cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

fotg210-hcd.c (160966B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/* Faraday FOTG210 EHCI-like driver
      3 *
      4 * Copyright (c) 2013 Faraday Technology Corporation
      5 *
      6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
      7 *	   Feng-Hsin Chiang <john453@faraday-tech.com>
      8 *	   Po-Yu Chuang <ratbert.chuang@gmail.com>
      9 *
     10 * Most of code borrowed from the Linux-3.7 EHCI driver
     11 */
     12#include <linux/module.h>
     13#include <linux/of.h>
     14#include <linux/device.h>
     15#include <linux/dmapool.h>
     16#include <linux/kernel.h>
     17#include <linux/delay.h>
     18#include <linux/ioport.h>
     19#include <linux/sched.h>
     20#include <linux/vmalloc.h>
     21#include <linux/errno.h>
     22#include <linux/init.h>
     23#include <linux/hrtimer.h>
     24#include <linux/list.h>
     25#include <linux/interrupt.h>
     26#include <linux/usb.h>
     27#include <linux/usb/hcd.h>
     28#include <linux/moduleparam.h>
     29#include <linux/dma-mapping.h>
     30#include <linux/debugfs.h>
     31#include <linux/slab.h>
     32#include <linux/uaccess.h>
     33#include <linux/platform_device.h>
     34#include <linux/io.h>
     35#include <linux/iopoll.h>
     36#include <linux/clk.h>
     37
     38#include <asm/byteorder.h>
     39#include <asm/irq.h>
     40#include <asm/unaligned.h>
     41
     42#define DRIVER_AUTHOR "Yuan-Hsin Chen"
     43#define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
     44static const char hcd_name[] = "fotg210_hcd";
     45
     46#undef FOTG210_URB_TRACE
     47#define FOTG210_STATS
     48
     49/* magic numbers that can affect system performance */
     50#define FOTG210_TUNE_CERR	3 /* 0-3 qtd retries; 0 == don't stop */
     51#define FOTG210_TUNE_RL_HS	4 /* nak throttle; see 4.9 */
     52#define FOTG210_TUNE_RL_TT	0
     53#define FOTG210_TUNE_MULT_HS	1 /* 1-3 transactions/uframe; 4.10.3 */
     54#define FOTG210_TUNE_MULT_TT	1
     55
     56/* Some drivers think it's safe to schedule isochronous transfers more than 256
     57 * ms into the future (partly as a result of an old bug in the scheduling
     58 * code).  In an attempt to avoid trouble, we will use a minimum scheduling
     59 * length of 512 frames instead of 256.
     60 */
     61#define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
     62
     63/* Initial IRQ latency:  faster than hw default */
     64static int log2_irq_thresh; /* 0 to 6 */
     65module_param(log2_irq_thresh, int, S_IRUGO);
     66MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
     67
     68/* initial park setting:  slower than hw default */
     69static unsigned park;
     70module_param(park, uint, S_IRUGO);
     71MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
     72
     73/* for link power management(LPM) feature */
     74static unsigned int hird;
     75module_param(hird, int, S_IRUGO);
     76MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
     77
     78#define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
     79
     80#include "fotg210.h"
     81
     82#define fotg210_dbg(fotg210, fmt, args...) \
     83	dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
     84#define fotg210_err(fotg210, fmt, args...) \
     85	dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
     86#define fotg210_info(fotg210, fmt, args...) \
     87	dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
     88#define fotg210_warn(fotg210, fmt, args...) \
     89	dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
     90
     91/* check the values in the HCSPARAMS register (host controller _Structural_
     92 * parameters) see EHCI spec, Table 2-4 for each value
     93 */
     94static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
     95{
     96	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
     97
     98	fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
     99			HCS_N_PORTS(params));
    100}
    101
    102/* check the values in the HCCPARAMS register (host controller _Capability_
    103 * parameters) see EHCI Spec, Table 2-5 for each value
    104 */
    105static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
    106{
    107	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
    108
    109	fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
    110			params,
    111			HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
    112			HCC_CANPARK(params) ? " park" : "");
    113}
    114
    115static void __maybe_unused
    116dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
    117{
    118	fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
    119			hc32_to_cpup(fotg210, &qtd->hw_next),
    120			hc32_to_cpup(fotg210, &qtd->hw_alt_next),
    121			hc32_to_cpup(fotg210, &qtd->hw_token),
    122			hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
    123	if (qtd->hw_buf[1])
    124		fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
    125				hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
    126				hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
    127				hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
    128				hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
    129}
    130
    131static void __maybe_unused
    132dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
    133{
    134	struct fotg210_qh_hw *hw = qh->hw;
    135
    136	fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
    137			hw->hw_next, hw->hw_info1, hw->hw_info2,
    138			hw->hw_current);
    139
    140	dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
    141}
    142
    143static void __maybe_unused
    144dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
    145{
    146	fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
    147			itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
    148			itd->urb);
    149
    150	fotg210_dbg(fotg210,
    151			"  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
    152			hc32_to_cpu(fotg210, itd->hw_transaction[0]),
    153			hc32_to_cpu(fotg210, itd->hw_transaction[1]),
    154			hc32_to_cpu(fotg210, itd->hw_transaction[2]),
    155			hc32_to_cpu(fotg210, itd->hw_transaction[3]),
    156			hc32_to_cpu(fotg210, itd->hw_transaction[4]),
    157			hc32_to_cpu(fotg210, itd->hw_transaction[5]),
    158			hc32_to_cpu(fotg210, itd->hw_transaction[6]),
    159			hc32_to_cpu(fotg210, itd->hw_transaction[7]));
    160
    161	fotg210_dbg(fotg210,
    162			"  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
    163			hc32_to_cpu(fotg210, itd->hw_bufp[0]),
    164			hc32_to_cpu(fotg210, itd->hw_bufp[1]),
    165			hc32_to_cpu(fotg210, itd->hw_bufp[2]),
    166			hc32_to_cpu(fotg210, itd->hw_bufp[3]),
    167			hc32_to_cpu(fotg210, itd->hw_bufp[4]),
    168			hc32_to_cpu(fotg210, itd->hw_bufp[5]),
    169			hc32_to_cpu(fotg210, itd->hw_bufp[6]));
    170
    171	fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
    172			itd->index[0], itd->index[1], itd->index[2],
    173			itd->index[3], itd->index[4], itd->index[5],
    174			itd->index[6], itd->index[7]);
    175}
    176
    177static int __maybe_unused
    178dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
    179{
    180	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
    181			label, label[0] ? " " : "", status,
    182			(status & STS_ASS) ? " Async" : "",
    183			(status & STS_PSS) ? " Periodic" : "",
    184			(status & STS_RECL) ? " Recl" : "",
    185			(status & STS_HALT) ? " Halt" : "",
    186			(status & STS_IAA) ? " IAA" : "",
    187			(status & STS_FATAL) ? " FATAL" : "",
    188			(status & STS_FLR) ? " FLR" : "",
    189			(status & STS_PCD) ? " PCD" : "",
    190			(status & STS_ERR) ? " ERR" : "",
    191			(status & STS_INT) ? " INT" : "");
    192}
    193
    194static int __maybe_unused
    195dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
    196{
    197	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
    198			label, label[0] ? " " : "", enable,
    199			(enable & STS_IAA) ? " IAA" : "",
    200			(enable & STS_FATAL) ? " FATAL" : "",
    201			(enable & STS_FLR) ? " FLR" : "",
    202			(enable & STS_PCD) ? " PCD" : "",
    203			(enable & STS_ERR) ? " ERR" : "",
    204			(enable & STS_INT) ? " INT" : "");
    205}
    206
    207static const char *const fls_strings[] = { "1024", "512", "256", "??" };
    208
    209static int dbg_command_buf(char *buf, unsigned len, const char *label,
    210		u32 command)
    211{
    212	return scnprintf(buf, len,
    213			"%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
    214			label, label[0] ? " " : "", command,
    215			(command & CMD_PARK) ? " park" : "(park)",
    216			CMD_PARK_CNT(command),
    217			(command >> 16) & 0x3f,
    218			(command & CMD_IAAD) ? " IAAD" : "",
    219			(command & CMD_ASE) ? " Async" : "",
    220			(command & CMD_PSE) ? " Periodic" : "",
    221			fls_strings[(command >> 2) & 0x3],
    222			(command & CMD_RESET) ? " Reset" : "",
    223			(command & CMD_RUN) ? "RUN" : "HALT");
    224}
    225
    226static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
    227		u32 status)
    228{
    229	char *sig;
    230
    231	/* signaling state */
    232	switch (status & (3 << 10)) {
    233	case 0 << 10:
    234		sig = "se0";
    235		break;
    236	case 1 << 10:
    237		sig = "k";
    238		break; /* low speed */
    239	case 2 << 10:
    240		sig = "j";
    241		break;
    242	default:
    243		sig = "?";
    244		break;
    245	}
    246
    247	scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
    248			label, label[0] ? " " : "", port, status,
    249			status >> 25, /*device address */
    250			sig,
    251			(status & PORT_RESET) ? " RESET" : "",
    252			(status & PORT_SUSPEND) ? " SUSPEND" : "",
    253			(status & PORT_RESUME) ? " RESUME" : "",
    254			(status & PORT_PEC) ? " PEC" : "",
    255			(status & PORT_PE) ? " PE" : "",
    256			(status & PORT_CSC) ? " CSC" : "",
    257			(status & PORT_CONNECT) ? " CONNECT" : "");
    258
    259	return buf;
    260}
    261
    262/* functions have the "wrong" filename when they're output... */
    263#define dbg_status(fotg210, label, status) {			\
    264	char _buf[80];						\
    265	dbg_status_buf(_buf, sizeof(_buf), label, status);	\
    266	fotg210_dbg(fotg210, "%s\n", _buf);			\
    267}
    268
    269#define dbg_cmd(fotg210, label, command) {			\
    270	char _buf[80];						\
    271	dbg_command_buf(_buf, sizeof(_buf), label, command);	\
    272	fotg210_dbg(fotg210, "%s\n", _buf);			\
    273}
    274
    275#define dbg_port(fotg210, label, port, status) {			       \
    276	char _buf[80];							       \
    277	fotg210_dbg(fotg210, "%s\n",					       \
    278			dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
    279}
    280
    281/* troubleshooting help: expose state in debugfs */
    282static int debug_async_open(struct inode *, struct file *);
    283static int debug_periodic_open(struct inode *, struct file *);
    284static int debug_registers_open(struct inode *, struct file *);
    285static int debug_async_open(struct inode *, struct file *);
    286
    287static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
    288static int debug_close(struct inode *, struct file *);
    289
    290static const struct file_operations debug_async_fops = {
    291	.owner		= THIS_MODULE,
    292	.open		= debug_async_open,
    293	.read		= debug_output,
    294	.release	= debug_close,
    295	.llseek		= default_llseek,
    296};
    297static const struct file_operations debug_periodic_fops = {
    298	.owner		= THIS_MODULE,
    299	.open		= debug_periodic_open,
    300	.read		= debug_output,
    301	.release	= debug_close,
    302	.llseek		= default_llseek,
    303};
    304static const struct file_operations debug_registers_fops = {
    305	.owner		= THIS_MODULE,
    306	.open		= debug_registers_open,
    307	.read		= debug_output,
    308	.release	= debug_close,
    309	.llseek		= default_llseek,
    310};
    311
    312static struct dentry *fotg210_debug_root;
    313
    314struct debug_buffer {
    315	ssize_t (*fill_func)(struct debug_buffer *);	/* fill method */
    316	struct usb_bus *bus;
    317	struct mutex mutex;	/* protect filling of buffer */
    318	size_t count;		/* number of characters filled into buffer */
    319	char *output_buf;
    320	size_t alloc_size;
    321};
    322
    323static inline char speed_char(u32 scratch)
    324{
    325	switch (scratch & (3 << 12)) {
    326	case QH_FULL_SPEED:
    327		return 'f';
    328
    329	case QH_LOW_SPEED:
    330		return 'l';
    331
    332	case QH_HIGH_SPEED:
    333		return 'h';
    334
    335	default:
    336		return '?';
    337	}
    338}
    339
    340static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
    341{
    342	__u32 v = hc32_to_cpu(fotg210, token);
    343
    344	if (v & QTD_STS_ACTIVE)
    345		return '*';
    346	if (v & QTD_STS_HALT)
    347		return '-';
    348	if (!IS_SHORT_READ(v))
    349		return ' ';
    350	/* tries to advance through hw_alt_next */
    351	return '/';
    352}
    353
    354static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
    355		char **nextp, unsigned *sizep)
    356{
    357	u32 scratch;
    358	u32 hw_curr;
    359	struct fotg210_qtd *td;
    360	unsigned temp;
    361	unsigned size = *sizep;
    362	char *next = *nextp;
    363	char mark;
    364	__le32 list_end = FOTG210_LIST_END(fotg210);
    365	struct fotg210_qh_hw *hw = qh->hw;
    366
    367	if (hw->hw_qtd_next == list_end) /* NEC does this */
    368		mark = '@';
    369	else
    370		mark = token_mark(fotg210, hw->hw_token);
    371	if (mark == '/') { /* qh_alt_next controls qh advance? */
    372		if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
    373		    fotg210->async->hw->hw_alt_next)
    374			mark = '#'; /* blocked */
    375		else if (hw->hw_alt_next == list_end)
    376			mark = '.'; /* use hw_qtd_next */
    377		/* else alt_next points to some other qtd */
    378	}
    379	scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
    380	hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
    381	temp = scnprintf(next, size,
    382			"qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
    383			qh, scratch & 0x007f,
    384			speed_char(scratch),
    385			(scratch >> 8) & 0x000f,
    386			scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
    387			hc32_to_cpup(fotg210, &hw->hw_token), mark,
    388			(cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
    389				? "data1" : "data0",
    390			(hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
    391	size -= temp;
    392	next += temp;
    393
    394	/* hc may be modifying the list as we read it ... */
    395	list_for_each_entry(td, &qh->qtd_list, qtd_list) {
    396		scratch = hc32_to_cpup(fotg210, &td->hw_token);
    397		mark = ' ';
    398		if (hw_curr == td->qtd_dma)
    399			mark = '*';
    400		else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
    401			mark = '+';
    402		else if (QTD_LENGTH(scratch)) {
    403			if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
    404				mark = '#';
    405			else if (td->hw_alt_next != list_end)
    406				mark = '/';
    407		}
    408		temp = snprintf(next, size,
    409				"\n\t%p%c%s len=%d %08x urb %p",
    410				td, mark, ({ char *tmp;
    411				switch ((scratch>>8)&0x03) {
    412				case 0:
    413					tmp = "out";
    414					break;
    415				case 1:
    416					tmp = "in";
    417					break;
    418				case 2:
    419					tmp = "setup";
    420					break;
    421				default:
    422					tmp = "?";
    423					break;
    424				 } tmp; }),
    425				(scratch >> 16) & 0x7fff,
    426				scratch,
    427				td->urb);
    428		if (size < temp)
    429			temp = size;
    430		size -= temp;
    431		next += temp;
    432		if (temp == size)
    433			goto done;
    434	}
    435
    436	temp = snprintf(next, size, "\n");
    437	if (size < temp)
    438		temp = size;
    439
    440	size -= temp;
    441	next += temp;
    442
    443done:
    444	*sizep = size;
    445	*nextp = next;
    446}
    447
    448static ssize_t fill_async_buffer(struct debug_buffer *buf)
    449{
    450	struct usb_hcd *hcd;
    451	struct fotg210_hcd *fotg210;
    452	unsigned long flags;
    453	unsigned temp, size;
    454	char *next;
    455	struct fotg210_qh *qh;
    456
    457	hcd = bus_to_hcd(buf->bus);
    458	fotg210 = hcd_to_fotg210(hcd);
    459	next = buf->output_buf;
    460	size = buf->alloc_size;
    461
    462	*next = 0;
    463
    464	/* dumps a snapshot of the async schedule.
    465	 * usually empty except for long-term bulk reads, or head.
    466	 * one QH per line, and TDs we know about
    467	 */
    468	spin_lock_irqsave(&fotg210->lock, flags);
    469	for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
    470			qh = qh->qh_next.qh)
    471		qh_lines(fotg210, qh, &next, &size);
    472	if (fotg210->async_unlink && size > 0) {
    473		temp = scnprintf(next, size, "\nunlink =\n");
    474		size -= temp;
    475		next += temp;
    476
    477		for (qh = fotg210->async_unlink; size > 0 && qh;
    478				qh = qh->unlink_next)
    479			qh_lines(fotg210, qh, &next, &size);
    480	}
    481	spin_unlock_irqrestore(&fotg210->lock, flags);
    482
    483	return strlen(buf->output_buf);
    484}
    485
    486/* count tds, get ep direction */
    487static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
    488		struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
    489{
    490	u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
    491	struct fotg210_qtd *qtd;
    492	char *type = "";
    493	unsigned temp = 0;
    494
    495	/* count tds, get ep direction */
    496	list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
    497		temp++;
    498		switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
    499		case 0:
    500			type = "out";
    501			continue;
    502		case 1:
    503			type = "in";
    504			continue;
    505		}
    506	}
    507
    508	return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
    509			speed_char(scratch), scratch & 0x007f,
    510			(scratch >> 8) & 0x000f, type, qh->usecs,
    511			qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
    512}
    513
    514#define DBG_SCHED_LIMIT 64
    515static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
    516{
    517	struct usb_hcd *hcd;
    518	struct fotg210_hcd *fotg210;
    519	unsigned long flags;
    520	union fotg210_shadow p, *seen;
    521	unsigned temp, size, seen_count;
    522	char *next;
    523	unsigned i;
    524	__hc32 tag;
    525
    526	seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
    527	if (!seen)
    528		return 0;
    529
    530	seen_count = 0;
    531
    532	hcd = bus_to_hcd(buf->bus);
    533	fotg210 = hcd_to_fotg210(hcd);
    534	next = buf->output_buf;
    535	size = buf->alloc_size;
    536
    537	temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
    538	size -= temp;
    539	next += temp;
    540
    541	/* dump a snapshot of the periodic schedule.
    542	 * iso changes, interrupt usually doesn't.
    543	 */
    544	spin_lock_irqsave(&fotg210->lock, flags);
    545	for (i = 0; i < fotg210->periodic_size; i++) {
    546		p = fotg210->pshadow[i];
    547		if (likely(!p.ptr))
    548			continue;
    549
    550		tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
    551
    552		temp = scnprintf(next, size, "%4d: ", i);
    553		size -= temp;
    554		next += temp;
    555
    556		do {
    557			struct fotg210_qh_hw *hw;
    558
    559			switch (hc32_to_cpu(fotg210, tag)) {
    560			case Q_TYPE_QH:
    561				hw = p.qh->hw;
    562				temp = scnprintf(next, size, " qh%d-%04x/%p",
    563						p.qh->period,
    564						hc32_to_cpup(fotg210,
    565							&hw->hw_info2)
    566							/* uframe masks */
    567							& (QH_CMASK | QH_SMASK),
    568						p.qh);
    569				size -= temp;
    570				next += temp;
    571				/* don't repeat what follows this qh */
    572				for (temp = 0; temp < seen_count; temp++) {
    573					if (seen[temp].ptr != p.ptr)
    574						continue;
    575					if (p.qh->qh_next.ptr) {
    576						temp = scnprintf(next, size,
    577								" ...");
    578						size -= temp;
    579						next += temp;
    580					}
    581					break;
    582				}
    583				/* show more info the first time around */
    584				if (temp == seen_count) {
    585					temp = output_buf_tds_dir(next,
    586							fotg210, hw,
    587							p.qh, size);
    588
    589					if (seen_count < DBG_SCHED_LIMIT)
    590						seen[seen_count++].qh = p.qh;
    591				} else
    592					temp = 0;
    593				tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
    594				p = p.qh->qh_next;
    595				break;
    596			case Q_TYPE_FSTN:
    597				temp = scnprintf(next, size,
    598						" fstn-%8x/%p",
    599						p.fstn->hw_prev, p.fstn);
    600				tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
    601				p = p.fstn->fstn_next;
    602				break;
    603			case Q_TYPE_ITD:
    604				temp = scnprintf(next, size,
    605						" itd/%p", p.itd);
    606				tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
    607				p = p.itd->itd_next;
    608				break;
    609			}
    610			size -= temp;
    611			next += temp;
    612		} while (p.ptr);
    613
    614		temp = scnprintf(next, size, "\n");
    615		size -= temp;
    616		next += temp;
    617	}
    618	spin_unlock_irqrestore(&fotg210->lock, flags);
    619	kfree(seen);
    620
    621	return buf->alloc_size - size;
    622}
    623#undef DBG_SCHED_LIMIT
    624
    625static const char *rh_state_string(struct fotg210_hcd *fotg210)
    626{
    627	switch (fotg210->rh_state) {
    628	case FOTG210_RH_HALTED:
    629		return "halted";
    630	case FOTG210_RH_SUSPENDED:
    631		return "suspended";
    632	case FOTG210_RH_RUNNING:
    633		return "running";
    634	case FOTG210_RH_STOPPING:
    635		return "stopping";
    636	}
    637	return "?";
    638}
    639
    640static ssize_t fill_registers_buffer(struct debug_buffer *buf)
    641{
    642	struct usb_hcd *hcd;
    643	struct fotg210_hcd *fotg210;
    644	unsigned long flags;
    645	unsigned temp, size, i;
    646	char *next, scratch[80];
    647	static const char fmt[] = "%*s\n";
    648	static const char label[] = "";
    649
    650	hcd = bus_to_hcd(buf->bus);
    651	fotg210 = hcd_to_fotg210(hcd);
    652	next = buf->output_buf;
    653	size = buf->alloc_size;
    654
    655	spin_lock_irqsave(&fotg210->lock, flags);
    656
    657	if (!HCD_HW_ACCESSIBLE(hcd)) {
    658		size = scnprintf(next, size,
    659				"bus %s, device %s\n"
    660				"%s\n"
    661				"SUSPENDED(no register access)\n",
    662				hcd->self.controller->bus->name,
    663				dev_name(hcd->self.controller),
    664				hcd->product_desc);
    665		goto done;
    666	}
    667
    668	/* Capability Registers */
    669	i = HC_VERSION(fotg210, fotg210_readl(fotg210,
    670			&fotg210->caps->hc_capbase));
    671	temp = scnprintf(next, size,
    672			"bus %s, device %s\n"
    673			"%s\n"
    674			"EHCI %x.%02x, rh state %s\n",
    675			hcd->self.controller->bus->name,
    676			dev_name(hcd->self.controller),
    677			hcd->product_desc,
    678			i >> 8, i & 0x0ff, rh_state_string(fotg210));
    679	size -= temp;
    680	next += temp;
    681
    682	/* FIXME interpret both types of params */
    683	i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
    684	temp = scnprintf(next, size, "structural params 0x%08x\n", i);
    685	size -= temp;
    686	next += temp;
    687
    688	i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
    689	temp = scnprintf(next, size, "capability params 0x%08x\n", i);
    690	size -= temp;
    691	next += temp;
    692
    693	/* Operational Registers */
    694	temp = dbg_status_buf(scratch, sizeof(scratch), label,
    695			fotg210_readl(fotg210, &fotg210->regs->status));
    696	temp = scnprintf(next, size, fmt, temp, scratch);
    697	size -= temp;
    698	next += temp;
    699
    700	temp = dbg_command_buf(scratch, sizeof(scratch), label,
    701			fotg210_readl(fotg210, &fotg210->regs->command));
    702	temp = scnprintf(next, size, fmt, temp, scratch);
    703	size -= temp;
    704	next += temp;
    705
    706	temp = dbg_intr_buf(scratch, sizeof(scratch), label,
    707			fotg210_readl(fotg210, &fotg210->regs->intr_enable));
    708	temp = scnprintf(next, size, fmt, temp, scratch);
    709	size -= temp;
    710	next += temp;
    711
    712	temp = scnprintf(next, size, "uframe %04x\n",
    713			fotg210_read_frame_index(fotg210));
    714	size -= temp;
    715	next += temp;
    716
    717	if (fotg210->async_unlink) {
    718		temp = scnprintf(next, size, "async unlink qh %p\n",
    719				fotg210->async_unlink);
    720		size -= temp;
    721		next += temp;
    722	}
    723
    724#ifdef FOTG210_STATS
    725	temp = scnprintf(next, size,
    726			"irq normal %ld err %ld iaa %ld(lost %ld)\n",
    727			fotg210->stats.normal, fotg210->stats.error,
    728			fotg210->stats.iaa, fotg210->stats.lost_iaa);
    729	size -= temp;
    730	next += temp;
    731
    732	temp = scnprintf(next, size, "complete %ld unlink %ld\n",
    733			fotg210->stats.complete, fotg210->stats.unlink);
    734	size -= temp;
    735	next += temp;
    736#endif
    737
    738done:
    739	spin_unlock_irqrestore(&fotg210->lock, flags);
    740
    741	return buf->alloc_size - size;
    742}
    743
    744static struct debug_buffer
    745*alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
    746{
    747	struct debug_buffer *buf;
    748
    749	buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
    750
    751	if (buf) {
    752		buf->bus = bus;
    753		buf->fill_func = fill_func;
    754		mutex_init(&buf->mutex);
    755		buf->alloc_size = PAGE_SIZE;
    756	}
    757
    758	return buf;
    759}
    760
    761static int fill_buffer(struct debug_buffer *buf)
    762{
    763	int ret = 0;
    764
    765	if (!buf->output_buf)
    766		buf->output_buf = vmalloc(buf->alloc_size);
    767
    768	if (!buf->output_buf) {
    769		ret = -ENOMEM;
    770		goto out;
    771	}
    772
    773	ret = buf->fill_func(buf);
    774
    775	if (ret >= 0) {
    776		buf->count = ret;
    777		ret = 0;
    778	}
    779
    780out:
    781	return ret;
    782}
    783
    784static ssize_t debug_output(struct file *file, char __user *user_buf,
    785		size_t len, loff_t *offset)
    786{
    787	struct debug_buffer *buf = file->private_data;
    788	int ret = 0;
    789
    790	mutex_lock(&buf->mutex);
    791	if (buf->count == 0) {
    792		ret = fill_buffer(buf);
    793		if (ret != 0) {
    794			mutex_unlock(&buf->mutex);
    795			goto out;
    796		}
    797	}
    798	mutex_unlock(&buf->mutex);
    799
    800	ret = simple_read_from_buffer(user_buf, len, offset,
    801			buf->output_buf, buf->count);
    802
    803out:
    804	return ret;
    805
    806}
    807
    808static int debug_close(struct inode *inode, struct file *file)
    809{
    810	struct debug_buffer *buf = file->private_data;
    811
    812	if (buf) {
    813		vfree(buf->output_buf);
    814		kfree(buf);
    815	}
    816
    817	return 0;
    818}
    819static int debug_async_open(struct inode *inode, struct file *file)
    820{
    821	file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
    822
    823	return file->private_data ? 0 : -ENOMEM;
    824}
    825
    826static int debug_periodic_open(struct inode *inode, struct file *file)
    827{
    828	struct debug_buffer *buf;
    829
    830	buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
    831	if (!buf)
    832		return -ENOMEM;
    833
    834	buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
    835	file->private_data = buf;
    836	return 0;
    837}
    838
    839static int debug_registers_open(struct inode *inode, struct file *file)
    840{
    841	file->private_data = alloc_buffer(inode->i_private,
    842			fill_registers_buffer);
    843
    844	return file->private_data ? 0 : -ENOMEM;
    845}
    846
    847static inline void create_debug_files(struct fotg210_hcd *fotg210)
    848{
    849	struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
    850	struct dentry *root;
    851
    852	root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
    853
    854	debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
    855	debugfs_create_file("periodic", S_IRUGO, root, bus,
    856			    &debug_periodic_fops);
    857	debugfs_create_file("registers", S_IRUGO, root, bus,
    858			    &debug_registers_fops);
    859}
    860
    861static inline void remove_debug_files(struct fotg210_hcd *fotg210)
    862{
    863	struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
    864
    865	debugfs_remove(debugfs_lookup(bus->bus_name, fotg210_debug_root));
    866}
    867
    868/* handshake - spin reading hc until handshake completes or fails
    869 * @ptr: address of hc register to be read
    870 * @mask: bits to look at in result of read
    871 * @done: value of those bits when handshake succeeds
    872 * @usec: timeout in microseconds
    873 *
    874 * Returns negative errno, or zero on success
    875 *
    876 * Success happens when the "mask" bits have the specified value (hardware
    877 * handshake done).  There are two failure modes:  "usec" have passed (major
    878 * hardware flakeout), or the register reads as all-ones (hardware removed).
