUME, hsudc->regs + S3C_SSR); 1059 if (hsudc->gadget.speed != USB_SPEED_UNKNOWN 1060 && hsudc->driver && hsudc->driver->resume) 1061 hsudc->driver->resume(&hsudc->gadget); 1062 } 1063 1064 if (sys_status & S3C_SSR_RESET) { 1065 writel(S3C_SSR_RESET, hsudc->regs + S3C_SSR); 1066 for (ep_idx = 0; ep_idx < hsudc->pd->epnum; ep_idx++) { 1067 hsep = &hsudc->ep[ep_idx]; 1068 hsep->stopped = 1; 1069 s3c_hsudc_nuke_ep(hsep, -ECONNRESET); 1070 } 1071 s3c_hsudc_reconfig(hsudc); 1072 hsudc->ep0state = WAIT_FOR_SETUP; 1073 } 1074 } 1075 1076 if (ep_intr & S3C_EIR_EP0) { 1077 writel(S3C_EIR_EP0, hsudc->regs + S3C_EIR); 1078 set_index(hsudc, 0); 1079 s3c_hsudc_handle_ep0_intr(hsudc); 1080 } 1081 1082 ep_intr >>= 1; 1083 ep_idx = 1; 1084 while (ep_intr) { 1085 if (ep_intr & 1) { 1086 hsep = &hsudc->ep[ep_idx]; 1087 set_index(hsudc, ep_idx); 1088 writel(1 << ep_idx, hsudc->regs + S3C_EIR); 1089 if (ep_is_in(hsep)) 1090 s3c_hsudc_epin_intr(hsudc, ep_idx); 1091 else 1092 s3c_hsudc_epout_intr(hsudc, ep_idx); 1093 } 1094 ep_intr >>= 1; 1095 ep_idx++; 1096 } 1097 1098 spin_unlock(&hsudc->lock); 1099 return IRQ_HANDLED; 1100} 1101 1102static int s3c_hsudc_start(struct usb_gadget *gadget, 1103 struct usb_gadget_driver *driver) 1104{ 1105 struct s3c_hsudc *hsudc = to_hsudc(gadget); 1106 int ret; 1107 1108 if (!driver 1109 || driver->max_speed < USB_SPEED_FULL 1110 || !driver->setup) 1111 return -EINVAL; 1112 1113 if (!hsudc) 1114 return -ENODEV; 1115 1116 if (hsudc->driver) 1117 return -EBUSY; 1118 1119 hsudc->driver = driver; 1120 1121 ret = regulator_bulk_enable(ARRAY_SIZE(hsudc->supplies), 1122 hsudc->supplies); 1123 if (ret != 0) { 1124 dev_err(hsudc->dev, "failed to enable supplies: %d\n", ret); 1125 goto err_supplies; 1126 } 1127 1128 /* connect to bus through transceiver */ 1129 if (!IS_ERR_OR_NULL(hsudc->transceiver)) { 1130 ret = otg_set_peripheral(hsudc->transceiver->otg, 1131 &hsudc->gadget); 1132 if (ret) { 1133 dev_err(hsudc->dev, "%s: can't bind to transceiver\n", 1134 hsudc->gadget.name); 1135 goto err_otg; 1136 } 1137 } 1138 1139 enable_irq(hsudc->irq); 1140 s3c_hsudc_reconfig(hsudc); 1141 1142 pm_runtime_get_sync(hsudc->dev); 1143 1144 if (hsudc->pd->phy_init) 1145 hsudc->pd->phy_init(); 1146 if (hsudc->pd->gpio_init) 1147 hsudc->pd->gpio_init(); 1148 1149 return 0; 1150err_otg: 1151 regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies); 1152err_supplies: 1153 hsudc->driver = NULL; 1154 return ret; 1155} 1156 1157static int s3c_hsudc_stop(struct usb_gadget *gadget) 1158{ 1159 struct s3c_hsudc *hsudc = to_hsudc(gadget); 1160 unsigned long flags; 1161 1162 if (!hsudc) 1163 return -ENODEV; 1164 1165 spin_lock_irqsave(&hsudc->lock, flags); 1166 hsudc->gadget.speed = USB_SPEED_UNKNOWN; 1167 if (hsudc->pd->phy_uninit) 1168 hsudc->pd->phy_uninit(); 1169 1170 pm_runtime_put(hsudc->dev); 1171 1172 if (hsudc->pd->gpio_uninit) 1173 hsudc->pd->gpio_uninit(); 1174 s3c_hsudc_stop_activity(hsudc); 1175 spin_unlock_irqrestore(&hsudc->lock, flags); 1176 1177 if (!IS_ERR_OR_NULL(hsudc->transceiver)) 1178 (void) otg_set_peripheral(hsudc->transceiver->otg, NULL); 1179 1180 disable_irq(hsudc->irq); 1181 1182 regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies); 1183 hsudc->driver = NULL; 1184 1185 return 0; 1186} 1187 1188static inline u32 s3c_hsudc_read_frameno(struct s3c_hsudc *hsudc) 1189{ 1190 return readl(hsudc->regs + S3C_FNR) & 0x3FF; 1191} 1192 1193static int s3c_hsudc_gadget_getframe(struct usb_gadget *gadget) 1194{ 1195 return s3c_hsudc_read_frameno(to_hsudc(gadget)); 1196} 1197 1198static int s3c_hsudc_vbus_draw(struct usb_gadget *gadget, unsigned mA) 1199{ 1200 struct s3c_hsudc *hsudc = to_hsudc(gadget); 1201 1202 if (!hsudc) 1203 return -ENODEV; 1204 1205 if (!IS_ERR_OR_NULL(hsudc->transceiver)) 1206 return usb_phy_set_power(hsudc->transceiver, mA); 1207 1208 return -EOPNOTSUPP; 1209} 1210 1211static const struct usb_gadget_ops s3c_hsudc_gadget_ops = { 1212 .get_frame = s3c_hsudc_gadget_getframe, 1213 .udc_start = s3c_hsudc_start, 1214 .udc_stop = s3c_hsudc_stop, 1215 .vbus_draw = s3c_hsudc_vbus_draw, 1216}; 1217 1218static int s3c_hsudc_probe(struct platform_device *pdev) 1219{ 1220 struct device *dev = &pdev->dev; 1221 struct s3c_hsudc *hsudc; 1222 struct s3c24xx_hsudc_platdata *pd = dev_get_platdata(&pdev->dev); 1223 int ret, i; 1224 1225 hsudc = devm_kzalloc(&pdev->dev, struct_size(hsudc, ep, pd->epnum), 1226 GFP_KERNEL); 1227 if (!hsudc) 1228 return -ENOMEM; 1229 1230 platform_set_drvdata(pdev, dev); 1231 hsudc->dev = dev; 1232 hsudc->pd = dev_get_platdata(&pdev->dev); 1233 1234 hsudc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2); 1235 1236 for (i = 0; i < ARRAY_SIZE(hsudc->supplies); i++) 1237 hsudc->supplies[i].supply = s3c_hsudc_supply_names[i]; 1238 1239 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsudc->supplies), 1240 hsudc->supplies); 1241 if (ret != 0) { 1242 if (ret != -EPROBE_DEFER) 1243 dev_err(dev, "failed to request supplies: %d\n", ret); 1244 goto err_supplies; 1245 } 1246 1247 hsudc->regs = devm_platform_ioremap_resource(pdev, 0); 1248 if (IS_ERR(hsudc->regs)) { 1249 ret = PTR_ERR(hsudc->regs); 1250 goto err_res; 1251 } 1252 1253 spin_lock_init(&hsudc->lock); 1254 1255 hsudc->gadget.max_speed = USB_SPEED_HIGH; 1256 hsudc->gadget.ops = &s3c_hsudc_gadget_ops; 1257 hsudc->gadget.name = dev_name(dev); 1258 hsudc->gadget.ep0 = &hsudc->ep[0].ep; 1259 hsudc->gadget.is_otg = 0; 1260 hsudc->gadget.is_a_peripheral = 0; 1261 hsudc->gadget.speed = USB_SPEED_UNKNOWN; 1262 1263 s3c_hsudc_setup_ep(hsudc); 1264 1265 ret = platform_get_irq(pdev, 0); 1266 if (ret < 0) 1267 goto err_res; 1268 hsudc->irq = ret; 1269 1270 ret = devm_request_irq(&pdev->dev, hsudc->irq, s3c_hsudc_irq, 0, 1271 driver_name, hsudc); 1272 if (ret < 0) { 1273 dev_err(dev, "irq request failed\n"); 1274 goto err_res; 1275 } 1276 1277 hsudc->uclk = devm_clk_get(&pdev->dev, "usb-device"); 1278 if (IS_ERR(hsudc->uclk)) { 1279 dev_err(dev, "failed to find usb-device clock source\n"); 1280 ret = PTR_ERR(hsudc->uclk); 1281 goto err_res; 1282 } 1283 clk_enable(hsudc->uclk); 1284 1285 local_irq_disable(); 1286 1287 disable_irq(hsudc->irq); 1288 local_irq_enable(); 1289 1290 ret = usb_add_gadget_udc(&pdev->dev, &hsudc->gadget); 1291 if (ret) 1292 goto err_add_udc; 1293 1294 pm_runtime_enable(dev); 1295 1296 return 0; 1297err_add_udc: 1298 clk_disable(hsudc->uclk); 1299err_res: 1300 if (!IS_ERR_OR_NULL(hsudc->transceiver)) 1301 usb_put_phy(hsudc->transceiver); 1302 1303err_supplies: 1304 return ret; 1305} 1306 1307static struct platform_driver s3c_hsudc_driver = { 1308 .driver = { 1309 .name = "s3c-hsudc", 1310 }, 1311 .probe = s3c_hsudc_probe, 1312}; 1313 1314module_platform_driver(s3c_hsudc_driver); 1315 1316MODULE_DESCRIPTION("Samsung S3C24XX USB high-speed controller driver"); 1317MODULE_AUTHOR("Thomas Abraham <thomas.ab@samsung.com>"); 1318MODULE_LICENSE("GPL"); 1319MODULE_ALIAS("platform:s3c-hsudc");