    879 *
    880 * That last failure should_only happen in cases like physical cardbus eject
    881 * before driver shutdown. But it also seems to be caused by bugs in cardbus
    882 * bridge shutdown:  shutting down the bridge before the devices using it.
    883 */
    884static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
    885		u32 mask, u32 done, int usec)
    886{
    887	u32 result;
    888	int ret;
    889
    890	ret = readl_poll_timeout_atomic(ptr, result,
    891					((result & mask) == done ||
    892					 result == U32_MAX), 1, usec);
    893	if (result == U32_MAX)		/* card removed */
    894		return -ENODEV;
    895
    896	return ret;
    897}
    898
    899/* Force HC to halt state from unknown (EHCI spec section 2.3).
    900 * Must be called with interrupts enabled and the lock not held.
    901 */
    902static int fotg210_halt(struct fotg210_hcd *fotg210)
    903{
    904	u32 temp;
    905
    906	spin_lock_irq(&fotg210->lock);
    907
    908	/* disable any irqs left enabled by previous code */
    909	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
    910
    911	/*
    912	 * This routine gets called during probe before fotg210->command
    913	 * has been initialized, so we can't rely on its value.
    914	 */
    915	fotg210->command &= ~CMD_RUN;
    916	temp = fotg210_readl(fotg210, &fotg210->regs->command);
    917	temp &= ~(CMD_RUN | CMD_IAAD);
    918	fotg210_writel(fotg210, temp, &fotg210->regs->command);
    919
    920	spin_unlock_irq(&fotg210->lock);
    921	synchronize_irq(fotg210_to_hcd(fotg210)->irq);
    922
    923	return handshake(fotg210, &fotg210->regs->status,
    924			STS_HALT, STS_HALT, 16 * 125);
    925}
    926
    927/* Reset a non-running (STS_HALT == 1) controller.
    928 * Must be called with interrupts enabled and the lock not held.
    929 */
    930static int fotg210_reset(struct fotg210_hcd *fotg210)
    931{
    932	int retval;
    933	u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
    934
    935	/* If the EHCI debug controller is active, special care must be
    936	 * taken before and after a host controller reset
    937	 */
    938	if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
    939		fotg210->debug = NULL;
    940
    941	command |= CMD_RESET;
    942	dbg_cmd(fotg210, "reset", command);
    943	fotg210_writel(fotg210, command, &fotg210->regs->command);
    944	fotg210->rh_state = FOTG210_RH_HALTED;
    945	fotg210->next_statechange = jiffies;
    946	retval = handshake(fotg210, &fotg210->regs->command,
    947			CMD_RESET, 0, 250 * 1000);
    948
    949	if (retval)
    950		return retval;
    951
    952	if (fotg210->debug)
    953		dbgp_external_startup(fotg210_to_hcd(fotg210));
    954
    955	fotg210->port_c_suspend = fotg210->suspended_ports =
    956			fotg210->resuming_ports = 0;
    957	return retval;
    958}
    959
    960/* Idle the controller (turn off the schedules).
    961 * Must be called with interrupts enabled and the lock not held.
    962 */
    963static void fotg210_quiesce(struct fotg210_hcd *fotg210)
    964{
    965	u32 temp;
    966
    967	if (fotg210->rh_state != FOTG210_RH_RUNNING)
    968		return;
    969
    970	/* wait for any schedule enables/disables to take effect */
    971	temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
    972	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
    973			16 * 125);
    974
    975	/* then disable anything that's still active */
    976	spin_lock_irq(&fotg210->lock);
    977	fotg210->command &= ~(CMD_ASE | CMD_PSE);
    978	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
    979	spin_unlock_irq(&fotg210->lock);
    980
    981	/* hardware can take 16 microframes to turn off ... */
    982	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
    983			16 * 125);
    984}
    985
    986static void end_unlink_async(struct fotg210_hcd *fotg210);
    987static void unlink_empty_async(struct fotg210_hcd *fotg210);
    988static void fotg210_work(struct fotg210_hcd *fotg210);
    989static void start_unlink_intr(struct fotg210_hcd *fotg210,
    990			      struct fotg210_qh *qh);
    991static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
    992
    993/* Set a bit in the USBCMD register */
    994static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
    995{
    996	fotg210->command |= bit;
    997	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
    998
    999	/* unblock posted write */
   1000	fotg210_readl(fotg210, &fotg210->regs->command);
   1001}
   1002
   1003/* Clear a bit in the USBCMD register */
   1004static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
   1005{
   1006	fotg210->command &= ~bit;
   1007	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
   1008
   1009	/* unblock posted write */
   1010	fotg210_readl(fotg210, &fotg210->regs->command);
   1011}
   1012
   1013/* EHCI timer support...  Now using hrtimers.
   1014 *
   1015 * Lots of different events are triggered from fotg210->hrtimer.  Whenever
   1016 * the timer routine runs, it checks each possible event; events that are
   1017 * currently enabled and whose expiration time has passed get handled.
   1018 * The set of enabled events is stored as a collection of bitflags in
   1019 * fotg210->enabled_hrtimer_events, and they are numbered in order of
   1020 * increasing delay values (ranging between 1 ms and 100 ms).
   1021 *
   1022 * Rather than implementing a sorted list or tree of all pending events,
   1023 * we keep track only of the lowest-numbered pending event, in
   1024 * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
   1025 * expiration time is set to the timeout value for this event.
   1026 *
   1027 * As a result, events might not get handled right away; the actual delay
   1028 * could be anywhere up to twice the requested delay.  This doesn't
   1029 * matter, because none of the events are especially time-critical.  The
   1030 * ones that matter most all have a delay of 1 ms, so they will be
   1031 * handled after 2 ms at most, which is okay.  In addition to this, we
   1032 * allow for an expiration range of 1 ms.
   1033 */
   1034
   1035/* Delay lengths for the hrtimer event types.
   1036 * Keep this list sorted by delay length, in the same order as
   1037 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
   1038 */
   1039static unsigned event_delays_ns[] = {
   1040	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_ASS */
   1041	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_PSS */
   1042	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_DEAD */
   1043	1125 * NSEC_PER_USEC,	/* FOTG210_HRTIMER_UNLINK_INTR */
   1044	2 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_FREE_ITDS */
   1045	6 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_ASYNC_UNLINKS */
   1046	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IAA_WATCHDOG */
   1047	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_PERIODIC */
   1048	15 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_ASYNC */
   1049	100 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IO_WATCHDOG */
   1050};
   1051
   1052/* Enable a pending hrtimer event */
   1053static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
   1054		bool resched)
   1055{
   1056	ktime_t *timeout = &fotg210->hr_timeouts[event];
   1057
   1058	if (resched)
   1059		*timeout = ktime_add(ktime_get(), event_delays_ns[event]);
   1060	fotg210->enabled_hrtimer_events |= (1 << event);
   1061
   1062	/* Track only the lowest-numbered pending event */
   1063	if (event < fotg210->next_hrtimer_event) {
   1064		fotg210->next_hrtimer_event = event;
   1065		hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
   1066				NSEC_PER_MSEC, HRTIMER_MODE_ABS);
   1067	}
   1068}
   1069
   1070
   1071/* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
   1072static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
   1073{
   1074	unsigned actual, want;
   1075
   1076	/* Don't enable anything if the controller isn't running (e.g., died) */
   1077	if (fotg210->rh_state != FOTG210_RH_RUNNING)
   1078		return;
   1079
   1080	want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
   1081	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
   1082
   1083	if (want != actual) {
   1084
   1085		/* Poll again later, but give up after about 20 ms */
   1086		if (fotg210->ASS_poll_count++ < 20) {
   1087			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
   1088					true);
   1089			return;
   1090		}
   1091		fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
   1092				want, actual);
   1093	}
   1094	fotg210->ASS_poll_count = 0;
   1095
   1096	/* The status is up-to-date; restart or stop the schedule as needed */
   1097	if (want == 0) {	/* Stopped */
   1098		if (fotg210->async_count > 0)
   1099			fotg210_set_command_bit(fotg210, CMD_ASE);
   1100
   1101	} else {		/* Running */
   1102		if (fotg210->async_count == 0) {
   1103
   1104			/* Turn off the schedule after a while */
   1105			fotg210_enable_event(fotg210,
   1106					FOTG210_HRTIMER_DISABLE_ASYNC,
   1107					true);
   1108		}
   1109	}
   1110}
   1111
   1112/* Turn off the async schedule after a brief delay */
   1113static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
   1114{
   1115	fotg210_clear_command_bit(fotg210, CMD_ASE);
   1116}
   1117
   1118
   1119/* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
   1120static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
   1121{
   1122	unsigned actual, want;
   1123
   1124	/* Don't do anything if the controller isn't running (e.g., died) */
   1125	if (fotg210->rh_state != FOTG210_RH_RUNNING)
   1126		return;
   1127
   1128	want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
   1129	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
   1130
   1131	if (want != actual) {
   1132
   1133		/* Poll again later, but give up after about 20 ms */
   1134		if (fotg210->PSS_poll_count++ < 20) {
   1135			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
   1136					true);
   1137			return;
   1138		}
   1139		fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
   1140				want, actual);
   1141	}
   1142	fotg210->PSS_poll_count = 0;
   1143
   1144	/* The status is up-to-date; restart or stop the schedule as needed */
   1145	if (want == 0) {	/* Stopped */
   1146		if (fotg210->periodic_count > 0)
   1147			fotg210_set_command_bit(fotg210, CMD_PSE);
   1148
   1149	} else {		/* Running */
   1150		if (fotg210->periodic_count == 0) {
   1151
   1152			/* Turn off the schedule after a while */
   1153			fotg210_enable_event(fotg210,
   1154					FOTG210_HRTIMER_DISABLE_PERIODIC,
   1155					true);
   1156		}
   1157	}
   1158}
   1159
   1160/* Turn off the periodic schedule after a brief delay */
   1161static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
   1162{
   1163	fotg210_clear_command_bit(fotg210, CMD_PSE);
   1164}
   1165
   1166
   1167/* Poll the STS_HALT status bit; see when a dead controller stops */
   1168static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
   1169{
   1170	if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
   1171
   1172		/* Give up after a few milliseconds */
   1173		if (fotg210->died_poll_count++ < 5) {
   1174			/* Try again later */
   1175			fotg210_enable_event(fotg210,
   1176					FOTG210_HRTIMER_POLL_DEAD, true);
   1177			return;
   1178		}
   1179		fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
   1180	}
   1181
   1182	/* Clean up the mess */
   1183	fotg210->rh_state = FOTG210_RH_HALTED;
   1184	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
   1185	fotg210_work(fotg210);
   1186	end_unlink_async(fotg210);
   1187
   1188	/* Not in process context, so don't try to reset the controller */
   1189}
   1190
   1191
   1192/* Handle unlinked interrupt QHs once they are gone from the hardware */
   1193static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
   1194{
   1195	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
   1196
   1197	/*
   1198	 * Process all the QHs on the intr_unlink list that were added
   1199	 * before the current unlink cycle began.  The list is in
   1200	 * temporal order, so stop when we reach the first entry in the
   1201	 * current cycle.  But if the root hub isn't running then
   1202	 * process all the QHs on the list.
   1203	 */
   1204	fotg210->intr_unlinking = true;
   1205	while (fotg210->intr_unlink) {
   1206		struct fotg210_qh *qh = fotg210->intr_unlink;
   1207
   1208		if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
   1209			break;
   1210		fotg210->intr_unlink = qh->unlink_next;
   1211		qh->unlink_next = NULL;
   1212		end_unlink_intr(fotg210, qh);
   1213	}
   1214
   1215	/* Handle remaining entries later */
   1216	if (fotg210->intr_unlink) {
   1217		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
   1218				true);
   1219		++fotg210->intr_unlink_cycle;
   1220	}
   1221	fotg210->intr_unlinking = false;
   1222}
   1223
   1224
   1225/* Start another free-iTDs/siTDs cycle */
   1226static void start_free_itds(struct fotg210_hcd *fotg210)
   1227{
   1228	if (!(fotg210->enabled_hrtimer_events &
   1229			BIT(FOTG210_HRTIMER_FREE_ITDS))) {
   1230		fotg210->last_itd_to_free = list_entry(
   1231				fotg210->cached_itd_list.prev,
   1232				struct fotg210_itd, itd_list);
   1233		fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
   1234	}
   1235}
   1236
   1237/* Wait for controller to stop using old iTDs and siTDs */
   1238static void end_free_itds(struct fotg210_hcd *fotg210)
   1239{
   1240	struct fotg210_itd *itd, *n;
   1241
   1242	if (fotg210->rh_state < FOTG210_RH_RUNNING)
   1243		fotg210->last_itd_to_free = NULL;
   1244
   1245	list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
   1246		list_del(&itd->itd_list);
   1247		dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
   1248		if (itd == fotg210->last_itd_to_free)
   1249			break;
   1250	}
   1251
   1252	if (!list_empty(&fotg210->cached_itd_list))
   1253		start_free_itds(fotg210);
   1254}
   1255
   1256
   1257/* Handle lost (or very late) IAA interrupts */
   1258static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
   1259{
   1260	if (fotg210->rh_state != FOTG210_RH_RUNNING)
   1261		return;
   1262
   1263	/*
   1264	 * Lost IAA irqs wedge things badly; seen first with a vt8235.
   1265	 * So we need this watchdog, but must protect it against both
   1266	 * (a) SMP races against real IAA firing and retriggering, and
   1267	 * (b) clean HC shutdown, when IAA watchdog was pending.
   1268	 */
   1269	if (fotg210->async_iaa) {
   1270		u32 cmd, status;
   1271
   1272		/* If we get here, IAA is *REALLY* late.  It's barely
   1273		 * conceivable that the system is so busy that CMD_IAAD
   1274		 * is still legitimately set, so let's be sure it's
   1275		 * clear before we read STS_IAA.  (The HC should clear
   1276		 * CMD_IAAD when it sets STS_IAA.)
   1277		 */
   1278		cmd = fotg210_readl(fotg210, &fotg210->regs->command);
   1279
   1280		/*
   1281		 * If IAA is set here it either legitimately triggered
   1282		 * after the watchdog timer expired (_way_ late, so we'll
   1283		 * still count it as lost) ... or a silicon erratum:
   1284		 * - VIA seems to set IAA without triggering the IRQ;
   1285		 * - IAAD potentially cleared without setting IAA.
   1286		 */
   1287		status = fotg210_readl(fotg210, &fotg210->regs->status);
   1288		if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
   1289			INCR(fotg210->stats.lost_iaa);
   1290			fotg210_writel(fotg210, STS_IAA,
   1291					&fotg210->regs->status);
   1292		}
   1293
   1294		fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
   1295				status, cmd);
   1296		end_unlink_async(fotg210);
   1297	}
   1298}
   1299
   1300
   1301/* Enable the I/O watchdog, if appropriate */
   1302static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
   1303{
   1304	/* Not needed if the controller isn't running or it's already enabled */
   1305	if (fotg210->rh_state != FOTG210_RH_RUNNING ||
   1306			(fotg210->enabled_hrtimer_events &
   1307			BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
   1308		return;
   1309
   1310	/*
   1311	 * Isochronous transfers always need the watchdog.
   1312	 * For other sorts we use it only if the flag is set.
   1313	 */
   1314	if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
   1315			fotg210->async_count + fotg210->intr_count > 0))
   1316		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
   1317				true);
   1318}
   1319
   1320
   1321/* Handler functions for the hrtimer event types.
   1322 * Keep this array in the same order as the event types indexed by
   1323 * enum fotg210_hrtimer_event in fotg210.h.
   1324 */
   1325static void (*event_handlers[])(struct fotg210_hcd *) = {
   1326	fotg210_poll_ASS,			/* FOTG210_HRTIMER_POLL_ASS */
   1327	fotg210_poll_PSS,			/* FOTG210_HRTIMER_POLL_PSS */
   1328	fotg210_handle_controller_death,	/* FOTG210_HRTIMER_POLL_DEAD */
   1329	fotg210_handle_intr_unlinks,	/* FOTG210_HRTIMER_UNLINK_INTR */
   1330	end_free_itds,			/* FOTG210_HRTIMER_FREE_ITDS */
   1331	unlink_empty_async,		/* FOTG210_HRTIMER_ASYNC_UNLINKS */
   1332	fotg210_iaa_watchdog,		/* FOTG210_HRTIMER_IAA_WATCHDOG */
   1333	fotg210_disable_PSE,		/* FOTG210_HRTIMER_DISABLE_PERIODIC */
   1334	fotg210_disable_ASE,		/* FOTG210_HRTIMER_DISABLE_ASYNC */
   1335	fotg210_work,			/* FOTG210_HRTIMER_IO_WATCHDOG */
   1336};
   1337
   1338static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
   1339{
   1340	struct fotg210_hcd *fotg210 =
   1341			container_of(t, struct fotg210_hcd, hrtimer);
   1342	ktime_t now;
   1343	unsigned long events;
   1344	unsigned long flags;
   1345	unsigned e;
   1346
   1347	spin_lock_irqsave(&fotg210->lock, flags);
   1348
   1349	events = fotg210->enabled_hrtimer_events;
   1350	fotg210->enabled_hrtimer_events = 0;
   1351	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
   1352
   1353	/*
   1354	 * Check each pending event.  If its time has expired, handle
   1355	 * the event; otherwise re-enable it.
   1356	 */
   1357	now = ktime_get();
   1358	for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
   1359		if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
   1360			event_handlers[e](fotg210);
   1361		else
   1362			fotg210_enable_event(fotg210, e, false);
   1363	}
   1364
   1365	spin_unlock_irqrestore(&fotg210->lock, flags);
   1366	return HRTIMER_NORESTART;
   1367}
   1368
   1369#define fotg210_bus_suspend NULL
   1370#define fotg210_bus_resume NULL
   1371
   1372static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
   1373		u32 __iomem *status_reg, int port_status)
   1374{
   1375	if (!(port_status & PORT_CONNECT))
   1376		return port_status;
   1377
   1378	/* if reset finished and it's still not enabled -- handoff */
   1379	if (!(port_status & PORT_PE))
   1380		/* with integrated TT, there's nobody to hand it to! */
   1381		fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
   1382				index + 1);
   1383	else
   1384		fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
   1385				index + 1);
   1386
   1387	return port_status;
   1388}
   1389
   1390
   1391/* build "status change" packet (one or two bytes) from HC registers */
   1392
   1393static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
   1394{
   1395	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
   1396	u32 temp, status;
   1397	u32 mask;
   1398	int retval = 1;
   1399	unsigned long flags;
   1400
   1401	/* init status to no-changes */
   1402	buf[0] = 0;
   1403
   1404	/* Inform the core about resumes-in-progress by returning
   1405	 * a non-zero value even if there are no status changes.
   1406	 */
   1407	status = fotg210->resuming_ports;
   1408
   1409	mask = PORT_CSC | PORT_PEC;
   1410	/* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
   1411
   1412	/* no hub change reports (bit 0) for now (power, ...) */
   1413
   1414	/* port N changes (bit N)? */
   1415	spin_lock_irqsave(&fotg210->lock, flags);
   1416
   1417	temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
   1418
   1419	/*
   1420	 * Return status information even for ports with OWNER set.
   1421	 * Otherwise hub_wq wouldn't see the disconnect event when a
   1422	 * high-speed device is switched over to the companion
   1423	 * controller by the user.
   1424	 */
   1425
   1426	if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
   1427			(fotg210->reset_done[0] &&
   1428			time_after_eq(jiffies, fotg210->reset_done[0]))) {
   1429		buf[0] |= 1 << 1;
   1430		status = STS_PCD;
   1431	}
   1432	/* FIXME autosuspend idle root hubs */
   1433	spin_unlock_irqrestore(&fotg210->lock, flags);
   1434	return status ? retval : 0;
   1435}
   1436
   1437static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
   1438		struct usb_hub_descriptor *desc)
   1439{
   1440	int ports = HCS_N_PORTS(fotg210->hcs_params);
   1441	u16 temp;
   1442
   1443	desc->bDescriptorType = USB_DT_HUB;
   1444	desc->bPwrOn2PwrGood = 10;	/* fotg210 1.0, 2.3.9 says 20ms max */
   1445	desc->bHubContrCurrent = 0;
   1446
   1447	desc->bNbrPorts = ports;
   1448	temp = 1 + (ports / 8);
   1449	desc->bDescLength = 7 + 2 * temp;
   1450
   1451	/* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
   1452	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
   1453	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
   1454
   1455	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
   1456	temp |= HUB_CHAR_NO_LPSM;	/* no power switching */
   1457	desc->wHubCharacteristics = cpu_to_le16(temp);
   1458}
   1459
   1460static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
   1461		u16 wIndex, char *buf, u16 wLength)
   1462{
   1463	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
   1464	int ports = HCS_N_PORTS(fotg210->hcs_params);
   1465	u32 __iomem *status_reg = &fotg210->regs->port_status;
   1466	u32 temp, temp1, status;
   1467	unsigned long flags;
   1468	int retval = 0;
   1469	unsigned selector;
   1470
   1471	/*
   1472	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
   1473	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
   1474	 * (track current state ourselves) ... blink for diagnostics,
   1475	 * power, "this is the one", etc.  EHCI spec supports this.
   1476	 */
   1477
   1478	spin_lock_irqsave(&fotg210->lock, flags);
   1479	switch (typeReq) {
   1480	case ClearHubFeature:
   1481		switch (wValue) {
   1482		case C_HUB_LOCAL_POWER:
   1483		case C_HUB_OVER_CURRENT:
   1484			/* no hub-wide feature/status flags */
   1485			break;
   1486		default:
   1487			goto error;
   1488		}
   1489		break;
   1490	case ClearPortFeature:
   1491		if (!wIndex || wIndex > ports)
   1492			goto error;
   1493		wIndex--;
   1494		temp = fotg210_readl(fotg210, status_reg);
   1495		temp &= ~PORT_RWC_BITS;
   1496
   1497		/*
   1498		 * Even if OWNER is set, so the port is owned by the
   1499		 * companion controller, hub_wq needs to be able to clear
   1500		 * the port-change status bits (especially
   1501		 * USB_PORT_STAT_C_CONNECTION).
   1502		 */
   1503
   1504		switch (wValue) {
   1505		case USB_PORT_FEAT_ENABLE:
   1506			fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
   1507			break;
   1508		case USB_PORT_FEAT_C_ENABLE:
   1509			fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
   1510			break;
   1511		case USB_PORT_FEAT_SUSPEND:
   1512			if (temp & PORT_RESET)
   1513				goto error;
   1514			if (!(temp & PORT_SUSPEND))
   1515				break;
   1516			if ((temp & PORT_PE) == 0)
   1517				goto error;
   1518
   1519			/* resume signaling for 20 msec */
   1520			fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
   1521			fotg210->reset_done[wIndex] = jiffies
   1522					+ msecs_to_jiffies(USB_RESUME_TIMEOUT);
   1523			break;
   1524		case USB_PORT_FEAT_C_SUSPEND:
   1525			clear_bit(wIndex, &fotg210->port_c_suspend);
   1526			break;
   1527		case USB_PORT_FEAT_C_CONNECTION:
   1528			fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
   1529			break;
   1530		case USB_PORT_FEAT_C_OVER_CURRENT:
   1531			fotg210_writel(fotg210, temp | OTGISR_OVC,
   1532					&fotg210->regs->otgisr);
   1533			break;
   1534		case USB_PORT_FEAT_C_RESET:
   1535			/* GetPortStatus clears reset */
   1536			break;
   1537		default:
   1538			goto error;
   1539		}
   1540		fotg210_readl(fotg210, &fotg210->regs->command);
   1541		break;
   1542	case GetHubDescriptor:
   1543		fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
   1544				buf);
   1545		break;
   1546	case GetHubStatus:
   1547		/* no hub-wide feature/status flags */
   1548		memset(buf, 0, 4);
   1549		/*cpu_to_le32s ((u32 *) buf); */
   1550		break;
   1551	case GetPortStatus:
   1552		if (!wIndex || wIndex > ports)
   1553			goto error;
   1554		wIndex--;
   1555		status = 0;
   1556		temp = fotg210_readl(fotg210, status_reg);
   1557
   1558		/* wPortChange bits */
   1559		if (temp & PORT_CSC)
   1560			status |= USB_PORT_STAT_C_CONNECTION << 16;
   1561		if (temp & PORT_PEC)
   1562			status |= USB_PORT_STAT_C_ENABLE << 16;
   1563
   1564		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
   1565		if (temp1 & OTGISR_OVC)
   1566			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
   1567
   1568		/* whoever resumes must GetPortStatus to complete it!! */
   1569		if (temp & PORT_RESUME) {
   1570
   1571			/* Remote Wakeup received? */
   1572			if (!fotg210->reset_done[wIndex]) {
   1573				/* resume signaling for 20 msec */
   1574				fotg210->reset_done[wIndex] = jiffies
   1575						+ msecs_to_jiffies(20);
   1576				/* check the port again */
   1577				mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
   1578						fotg210->reset_done[wIndex]);
   1579			}
   1580
   1581			/* resume completed? */
   1582			else if (time_after_eq(jiffies,
   1583					fotg210->reset_done[wIndex])) {
   1584				clear_bit(wIndex, &fotg210->suspended_ports);
   1585				set_bit(wIndex, &fotg210->port_c_suspend);
   1586				fotg210->reset_done[wIndex] = 0;
   1587
   1588				/* stop resume signaling */
   1589				temp = fotg210_readl(fotg210, status_reg);
   1590				fotg210_writel(fotg210, temp &
   1591						~(PORT_RWC_BITS | PORT_RESUME),
   1592						status_reg);
   1593				clear_bit(wIndex, &fotg210->resuming_ports);
   1594				retval = handshake(fotg210, status_reg,
   1595						PORT_RESUME, 0, 2000);/* 2ms */
   1596				if (retval != 0) {
   1597					fotg210_err(fotg210,
   1598							"port %d resume error %d\n",
   1599							wIndex + 1, retval);
   1600					goto error;
   1601				}
   1602				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
   1603			}
   1604		}
   1605
   1606		/* whoever resets must GetPortStatus to complete it!! */
   1607		if ((temp & PORT_RESET) && time_after_eq(jiffies,
   1608				fotg210->reset_done[wIndex])) {
   1609			status |= USB_PORT_STAT_C_RESET << 16;
   1610			fotg210->reset_done[wIndex] = 0;
   1611			clear_bit(wIndex, &fotg210->resuming_ports);
   1612
   1613			/* force reset to complete */
   1614			fotg210_writel(fotg210,
   1615					temp & ~(PORT_RWC_BITS | PORT_RESET),
   1616					status_reg);
   1617			/* REVISIT:  some hardware needs 550+ usec to clear
   1618			 * this bit; seems too long to spin routinely...
   1619			 */
   1620			retval = handshake(fotg210, status_reg,
   1621					PORT_RESET, 0, 1000);
   1622			if (retval != 0) {
   1623				fotg210_err(fotg210, "port %d reset error %d\n",
   1624						wIndex + 1, retval);
   1625				goto error;
   1626			}
   1627
   1628			/* see what we found out */
   1629			temp = check_reset_complete(fotg210, wIndex, status_reg,
   1630					fotg210_readl(fotg210, status_reg));
   1631
   1632			/* restart schedule */
   1633			fotg210->command |= CMD_RUN;
   1634			fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
   1635		}
   1636
   1637		if (!(temp & (PORT_RESUME|PORT_RESET))) {
   1638			fotg210->reset_done[wIndex] = 0;
   1639			clear_bit(wIndex, &fotg210->resuming_ports);
   1640		}
   1641
   1642		/* transfer dedicated ports to the companion hc */
   1643		if ((temp & PORT_CONNECT) &&
   1644				test_bit(wIndex, &fotg210->companion_ports)) {
   1645			temp &= ~PORT_RWC_BITS;
   1646			fotg210_writel(fotg210, temp, status_reg);
   1647			fotg210_dbg(fotg210, "port %d --> companion\n",
   1648					wIndex + 1);
   1649			temp = fotg210_readl(fotg210, status_reg);
   1650		}
   1651
   1652		/*
   1653		 * Even if OWNER is set, there's no harm letting hub_wq
   1654		 * see the wPortStatus values (they should all be 0 except
   1655		 * for PORT_POWER anyway).
   1656		 */
   1657
   1658		if (temp & PORT_CONNECT) {
   1659			status |= USB_PORT_STAT_CONNECTION;
   1660			status |= fotg210_port_speed(fotg210, temp);
   1661		}
   1662		if (temp & PORT_PE)
   1663			status |= USB_PORT_STAT_ENABLE;
   1664
   1665		/* maybe the port was unsuspended without our knowledge */
   1666		if (temp & (PORT_SUSPEND|PORT_RESUME)) {
   1667			status |= USB_PORT_STAT_SUSPEND;
   1668		} else if (test_bit(wIndex, &fotg210->suspended_ports)) {
   1669			clear_bit(wIndex, &fotg210->suspended_ports);
   1670			clear_bit(wIndex, &fotg210->resuming_ports);
   1671			fotg210->reset_done[wIndex] = 0;
   1672			if (temp & PORT_PE)
   1673				set_bit(wIndex, &fotg210->port_c_suspend);
   1674		}
   1675
   1676		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
   1677		if (temp1 & OTGISR_OVC)
   1678			status |= USB_PORT_STAT_OVERCURRENT;
   1679		if (temp & PORT_RESET)
   1680			status |= USB_PORT_STAT_RESET;
   1681		if (test_bit(wIndex, &fotg210->port_c_suspend))
   1682			status |= USB_PORT_STAT_C_SUSPEND << 16;
   1683
   1684		if (status & ~0xffff)	/* only if wPortChange is interesting */
   1685			dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
   1686		put_unaligned_le32(status, buf);
   1687		break;
   1688	case SetHubFeature:
   1689		switch (wValue) {
   1690		case C_HUB_LOCAL_POWER:
   1691		case C_HUB_OVER_CURRENT:
   1692			/* no hub-wide feature/status flags */
   1693			break;
   1694		default:
   1695			goto error;
   1696		}
   1697		break;
   1698	case SetPortFeature:
   1699		selector = wIndex >> 8;
   1700		wIndex &= 0xff;
   1701
   1702		if (!wIndex || wIndex > ports)
   1703			goto error;
   1704		wIndex--;
   1705		temp = fotg210_readl(fotg210, status_reg);
   1706		temp &= ~PORT_RWC_BITS;
   1707		switch (wValue) {
   1708		case USB_PORT_FEAT_SUSPEND:
   1709			if ((temp & PORT_PE) == 0
   1710					|| (temp & PORT_RESET) != 0)
   1711				goto error;
   1712
   1713			/* After above check the port must be connected.
   1714			 * Set appropriate bit thus could put phy into low power
   1715			 * mode if we have hostpc feature
   1716			 */
   1717			fotg210_writel(fotg210, temp | PORT_SUSPEND,
   1718					status_reg);
   1719			set_bit(wIndex, &fotg210->suspended_ports);
   1720			break;
   1721		case USB_PORT_FEAT_RESET:
   1722			if (temp & PORT_RESUME)
   1723				goto error;
   1724			/* line status bits may report this as low speed,
   1725			 * which can be fine if this root hub has a
   1726			 * transaction translator built in.
   1727			 */
   1728			fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
   1729			temp |= PORT_RESET;
   1730			temp &= ~PORT_PE;
   1731
   1732			/*
   1733			 * caller must wait, then call GetPortStatus
   1734			 * usb 2.0 spec says 50 ms resets on root
   1735			 */
   1736			fotg210->reset_done[wIndex] = jiffies
   1737					+ msecs_to_jiffies(50);
   1738			fotg210_writel(fotg210, temp, status_reg);
   1739			break;
   1740
   1741		/* For downstream facing ports (these):  one hub port is put
   1742		 * into test mode according to USB2 11.24.2.13, then the hub
   1743		 * must be reset (which for root hub now means rmmod+modprobe,
   1744		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
   1745		 * about the EHCI-specific stuff.
   1746		 */
   1747		case USB_PORT_FEAT_TEST:
   1748			if (!selector || selector > 5)
   1749				goto error;
   1750			spin_unlock_irqrestore(&fotg210->lock, flags);
   1751			fotg210_quiesce(fotg210);
   1752			spin_lock_irqsave(&fotg210->lock, flags);
   1753
   1754			/* Put all enabled ports into suspend */
   1755			temp = fotg210_readl(fotg210, status_reg) &
   1756				~PORT_RWC_BITS;
   1757			if (temp & PORT_PE)
   1758				fotg210_writel(fotg210, temp | PORT_SUSPEND,
   1759						status_reg);
   1760
   1761			spin_unlock_irqrestore(&fotg210->lock, flags);
   1762			fotg210_halt(fotg210);
   1763			spin_lock_irqsave(&fotg210->lock, flags);
   1764
   1765			temp = fotg210_readl(fotg210, status_reg);
   1766			temp |= selector << 16;
   1767			fotg210_writel(fotg210, temp, status_reg);
   1768			break;
   1769
   1770		default:
   1771			goto error;
   1772		}
   1773		fotg210_readl(fotg210, &fotg210->regs->command);
   1774		break;
   1775
   1776	default:
   1777error:
   1778		/* "stall" on error */
   1779		retval = -EPIPE;
   1780	}
   1781	spin_unlock_irqrestore(&fotg210->lock, flags);
   1782	return retval;
   1783}
   1784
   1785static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
   1786		int portnum)
   1787{
   1788	return;
   1789}
   1790
   1791static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
   1792		int portnum)
   1793{
   1794	return 0;
   1795}
   1796
   1797/* There's basically three types of memory:
   1798 *	- data used only by the HCD ... kmalloc is fine
   1799 *	- async and periodic schedules, shared by HC and HCD ... these
   1800 *	  need to use dma_pool or dma_alloc_coherent
   1801 *	- driver buffers, read/written by HC ... single shot DMA mapped
   1802 *
   1803 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
   1804 * No memory seen by this driver is pageable.
   1805 */
   1806
   1807/* Allocate the key transfer structures from the previously allocated pool */
   1808static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
   1809		struct fotg210_qtd *qtd, dma_addr_t dma)
   1810{
   1811	memset(qtd, 0, sizeof(*qtd));
   1812	qtd->qtd_dma = dma;
   1813	qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
   1814	qtd->hw_next = FOTG210_LIST_END(fotg210);
   1815	qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
   1816	INIT_LIST_HEAD(&qtd->qtd_list);
   1817}
   1818
   1819static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
   1820		gfp_t flags)
   1821{
   1822	struct fotg210_qtd *qtd;
   1823	dma_addr_t dma;
   1824
   1825	qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
   1826	if (qtd != NULL)
   1827		fotg210_qtd_init(fotg210, qtd, dma);
   1828
   1829	return qtd;
   1830}
   1831
   1832static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
   1833		struct fotg210_qtd *qtd)
   1834{
   1835	dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
   1836}
   1837
   1838
   1839static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
   1840{
   1841	/* clean qtds first, and know this is not linked */
   1842	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
   1843		fotg210_dbg(fotg210, "unused qh not empty!\n");
   1844		BUG();
   1845	}
   1846	if (qh->dummy)
   1847		fotg210_qtd_free(fotg210, qh->dummy);
   1848	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
   1849	kfree(qh);
   1850}
   1851
   1852static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
   1853		gfp_t flags)
   1854{
   1855	struct fotg210_qh *qh;
   1856	dma_addr_t dma;
   1857
   1858	qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
   1859	if (!qh)
   1860		goto done;
   1861	qh->hw = (struct fotg210_qh_hw *)
   1862		dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
   1863	if (!qh->hw)
   1864		goto fail;
   1865	qh->qh_dma = dma;
   1866	INIT_LIST_HEAD(&qh->qtd_list);
   1867
   1868	/* dummy td enables safe urb queuing */
   1869	qh->dummy = fotg210_qtd_alloc(fotg210, flags);
   1870	if (qh->dummy == NULL) {
   1871		fotg210_dbg(fotg210, "no dummy td\n");
   1872		goto fail1;
   1873	}
   1874done:
   1875	return qh;
   1876fail1:
   1877	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
   1878fail:
   1879	kfree(qh);
   1880	return NULL;
   1881}
   1882
   1883/* The queue heads and transfer descriptors are managed from pools tied
   1884 * to each of the "per device" structures.
   1885 * This is the initialisation and cleanup code.
   1886 */
   1887
   1888static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
   1889{
   1890	if (fotg210->async)
   1891		qh_destroy(fotg210, fotg210->async);
   1892	fotg210->async = NULL;
   1893
   1894	if (fotg210->dummy)
   1895		qh_destroy(fotg210, fotg210->dummy);
   1896	fotg210->dummy = NULL;
   1897
   1898	/* DMA consistent memory and pools */
   1899	dma_pool_destroy(fotg210->qtd_pool);
   1900	fotg210->qtd_pool = NULL;
   1901
   1902	dma_pool_destroy(fotg210->qh_pool);
   1903	fotg210->qh_pool = NULL;
   1904
   1905	dma_pool_destroy(fotg210->itd_pool);
   1906	fotg210->itd_pool = NULL;
   1907
   1908	if (fotg210->periodic)
   1909		dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
   1910				fotg210->periodic_size * sizeof(u32),
   1911				fotg210->periodic, fotg210->periodic_dma);
   1912	fotg210->periodic = NULL;
   1913
   1914	/* shadow periodic table */
   1915	kfree(fotg210->pshadow);
   1916	fotg210->pshadow = NULL;
   1917}
   1918
   1919/* remember to add cleanup code (above) if you add anything here */
   1920static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
   1921{
   1922	int i;
   1923
   1924	/* QTDs for control/bulk/intr transfers */
   1925	fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
   1926			fotg210_to_hcd(fotg210)->self.controller,
   1927			sizeof(struct fotg210_qtd),
   1928			32 /* byte alignment (for hw parts) */,
   1929			4096 /* can't cross 4K */);
   1930	if (!fotg210->qtd_pool)
   1931		goto fail;
   1932
   1933	/* QHs for control/bulk/intr transfers */
   1934	fotg210->qh_pool = dma_pool_create("fotg210_qh",
   1935			fotg210_to_hcd(fotg210)->self.controller,
   1936			sizeof(struct fotg210_qh_hw),
   1937			32 /* byte alignment (for hw parts) */,
   1938			4096 /* can't cross 4K */);
   1939	if (!fotg210->qh_pool)
   1940		goto fail;
   1941
   1942	fotg210->async = fotg210_qh_alloc(fotg210, flags);
   1943	if (!fotg210->async)
   1944		goto fail;
   1945
   1946	/* ITD for high speed ISO transfers */
   1947	fotg210->itd_pool = dma_pool_create("fotg210_itd",
   1948			fotg210_to_hcd(fotg210)->self.controller,
   1949			sizeof(struct fotg210_itd),
   1950			64 /* byte alignment (for hw parts) */,
   1951			4096 /* can't cross 4K */);
   1952	if (!fotg210->itd_pool)
   1953		goto fail;
   1954
   1955	/* Hardware periodic table */
   1956	fotg210->periodic =
   1957		dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
   1958				fotg210->periodic_size * sizeof(__le32),
   1959				&fotg210->periodic_dma, 0);
   1960	if (fotg210->periodic == NULL)
   1961		goto fail;
   1962
   1963	for (i = 0; i < fotg210->periodic_size; i++)
   1964		fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
   1965
   1966	/* software shadow of hardware table */
   1967	fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
   1968			flags);
   1969	if (fotg210->pshadow != NULL)
   1970		return 0;
   1971
   1972fail:
   1973	fotg210_dbg(fotg210, "couldn't init memory\n");
   1974	fotg210_mem_cleanup(fotg210);
   1975	return -ENOMEM;
   1976}
   1977/* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
   1978 *
   1979 * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
   1980 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
   1981 * buffers needed for the larger number).  We use one QH per endpoint, queue
   1982 * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
   1983 *
   1984 * ISO traffic uses "ISO TD" (itd) records, and (along with
   1985 * interrupts) needs careful scheduling.  Performance improvements can be
   1986 * an ongoing challenge.  That's in "ehci-sched.c".
   1987 *
   1988 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
   1989 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
   1990 * (b) special fields in qh entries or (c) split iso entries.  TTs will
   1991 * buffer low/full speed data so the host collects it at high speed.
   1992 */
   1993
   1994/* fill a qtd, returning how much of the buffer we were able to queue up */
   1995static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
   1996		dma_addr_t buf, size_t len, int token, int maxpacket)
   1997{
   1998	int i, count;
   1999	u64 addr = buf;
   2000
   2001	/* one buffer entry per 4K ... first might be short or unaligned */
   2002	qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
   2003	qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
   2004	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
   2005	if (likely(len < count))		/* ... iff needed */
   2006		count = len;
   2007	else {
   2008		buf +=  0x1000;
   2009		buf &= ~0x0fff;
   2010
   2011		/* per-qtd limit: from 16K to 20K (best alignment) */
   2012		for (i = 1; count < len && i < 5; i++) {
   2013			addr = buf;
   2014			qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
   2015			qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
   2016					(u32)(addr >> 32));
   2017			buf += 0x1000;
   2018			if ((count + 0x1000) < len)
   2019				count += 0x1000;
   2020			else
   2021				count = len;
   2022		}
   2023
   2024		/* short packets may only terminate transfers */
   2025		if (count != len)
   2026			count -= (count % maxpacket);
   2027	}
   2028	qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
   2029	qtd->length = count;
   2030
   2031	return count;
   2032}
   2033
   2034static inline void qh_update(struct fotg210_hcd *fotg210,
   2035		struct fotg210_qh *qh, struct fotg210_qtd *qtd)
   2036{
   2037	struct fotg210_qh_hw *hw = qh->hw;
   2038
   2039	/* writes to an active overlay are unsafe */
   2040	BUG_ON(qh->qh_state != QH_STATE_IDLE);
   2041
   2042	hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
   2043	hw->hw_alt_next = FOTG210_LIST_END(fotg210);
   2044
   2045	/* Except for control endpoints, we make hardware maintain data
   2046	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
   2047	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
   2048	 * ever clear it.
   2049	 */
   2050	if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
   2051		unsigned is_out, epnum;
   2052
   2053		is_out = qh->is_out;
   2054		epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
   2055		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
   2056			hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
   2057			usb_settoggle(qh->dev, epnum, is_out, 1);
   2058		}
   2059	}
   2060
   2061	hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
   2062}
   2063
   2064/* if it weren't for a common silicon quirk (writing the dummy into the qh
   2065 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
   2066 * recovery (including urb dequeue) would need software changes to a QH...
   2067 */
   2068static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
   2069{
   2070	struct fotg210_qtd *qtd;
   2071
   2072	if (list_empty(&qh->qtd_list))
   2073		qtd = qh->dummy;
   2074	else {
   2075		qtd = list_entry(qh->qtd_list.next,
   2076				struct fotg210_qtd, qtd_list);
   2077		/*
   2078		 * first qtd may already be partially processed.
   2079		 * If we come here during unlink, the QH overlay region
   2080		 * might have reference to the just unlinked qtd. The
   2081		 * qtd is updated in qh_completions(). Update the QH
   2082		 * overlay here.
   2083		 */
   2084		if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
   2085			qh->hw->hw_qtd_next = qtd->hw_next;
   2086			qtd = NULL;
   2087		}
   2088	}
   2089
   2090	if (qtd)
   2091		qh_update(fotg210, qh, qtd);
   2092}
   2093
   2094static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
   2095
   2096static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
   2097		struct usb_host_endpoint *ep)
   2098{
   2099	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
   2100	struct fotg210_qh *qh = ep->hcpriv;
   2101	unsigned long flags;
   2102
   2103	spin_lock_irqsave(&fotg210->lock, flags);
   2104	qh->clearing_tt = 0;
   2105	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
   2106			&& fotg210->rh_state == FOTG210_RH_RUNNING)
   2107		qh_link_async(fotg210, qh);
   2108	spin_unlock_irqrestore(&fotg210->lock, flags);
   2109}
   2110
   2111static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
   2112		struct fotg210_qh *qh, struct urb *urb, u32 token)
   2113{
   2114
   2115	/* If an async split transaction gets an error or is unlinked,
   2116	 * the TT buffer may be left in an indeterminate state.  We
   2117	 * have to clear the TT buffer.
   2118	 *
   2119	 * Note: this routine is never called for Isochronous transfers.
   2120	 */
   2121	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
   2122		struct usb_device *tt = urb->dev->tt->hub;
   2123
   2124		dev_dbg(&tt->dev,
   2125				"clear tt buffer port %d, a%d ep%d t%08x\n",
   2126				urb->dev->ttport, urb->dev->devnum,
   2127				usb_pipeendpoint(urb->pipe), token);
   2128
   2129		if (urb->dev->tt->hub !=
   2130				fotg210_to_hcd(fotg210)->self.root_hub) {
   2131			if (usb_hub_clear_tt_buffer(urb) == 0)
   2132				qh->clearing_tt = 1;
   2133		}
   2134	}
   2135}
   2136
   2137static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
   2138		size_t length, u32 token)
   2139{
   2140	int status = -EINPROGRESS;
   2141
   2142	/* count IN/OUT bytes, not SETUP (even short packets) */
   2143	if (likely(QTD_PID(token) != 2))
   2144		urb->actual_length += length - QTD_LENGTH(token);
   2145
   2146	/* don't modify error codes */
   2147	if (unlikely(urb->unlinked))
   2148		return status;
   2149
   2150	/* force cleanup after short read; not always an error */
   2151	if (unlikely(IS_SHORT_READ(token)))
   2152		status = -EREMOTEIO;
   2153
   2154	/* serious "can't proceed" faults reported by the hardware */
   2155	if (token & QTD_STS_HALT) {
   2156		if (token & QTD_STS_BABBLE) {
   2157			/* FIXME "must" disable babbling device's port too */
   2158			status = -EOVERFLOW;
   2159		/* CERR nonzero + halt --> stall */
   2160		} else if (QTD_CERR(token)) {
   2161			status = -EPIPE;
   2162
   2163		/* In theory, more than one of the following bits can be set
   2164		 * since they are sticky and the transaction is retried.
   2165		 * Which to test first is rather arbitrary.
   2166		 */
   2167		} else if (token & QTD_STS_MMF) {
   2168			/* fs/ls interrupt xfer missed the complete-split */
   2169			status = -EPROTO;
   2170		} else if (token & QTD_STS_DBE) {
   2171			status = (QTD_PID(token) == 1) /* IN ? */
   2172				? -ENOSR  /* hc couldn't read data */
   2173				: -ECOMM; /* hc couldn't write data */
   2174		} else if (token & QTD_STS_XACT) {
   2175			/* timeout, bad CRC, wrong PID, etc */
   2176			fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
   2177					urb->dev->devpath,
   2178					usb_pipeendpoint(urb->pipe),
   2179					usb_pipein(urb->pipe) ? "in" : "out");
   2180			status = -EPROTO;
   2181		} else {	/* unknown */
   2182			status = -EPROTO;
   2183		}
   2184
   2185		fotg210_dbg(fotg210,
   2186				"dev%d ep%d%s qtd token %08x --> status %d\n",
   2187				usb_pipedevice(urb->pipe),
   2188				usb_pipeendpoint(urb->pipe),
   2189				usb_pipein(urb->pipe) ? "in" : "out",
   2190				token, status);
   2191	}
   2192
   2193	return status;
   2194}
   2195
   2196static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
   2197		int status)
   2198__releases(fotg210->lock)
   2199__acquires(fotg210->lock)
   2200{
   2201	if (likely(urb->hcpriv != NULL)) {
   2202		struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
   2203
   2204		/* S-mask in a QH means it's an interrupt urb */
   2205		if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
   2206
   2207			/* ... update hc-wide periodic stats (for usbfs) */
   2208			fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
   2209		}
   2210	}
   2211
   2212	if (unlikely(urb->unlinked)) {
   2213		INCR(fotg210->stats.unlink);
   2214	} else {
   2215		/* report non-error and short read status as zero */
   2216		if (status == -EINPROGRESS || status == -EREMOTEIO)
   2217			status = 0;
   2218		INCR(fotg210->stats.complete);
   2219	}
   2220
   2221#ifdef FOTG210_URB_TRACE
   2222	fotg210_dbg(fotg210,
   2223			"%s %s urb %p ep%d%s status %d len %d/%d\n",
   2224			__func__, urb->dev->devpath, urb,
   2225			usb_pipeendpoint(urb->pipe),
   2226			usb_pipein(urb->pipe) ? "in" : "out",
   2227			status,
   2228			urb->actual_length, urb->transfer_buffer_length);
   2229#endif
   2230
   2231	/* complete() can reenter this HCD */
   2232	usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
   2233	spin_unlock(&fotg210->lock);
   2234	usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
   2235	spin_lock(&fotg210->lock);
   2236}
   2237
   2238static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
   2239
   2240/* Process and free completed qtds for a qh, returning URBs to drivers.
   2241 * Chases up to qh->hw_current.  Returns number of completions called,
   2242 * indicating how much "real" work we did.
   2243 */
   2244static unsigned qh_completions(struct fotg210_hcd *fotg210,
   2245		struct fotg210_qh *qh)
   2246{
   2247	struct fotg210_qtd *last, *end = qh->dummy;
   2248	struct fotg210_qtd *qtd, *tmp;
   2249	int last_status;
   2250	int stopped;
   2251	unsigned count = 0;
   2252	u8 state;
   2253	struct fotg210_qh_hw *hw = qh->hw;
   2254
   2255	if (unlikely(list_empty(&qh->qtd_list)))
   2256		return count;
   2257
   2258	/* completions (or tasks on other cpus) must never clobber HALT
   2259	 * till we've gone through and cleaned everything up, even when
   2260	 * they add urbs to this qh's queue or mark them for unlinking.
   2261	 *
   2262	 * NOTE:  unlinking expects to be done in queue order.
   2263	 *
   2264	 * It's a bug for qh->qh_state to be anything other than
   2265	 * QH_STATE_IDLE, unless our caller is scan_async() or
   2266	 * scan_intr().
   2267	 */
   2268	state = qh->qh_state;
   2269	qh->qh_state = QH_STATE_COMPLETING;
   2270	stopped = (state == QH_STATE_IDLE);
   2271
   2272rescan:
   2273	last = NULL;
   2274	last_status = -EINPROGRESS;
   2275	qh->needs_rescan = 0;
   2276
   2277	/* remove de-activated QTDs from front of queue.
   2278	 * after faults (including short reads), cleanup this urb
   2279	 * then let the queue advance.
   2280	 * if queue is stopped, handles unlinks.
   2281	 */
   2282	list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
   2283		struct urb *urb;
   2284		u32 token = 0;
   2285
   2286		urb = qtd->urb;
   2287
   2288		/* clean up any state from previous QTD ...*/
   2289		if (last) {
   2290			if (likely(last->urb != urb)) {
   2291				fotg210_urb_done(fotg210, last->urb,
   2292						last_status);
   2293				count++;
   2294				last_status = -EINPROGRESS;
   2295			}
   2296			fotg210_qtd_free(fotg210, last);
   2297			last = NULL;
   2298		}
   2299
   2300		/* ignore urbs submitted during completions we reported */
   2301		if (qtd == end)
   2302			break;
   2303
   2304		/* hardware copies qtd out of qh overlay */
   2305		rmb();
   2306		token = hc32_to_cpu(fotg210, qtd->hw_token);
   2307
   2308		/* always clean up qtds the hc de-activated */
   2309retry_xacterr:
   2310		if ((token & QTD_STS_ACTIVE) == 0) {
   2311
   2312			/* Report Data Buffer Error: non-fatal but useful */
   2313			if (token & QTD_STS_DBE)
   2314				fotg210_dbg(fotg210,
   2315					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
   2316					urb, usb_endpoint_num(&urb->ep->desc),
   2317					usb_endpoint_dir_in(&urb->ep->desc)
   2318						? "in" : "out",
   2319					urb->transfer_buffer_length, qtd, qh);
   2320
   2321			/* on STALL, error, and short reads this urb must
   2322			 * complete and all its qtds must be recycled.
   2323			 */
   2324			if ((token & QTD_STS_HALT) != 0) {
   2325
   2326				/* retry transaction errors until we
   2327				 * reach the software xacterr limit
   2328				 */
   2329				if ((token & QTD_STS_XACT) &&
   2330						QTD_CERR(token) == 0 &&
   2331						++qh->xacterrs < QH_XACTERR_MAX &&
   2332						!urb->unlinked) {
   2333					fotg210_dbg(fotg210,
   2334						"detected XactErr len %zu/%zu retry %d\n",
   2335						qtd->length - QTD_LENGTH(token),
   2336						qtd->length,
   2337						qh->xacterrs);
   2338
   2339					/* reset the token in the qtd and the
   2340					 * qh overlay (which still contains
   2341					 * the qtd) so that we pick up from
   2342					 * where we left off
   2343					 */
   2344					token &= ~QTD_STS_HALT;
   2345					token |= QTD_STS_ACTIVE |
   2346						 (FOTG210_TUNE_CERR << 10);
   2347					qtd->hw_token = cpu_to_hc32(fotg210,
   2348							token);
   2349					wmb();
   2350					hw->hw_token = cpu_to_hc32(fotg210,
   2351							token);
   2352					goto retry_xacterr;
   2353				}
   2354				stopped = 1;
   2355
   2356			/* magic dummy for some short reads; qh won't advance.
   2357			 * that silicon quirk can kick in with this dummy too.
   2358			 *
   2359			 * other short reads won't stop the queue, including
   2360			 * control transfers (status stage handles that) or
   2361			 * most other single-qtd reads ... the queue stops if
   2362			 * URB_SHORT_NOT_OK was set so the driver submitting
   2363			 * the urbs could clean it up.
   2364			 */
   2365			} else if (IS_SHORT_READ(token) &&
   2366					!(qtd->hw_alt_next &
   2367					FOTG210_LIST_END(fotg210))) {
   2368				stopped = 1;
   2369			}
   2370
   2371		/* stop scanning when we reach qtds the hc is using */
   2372		} else if (likely(!stopped
   2373				&& fotg210->rh_state >= FOTG210_RH_RUNNING)) {
   2374			break;
   2375
   2376		/* scan the whole queue for unlinks whenever it stops */
   2377		} else {
   2378			stopped = 1;
   2379
   2380			/* cancel everything if we halt, suspend, etc */
   2381			if (fotg210->rh_state < FOTG210_RH_RUNNING)
   2382				last_status = -ESHUTDOWN;
   2383
   2384			/* this qtd is active; skip it unless a previous qtd
   2385			 * for its urb faulted, or its urb was canceled.
   2386			 */
   2387			else if (last_status == -EINPROGRESS && !urb->unlinked)
   2388				continue;
   2389
   2390			/* qh unlinked; token in overlay may be most current */
   2391			if (state == QH_STATE_IDLE &&
   2392					cpu_to_hc32(fotg210, qtd->qtd_dma)
   2393					== hw->hw_current) {
   2394				token = hc32_to_cpu(fotg210, hw->hw_token);
   2395
   2396				/* An unlink may leave an incomplete
   2397				 * async transaction in the TT buffer.
   2398				 * We have to clear it.
   2399				 */
   2400				fotg210_clear_tt_buffer(fotg210, qh, urb,
   2401						token);
   2402			}
   2403		}
   2404
   2405		/* unless we already know the urb's status, collect qtd status
   2406		 * and update count of bytes transferred.  in common short read
   2407		 * cases with only one data qtd (including control transfers),
   2408		 * queue processing won't halt.  but with two or more qtds (for
   2409		 * example, with a 32 KB transfer), when the first qtd gets a
   2410		 * short read the second must be removed by hand.
   2411		 */
   2412		if (last_status == -EINPROGRESS) {
   2413			last_status = qtd_copy_status(fotg210, urb,
   2414					qtd->length, token);
   2415			if (last_status == -EREMOTEIO &&
   2416					(qtd->hw_alt_next &
   2417					FOTG210_LIST_END(fotg210)))
   2418				last_status = -EINPROGRESS;
   2419
   2420			/* As part of low/full-speed endpoint-halt processing
   2421			 * we must clear the TT buffer (11.17.5).
   2422			 */
   2423			if (unlikely(last_status != -EINPROGRESS &&
   2424					last_status != -EREMOTEIO)) {
   2425				/* The TT's in some hubs malfunction when they
   2426				 * receive this request following a STALL (they
   2427				 * stop sending isochronous packets).  Since a
   2428				 * STALL can't leave the TT buffer in a busy
   2429				 * state (if you believe Figures 11-48 - 11-51
   2430				 * in the USB 2.0 spec), we won't clear the TT
   2431				 * buffer in this case.  Strictly speaking this
   2432				 * is a violation of the spec.
   2433				 */
   2434				if (last_status != -EPIPE)
   2435					fotg210_clear_tt_buffer(fotg210, qh,
   2436							urb, token);
   2437			}
   2438		}
   2439
   2440		/* if we're removing something not at the queue head,
   2441		 * patch the hardware queue pointer.
   2442		 */
   2443		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
   2444			last = list_entry(qtd->qtd_list.prev,
   2445					struct fotg210_qtd, qtd_list);
   2446			last->hw_next = qtd->hw_next;
   2447		}
   2448
   2449		/* remove qtd; it's recycled after possible urb completion */
   2450		list_del(&qtd->qtd_list);
   2451		last = qtd;
   2452
   2453		/* reinit the xacterr counter for the next qtd */
   2454		qh->xacterrs = 0;
   2455	}
   2456
   2457	/* last urb's completion might still need calling */
   2458	if (likely(last != NULL)) {
   2459		fotg210_urb_done(fotg210, last->urb, last_status);
   2460		count++;
   2461		fotg210_qtd_free(fotg210, last);
   2462	}
   2463
   2464	/* Do we need to rescan for URBs dequeued during a giveback? */
   2465	if (unlikely(qh->needs_rescan)) {
   2466		/* If the QH is already unlinked, do the rescan now. */
   2467		if (state == QH_STATE_IDLE)
   2468			goto rescan;
   2469
   2470		/* Otherwise we have to wait until the QH is fully unlinked.
   2471		 * Our caller will start an unlink if qh->needs_rescan is
   2472		 * set.  But if an unlink has already started, nothing needs
   2473		 * to be done.
   2474		 */
   2475		if (state != QH_STATE_LINKED)
   2476			qh->needs_rescan = 0;
   2477	}
   2478
   2479	/* restore original state; caller must unlink or relink */
   2480	qh->qh_state = state;
   2481
   2482	/* be sure the hardware's done with the qh before refreshing
   2483	 * it after fault cleanup, or recovering from silicon wrongly
   2484	 * overlaying the dummy qtd (which reduces DMA chatter).
   2485	 */
   2486	if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
   2487		switch (state) {
   2488		case QH_STATE_IDLE:
   2489			qh_refresh(fotg210, qh);
   2490			break;
   2491		case QH_STATE_LINKED:
   2492			/* We won't refresh a QH that's linked (after the HC
   2493			 * stopped the queue).  That avoids a race:
   2494			 *  - HC reads first part of QH;
   2495			 *  - CPU updates that first part and the token;
   2496			 *  - HC reads rest of that QH, including token
   2497			 * Result:  HC gets an inconsistent image, and then
   2498			 * DMAs to/from the wrong memory (corrupting it).
   2499			 *
   2500			 * That should be rare for interrupt transfers,
   2501			 * except maybe high bandwidth ...
   2502			 */
   2503
   2504			/* Tell the caller to start an unlink */
   2505			qh->needs_rescan = 1;
   2506			break;
   2507		/* otherwise, unlink already started */
   2508		}
   2509	}
   2510
   2511	return count;
   2512}
   2513
   2514/* reverse of qh_urb_transaction:  free a list of TDs.
   2515 * used for cleanup after errors, before HC sees an URB's TDs.
   2516 */
   2517static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
   2518		struct list_head *head)
   2519{
   2520	struct fotg210_qtd *qtd, *temp;
   2521
   2522	list_for_each_entry_safe(qtd, temp, head, qtd_list) {
   2523		list_del(&qtd->qtd_list);
   2524		fotg210_qtd_free(fotg210, qtd);
   2525	}
   2526}
   2527
   2528/* create a list of filled qtds for this URB; won't link into qh.
   2529 */
   2530static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
   2531		struct urb *urb, struct list_head *head, gfp_t flags)
   2532{
   2533	struct fotg210_qtd *qtd, *qtd_prev;
   2534	dma_addr_t buf;
   2535	int len, this_sg_len, maxpacket;
   2536	int is_input;
   2537	u32 token;
   2538	int i;
   2539	struct scatterlist *sg;
   2540
   2541	/*
   2542	 * URBs map to sequences of QTDs:  one logical transaction
   2543	 */
   2544	qtd = fotg210_qtd_alloc(fotg210, flags);
   2545	if (unlikely(!qtd))
   2546		return NULL;
   2547	list_add_tail(&qtd->qtd_list, head);
   2548	qtd->urb = urb;
   2549
   2550	token = QTD_STS_ACTIVE;
   2551	token |= (FOTG210_TUNE_CERR << 10);
   2552	/* for split transactions, SplitXState initialized to zero */
   2553
   2554	len = urb->transfer_buffer_length;
   2555	is_input = usb_pipein(urb->pipe);
   2556	if (usb_pipecontrol(urb->pipe)) {
   2557		/* SETUP pid */
   2558		qtd_fill(fotg210, qtd, urb->setup_dma,
   2559				sizeof(struct usb_ctrlrequest),
   2560				token | (2 /* "setup" */ << 8), 8);
   2561
   2562		/* ... and always at least one more pid */
   2563		token ^= QTD_TOGGLE;
   2564		qtd_prev = qtd;
   2565		qtd = fotg210_qtd_alloc(fotg210, flags);
   2566		if (unlikely(!qtd))
   2567			goto cleanup;
   2568		qtd->urb = urb;
   2569		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
   2570		list_add_tail(&qtd->qtd_list, head);
   2571
   2572		/* for zero length DATA stages, STATUS is always IN */
   2573		if (len == 0)
   2574			token |= (1 /* "in" */ << 8);
   2575	}
   2576
   2577	/*
   2578	 * data transfer stage:  buffer setup
   2579	 */
   2580	i = urb->num_mapped_sgs;
   2581	if (len > 0 && i > 0) {
   2582		sg = urb->sg;
   2583		buf = sg_dma_address(sg);
   2584
   2585		/* urb->transfer_buffer_length may be smaller than the
   2586		 * size of the scatterlist (or vice versa)
   2587		 */
   2588		this_sg_len = min_t(int, sg_dma_len(sg), len);
   2589	} else {
   2590		sg = NULL;
   2591		buf = urb->transfer_dma;
   2592		this_sg_len = len;
   2593	}
   2594
   2595	if (is_input)
   2596		token |= (1 /* "in" */ << 8);
   2597	/* else it's already initted to "out" pid (0 << 8) */
   2598
   2599	maxpacket = usb_maxpacket(urb->dev, urb->pipe);
   2600
   2601	/*
   2602	 * buffer gets wrapped in one or more qtds;
   2603	 * last one may be "short" (including zero len)
   2604	 * and may serve as a control status ack
   2605	 */
   2606	for (;;) {
   2607		int this_qtd_len;
   2608
   2609		this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
   2610				maxpacket);
   2611		this_sg_len -= this_qtd_len;
   2612		len -= this_qtd_len;
   2613		buf += this_qtd_len;
   2614
   2615		/*
   2616		 * short reads advance to a "magic" dummy instead of the next
   2617		 * qtd ... that forces the queue to stop, for manual cleanup.
   2618		 * (this will usually be overridden later.)
   2619		 */
   2620		if (is_input)
   2621			qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
   2622
   2623		/* qh makes control packets use qtd toggle; maybe switch it */
   2624		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
   2625			token ^= QTD_TOGGLE;
   2626
   2627		if (likely(this_sg_len <= 0)) {
   2628			if (--i <= 0 || len <= 0)
   2629				break;
   2630			sg = sg_next(sg);
   2631			buf = sg_dma_address(sg);
   2632			this_sg_len = min_t(int, sg_dma_len(sg), len);
   2633		}
   2634
   2635		qtd_prev = qtd;
   2636		qtd = fotg210_qtd_alloc(fotg210, flags);
   2637		if (unlikely(!qtd))
   2638			goto cleanup;
   2639		qtd->urb = urb;
   2640		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
   2641		list_add_tail(&qtd->qtd_list, head);
   2642	}
   2643
   2644	/*
   2645	 * unless the caller requires manual cleanup after short reads,
   2646	 * have the alt_next mechanism keep the queue running after the
   2647	 * last data qtd (the only one, for control and most other cases).
   2648	 */
   2649	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
   2650			usb_pipecontrol(urb->pipe)))
   2651		qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
   2652
   2653	/*
   2654	 * control requests may need a terminating data "status" ack;
   2655	 * other OUT ones may need a terminating short packet
   2656	 * (zero length).
   2657	 */
   2658	if (likely(urb->transfer_buffer_length != 0)) {
   2659		int one_more = 0;
   2660
   2661		if (usb_pipecontrol(urb->pipe)) {
   2662			one_more = 1;
   2663			token ^= 0x0100;	/* "in" <--> "out"  */
   2664			token |= QTD_TOGGLE;	/* force DATA1 */
   2665		} else if (usb_pipeout(urb->pipe)
   2666				&& (urb->transfer_flags & URB_ZERO_PACKET)
   2667				&& !(urb->transfer_buffer_length % maxpacket)) {
   2668			one_more = 1;
   2669		}
   2670		if (one_more) {
   2671			qtd_prev = qtd;
   2672			qtd = fotg210_qtd_alloc(fotg210, flags);
   2673			if (unlikely(!qtd))
   2674				goto cleanup;
   2675			qtd->urb = urb;
   2676			qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
   2677			list_add_tail(&qtd->qtd_list, head);
   2678
   2679			/* never any data in such packets */
   2680			qtd_fill(fotg210, qtd, 0, 0, token, 0);
   2681		}
   2682	}
   2683
   2684	/* by default, enable interrupt on urb completion */
   2685	if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
   2686		qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
   2687	return head;
   2688
   2689cleanup:
   2690	qtd_list_free(fotg210, urb, head);
   2691	return NULL;
   2692}
   2693
   2694/* Would be best to create all qh's from config descriptors,
   2695 * when each interface/altsetting is established.  Unlink
   2696 * any previous qh and cancel its urbs first; endpoints are
   2697 * implicitly reset then (data toggle too).
   2698 * That'd mean updating how usbcore talks to HCDs. (2.7?)
   2699 */
   2700
   2701
   2702/* Each QH holds a qtd list; a QH is used for everything except iso.
   2703 *
   2704 * For interrupt urbs, the scheduler must set the microframe scheduling
   2705 * mask(s) each time the QH gets scheduled.  For highspeed, that's
   2706 * just one microframe in the s-mask.  For split interrupt transactions
   2707 * there are additional complications: c-mask, maybe FSTNs.
   2708 */
   2709static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
   2710		gfp_t flags)
   2711{
   2712	struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
   2713	struct usb_host_endpoint *ep;
   2714	u32 info1 = 0, info2 = 0;
   2715	int is_input, type;
   2716	int maxp = 0;
   2717	int mult;
   2718	struct usb_tt *tt = urb->dev->tt;
   2719	struct fotg210_qh_hw *hw;
   2720
   2721	if (!qh)
   2722		return qh;
   2723
   2724	/*
   2725	 * init endpoint/device data for this QH
   2726	 */
   2727	info1 |= usb_pipeendpoint(urb->pipe) << 8;
   2728	info1 |= usb_pipedevice(urb->pipe) << 0;
   2729
   2730	is_input = usb_pipein(urb->pipe);
   2731	type = usb_pipetype(urb->pipe);
   2732	ep = usb_pipe_endpoint(urb->dev, urb->pipe);
   2733	maxp = usb_endpoint_maxp(&ep->desc);
   2734	mult = usb_endpoint_maxp_mult(&ep->desc);
   2735
   2736	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
   2737	 * acts like up to 3KB, but is built from smaller packets.
   2738	 */
   2739	if (maxp > 1024) {
   2740		fotg210_dbg(fotg210, "bogus qh maxpacket %d\n", maxp);
   2741		goto done;
   2742	}
   2743
   2744	/* Compute interrupt scheduling parameters just once, and save.
   2745	 * - allowing for high bandwidth, how many nsec/uframe are used?
   2746	 * - split transactions need a second CSPLIT uframe; same question
   2747	 * - splits also need a schedule gap (for full/low speed I/O)
   2748	 * - qh has a polling interval
   2749	 *
   2750	 * For control/bulk requests, the HC or TT handles these.
   2751	 */
   2752	if (type == PIPE_INTERRUPT) {
   2753		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
   2754				is_input, 0, mult * maxp));
   2755		qh->start = NO_FRAME;
   2756
   2757		if (urb->dev->speed == USB_SPEED_HIGH) {
   2758			qh->c_usecs = 0;
   2759			qh->gap_uf = 0;
   2760
   2761			qh->period = urb->interval >> 3;
   2762			if (qh->period == 0 && urb->interval != 1) {
   2763				/* NOTE interval 2 or 4 uframes could work.
   2764				 * But interval 1 scheduling is simpler, and
   2765				 * includes high bandwidth.
   2766				 */
   2767				urb->interval = 1;
   2768			} else if (qh->period > fotg210->periodic_size) {
   2769				qh->period = fotg210->periodic_size;
   2770				urb->interval = qh->period << 3;
   2771			}
   2772		} else {
   2773			int think_time;
   2774
   2775			/* gap is f(FS/LS transfer times) */
   2776			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
   2777					is_input, 0, maxp) / (125 * 1000);
   2778
   2779			/* FIXME this just approximates SPLIT/CSPLIT times */
   2780			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
   2781				qh->c_usecs = qh->usecs + HS_USECS(0);
   2782				qh->usecs = HS_USECS(1);
   2783			} else {		/* SPLIT+DATA, gap, CSPLIT */
   2784				qh->usecs += HS_USECS(1);
   2785				qh->c_usecs = HS_USECS(0);
   2786			}
   2787
   2788			think_time = tt ? tt->think_time : 0;
   2789			qh->tt_usecs = NS_TO_US(think_time +
   2790					usb_calc_bus_time(urb->dev->speed,
   2791					is_input, 0, maxp));
   2792			qh->period = urb->interval;
   2793			if (qh->period > fotg210->periodic_size) {
   2794				qh->period = fotg210->periodic_size;
   2795				urb->interval = qh->period;
   2796			}
   2797		}
   2798	}
   2799
   2800	/* support for tt scheduling, and access to toggles */
   2801	qh->dev = urb->dev;
   2802
   2803	/* using TT? */
   2804	switch (urb->dev->speed) {
   2805	case USB_SPEED_LOW:
   2806		info1 |= QH_LOW_SPEED;
   2807		fallthrough;
   2808
   2809	case USB_SPEED_FULL:
   2810		/* EPS 0 means "full" */
   2811		if (type != PIPE_INTERRUPT)
   2812			info1 |= (FOTG210_TUNE_RL_TT << 28);
   2813		if (type == PIPE_CONTROL) {
   2814			info1 |= QH_CONTROL_EP;		/* for TT */
   2815			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
   2816		}
   2817		info1 |= maxp << 16;
   2818
   2819		info2 |= (FOTG210_TUNE_MULT_TT << 30);
   2820
   2821		/* Some Freescale processors have an erratum in which the
   2822		 * port number in the queue head was 0..N-1 instead of 1..N.
   2823		 */
   2824		if (fotg210_has_fsl_portno_bug(fotg210))
   2825			info2 |= (urb->dev->ttport-1) << 23;
   2826		else
   2827			info2 |= urb->dev->ttport << 23;
   2828
   2829		/* set the address of the TT; for TDI's integrated
   2830		 * root hub tt, leave it zeroed.
   2831		 */
   2832		if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
   2833			info2 |= tt->hub->devnum << 16;
   2834
   2835		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
   2836
   2837		break;
   2838
   2839	case USB_SPEED_HIGH:		/* no TT involved */
   2840		info1 |= QH_HIGH_SPEED;
   2841		if (type == PIPE_CONTROL) {
   2842			info1 |= (FOTG210_TUNE_RL_HS << 28);
   2843			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
   2844			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
   2845			info2 |= (FOTG210_TUNE_MULT_HS << 30);
   2846		} else if (type == PIPE_BULK) {
   2847			info1 |= (FOTG210_TUNE_RL_HS << 28);
   2848			/* The USB spec says that high speed bulk endpoints
   2849			 * always use 512 byte maxpacket.  But some device
   2850			 * vendors decided to ignore that, and MSFT is happy
   2851			 * to help them do so.  So now people expect to use
   2852			 * such nonconformant devices with Linux too; sigh.
   2853			 */
   2854			info1 |= maxp << 16;
   2855			info2 |= (FOTG210_TUNE_MULT_HS << 30);
   2856		} else {		/* PIPE_INTERRUPT */
   2857			info1 |= maxp << 16;
   2858			info2 |= mult << 30;
   2859		}
   2860		break;
   2861	default:
   2862		fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
   2863				urb->dev->speed);
   2864done:
   2865		qh_destroy(fotg210, qh);
   2866		return NULL;
   2867	}
   2868
   2869	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
   2870
   2871	/* init as live, toggle clear, advance to dummy */
   2872	qh->qh_state = QH_STATE_IDLE;
   2873	hw = qh->hw;
   2874	hw->hw_info1 = cpu_to_hc32(fotg210, info1);
   2875	hw->hw_info2 = cpu_to_hc32(fotg210, info2);
   2876	qh->is_out = !is_input;
   2877	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
   2878	qh_refresh(fotg210, qh);
   2879	return qh;
   2880}
   2881
   2882static void enable_async(struct fotg210_hcd *fotg210)
   2883{
   2884	if (fotg210->async_count++)
   2885		return;
   2886
   2887	/* Stop waiting to turn off the async schedule */
   2888	fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
   2889
   2890	/* Don't start the schedule until ASS is 0 */
   2891	fotg210_poll_ASS(fotg210);
   2892	turn_on_io_watchdog(fotg210);
   2893}
   2894
   2895static void disable_async(struct fotg210_hcd *fotg210)
   2896{
   2897	if (--fotg210->async_count)
   2898		return;
   2899
   2900	/* The async schedule and async_unlink list are supposed to be empty */
   2901	WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
   2902
   2903	/* Don't turn off the schedule until ASS is 1 */
   2904	fotg210_poll_ASS(fotg210);
   2905}
   2906
   2907/* move qh (and its qtds) onto async queue; maybe enable queue.  */
   2908
   2909static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
   2910{
   2911	__hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
   2912	struct fotg210_qh *head;
   2913
   2914	/* Don't link a QH if there's a Clear-TT-Buffer pending */
   2915	if (unlikely(qh->clearing_tt))
   2916		return;
   2917
   2918	WARN_ON(qh->qh_state != QH_STATE_IDLE);
   2919
   2920	/* clear halt and/or toggle; and maybe recover from silicon quirk */
   2921	qh_refresh(fotg210, qh);
   2922
   2923	/* splice right after start */
   2924	head = fotg210->async;
   2925	qh->qh_next = head->qh_next;
   2926	qh->hw->hw_next = head->hw->hw_next;
   2927	wmb();
   2928
   2929	head->qh_next.qh = qh;
   2930	head->hw->hw_next = dma;
   2931
   2932	qh->xacterrs = 0;
   2933	qh->qh_state = QH_STATE_LINKED;
   2934	/* qtd completions reported later by interrupt */
   2935
   2936	enable_async(fotg210);
   2937}
   2938
   2939/* For control/bulk/interrupt, return QH with these TDs appended.
   2940 * Allocates and initializes the QH if necessary.
   2941 * Returns null if it can't allocate a QH it needs to.
   2942 * If the QH has TDs (urbs) already, that's great.
   2943 */
   2944static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
   2945		struct urb *urb, struct list_head *qtd_list,
   2946		int epnum, void **ptr)
   2947{
   2948	struct fotg210_qh *qh = NULL;
   2949	__hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
   2950
   2951	qh = (struct fotg210_qh *) *ptr;
   2952	if (unlikely(qh == NULL)) {
   2953		/* can't sleep here, we have fotg210->lock... */
   2954		qh = qh_make(fotg210, urb, GFP_ATOMIC);
   2955		*ptr = qh;
   2956	}
   2957	if (likely(qh != NULL)) {
   2958		struct fotg210_qtd *qtd;
   2959
   2960		if (unlikely(list_empty(qtd_list)))
   2961			qtd = NULL;
   2962		else
   2963			qtd = list_entry(qtd_list->next, struct fotg210_qtd,
   2964					qtd_list);
   2965
   2966		/* control qh may need patching ... */
   2967		if (unlikely(epnum == 0)) {
   2968			/* usb_reset_device() briefly reverts to address 0 */
   2969			if (usb_pipedevice(urb->pipe) == 0)
   2970				qh->hw->hw_info1 &= ~qh_addr_mask;
   2971		}
   2972
   2973		/* just one way to queue requests: swap with the dummy qtd.
   2974		 * only hc or qh_refresh() ever modify the overlay.
   2975		 */
   2976		if (likely(qtd != NULL)) {
   2977			struct fotg210_qtd *dummy;
   2978			dma_addr_t dma;
   2979			__hc32 token;
   2980
   2981			/* to avoid racing the HC, use the dummy td instead of
   2982			 * the first td of our list (becomes new dummy).  both
   2983			 * tds stay deactivated until we're done, when the
   2984			 * HC is allowed to fetch the old dummy (4.10.2).
   2985			 */
   2986			token = qtd->hw_token;
   2987			qtd->hw_token = HALT_BIT(fotg210);
   2988
   2989			dummy = qh->dummy;
   2990
   2991			dma = dummy->qtd_dma;
   2992			*dummy = *qtd;
   2993			dummy->qtd_dma = dma;
   2994
   2995			list_del(&qtd->qtd_list);
   2996			list_add(&dummy->qtd_list, qtd_list);
   2997			list_splice_tail(qtd_list, &qh->qtd_list);
   2998
   2999			fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
   3000			qh->dummy = qtd;
   3001
   3002			/* hc must see the new dummy at list end */
   3003			dma = qtd->qtd_dma;
   3004			qtd = list_entry(qh->qtd_list.prev,
   3005					struct fotg210_qtd, qtd_list);
   3006			qtd->hw_next = QTD_NEXT(fotg210, dma);
   3007
   3008			/* let the hc process these next qtds */
   3009			wmb();
   3010			dummy->hw_token = token;
   3011
   3012			urb->hcpriv = qh;
   3013		}
   3014	}
   3015	return qh;
   3016}
   3017
   3018static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
   3019		struct list_head *qtd_list, gfp_t mem_flags)
   3020{
   3021	int epnum;
   3022	unsigned long flags;
   3023	struct fotg210_qh *qh = NULL;
   3024	int rc;
   3025
   3026	epnum = urb->ep->desc.bEndpointAddress;
   3027
   3028#ifdef FOTG210_URB_TRACE
   3029	{
   3030		struct fotg210_qtd *qtd;
   3031
   3032		qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
   3033		fotg210_dbg(fotg210,
   3034				"%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
   3035				__func__, urb->dev->devpath, urb,
   3036				epnum & 0x0f, (epnum & USB_DIR_IN)
   3037					? "in" : "out",
   3038				urb->transfer_buffer_length,
   3039				qtd, urb->ep->hcpriv);
   3040	}
   3041#endif
   3042
   3043	spin_lock_irqsave(&fotg210->lock, flags);
   3044	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
   3045		rc = -ESHUTDOWN;
   3046		goto done;
   3047	}
   3048	rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
   3049	if (unlikely(rc))
   3050		goto done;
   3051
   3052	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
   3053	if (unlikely(qh == NULL)) {
   3054		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
   3055		rc = -ENOMEM;
   3056		goto done;
   3057	}
   3058
   3059	/* Control/bulk operations through TTs don't need scheduling,
   3060	 * the HC and TT handle it when the TT has a buffer ready.
   3061	 */
   3062	if (likely(qh->qh_state == QH_STATE_IDLE))
   3063		qh_link_async(fotg210, qh);
   3064done:
   3065	spin_unlock_irqrestore(&fotg210->lock, flags);
   3066	if (unlikely(qh == NULL))
   3067		qtd_list_free(fotg210, urb, qtd_list);
   3068	return rc;
   3069}
   3070
   3071static void single_unlink_async(struct fotg210_hcd *fotg210,
   3072		struct fotg210_qh *qh)
   3073{
   3074	struct fotg210_qh *prev;
   3075
   3076	/* Add to the end of the list of QHs waiting for the next IAAD */
   3077	qh->qh_state = QH_STATE_UNLINK;
   3078	if (fotg210->async_unlink)
   3079		fotg210->async_unlink_last->unlink_next = qh;
   3080	else
   3081		fotg210->async_unlink = qh;
   3082	fotg210->async_unlink_last = qh;
   3083
   3084	/* Unlink it from the schedule */
   3085	prev = fotg210->async;
   3086	while (prev->qh_next.qh != qh)
   3087		prev = prev->qh_next.qh;
   3088
   3089	prev->hw->hw_next = qh->hw->hw_next;
   3090	prev->qh_next = qh->qh_next;
   3091	if (fotg210->qh_scan_next == qh)
   3092		fotg210->qh_scan_next = qh->qh_next.qh;
   3093}
   3094
   3095static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
   3096{
   3097	/*
   3098	 * Do nothing if an IAA cycle is already running or
   3099	 * if one will be started shortly.
   3100	 */
   3101	if (fotg210->async_iaa || fotg210->async_unlinking)
   3102		return;
   3103
   3104	/* Do all the waiting QHs at once */
   3105	fotg210->async_iaa = fotg210->async_unlink;
   3106	fotg210->async_unlink = NULL;
   3107
   3108	/* If the controller isn't running, we don't have to wait for it */
   3109	if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
   3110		if (!nested)		/* Avoid recursion */
   3111			end_unlink_async(fotg210);
   3112
   3113	/* Otherwise start a new IAA cycle */
   3114	} else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
   3115		/* Make sure the unlinks are all visible to the hardware */
   3116		wmb();
   3117
   3118		fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
   3119				&fotg210->regs->command);
   3120		fotg210_readl(fotg210, &fotg210->regs->command);
   3121		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
   3122				true);
   3123	}
   3124}
   3125
   3126/* the async qh for the qtds being unlinked are now gone from the HC */
   3127
   3128static void end_unlink_async(struct fotg210_hcd *fotg210)
   3129{
   3130	struct fotg210_qh *qh;
   3131
   3132	/* Process the idle QHs */
   3133restart:
   3134	fotg210->async_unlinking = true;
   3135	while (fotg210->async_iaa) {
   3136		qh = fotg210->async_iaa;
   3137		fotg210->async_iaa = qh->unlink_next;
   3138		qh->unlink_next = NULL;
   3139
   3140		qh->qh_state = QH_STATE_IDLE;
   3141		qh->qh_next.qh = NULL;
   3142
   3143		qh_completions(fotg210, qh);
   3144		if (!list_empty(&qh->qtd_list) &&
   3145				fotg210->rh_state == FOTG210_RH_RUNNING)
   3146			qh_link_async(fotg210, qh);
   3147		disable_async(fotg210);
   3148	}
   3149	fotg210->async_unlinking = false;
   3150
   3151	/* Start a new IAA cycle if any QHs are waiting for it */
   3152	if (fotg210->async_unlink) {
   3153		start_iaa_cycle(fotg210, true);
   3154		if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
   3155			goto restart;
   3156	}
   3157}
   3158
   3159static void unlink_empty_async(struct fotg210_hcd *fotg210)
   3160{
   3161	struct fotg210_qh *qh, *next;
   3162	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
   3163	bool check_unlinks_later = false;
   3164
   3165	/* Unlink all the async QHs that have been empty for a timer cycle */
   3166	next = fotg210->async->qh_next.qh;
   3167	while (next) {
   3168		qh = next;
   3169		next = qh->qh_next.qh;
   3170
   3171		if (list_empty(&qh->qtd_list) &&
   3172				qh->qh_state == QH_STATE_LINKED) {
   3173			if (!stopped && qh->unlink_cycle ==
   3174					fotg210->async_unlink_cycle)
   3175				check_unlinks_later = true;
   3176			else
   3177				single_unlink_async(fotg210, qh);
   3178		}
   3179	}
   3180
   3181	/* Start a new IAA cycle if any QHs are waiting for it */
   3182	if (fotg210->async_unlink)
   3183		start_iaa_cycle(fotg210, false);
   3184
   3185	/* QHs that haven't been empty for long enough will be handled later */
   3186	if (check_unlinks_later) {
   3187		fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
   3188				true);
   3189		++fotg210->async_unlink_cycle;
   3190	}
   3191}
   3192
   3193/* makes sure the async qh will become idle */
   3194/* caller must own fotg210->lock */
   3195
   3196static void start_unlink_async(struct fotg210_hcd *fotg210,
   3197		struct fotg210_qh *qh)
   3198{
   3199	/*
   3200	 * If the QH isn't linked then there's nothing we can do
   3201	 * unless we were called during a giveback, in which case
   3202	 * qh_completions() has to deal with it.
   3203	 */
   3204	if (qh->qh_state != QH_STATE_LINKED) {
   3205		if (qh->qh_state == QH_STATE_COMPLETING)
   3206			qh->needs_rescan = 1;
   3207		return;
   3208	}
   3209
   3210	single_unlink_async(fotg210, qh);
   3211	start_iaa_cycle(fotg210, false);
   3212}
   3213
   3214static void scan_async(struct fotg210_hcd *fotg210)
   3215{
   3216	struct fotg210_qh *qh;
   3217	bool check_unlinks_later = false;
   3218
   3219	fotg210->qh_scan_next = fotg210->async->qh_next.qh;
   3220	while (fotg210->qh_scan_next) {
   3221		qh = fotg210->qh_scan_next;
   3222		fotg210->qh_scan_next = qh->qh_next.qh;
   3223rescan:
   3224		/* clean any finished work for this qh */
   3225		if (!list_empty(&qh->qtd_list)) {
   3226			int temp;
   3227
   3228			/*
   3229			 * Unlinks could happen here; completion reporting
   3230			 * drops the lock.  That's why fotg210->qh_scan_next
   3231			 * always holds the next qh to scan; if the next qh
   3232			 * gets unlinked then fotg210->qh_scan_next is adjusted
   3233			 * in single_unlink_async().
   3234			 */
   3235			temp = qh_completions(fotg210, qh);
   3236			if (qh->needs_rescan) {
   3237				start_unlink_async(fotg210, qh);
   3238			} else if (list_empty(&qh->qtd_list)
   3239					&& qh->qh_state == QH_STATE_LINKED) {
   3240				qh->unlink_cycle = fotg210->async_unlink_cycle;
   3241				check_unlinks_later = true;
   3242			} else if (temp != 0)
   3243				goto rescan;
   3244		}
   3245	}
   3246
   3247	/*
   3248	 * Unlink empty entries, reducing DMA usage as well
   3249	 * as HCD schedule-scanning costs.  Delay for any qh
   3250	 * we just scanned, there's a not-unusual case that it
   3251	 * doesn't stay idle for long.
   3252	 */
   3253	if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
   3254			!(fotg210->enabled_hrtimer_events &
   3255			BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
   3256		fotg210_enable_event(fotg210,
   3257				FOTG210_HRTIMER_ASYNC_UNLINKS, true);
   3258		++fotg210->async_unlink_cycle;
   3259	}
   3260}
   3261/* EHCI scheduled transaction support:  interrupt, iso, split iso
   3262 * These are called "periodic" transactions in the EHCI spec.
   3263 *
   3264 * Note that for interrupt transfers, the QH/QTD manipulation is shared
   3265 * with the "asynchronous" transaction support (control/bulk transfers).
   3266 * The only real difference is in how interrupt transfers are scheduled.
   3267 *
   3268 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
   3269 * It keeps track of every ITD (or SITD) that's linked, and holds enough
   3270 * pre-calculated schedule data to make appending to the queue be quick.
   3271 */
   3272static int fotg210_get_frame(struct usb_hcd *hcd);
   3273
   3274/* periodic_next_shadow - return "next" pointer on shadow list
   3275 * @periodic: host pointer to qh/itd
   3276 * @tag: hardware tag for type of this record
   3277 */
   3278static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
   3279		union fotg210_shadow *periodic, __hc32 tag)
   3280{
   3281	switch (hc32_to_cpu(fotg210, tag)) {
   3282	case Q_TYPE_QH:
   3283		return &periodic->qh->qh_next;
   3284	case Q_TYPE_FSTN:
   3285		return &periodic->fstn->fstn_next;
   3286	default:
   3287		return &periodic->itd->itd_next;
   3288	}
   3289}
   3290
   3291static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
   3292		union fotg210_shadow *periodic, __hc32 tag)
   3293{
   3294	switch (hc32_to_cpu(fotg210, tag)) {
   3295	/* our fotg210_shadow.qh is actually software part */
   3296	case Q_TYPE_QH:
   3297		return &periodic->qh->hw->hw_next;
   3298	/* others are hw parts */
   3299	default:
   3300		return periodic->hw_next;
   3301	}
   3302}
   3303
   3304/* caller must hold fotg210->lock */
   3305static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
   3306		void *ptr)
   3307{
   3308	union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
   3309	__hc32 *hw_p = &fotg210->periodic[frame];
   3310	union fotg210_shadow here = *prev_p;
   3311
   3312	/* find predecessor of "ptr"; hw and shadow lists are in sync */
   3313	while (here.ptr && here.ptr != ptr) {
   3314		prev_p = periodic_next_shadow(fotg210, prev_p,
   3315				Q_NEXT_TYPE(fotg210, *hw_p));
   3316		hw_p = shadow_next_periodic(fotg210, &here,
   3317				Q_NEXT_TYPE(fotg210, *hw_p));
   3318		here = *prev_p;
   3319	}
   3320	/* an interrupt entry (at list end) could have been shared */
   3321	if (!here.ptr)
   3322		return;
   3323
   3324	/* update shadow and hardware lists ... the old "next" pointers
   3325	 * from ptr may still be in use, the caller updates them.
   3326	 */
   3327	*prev_p = *periodic_next_shadow(fotg210, &here,
   3328			Q_NEXT_TYPE(fotg210, *hw_p));
   3329
   3330	*hw_p = *shadow_next_periodic(fotg210, &here,
   3331			Q_NEXT_TYPE(fotg210, *hw_p));
   3332}
   3333
   3334/* how many of the uframe's 125 usecs are allocated? */
   3335static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
   3336		unsigned frame, unsigned uframe)
   3337{
   3338	__hc32 *hw_p = &fotg210->periodic[frame];
   3339	union fotg210_shadow *q = &fotg210->pshadow[frame];
   3340	unsigned usecs = 0;
   3341	struct fotg210_qh_hw *hw;
   3342
   3343	while (q->ptr) {
   3344		switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
   3345		case Q_TYPE_QH:
   3346			hw = q->qh->hw;
   3347			/* is it in the S-mask? */
   3348			if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
   3349				usecs += q->qh->usecs;
   3350			/* ... or C-mask? */
   3351			if (hw->hw_info2 & cpu_to_hc32(fotg210,
   3352					1 << (8 + uframe)))
   3353				usecs += q->qh->c_usecs;
   3354			hw_p = &hw->hw_next;
   3355			q = &q->qh->qh_next;
   3356			break;
   3357		/* case Q_TYPE_FSTN: */
   3358		default:
   3359			/* for "save place" FSTNs, count the relevant INTR
   3360			 * bandwidth from the previous frame
   3361			 */
   3362			if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
   3363				fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
   3364
   3365			hw_p = &q->fstn->hw_next;
   3366			q = &q->fstn->fstn_next;
   3367			break;
   3368		case Q_TYPE_ITD:
   3369			if (q->itd->hw_transaction[uframe])
   3370				usecs += q->itd->stream->usecs;
   3371			hw_p = &q->itd->hw_next;
   3372			q = &q->itd->itd_next;
   3373			break;
   3374		}
   3375	}
   3376	if (usecs > fotg210->uframe_periodic_max)
   3377		fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
   3378				frame * 8 + uframe, usecs);
   3379	return usecs;
   3380}
   3381
   3382static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
   3383{
   3384	if (!dev1->tt || !dev2->tt)
   3385		return 0;
   3386	if (dev1->tt != dev2->tt)
   3387		return 0;
   3388	if (dev1->tt->multi)
   3389		return dev1->ttport == dev2->ttport;
   3390	else
   3391		return 1;
   3392}
   3393
   3394/* return true iff the device's transaction translator is available
   3395 * for a periodic transfer starting at the specified frame, using
   3396 * all the uframes in the mask.
   3397 */
   3398static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
   3399		struct usb_device *dev, unsigned frame, u32 uf_mask)
   3400{
   3401	if (period == 0)	/* error */
   3402		return 0;
   3403
   3404	/* note bandwidth wastage:  split never follows csplit
   3405	 * (different dev or endpoint) until the next uframe.
   3406	 * calling convention doesn't make that distinction.
   3407	 */
   3408	for (; frame < fotg210->periodic_size; frame += period) {
   3409		union fotg210_shadow here;
   3410		__hc32 type;
   3411		struct fotg210_qh_hw *hw;
   3412
   3413		here = fotg210->pshadow[frame];
   3414		type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
   3415		while (here.ptr) {
   3416			switch (hc32_to_cpu(fotg210, type)) {
   3417			case Q_TYPE_ITD:
   3418				type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
   3419				here = here.itd->itd_next;
   3420				continue;
   3421			case Q_TYPE_QH:
   3422				hw = here.qh->hw;
   3423				if (same_tt(dev, here.qh->dev)) {
   3424					u32 mask;
   3425
   3426					mask = hc32_to_cpu(fotg210,
   3427							hw->hw_info2);
   3428					/* "knows" no gap is needed */
   3429					mask |= mask >> 8;
   3430					if (mask & uf_mask)
   3431						break;
   3432				}
   3433				type = Q_NEXT_TYPE(fotg210, hw->hw_next);
   3434				here = here.qh->qh_next;
   3435				continue;
   3436			/* case Q_TYPE_FSTN: */
   3437			default:
   3438				fotg210_dbg(fotg210,
   3439						"periodic frame %d bogus type %d\n",
   3440						frame, type);
   3441			}
   3442
   3443			/* collision or error */
   3444			return 0;
   3445		}
   3446	}
   3447
   3448	/* no collision */
   3449	return 1;
   3450}
   3451
   3452static void enable_periodic(struct fotg210_hcd *fotg210)
   3453{
   3454	if (fotg210->periodic_count++)
   3455		return;
   3456
   3457	/* Stop waiting to turn off the periodic schedule */
   3458	fotg210->enabled_hrtimer_events &=
   3459		~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
   3460
   3461	/* Don't start the schedule until PSS is 0 */
   3462	fotg210_poll_PSS(fotg210);
   3463	turn_on_io_watchdog(fotg210);
   3464}
   3465
   3466static void disable_periodic(struct fotg210_hcd *fotg210)
   3467{
   3468	if (--fotg210->periodic_count)
   3469		return;
   3470
   3471	/* Don't turn off the schedule until PSS is 1 */
   3472	fotg210_poll_PSS(fotg210);
   3473}
   3474
   3475/* periodic schedule slots have iso tds (normal or split) first, then a
   3476 * sparse tree for active interrupt transfers.
   3477 *
   3478 * this just links in a qh; caller guarantees uframe masks are set right.
   3479 * no FSTN support (yet; fotg210 0.96+)
   3480 */
   3481static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
   3482{
   3483	unsigned i;
   3484	unsigned period = qh->period;
   3485
   3486	dev_dbg(&qh->dev->dev,
   3487			"link qh%d-%04x/%p start %d [%d/%d us]\n", period,
   3488			hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
   3489			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
   3490			qh->c_usecs);
   3491
   3492	/* high bandwidth, or otherwise every microframe */
   3493	if (period == 0)
   3494		period = 1;
   3495
   3496	for (i = qh->start; i < fotg210->periodic_size; i += period) {
   3497		union fotg210_shadow *prev = &fotg210->pshadow[i];
   3498		__hc32 *hw_p = &fotg210->periodic[i];
   3499		union fotg210_shadow here = *prev;
   3500		__hc32 type = 0;
   3501
   3502		/* skip the iso nodes at list head */
   3503		while (here.ptr) {
   3504			type = Q_NEXT_TYPE(fotg210, *hw_p);
   3505			if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
   3506				break;
   3507			prev = periodic_next_shadow(fotg210, prev, type);
   3508			hw_p = shadow_next_periodic(fotg210, &here, type);
   3509			here = *prev;
   3510		}
   3511
   3512		/* sorting each branch by period (slow-->fast)
   3513		 * enables sharing interior tree nodes
   3514		 */
   3515		while (here.ptr && qh != here.qh) {
   3516			if (qh->period > here.qh->period)
   3517				break;
   3518			prev = &here.qh->qh_next;
   3519			hw_p = &here.qh->hw->hw_next;
   3520			here = *prev;
   3521		}
   3522		/* link in this qh, unless some earlier pass did that */
   3523		if (qh != here.qh) {
   3524			qh->qh_next = here;
   3525			if (here.qh)
   3526				qh->hw->hw_next = *hw_p;
   3527			wmb();
   3528			prev->qh = qh;
   3529			*hw_p = QH_NEXT(fotg210, qh->qh_dma);
   3530		}
   3531	}
   3532	qh->qh_state = QH_STATE_LINKED;
   3533	qh->xacterrs = 0;
   3534
   3535	/* update per-qh bandwidth for usbfs */
   3536	fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
   3537		? ((qh->usecs + qh->c_usecs) / qh->period)
   3538		: (qh->usecs * 8);
   3539
   3540	list_add(&qh->intr_node, &fotg210->intr_qh_list);
   3541
   3542	/* maybe enable periodic schedule processing */
   3543	++fotg210->intr_count;
   3544	enable_periodic(fotg210);
   3545}
   3546
   3547static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
   3548		struct fotg210_qh *qh)
   3549{
   3550	unsigned i;
   3551	unsigned period;
   3552
   3553	/*
   3554	 * If qh is for a low/full-speed device, simply unlinking it
   3555	 * could interfere with an ongoing split transaction.  To unlink
   3556	 * it safely would require setting the QH_INACTIVATE bit and
   3557	 * waiting at least one frame, as described in EHCI 4.12.2.5.
   3558	 *
   3559	 * We won't bother with any of this.  Instead, we assume that the
   3560	 * only reason for unlinking an interrupt QH while the current URB
   3561	 * is still active is to dequeue all the URBs (flush the whole
   3562	 * endpoint queue).
   3563	 *
   3564	 * If rebalancing the periodic schedule is ever implemented, this
   3565	 * approach will no longer be valid.
   3566	 */
   3567
   3568	/* high bandwidth, or otherwise part of every microframe */
   3569	period = qh->period;
   3570	if (!period)
   3571		period = 1;
   3572
   3573	for (i = qh->start; i < fotg210->periodic_size; i += period)
   3574		periodic_unlink(fotg210, i, qh);
   3575
   3576	/* update per-qh bandwidth for usbfs */
   3577	fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
   3578		? ((qh->usecs + qh->c_usecs) / qh->period)
   3579		: (qh->usecs * 8);
   3580
   3581	dev_dbg(&qh->dev->dev,
   3582			"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
   3583			qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
   3584			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
   3585			qh->c_usecs);
   3586
   3587	/* qh->qh_next still "live" to HC */
   3588	qh->qh_state = QH_STATE_UNLINK;
   3589	qh->qh_next.ptr = NULL;
   3590
   3591	if (fotg210->qh_scan_next == qh)
   3592		fotg210->qh_scan_next = list_entry(qh->intr_node.next,
   3593				struct fotg210_qh, intr_node);
   3594	list_del(&qh->intr_node);
   3595}
   3596
   3597static void start_unlink_intr(struct fotg210_hcd *fotg210,
   3598		struct fotg210_qh *qh)
   3599{
   3600	/* If the QH isn't linked then there's nothing we can do
   3601	 * unless we were called during a giveback, in which case
   3602	 * qh_completions() has to deal with it.
   3603	 */
   3604	if (qh->qh_state != QH_STATE_LINKED) {
   3605		if (qh->qh_state == QH_STATE_COMPLETING)
   3606			qh->needs_rescan = 1;
   3607		return;
   3608	}
   3609
   3610	qh_unlink_periodic(fotg210, qh);
   3611
   3612	/* Make sure the unlinks are visible before starting the timer */
   3613	wmb();
   3614
   3615	/*
   3616	 * The EHCI spec doesn't say how long it takes the controller to
   3617	 * stop accessing an unlinked interrupt QH.  The timer delay is
   3618	 * 9 uframes; presumably that will be long enough.
   3619	 */
   3620	qh->unlink_cycle = fotg210->intr_unlink_cycle;
   3621
   3622	/* New entries go at the end of the intr_unlink list */
   3623	if (fotg210->intr_unlink)
   3624		fotg210->intr_unlink_last->unlink_next = qh;
   3625	else
   3626		fotg210->intr_unlink = qh;
   3627	fotg210->intr_unlink_last = qh;
   3628
   3629	if (fotg210->intr_unlinking)
   3630		;	/* Avoid recursive calls */
   3631	else if (fotg210->rh_state < FOTG210_RH_RUNNING)
   3632		fotg210_handle_intr_unlinks(fotg210);
   3633	else if (fotg210->intr_unlink == qh) {
   3634		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
   3635				true);
   3636		++fotg210->intr_unlink_cycle;
   3637	}
   3638}
   3639
   3640static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
   3641{
   3642	struct fotg210_qh_hw *hw = qh->hw;
   3643	int rc;
   3644
   3645	qh->qh_state = QH_STATE_IDLE;
   3646	hw->hw_next = FOTG210_LIST_END(fotg210);
   3647
   3648	qh_completions(fotg210, qh);
   3649
   3650	/* reschedule QH iff another request is queued */
   3651	if (!list_empty(&qh->qtd_list) &&
   3652			fotg210->rh_state == FOTG210_RH_RUNNING) {
   3653		rc = qh_schedule(fotg210, qh);
   3654
   3655		/* An error here likely indicates handshake failure
   3656		 * or no space left in the schedule.  Neither fault
   3657		 * should happen often ...
   3658		 *
   3659		 * FIXME kill the now-dysfunctional queued urbs
   3660		 */
   3661		if (rc != 0)
   3662			fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
   3663					qh, rc);
   3664	}
   3665
   3666	/* maybe turn off periodic schedule */
   3667	--fotg210->intr_count;
   3668	disable_periodic(fotg210);
   3669}
   3670
   3671static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
   3672		unsigned uframe, unsigned period, unsigned usecs)
   3673{
   3674	int claimed;
   3675
   3676	/* complete split running into next frame?
   3677	 * given FSTN support, we could sometimes check...
   3678	 */
   3679	if (uframe >= 8)
   3680		return 0;
   3681
   3682	/* convert "usecs we need" to "max already claimed" */
   3683	usecs = fotg210->uframe_periodic_max - usecs;
   3684
   3685	/* we "know" 2 and 4 uframe intervals were rejected; so
   3686	 * for period 0, check _every_ microframe in the schedule.
   3687	 */
   3688	if (unlikely(period == 0)) {
   3689		do {
   3690			for (uframe = 0; uframe < 7; uframe++) {
   3691				claimed = periodic_usecs(fotg210, frame,
   3692						uframe);
   3693				if (claimed > usecs)
   3694					return 0;
   3695			}
   3696		} while ((frame += 1) < fotg210->periodic_size);
   3697
   3698	/* just check the specified uframe, at that period */
   3699	} else {
   3700		do {
   3701			claimed = periodic_usecs(fotg210, frame, uframe);
   3702			if (claimed > usecs)
   3703				return 0;
   3704		} while ((frame += period) < fotg210->periodic_size);
   3705	}
   3706
   3707	/* success! */
   3708	return 1;
   3709}
   3710
   3711static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
   3712		unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
   3713{
   3714	int retval = -ENOSPC;
   3715	u8 mask = 0;
   3716
   3717	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
   3718		goto done;
   3719
   3720	if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
   3721		goto done;
   3722	if (!qh->c_usecs) {
   3723		retval = 0;
   3724		*c_maskp = 0;
   3725		goto done;
   3726	}
   3727
   3728	/* Make sure this tt's buffer is also available for CSPLITs.
   3729	 * We pessimize a bit; probably the typical full speed case
   3730	 * doesn't need the second CSPLIT.
   3731	 *
   3732	 * NOTE:  both SPLIT and CSPLIT could be checked in just
   3733	 * one smart pass...
   3734	 */
   3735	mask = 0x03 << (uframe + qh->gap_uf);
   3736	*c_maskp = cpu_to_hc32(fotg210, mask << 8);
   3737
   3738	mask |= 1 << uframe;
   3739	if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
   3740		if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
   3741				qh->period, qh->c_usecs))
   3742			goto done;
   3743		if (!check_period(fotg210, frame, uframe + qh->gap_uf,
   3744				qh->period, qh->c_usecs))
   3745			goto done;
   3746		retval = 0;
   3747	}
   3748done:
   3749	return retval;
   3750}
   3751
   3752/* "first fit" scheduling policy used the first time through,
   3753 * or when the previous schedule slot can't be re-used.
   3754 */
   3755static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
   3756{
   3757	int status;
   3758	unsigned uframe;
   3759	__hc32 c_mask;
   3760	unsigned frame;	/* 0..(qh->period - 1), or NO_FRAME */
   3761	struct fotg210_qh_hw *hw = qh->hw;
   3762
   3763	qh_refresh(fotg210, qh);
   3764	hw->hw_next = FOTG210_LIST_END(fotg210);
   3765	frame = qh->start;
   3766
   3767	/* reuse the previous schedule slots, if we can */
   3768	if (frame < qh->period) {
   3769		uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
   3770		status = check_intr_schedule(fotg210, frame, --uframe,
   3771				qh, &c_mask);
   3772	} else {
   3773		uframe = 0;
   3774		c_mask = 0;
   3775		status = -ENOSPC;
   3776	}
   3777
   3778	/* else scan the schedule to find a group of slots such that all
   3779	 * uframes have enough periodic bandwidth available.
   3780	 */
   3781	if (status) {
   3782		/* "normal" case, uframing flexible except with splits */
   3783		if (qh->period) {
   3784			int i;
   3785
   3786			for (i = qh->period; status && i > 0; --i) {
   3787				frame = ++fotg210->random_frame % qh->period;
   3788				for (uframe = 0; uframe < 8; uframe++) {
   3789					status = check_intr_schedule(fotg210,
   3790							frame, uframe, qh,
   3791							&c_mask);
   3792					if (status == 0)
   3793						break;
   3794				}
   3795			}
   3796
   3797		/* qh->period == 0 means every uframe */
   3798		} else {
   3799			frame = 0;
   3800			status = check_intr_schedule(fotg210, 0, 0, qh,
   3801					&c_mask);
   3802		}
   3803		if (status)
   3804			goto done;
   3805		qh->start = frame;
   3806
   3807		/* reset S-frame and (maybe) C-frame masks */
   3808		hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
   3809		hw->hw_info2 |= qh->period
   3810			? cpu_to_hc32(fotg210, 1 << uframe)
   3811			: cpu_to_hc32(fotg210, QH_SMASK);
   3812		hw->hw_info2 |= c_mask;
   3813	} else
   3814		fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
   3815
   3816	/* stuff into the periodic schedule */
   3817	qh_link_periodic(fotg210, qh);
   3818done:
   3819	return status;
   3820}
   3821
   3822static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
   3823		struct list_head *qtd_list, gfp_t mem_flags)
   3824{
   3825	unsigned epnum;
   3826	unsigned long flags;
   3827	struct fotg210_qh *qh;
   3828	int status;
   3829	struct list_head empty;
   3830
   3831	/* get endpoint and transfer/schedule data */
   3832	epnum = urb->ep->desc.bEndpointAddress;
   3833
   3834	spin_lock_irqsave(&fotg210->lock, flags);
   3835
   3836	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
   3837		status = -ESHUTDOWN;
   3838		goto done_not_linked;
   3839	}
   3840	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
   3841	if (unlikely(status))
   3842		goto done_not_linked;
   3843
   3844	/* get qh and force any scheduling errors */
   3845	INIT_LIST_HEAD(&empty);
   3846	qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
   3847	if (qh == NULL) {
   3848		status = -ENOMEM;
   3849		goto done;
   3850	}
   3851	if (qh->qh_state == QH_STATE_IDLE) {
   3852		status = qh_schedule(fotg210, qh);
   3853		if (status)
   3854			goto done;
   3855	}
   3856
   3857	/* then queue the urb's tds to the qh */
   3858	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
   3859	BUG_ON(qh == NULL);
   3860
   3861	/* ... update usbfs periodic stats */
   3862	fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
   3863
   3864done:
   3865	if (unlikely(status))
   3866		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
   3867done_not_linked:
   3868	spin_unlock_irqrestore(&fotg210->lock, flags);
   3869	if (status)
   3870		qtd_list_free(fotg210, urb, qtd_list);
   3871
   3872	return status;
   3873}
   3874
   3875static void scan_intr(struct fotg210_hcd *fotg210)
   3876{
   3877	struct fotg210_qh *qh;
   3878
   3879	list_for_each_entry_safe(qh, fotg210->qh_scan_next,
   3880			&fotg210->intr_qh_list, intr_node) {
   3881rescan:
   3882		/* clean any finished work for this qh */
   3883		if (!list_empty(&qh->qtd_list)) {
   3884			int temp;
   3885
   3886			/*
   3887			 * Unlinks could happen here; completion reporting
   3888			 * drops the lock.  That's why fotg210->qh_scan_next
   3889			 * always holds the next qh to scan; if the next qh
   3890			 * gets unlinked then fotg210->qh_scan_next is adjusted
   3891			 * in qh_unlink_periodic().
   3892			 */
   3893			temp = qh_completions(fotg210, qh);
   3894			if (unlikely(qh->needs_rescan ||
   3895					(list_empty(&qh->qtd_list) &&
   3896					qh->qh_state == QH_STATE_LINKED)))
   3897				start_unlink_intr(fotg210, qh);
   3898			else if (temp != 0)
   3899				goto rescan;
   3900		}
   3901	}
   3902}
   3903
   3904/* fotg210_iso_stream ops work with both ITD and SITD */
   3905
   3906static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
   3907{
   3908	struct fotg210_iso_stream *stream;
   3909
   3910	stream = kzalloc(sizeof(*stream), mem_flags);
   3911	if (likely(stream != NULL)) {
   3912		INIT_LIST_HEAD(&stream->td_list);
   3913		INIT_LIST_HEAD(&stream->free_list);
   3914		stream->next_uframe = -1;
   3915	}
   3916	return stream;
   3917}
   3918
   3919static void iso_stream_init(struct fotg210_hcd *fotg210,
   3920		struct fotg210_iso_stream *stream, struct usb_device *dev,
   3921		int pipe, unsigned interval)
   3922{
   3923	u32 buf1;
   3924	unsigned epnum, maxp;
   3925	int is_input;
   3926	long bandwidth;
   3927	unsigned multi;
   3928	struct usb_host_endpoint *ep;
   3929
   3930	/*
   3931	 * this might be a "high bandwidth" highspeed endpoint,
   3932	 * as encoded in the ep descriptor's wMaxPacket field
   3933	 */
   3934	epnum = usb_pipeendpoint(pipe);
   3935	is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
   3936	ep = usb_pipe_endpoint(dev, pipe);
   3937	maxp = usb_endpoint_maxp(&ep->desc);
   3938	if (is_input)
   3939		buf1 = (1 << 11);
   3940	else
   3941		buf1 = 0;
   3942
   3943	multi = usb_endpoint_maxp_mult(&ep->desc);
   3944	buf1 |= maxp;
   3945	maxp *= multi;
   3946
   3947	stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
   3948	stream->buf1 = cpu_to_hc32(fotg210, buf1);
   3949	stream->buf2 = cpu_to_hc32(fotg210, multi);
   3950
   3951	/* usbfs wants to report the average usecs per frame tied up
   3952	 * when transfers on this endpoint are scheduled ...
   3953	 */
   3954	if (dev->speed == USB_SPEED_FULL) {
   3955		interval <<= 3;
   3956		stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
   3957				is_input, 1, maxp));
   3958		stream->usecs /= 8;
   3959	} else {
   3960		stream->highspeed = 1;
   3961		stream->usecs = HS_USECS_ISO(maxp);
   3962	}
   3963	bandwidth = stream->usecs * 8;
   3964	bandwidth /= interval;
   3965
   3966	stream->bandwidth = bandwidth;
   3967	stream->udev = dev;
   3968	stream->bEndpointAddress = is_input | epnum;
   3969	stream->interval = interval;
   3970	stream->maxp = maxp;
   3971}
   3972
   3973static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
   3974		struct urb *urb)
   3975{
   3976	unsigned epnum;
   3977	struct fotg210_iso_stream *stream;
   3978	struct usb_host_endpoint *ep;
   3979	unsigned long flags;
   3980
   3981	epnum = usb_pipeendpoint(urb->pipe);
   3982	if (usb_pipein(urb->pipe))
   3983		ep = urb->dev->ep_in[epnum];
   3984	else
   3985		ep = urb->dev->ep_out[epnum];
   3986
   3987	spin_lock_irqsave(&fotg210->lock, flags);
   3988	stream = ep->hcpriv;
   3989
   3990	if (unlikely(stream == NULL)) {
   3991		stream = iso_stream_alloc(GFP_ATOMIC);
   3992		if (likely(stream != NULL)) {
   3993			ep->hcpriv = stream;
   3994			stream->ep = ep;
   3995			iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
   3996					urb->interval);
   3997		}
   3998
   3999	/* if dev->ep[epnum] is a QH, hw is set */
   4000	} else if (unlikely(stream->hw != NULL)) {
   4001		fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
   4002				urb->dev->devpath, epnum,
   4003				usb_pipein(urb->pipe) ? "in" : "out");
   4004		stream = NULL;
   4005	}
   4006
   4007	spin_unlock_irqrestore(&fotg210->lock, flags);
   4008	return stream;
   4009}
   4010
   4011/* fotg210_iso_sched ops can be ITD-only or SITD-only */
   4012
   4013static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
   4014		gfp_t mem_flags)
   4015{
   4016	struct fotg210_iso_sched *iso_sched;
   4017
   4018	iso_sched = kzalloc(struct_size(iso_sched, packet, packets), mem_flags);
   4019	if (likely(iso_sched != NULL))
   4020		INIT_LIST_HEAD(&iso_sched->td_list);
   4021
   4022	return iso_sched;
   4023}
   4024
   4025static inline void itd_sched_init(struct fotg210_hcd *fotg210,
   4026		struct fotg210_iso_sched *iso_sched,
   4027		struct fotg210_iso_stream *stream, struct urb *urb)
   4028{
   4029	unsigned i;
   4030	dma_addr_t dma = urb->transfer_dma;
   4031
   4032	/* how many uframes are needed for these transfers */
   4033	iso_sched->span = urb->number_of_packets * stream->interval;
   4034
   4035	/* figure out per-uframe itd fields that we'll need later
   4036	 * when we fit new itds into the schedule.
   4037	 */
   4038	for (i = 0; i < urb->number_of_packets; i++) {
   4039		struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
   4040		unsigned length;
   4041		dma_addr_t buf;
   4042		u32 trans;
   4043
   4044		length = urb->iso_frame_desc[i].length;
   4045		buf = dma + urb->iso_frame_desc[i].offset;
   4046
   4047		trans = FOTG210_ISOC_ACTIVE;
   4048		trans |= buf & 0x0fff;
   4049		if (unlikely(((i + 1) == urb->number_of_packets))
   4050				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
   4051			trans |= FOTG210_ITD_IOC;
   4052		trans |= length << 16;
   4053		uframe->transaction = cpu_to_hc32(fotg210, trans);
   4054
   4055		/* might need to cross a buffer page within a uframe */
   4056		uframe->bufp = (buf & ~(u64)0x0fff);
   4057		buf += length;
   4058		if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
   4059			uframe->cross = 1;
   4060	}
   4061}
   4062
   4063static void iso_sched_free(struct fotg210_iso_stream *stream,
   4064		struct fotg210_iso_sched *iso_sched)
   4065{
   4066	if (!iso_sched)
   4067		return;
   4068	/* caller must hold fotg210->lock!*/
   4069	list_splice(&iso_sched->td_list, &stream->free_list);
   4070	kfree(iso_sched);
   4071}
   4072
   4073static int itd_urb_transaction(struct fotg210_iso_stream *stream,
   4074		struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
   4075{
   4076	struct fotg210_itd *itd;
   4077	dma_addr_t itd_dma;
   4078	int i;
   4079	unsigned num_itds;
   4080	struct fotg210_iso_sched *sched;
   4081	unsigned long flags;
   4082
   4083	sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
   4084	if (unlikely(sched == NULL))
   4085		return -ENOMEM;
   4086
   4087	itd_sched_init(fotg210, sched, stream, urb);
   4088
   4089	if (urb->interval < 8)
   4090		num_itds = 1 + (sched->span + 7) / 8;
   4091	else
   4092		num_itds = urb->number_of_packets;
   4093
   4094	/* allocate/init ITDs */
   4095	spin_lock_irqsave(&fotg210->lock, flags);
   4096	for (i = 0; i < num_itds; i++) {
   4097
   4098		/*
   4099		 * Use iTDs from the free list, but not iTDs that may
   4100		 * still be in use by the hardware.
   4101		 */
   4102		if (likely(!list_empty(&stream->free_list))) {
   4103			itd = list_first_entry(&stream->free_list,
   4104					struct fotg210_itd, itd_list);
   4105			if (itd->frame == fotg210->now_frame)
   4106				goto alloc_itd;
   4107			list_del(&itd->itd_list);
   4108			itd_dma = itd->itd_dma;
   4109		} else {
   4110alloc_itd:
   4111			spin_unlock_irqrestore(&fotg210->lock, flags);
   4112			itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
   4113					&itd_dma);
   4114			spin_lock_irqsave(&fotg210->lock, flags);
   4115			if (!itd) {
   4116				iso_sched_free(stream, sched);
   4117				spin_unlock_irqrestore(&fotg210->lock, flags);
   4118				return -ENOMEM;
   4119			}
   4120		}
   4121
   4122		memset(itd, 0, sizeof(*itd));
   4123		itd->itd_dma = itd_dma;
   4124		list_add(&itd->itd_list, &sched->td_list);
   4125	}
   4126	spin_unlock_irqrestore(&fotg210->lock, flags);
   4127
   4128	/* temporarily store schedule info in hcpriv */
   4129	urb->hcpriv = sched;
   4130	urb->error_count = 0;
   4131	return 0;
   4132}
   4133
   4134static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
   4135		u8 usecs, u32 period)
   4136{
   4137	uframe %= period;
   4138	do {
   4139		/* can't commit more than uframe_periodic_max usec */
   4140		if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
   4141				> (fotg210->uframe_periodic_max - usecs))
   4142			return 0;
   4143
   4144		/* we know urb->interval is 2^N uframes */
   4145		uframe += period;
   4146	} while (uframe < mod);
   4147	return 1;
   4148}
   4149
   4150/* This scheduler plans almost as far into the future as it has actual
   4151 * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
   4152 * "as small as possible" to be cache-friendlier.)  That limits the size
   4153 * transfers you can stream reliably; avoid more than 64 msec per urb.
   4154 * Also avoid queue depths of less than fotg210's worst irq latency (affected
   4155 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
   4156 * and other factors); or more than about 230 msec total (for portability,
   4157 * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
   4158 */
   4159
   4160#define SCHEDULE_SLOP 80 /* microframes */
   4161
   4162static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
   4163		struct fotg210_iso_stream *stream)
   4164{
   4165	u32 now, next, start, period, span;
   4166	int status;
   4167	unsigned mod = fotg210->periodic_size << 3;
   4168	struct fotg210_iso_sched *sched = urb->hcpriv;
   4169
   4170	period = urb->interval;
   4171	span = sched->span;
   4172
   4173	if (span > mod - SCHEDULE_SLOP) {
   4174		fotg210_dbg(fotg210, "iso request %p too long\n", urb);
   4175		status = -EFBIG;
   4176		goto fail;
   4177	}
   4178
   4179	now = fotg210_read_frame_index(fotg210) & (mod - 1);
   4180
   4181	/* Typical case: reuse current schedule, stream is still active.
   4182	 * Hopefully there are no gaps from the host falling behind
   4183	 * (irq delays etc), but if there are we'll take the next
   4184	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
   4185	 */
   4186	if (likely(!list_empty(&stream->td_list))) {
   4187		u32 excess;
   4188
   4189		/* For high speed devices, allow scheduling within the
   4190		 * isochronous scheduling threshold.  For full speed devices
   4191		 * and Intel PCI-based controllers, don't (work around for
   4192		 * Intel ICH9 bug).
   4193		 */
   4194		if (!stream->highspeed && fotg210->fs_i_thresh)
   4195			next = now + fotg210->i_thresh;
   4196		else
   4197			next = now;
   4198
   4199		/* Fell behind (by up to twice the slop amount)?
   4200		 * We decide based on the time of the last currently-scheduled
   4201		 * slot, not the time of the next available slot.
   4202		 */
   4203		excess = (stream->next_uframe - period - next) & (mod - 1);
   4204		if (excess >= mod - 2 * SCHEDULE_SLOP)
   4205			start = next + excess - mod + period *
   4206					DIV_ROUND_UP(mod - excess, period);
   4207		else
   4208			start = next + excess + period;
   4209		if (start - now >= mod) {
   4210			fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
   4211					urb, start - now - period, period,
   4212					mod);
   4213			status = -EFBIG;
   4214			goto fail;
   4215		}
   4216	}
   4217
   4218	/* need to schedule; when's the next (u)frame we could start?
   4219	 * this is bigger than fotg210->i_thresh allows; scheduling itself
   4220	 * isn't free, the slop should handle reasonably slow cpus.  it
   4221	 * can also help high bandwidth if the dma and irq loads don't
   4222	 * jump until after the queue is primed.
   4223	 */
   4224	else {
   4225		int done = 0;
   4226
   4227		start = SCHEDULE_SLOP + (now & ~0x07);
   4228
   4229		/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
   4230
   4231		/* find a uframe slot with enough bandwidth.
   4232		 * Early uframes are more precious because full-speed
   4233		 * iso IN transfers can't use late uframes,
   4234		 * and therefore they should be allocated last.
   4235		 */
   4236		next = start;
   4237		start += period;
   4238		do {
   4239			start--;
   4240			/* check schedule: enough space? */
   4241			if (itd_slot_ok(fotg210, mod, start,
   4242					stream->usecs, period))
   4243				done = 1;
   4244		} while (start > next && !done);
   4245
   4246		/* no room in the schedule */
   4247		if (!done) {
   4248			fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
   4249					urb, now, now + mod);
   4250			status = -ENOSPC;
   4251			goto fail;
   4252		}
   4253	}
   4254
   4255	/* Tried to schedule too far into the future? */
   4256	if (unlikely(start - now + span - period >=
   4257			mod - 2 * SCHEDULE_SLOP)) {
   4258		fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
   4259				urb, start - now, span - period,
   4260				mod - 2 * SCHEDULE_SLOP);
   4261		status = -EFBIG;
   4262		goto fail;
   4263	}
   4264
   4265	stream->next_uframe = start & (mod - 1);
   4266
   4267	/* report high speed start in uframes; full speed, in frames */
   4268	urb->start_frame = stream->next_uframe;
   4269	if (!stream->highspeed)
   4270		urb->start_frame >>= 3;
   4271
   4272	/* Make sure scan_isoc() sees these */
   4273	if (fotg210->isoc_count == 0)
   4274		fotg210->next_frame = now >> 3;
   4275	return 0;
   4276
   4277fail:
   4278	iso_sched_free(stream, sched);
   4279	urb->hcpriv = NULL;
   4280	return status;
   4281}
   4282
   4283static inline void itd_init(struct fotg210_hcd *fotg210,
   4284		struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
   4285{
   4286	int i;
   4287
   4288	/* it's been recently zeroed */
   4289	itd->hw_next = FOTG210_LIST_END(fotg210);
   4290	itd->hw_bufp[0] = stream->buf0;
   4291	itd->hw_bufp[1] = stream->buf1;
   4292	itd->hw_bufp[2] = stream->buf2;
   4293
   4294	for (i = 0; i < 8; i++)
   4295		itd->index[i] = -1;
   4296
   4297	/* All other fields are filled when scheduling */
   4298}
   4299
   4300static inline void itd_patch(struct fotg210_hcd *fotg210,
   4301		struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
   4302		unsigned index, u16 uframe)
   4303{
   4304	struct fotg210_iso_packet *uf = &iso_sched->packet[index];
   4305	unsigned pg = itd->pg;
   4306
   4307	uframe &= 0x07;
   4308	itd->index[uframe] = index;
   4309
   4310	itd->hw_transaction[uframe] = uf->transaction;
   4311	itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
   4312	itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
   4313	itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
   4314
   4315	/* iso_frame_desc[].offset must be strictly increasing */
   4316	if (unlikely(uf->cross)) {
   4317		u64 bufp = uf->bufp + 4096;
   4318
   4319		itd->pg = ++pg;
   4320		itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
   4321		itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
   4322	}
   4323}
   4324
   4325static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
   4326		struct fotg210_itd *itd)
   4327{
   4328	union fotg210_shadow *prev = &fotg210->pshadow[frame];
   4329	__hc32 *hw_p = &fotg210->periodic[frame];
   4330	union fotg210_shadow here = *prev;
   4331	__hc32 type = 0;
   4332
   4333	/* skip any iso nodes which might belong to previous microframes */
   4334	while (here.ptr) {
   4335		type = Q_NEXT_TYPE(fotg210, *hw_p);
   4336		if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
   4337			break;
   4338		prev = periodic_next_shadow(fotg210, prev, type);
   4339		hw_p = shadow_next_periodic(fotg210, &here, type);
   4340		here = *prev;
   4341	}
   4342
   4343	itd->itd_next = here;
   4344	itd->hw_next = *hw_p;
   4345	prev->itd = itd;
   4346	itd->frame = frame;
   4347	wmb();
   4348	*hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
   4349}
   4350
   4351/* fit urb's itds into the selected schedule slot; activate as needed */
   4352static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
   4353		unsigned mod, struct fotg210_iso_stream *stream)
   4354{
   4355	int packet;
   4356	unsigned next_uframe, uframe, frame;
   4357	struct fotg210_iso_sched *iso_sched = urb->hcpriv;
   4358	struct fotg210_itd *itd;
   4359
   4360	next_uframe = stream->next_uframe & (mod - 1);
   4361
   4362	if (unlikely(list_empty(&stream->td_list))) {
   4363		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
   4364				+= stream->bandwidth;
   4365		fotg210_dbg(fotg210,
   4366			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
   4367			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
   4368			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
   4369			urb->interval,
   4370			next_uframe >> 3, next_uframe & 0x7);
   4371	}
   4372
   4373	/* fill iTDs uframe by uframe */
   4374	for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
   4375		if (itd == NULL) {
   4376			/* ASSERT:  we have all necessary itds */
   4377
   4378			/* ASSERT:  no itds for this endpoint in this uframe */
   4379
   4380			itd = list_entry(iso_sched->td_list.next,
   4381					struct fotg210_itd, itd_list);
   4382			list_move_tail(&itd->itd_list, &stream->td_list);
   4383			itd->stream = stream;
   4384			itd->urb = urb;
   4385			itd_init(fotg210, stream, itd);
   4386		}
   4387
   4388		uframe = next_uframe & 0x07;
   4389		frame = next_uframe >> 3;
   4390
   4391		itd_patch(fotg210, itd, iso_sched, packet, uframe);
   4392
   4393		next_uframe += stream->interval;
   4394		next_uframe &= mod - 1;
   4395		packet++;
   4396
   4397		/* link completed itds into the schedule */
   4398		if (((next_uframe >> 3) != frame)
   4399				|| packet == urb->number_of_packets) {
   4400			itd_link(fotg210, frame & (fotg210->periodic_size - 1),
   4401					itd);
   4402			itd = NULL;
   4403		}
   4404	}
   4405	stream->next_uframe = next_uframe;
   4406
   4407	/* don't need that schedule data any more */
   4408	iso_sched_free(stream, iso_sched);
   4409	urb->hcpriv = NULL;
   4410
   4411	++fotg210->isoc_count;
   4412	enable_periodic(fotg210);
   4413}
   4414
   4415#define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
   4416		FOTG210_ISOC_XACTERR)
   4417
   4418/* Process and recycle a completed ITD.  Return true iff its urb completed,
   4419 * and hence its completion callback probably added things to the hardware
   4420 * schedule.
   4421 *
   4422 * Note that we carefully avoid recycling this descriptor until after any
   4423 * completion callback runs, so that it won't be reused quickly.  That is,
   4424 * assuming (a) no more than two urbs per frame on this endpoint, and also
   4425 * (b) only this endpoint's completions submit URBs.  It seems some silicon
   4426 * corrupts things if you reuse completed descriptors very quickly...
   4427 */
   4428static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
   4429{
   4430	struct urb *urb = itd->urb;
   4431	struct usb_iso_packet_descriptor *desc;
   4432	u32 t;
   4433	unsigned uframe;
   4434	int urb_index = -1;
   4435	struct fotg210_iso_stream *stream = itd->stream;
   4436	struct usb_device *dev;
   4437	bool retval = false;
   4438
   4439	/* for each uframe with a packet */
   4440	for (uframe = 0; uframe < 8; uframe++) {
   4441		if (likely(itd->index[uframe] == -1))
   4442			continue;
   4443		urb_index = itd->index[uframe];
   4444		desc = &urb->iso_frame_desc[urb_index];
   4445
   4446		t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
   4447		itd->hw_transaction[uframe] = 0;
   4448
   4449		/* report transfer status */
   4450		if (unlikely(t & ISO_ERRS)) {
   4451			urb->error_count++;
   4452			if (t & FOTG210_ISOC_BUF_ERR)
   4453				desc->status = usb_pipein(urb->pipe)
   4454					? -ENOSR  /* hc couldn't read */
   4455					: -ECOMM; /* hc couldn't write */
   4456			else if (t & FOTG210_ISOC_BABBLE)
   4457				desc->status = -EOVERFLOW;
   4458			else /* (t & FOTG210_ISOC_XACTERR) */
   4459				desc->status = -EPROTO;
   4460
   4461			/* HC need not update length with this error */
   4462			if (!(t & FOTG210_ISOC_BABBLE)) {
   4463				desc->actual_length = FOTG210_ITD_LENGTH(t);
   4464				urb->actual_length += desc->actual_length;
   4465			}
   4466		} else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
   4467			desc->status = 0;
   4468			desc->actual_length = FOTG210_ITD_LENGTH(t);
   4469			urb->actual_length += desc->actual_length;
   4470		} else {
   4471			/* URB was too late */
   4472			desc->status = -EXDEV;
   4473		}
   4474	}
   4475
   4476	/* handle completion now? */
   4477	if (likely((urb_index + 1) != urb->number_of_packets))
   4478		goto done;
   4479
   4480	/* ASSERT: it's really the last itd for this urb
   4481	 * list_for_each_entry (itd, &stream->td_list, itd_list)
   4482	 *	BUG_ON (itd->urb == urb);
   4483	 */
   4484
   4485	/* give urb back to the driver; completion often (re)submits */
   4486	dev = urb->dev;
   4487	fotg210_urb_done(fotg210, urb, 0);
   4488	retval = true;
   4489	urb = NULL;
   4490
   4491	--fotg210->isoc_count;
   4492	disable_periodic(fotg210);
   4493
   4494	if (unlikely(list_is_singular(&stream->td_list))) {
   4495		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
   4496				-= stream->bandwidth;
   4497		fotg210_dbg(fotg210,
   4498			"deschedule devp %s ep%d%s-iso\n",
   4499			dev->devpath, stream->bEndpointAddress & 0x0f,
   4500			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
   4501	}
   4502
   4503done:
   4504	itd->urb = NULL;
   4505
   4506	/* Add to the end of the free list for later reuse */
   4507	list_move_tail(&itd->itd_list, &stream->free_list);
   4508
   4509	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
   4510	if (list_empty(&stream->td_list)) {
   4511		list_splice_tail_init(&stream->free_list,
   4512				&fotg210->cached_itd_list);
   4513		start_free_itds(fotg210);
   4514	}
   4515
   4516	return retval;
   4517}
   4518
   4519static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
   4520		gfp_t mem_flags)
   4521{
   4522	int status = -EINVAL;
   4523	unsigned long flags;
   4524	struct fotg210_iso_stream *stream;
   4525
   4526	/* Get iso_stream head */
   4527	stream = iso_stream_find(fotg210, urb);
   4528	if (unlikely(stream == NULL)) {
   4529		fotg210_dbg(fotg210, "can't get iso stream\n");
   4530		return -ENOMEM;
   4531	}
   4532	if (unlikely(urb->interval != stream->interval &&
   4533			fotg210_port_speed(fotg210, 0) ==
   4534			USB_PORT_STAT_HIGH_SPEED)) {
   4535		fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
   4536				stream->interval, urb->interval);
   4537		goto done;
   4538	}
   4539
   4540#ifdef FOTG210_URB_TRACE
   4541	fotg210_dbg(fotg210,
   4542			"%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
   4543			__func__, urb->dev->devpath, urb,
   4544			usb_pipeendpoint(urb->pipe),
   4545			usb_pipein(urb->pipe) ? "in" : "out",
   4546			urb->transfer_buffer_length,
   4547			urb->number_of_packets, urb->interval,
   4548			stream);
   4549#endif
   4550
   4551	/* allocate ITDs w/o locking anything */
   4552	status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
   4553	if (unlikely(status < 0)) {
   4554		fotg210_dbg(fotg210, "can't init itds\n");
   4555		goto done;
   4556	}
   4557
   4558	/* schedule ... need to lock */
   4559	spin_lock_irqsave(&fotg210->lock, flags);
   4560	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
   4561		status = -ESHUTDOWN;
   4562		goto done_not_linked;
   4563	}
   4564	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
   4565	if (unlikely(status))
   4566		goto done_not_linked;
   4567	status = iso_stream_schedule(fotg210, urb, stream);
   4568	if (likely(status == 0))
   4569		itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
   4570	else
   4571		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
   4572done_not_linked:
   4573	spin_unlock_irqrestore(&fotg210->lock, flags);
   4574done:
   4575	return status;
   4576}
   4577
   4578static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
   4579		unsigned now_frame, bool live)
   4580{
   4581	unsigned uf;
   4582	bool modified;
   4583	union fotg210_shadow q, *q_p;
   4584	__hc32 type, *hw_p;
   4585
   4586	/* scan each element in frame's queue for completions */
   4587	q_p = &fotg210->pshadow[frame];
   4588	hw_p = &fotg210->periodic[frame];
   4589	q.ptr = q_p->ptr;
   4590	type = Q_NEXT_TYPE(fotg210, *hw_p);
   4591	modified = false;
   4592
   4593	while (q.ptr) {
   4594		switch (hc32_to_cpu(fotg210, type)) {
   4595		case Q_TYPE_ITD:
   4596			/* If this ITD is still active, leave it for
   4597			 * later processing ... check the next entry.
   4598			 * No need to check for activity unless the
   4599			 * frame is current.
   4600			 */
   4601			if (frame == now_frame && live) {
   4602				rmb();
   4603				for (uf = 0; uf < 8; uf++) {
   4604					if (q.itd->hw_transaction[uf] &
   4605							ITD_ACTIVE(fotg210))
   4606						break;
   4607				}
   4608				if (uf < 8) {
   4609					q_p = &q.itd->itd_next;
   4610					hw_p = &q.itd->hw_next;
   4611					type = Q_NEXT_TYPE(fotg210,
   4612							q.itd->hw_next);
   4613					q = *q_p;
   4614					break;
   4615				}
   4616			}
   4617
   4618			/* Take finished ITDs out of the schedule
   4619			 * and process them:  recycle, maybe report
   4620			 * URB completion.  HC won't cache the
   4621			 * pointer for much longer, if at all.
   4622			 */
   4623			*q_p = q.itd->itd_next;
   4624			*hw_p = q.itd->hw_next;
   4625			type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
   4626			wmb();
   4627			modified = itd_complete(fotg210, q.itd);
   4628			q = *q_p;
   4629			break;
   4630		default:
   4631			fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
   4632					type, frame, q.ptr);
   4633			fallthrough;
   4634		case Q_TYPE_QH:
   4635		case Q_TYPE_FSTN:
   4636			/* End of the iTDs and siTDs */
   4637			q.ptr = NULL;
   4638			break;
   4639		}
   4640
   4641		/* assume completion callbacks modify the queue */
   4642		if (unlikely(modified && fotg210->isoc_count > 0))
   4643			return -EINVAL;
   4644	}
   4645	return 0;
   4646}
   4647
   4648static void scan_isoc(struct fotg210_hcd *fotg210)
   4649{
   4650	unsigned uf, now_frame, frame, ret;
   4651	unsigned fmask = fotg210->periodic_size - 1;
   4652	bool live;
   4653
   4654	/*
   4655	 * When running, scan from last scan point up to "now"
   4656	 * else clean up by scanning everything that's left.
   4657	 * Touches as few pages as possible:  cache-friendly.
   4658	 */
   4659	if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
   4660		uf = fotg210_read_frame_index(fotg210);
   4661		now_frame = (uf >> 3) & fmask;
   4662		live = true;
   4663	} else  {
   4664		now_frame = (fotg210->next_frame - 1) & fmask;
   4665		live = false;
   4666	}
   4667	fotg210->now_frame = now_frame;
   4668
   4669	frame = fotg210->next_frame;
   4670	for (;;) {
   4671		ret = 1;
   4672		while (ret != 0)
   4673			ret = scan_frame_queue(fotg210, frame,
   4674					now_frame, live);
   4675
   4676		/* Stop when we have reached the current frame */
   4677		if (frame == now_frame)
   4678			break;
   4679		frame = (frame + 1) & fmask;
   4680	}
   4681	fotg210->next_frame = now_frame;
   4682}
   4683
   4684/* Display / Set uframe_periodic_max
   4685 */
   4686static ssize_t uframe_periodic_max_show(struct device *dev,
   4687		struct device_attribute *attr, char *buf)
   4688{
   4689	struct fotg210_hcd *fotg210;
   4690	int n;
   4691
   4692	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
   4693	n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
   4694	return n;
   4695}
   4696
   4697
   4698static ssize_t uframe_periodic_max_store(struct device *dev,
   4699		struct device_attribute *attr, const char *buf, size_t count)
   4700{
   4701	struct fotg210_hcd *fotg210;
   4702	unsigned uframe_periodic_max;
   4703	unsigned frame, uframe;
   4704	unsigned short allocated_max;
   4705	unsigned long flags;
   4706	ssize_t ret;
   4707
   4708	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
   4709	if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
   4710		return -EINVAL;
   4711
   4712	if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
   4713		fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
   4714				uframe_periodic_max);
   4715		return -EINVAL;
   4716	}
   4717
   4718	ret = -EINVAL;
   4719
   4720	/*
   4721	 * lock, so that our checking does not race with possible periodic
   4722	 * bandwidth allocation through submitting new urbs.
   4723	 */
   4724	spin_lock_irqsave(&fotg210->lock, flags);
   4725
   4726	/*
   4727	 * for request to decrease max periodic bandwidth, we have to check
   4728	 * every microframe in the schedule to see whether the decrease is
   4729	 * possible.
   4730	 */
   4731	if (uframe_periodic_max < fotg210->uframe_periodic_max) {
   4732		allocated_max = 0;
   4733
   4734		for (frame = 0; frame < fotg210->periodic_size; ++frame)
   4735			for (uframe = 0; uframe < 7; ++uframe)
   4736				allocated_max = max(allocated_max,
   4737						periodic_usecs(fotg210, frame,
   4738						uframe));
   4739
   4740		if (allocated_max > uframe_periodic_max) {
   4741			fotg210_info(fotg210,
   4742					"cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
   4743					allocated_max, uframe_periodic_max);
   4744			goto out_unlock;
   4745		}
   4746	}
   4747
   4748	/* increasing is always ok */
   4749
   4750	fotg210_info(fotg210,
   4751			"setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
   4752			100 * uframe_periodic_max/125, uframe_periodic_max);
   4753
   4754	if (uframe_periodic_max != 100)
   4755		fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
   4756
   4757	fotg210->uframe_periodic_max = uframe_periodic_max;
   4758	ret = count;
   4759
   4760out_unlock:
   4761	spin_unlock_irqrestore(&fotg210->lock, flags);
   4762	return ret;
   4763}
   4764
   4765static DEVICE_ATTR_RW(uframe_periodic_max);
   4766
   4767static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
   4768{
   4769	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
   4770
   4771	return device_create_file(controller, &dev_attr_uframe_periodic_max);
   4772}
   4773
   4774static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
   4775{
   4776	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
   4777
   4778	device_remove_file(controller, &dev_attr_uframe_periodic_max);
   4779}
   4780/* On some systems, leaving remote wakeup enabled prevents system shutdown.
   4781 * The firmware seems to think that powering off is a wakeup event!
   4782 * This routine turns off remote wakeup and everything else, on all ports.
   4783 */
   4784static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
   4785{
   4786	u32 __iomem *status_reg = &fotg210->regs->port_status;
   4787
   4788	fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
   4789}
   4790
   4791/* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
   4792 * Must be called with interrupts enabled and the lock not held.
   4793 */
   4794static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
   4795{
   4796	fotg210_halt(fotg210);
   4797
   4798	spin_lock_irq(&fotg210->lock);
   4799	fotg210->rh_state = FOTG210_RH_HALTED;
   4800	fotg210_turn_off_all_ports(fotg210);
   4801	spin_unlock_irq(&fotg210->lock);
   4802}
   4803
   4804/* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
   4805 * This forcibly disables dma and IRQs, helping kexec and other cases
   4806 * where the next system software may expect clean state.
   4807 */
   4808static void fotg210_shutdown(struct usb_hcd *hcd)
   4809{
   4810	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
   4811
   4812	spin_lock_irq(&fotg210->lock);
   4813	fotg210->shutdown = true;
   4814	fotg210->rh_state = FOTG210_RH_STOPPING;
   4815	fotg210->enabled_hrtimer_events = 0;
   4816	spin_unlock_irq(&fotg210->lock);
   4817
   4818	fotg210_silence_controller(fotg210);
   4819
   4820	hrtimer_cancel(&fotg210->hrtimer);
   4821}
   4822
   4823/* fotg210_work is called from some interrupts, timers, and so on.
   4824 * it calls driver completion functions, after dropping fotg210->lock.
   4825 */
   4826static void fotg210_work(struct fotg210_hcd *fotg210)
   4827{
   4828	/* another CPU may drop fotg210->lock during a schedule scan while
   4829	 * it reports urb completions.  this flag guards against bogus
   4830	 * attempts at re-entrant schedule scanning.
   4831	 */
   4832	if (fotg210->scanning) {
   4833		fotg210->need_rescan = true;
   4834		return;
   4835	}
   4836	fotg210->scanning = true;
   4837
   4838rescan:
   4839	fotg210->need_rescan = false;
   4840	if (fotg210->async_count)
   4841		scan_async(fotg210);
   4842	if (fotg210->intr_count > 0)
   4843		scan_intr(fotg210);
   4844	if (fotg210->isoc_count > 0)
   4845		scan_isoc(fotg210);
   4846	if (fotg210->need_rescan)
   4847		goto rescan;
   4848	fotg210->scanning = false;
   4849
   4850	/* the IO watchdog guards against hardware or driver bugs that
   4851	 * misplace IRQs, and should let us run completely without IRQs.
   4852	 * such lossage has been observed on both VT6202 and VT8235.
   4853	 */
   4854	turn_on_io_watchdog(fotg210);
   4855}
   4856
   4857/* Called when the fotg210_hcd module is removed.
   4858 */
   4859static void fotg210_stop(struct usb_hcd *hcd)
   4860{
   4861	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
   4862
   4863	fotg210_dbg(fotg210, "stop\n");
   4864
   4865	/* no more interrupts ... */
   4866
   4867	spin_lock_irq(&fotg210->lock);
   4868	fotg210->enabled_hrtimer_events = 0;
   4869	spin_unlock_irq(&fotg210->lock);
   4870
   4871	fotg210_quiesce(fotg210);
   4872	fotg210_silence_controller(fotg210);
   4873	fotg210_reset(fotg210);
   4874
   4875	hrtimer_cancel(&fotg210->hrtimer);
   4876	remove_sysfs_files(fotg210);
   4877	remove_debug_files(fotg210);
   4878
   4879	/* root hub is shut down separately (first, when possible) */
   4880	spin_lock_irq(&fotg210->lock);
   4881	end_free_itds(fotg210);
   4882	spin_unlock_irq(&fotg210->lock);
   4883	fotg210_mem_cleanup(fotg210);
   4884
   4885#ifdef FOTG210_STATS
   4886	fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
   4887			fotg210->stats.normal, fotg210->stats.error,
   4888			fotg210->stats.iaa, fotg210->stats.lost_iaa);
   4889	fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
   4890			fotg210->stats.complete, fotg210->stats.unlink);
   4891#endif
   4892
   4893	dbg_status(fotg210, "fotg210_stop completed",
   4894			fotg210_readl(fotg210, &fotg210->regs->status));
   4895}
   4896
   4897/* one-time init, only for memory state */
   4898static int hcd_fotg210_init(struct usb_hcd *hcd)
   4899{
   4900	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
   4901	u32 temp;
   4902	int retval;
   4903	u32 hcc_params;
   4904	struct fotg210_qh_hw *hw;
   4905
   4906	spin_lock_init(&fotg210->lock);
   4907
   4908	/*
   4909	 * keep io watchdog by default, those good HCDs could turn off it later
   4910	 */
   4911	fotg210->need_io_watchdog = 1;
   4912
   4913	hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
   4914	fotg210->hrtimer.function = fotg210_hrtimer_func;
   4915	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
   4916
   4917	hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
   4918
   4919	/*
   4920	 * by default set standard 80% (== 100 usec/uframe) max periodic
   4921	 * bandwidth as required by USB 2.0
   4922	 */
   4923	fotg210->uframe_periodic_max = 100;
   4924
   4925	/*
   4926	 * hw default: 1K periodic list heads, one per frame.
   4927	 * periodic_size can shrink by USBCMD update if hcc_params allows.
   4928	 */
   4929	fotg210->periodic_size = DEFAULT_I_TDPS;
   4930	INIT_LIST_HEAD(&fotg210->intr_qh_list);
   4931	INIT_LIST_HEAD(&fotg210->cached_itd_list);
   4932
   4933	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
   4934		/* periodic schedule size can be smaller than default */
   4935		switch (FOTG210_TUNE_FLS) {
   4936		case 0:
   4937			fotg210->periodic_size = 1024;
   4938			break;
   4939		case 1:
   4940			fotg210->periodic_size = 512;
   4941			break;
   4942		case 2:
   4943			fotg210->periodic_size = 256;
   4944			break;
   4945		default:
   4946			BUG();
   4947		}
   4948	}
   4949	retval = fotg210_mem_init(fotg210, GFP_KERNEL);
   4950	if (retval < 0)
   4951		return retval;
   4952
   4953	/* controllers may cache some of the periodic schedule ... */
   4954	fotg210->i_thresh = 2;
   4955
   4956	/*
   4957	 * dedicate a qh for the async ring head, since we couldn't unlink
   4958	 * a 'real' qh without stopping the async schedule [4.8].  use it
   4959	 * as the 'reclamation list head' too.
   4960	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
   4961	 * from automatically advancing to the next td after short reads.
   4962	 */
   4963	fotg210->async->qh_next.qh = NULL;
   4964	hw = fotg210->async->hw;
   4965	hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
   4966	hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
   4967	hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
   4968	hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
   4969	fotg210->async->qh_state = QH_STATE_LINKED;
   4970	hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
   4971
   4972	/* clear interrupt enables, set irq latency */
   4973	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
   4974		log2_irq_thresh = 0;
   4975	temp = 1 << (16 + log2_irq_thresh);
   4976	if (HCC_CANPARK(hcc_params)) {
   4977		/* HW default park == 3, on hardware that supports it (like
   4978		 * NVidia and ALI silicon), maximizes throughput on the async
   4979		 * schedule by avoiding QH fetches between transfers.
   4980		 *
   4981		 * With fast usb storage devices and NForce2, "park" seems to
   4982		 * make problems:  throughput reduction (!), data errors...
   4983		 */
   4984		if (park) {
   4985			park = min_t(unsigned, park, 3);
   4986			temp |= CMD_PARK;
   4987			temp |= park << 8;
   4988		}
   4989		fotg210_dbg(fotg210, "park %d\n", park);
   4990	}
   4991	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
   4992		/* periodic schedule size can be smaller than default */
   4993		temp &= ~(3 << 2);
   4994		temp |= (FOTG210_TUNE_FLS << 2);
   4995	}
   4996	fotg210->command = temp;
   4997
   4998	/* Accept arbitrarily long scatter-gather lists */
   4999	if (!hcd->localmem_pool)
   5000		hcd->self.sg_tablesize = ~0;
   5001	return 0;
   5002}
   5003
   5004/* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
   5005static int fotg210_run(struct usb_hcd *hcd)
   5006{
   5007	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
   5008	u32 temp;
   5009
   5010	hcd->uses_new_polling = 1;
   5011
   5012	/* EHCI spec section 4.1 */
   5013
   5014	fotg210_writel(fotg210, fotg210->periodic_dma,
   5015			&fotg210->regs->frame_list);
   5016	fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
   5017			&fotg210->regs->async_next);
   5018
   5019	/*
   5020	 * hcc_params controls whether fotg210->regs->segment must (!!!)
   5021	 * be used; it constrains QH/ITD/SITD and QTD locations.
   5022	 * dma_pool consistent memory always uses segment zero.
   5023	 * streaming mappings for I/O buffers, like dma_map_single(),
   5024	 * can return segments above 4GB, if the device allows.
   5025	 *
   5026	 * NOTE:  the dma mask is visible through dev->dma_mask, so
   5027	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
   5028	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
   5029	 * host side drivers though.
   5030	 */
   5031	fotg210_readl(fotg210, &fotg210->caps->hcc_params);
   5032
   5033	/*
   5034	 * Philips, Intel, and maybe others need CMD_RUN before the
   5035	 * root hub will detect new devices (why?); NEC doesn't
   5036	 */
   5037	fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
   5038	fotg210->command |= CMD_RUN;
   5039	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
   5040	dbg_cmd(fotg210, "init", fotg210->command);
   5041
   5042	/*
   5043	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
   5044	 * are explicitly handed to companion controller(s), so no TT is
   5045	 * involved with the root hub.  (Except where one is integrated,
   5046	 * and there's no companion controller unless maybe for USB OTG.)
   5047	 *
   5048	 * Turning on the CF flag will transfer ownership of all ports
   5049	 * from the companions to the EHCI controller.  If any of the
   5050	 * companions are in the middle of a port reset at the time, it
   5051	 * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
   5052	 * guarantees that no resets are in progress.  After we set CF,
   5053	 * a short delay lets the hardware catch up; new resets shouldn't
   5054	 * be started before the port switching actions could complete.
   5055	 */
   5056	down_write(&ehci_cf_port_reset_rwsem);
   5057	fotg210->rh_state = FOTG210_RH_RUNNING;
   5058	/* unblock posted writes */
   5059	fotg210_readl(fotg210, &fotg210->regs->command);
   5060	usleep_range(5000, 10000);
   5061	up_write(&ehci_cf_port_reset_rwsem);
   5062	fotg210->last_periodic_enable = ktime_get_real();
   5063
   5064	temp = HC_VERSION(fotg210,
   5065			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
   5066	fotg210_info(fotg210,
   5067			"USB %x.%x started, EHCI %x.%02x\n",
   5068			((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
   5069			temp >> 8, temp & 0xff);
   5070
   5071	fotg210_writel(fotg210, INTR_MASK,
   5072			&fotg210->regs->intr_enable); /* Turn On Interrupts */
   5073
   5074	/* GRR this is run-once init(), being done every time the HC starts.
   5075	 * So long as they're part of class devices, we can't do it init()
   5076	 * since the class device isn't created that early.
   5077	 */
   5078	create_debug_files(fotg210);
   5079	create_sysfs_files(fotg210);
   5080
   5081	return 0;
   5082}
   5083
   5084static int fotg210_setup(struct usb_hcd *hcd)
   5085{
   5086	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
   5087	int retval;
   5088
   5089	fotg210->regs = (void __iomem *)fotg210->caps +
   5090			HC_LENGTH(fotg210,
   5091			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
   5092	dbg_hcs_params(fotg210, "reset");
   5093	dbg_hcc_params(fotg210, "reset");
   5094
   5095	/* cache this readonly data; minimize chip reads */
   5096	fotg210->hcs_params = fotg210_readl(fotg210,
   5097			&fotg210->caps->hcs_params);
   5098
   5099	fotg210->sbrn = HCD_USB2;
   5100
   5101	/* data structure init */
   5102	retval = hcd_fotg210_init(hcd);
   5103	if (retval)
   5104		return retval;
   5105
   5106	retval = fotg210_halt(fotg210);
   5107	if (retval)
   5108		return retval;
   5109
   5110	fotg210_reset(fotg210);
   5111
   5112	return 0;
   5113}
   5114
   5115static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
   5116{
   5117	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
   5118	u32 status, masked_status, pcd_status = 0, cmd;
   5119	int bh;
   5120
   5121	spin_lock(&fotg210->lock);
   5122
   5123	status = fotg210_readl(fotg210, &fotg210->regs->status);
   5124
   5125	/* e.g. cardbus physical eject */
   5126	if (status == ~(u32) 0) {
   5127		fotg210_dbg(fotg210, "device removed\n");
   5128		goto dead;
   5129	}
   5130
   5131	/*
   5132	 * We don't use STS_FLR, but some controllers don't like it to
   5133	 * remain on, so mask it out along with the other status bits.
   5134	 */
   5135	masked_status = status & (INTR_MASK | STS_FLR);
   5136
   5137	/* Shared IRQ? */
   5138	if (!masked_status ||
   5139			unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
   5140		spin_unlock(&fotg210->lock);
   5141		return IRQ_NONE;
   5142	}
   5143
   5144	/* clear (just) interrupts */
   5145	fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
   5146	cmd = fotg210_readl(fotg210, &fotg210->regs->command);
   5147	bh = 0;
   5148
   5149	/* unrequested/ignored: Frame List Rollover */
   5150	dbg_status(fotg210, "irq", status);
   5151
   5152	/* INT, ERR, and IAA interrupt rates can be throttled */
   5153
   5154	/* normal [4.15.1.2] or error [4.15.1.1] completion */
   5155	if (likely((status & (STS_INT|STS_ERR)) != 0)) {
   5156		if (likely((status & STS_ERR) == 0))
   5157			INCR(fotg210->stats.normal);
   5158		else
   5159			INCR(fotg210->stats.error);
   5160		bh = 1;
   5161	}
   5162
   5163	/* complete the unlinking of some qh [4.15.2.3] */
   5164	if (status & STS_IAA) {
   5165
   5166		/* Turn off the IAA watchdog */
   5167		fotg210->enabled_hrtimer_events &=
   5168			~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
   5169
   5170		/*
   5171		 * Mild optimization: Allow another IAAD to reset the
   5172		 * hrtimer, if one occurs before the next expiration.
   5173		 * In theory we could always cancel the hrtimer, but
   5174		 * tests show that about half the time it will be reset
   5175		 * for some other event anyway.
   5176		 */
   5177		if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
   5178			++fotg210->next_hrtimer_event;
   5179
   5180		/* guard against (alleged) silicon errata */
   5181		if (cmd & CMD_IAAD)
   5182			fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
   5183		if (fotg210->async_iaa) {
   5184			INCR(fotg210->stats.iaa);
   5185			end_unlink_async(fotg210);
   5186		} else
   5187			fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
   5188	}
   5189
   5190	/* remote wakeup [4.3.1] */
   5191	if (status & STS_PCD) {
   5192		int pstatus;
   5193		u32 __iomem *status_reg = &fotg210->regs->port_status;
   5194
   5195		/* kick root hub later */
   5196		pcd_status = status;
   5197
   5198		/* resume root hub? */
   5199		if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
   5200			usb_hcd_resume_root_hub(hcd);
   5201
   5202		pstatus = fotg210_readl(fotg210, status_reg);
   5203
   5204		if (test_bit(0, &fotg210->suspended_ports) &&
   5205				((pstatus & PORT_RESUME) ||
   5206				!(pstatus & PORT_SUSPEND)) &&
   5207				(pstatus & PORT_PE) &&
   5208				fotg210->reset_done[0] == 0) {
   5209
   5210			/* start 20 msec resume signaling from this port,
   5211			 * and make hub_wq collect PORT_STAT_C_SUSPEND to
   5212			 * stop that signaling.  Use 5 ms extra for safety,
   5213			 * like usb_port_resume() does.
   5214			 */
   5215			fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
   5216			set_bit(0, &fotg210->resuming_ports);
   5217			fotg210_dbg(fotg210, "port 1 remote wakeup\n");
   5218			mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
   5219		}
   5220	}
   5221
   5222	/* PCI errors [4.15.2.4] */
   5223	if (unlikely((status & STS_FATAL) != 0)) {
   5224		fotg210_err(fotg210, "fatal error\n");
   5225		dbg_cmd(fotg210, "fatal", cmd);
   5226		dbg_status(fotg210, "fatal", status);
   5227dead:
   5228		usb_hc_died(hcd);
   5229
   5230		/* Don't let the controller do anything more */
   5231		fotg210->shutdown = true;
   5232		fotg210->rh_state = FOTG210_RH_STOPPING;
   5233		fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
   5234		fotg210_writel(fotg210, fotg210->command,
   5235				&fotg210->regs->command);
   5236		fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
   5237		fotg210_handle_controller_death(fotg210);
   5238
   5239		/* Handle completions when the controller stops */
   5240		bh = 0;
   5241	}
   5242
   5243	if (bh)
   5244		fotg210_work(fotg210);
   5245	spin_unlock(&fotg210->lock);
   5246	if (pcd_status)
   5247		usb_hcd_poll_rh_status(hcd);
   5248	return IRQ_HANDLED;
   5249}
   5250
   5251/* non-error returns are a promise to giveback() the urb later
   5252 * we drop ownership so next owner (or urb unlink) can get it
   5253 *
   5254 * urb + dev is in hcd.self.controller.urb_list
   5255 * we're queueing TDs onto software and hardware lists
   5256 *
   5257 * hcd-specific init for hcpriv hasn't been done yet
   5258 *
   5259 * NOTE:  control, bulk, and interrupt share the same code to append TDs
   5260 * to a (possibly active) QH, and the same QH scanning code.
   5261 */
   5262static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
   5263		gfp_t mem_flags)
   5264{
   5265	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
   5266	struct list_head qtd_list;
   5267
   5268	INIT_LIST_HEAD(&qtd_list);
   5269
   5270	switch (usb_pipetype(urb->pipe)) {
   5271	case PIPE_CONTROL:
   5272		/* qh_completions() code doesn't handle all the fault cases
   5273		 * in multi-TD control transfers.  Even 1KB is rare anyway.
   5274		 */
   5275		if (urb->transfer_buffer_length > (16 * 1024))
   5276			return -EMSGSIZE;
   5277		fallthrough;
   5278	/* case PIPE_BULK: */
   5279	default:
   5280		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
   5281			return -ENOMEM;
   5282		return submit_async(fotg210, urb, &qtd_list, mem_flags);
   5283
   5284	case PIPE_INTERRUPT:
   5285		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
   5286			return -ENOMEM;
   5287		return intr_submit(fotg210, urb, &qtd_list, mem_flags);
   5288
   5289	case PIPE_ISOCHRONOUS:
   5290		return itd_submit(fotg210, urb, mem_flags);
   5291	}
   5292}
   5293
   5294/* remove from hardware lists
   5295 * completions normally happen asynchronously
   5296 */
   5297
   5298static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
   5299{
   5300	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
   5301	struct fotg210_qh *qh;
   5302	unsigned long flags;
   5303	int rc;
   5304
   5305	spin_lock_irqsave(&fotg210->lock, flags);
   5306	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
   5307	if (rc)
   5308		goto done;
   5309
   5310	switch (usb_pipetype(urb->pipe)) {
   5311	/* case PIPE_CONTROL: */
   5312	/* case PIPE_BULK:*/
   5313	default:
   5314		qh = (struct fotg210_qh *) urb->hcpriv;
   5315		if (!qh)
   5316			break;
   5317		switch (qh->qh_state) {
   5318		case QH_STATE_LINKED:
   5319		case QH_STATE_COMPLETING:
   5320			start_unlink_async(fotg210, qh);
   5321			break;
   5322		case QH_STATE_UNLINK:
   5323		case QH_STATE_UNLINK_WAIT:
   5324			/* already started */
   5325			break;
   5326		case QH_STATE_IDLE:
   5327			/* QH might be waiting for a Clear-TT-Buffer */
   5328			qh_completions(fotg210, qh);
   5329			break;
   5330		}
   5331		break;
   5332
   5333	case PIPE_INTERRUPT:
   5334		qh = (struct fotg210_qh *) urb->hcpriv;
   5335		if (!qh)
   5336			break;
   5337		switch (qh->qh_state) {
   5338		case QH_STATE_LINKED:
   5339		case QH_STATE_COMPLETING:
   5340			start_unlink_intr(fotg210, qh);
   5341			break;
   5342		case QH_STATE_IDLE:
   5343			qh_completions(fotg210, qh);
   5344			break;
   5345		default:
   5346			fotg210_dbg(fotg210, "bogus qh %p state %d\n",
   5347					qh, qh->qh_state);
   5348			goto done;
   5349		}
   5350		break;
   5351
   5352	case PIPE_ISOCHRONOUS:
   5353		/* itd... */
   5354
   5355		/* wait till next completion, do it then. */
   5356		/* completion irqs can wait up to 1024 msec, */
   5357		break;
   5358	}
   5359done:
   5360	spin_unlock_irqrestore(&fotg210->lock, flags);
   5361	return rc;
   5362}
   5363
   5364/* bulk qh holds the data toggle */
   5365
   5366static void fotg210_endpoint_disable(struct usb_hcd *hcd,
   5367		struct usb_host_endpoint *ep)
   5368{
   5369	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
   5370	unsigned long flags;
   5371	struct fotg210_qh *qh, *tmp;
   5372
   5373	/* ASSERT:  any requests/urbs are being unlinked */
   5374	/* ASSERT:  nobody can be submitting urbs for this any more */
   5375
   5376rescan:
   5377	spin_lock_irqsave(&fotg210->lock, flags);
   5378	qh = ep->hcpriv;
   5379	if (!qh)
   5380		goto done;
   5381
   5382	/* endpoints can be iso streams.  for now, we don't
   5383	 * accelerate iso completions ... so spin a while.
   5384	 */
   5385	if (qh->hw == NULL) {
   5386		struct fotg210_iso_stream *stream = ep->hcpriv;
   5387
   5388		if (!list_empty(&stream->td_list))
   5389			goto idle_timeout;
   5390
   5391		/* BUG_ON(!list_empty(&stream->free_list)); */
   5392		kfree(stream);
   5393		goto done;
   5394	}
   5395
   5396	if (fotg210->rh_state < FOTG210_RH_RUNNING)
   5397		qh->qh_state = QH_STATE_IDLE;
   5398	switch (qh->qh_state) {
   5399	case QH_STATE_LINKED:
   5400	case QH_STATE_COMPLETING:
   5401		for (tmp = fotg210->async->qh_next.qh;
   5402				tmp && tmp != qh;
   5403				tmp = tmp->qh_next.qh)
   5404			continue;
   5405		/* periodic qh self-unlinks on empty, and a COMPLETING qh
   5406		 * may already be unlinked.
   5407		 */
   5408		if (tmp)
   5409			start_unlink_async(fotg210, qh);
   5410		fallthrough;
   5411	case QH_STATE_UNLINK:		/* wait for hw to finish? */
   5412	case QH_STATE_UNLINK_WAIT:
   5413idle_timeout:
   5414		spin_unlock_irqrestore(&fotg210->lock, flags);
   5415		schedule_timeout_uninterruptible(1);
   5416		goto rescan;
   5417	case QH_STATE_IDLE:		/* fully unlinked */
   5418		if (qh->clearing_tt)
   5419			goto idle_timeout;
   5420		if (list_empty(&qh->qtd_list)) {
   5421			qh_destroy(fotg210, qh);
   5422			break;
   5423		}
   5424		fallthrough;
   5425	default:
   5426		/* caller was supposed to have unlinked any requests;
   5427		 * that's not our job.  just leak this memory.
   5428		 */
   5429		fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
   5430				qh, ep->desc.bEndpointAddress, qh->qh_state,
   5431				list_empty(&qh->qtd_list) ? "" : "(has tds)");
   5432		break;
   5433	}
   5434done:
   5435	ep->hcpriv = NULL;
   5436	spin_unlock_irqrestore(&fotg210->lock, flags);
   5437}
   5438
   5439static void fotg210_endpoint_reset(struct usb_hcd *hcd,
   5440		struct usb_host_endpoint *ep)
   5441{
   5442	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
   5443	struct fotg210_qh *qh;
   5444	int eptype = usb_endpoint_type(&ep->desc);
   5445	int epnum = usb_endpoint_num(&ep->desc);
   5446	int is_out = usb_endpoint_dir_out(&ep->desc);
   5447	unsigned long flags;
   5448
   5449	if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
   5450		return;
   5451
   5452	spin_lock_irqsave(&fotg210->lock, flags);
   5453	qh = ep->hcpriv;
   5454
   5455	/* For Bulk and Interrupt endpoints we maintain the toggle state
   5456	 * in the hardware; the toggle bits in udev aren't used at all.
   5457	 * When an endpoint is reset by usb_clear_halt() we must reset
   5458	 * the toggle bit in the QH.
   5459	 */
   5460	if (qh) {
   5461		usb_settoggle(qh->dev, epnum, is_out, 0);
   5462		if (!list_empty(&qh->qtd_list)) {
   5463			WARN_ONCE(1, "clear_halt for a busy endpoint\n");
   5464		} else if (qh->qh_state == QH_STATE_LINKED ||
   5465				qh->qh_state == QH_STATE_COMPLETING) {
   5466
   5467			/* The toggle value in the QH can't be updated
   5468			 * while the QH is active.  Unlink it now;
   5469			 * re-linking will call qh_refresh().
   5470			 */
   5471			if (eptype == USB_ENDPOINT_XFER_BULK)
   5472				start_unlink_async(fotg210, qh);
   5473			else
   5474				start_unlink_intr(fotg210, qh);
   5475		}
   5476	}
   5477	spin_unlock_irqrestore(&fotg210->lock, flags);
   5478}
   5479
   5480static int fotg210_get_frame(struct usb_hcd *hcd)
   5481{
   5482	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
   5483
   5484	return (fotg210_read_frame_index(fotg210) >> 3) %
   5485		fotg210->periodic_size;
   5486}
   5487
   5488/* The EHCI in ChipIdea HDRC cannot be a separate module or device,
   5489 * because its registers (and irq) are shared between host/gadget/otg
   5490 * functions  and in order to facilitate role switching we cannot
   5491 * give the fotg210 driver exclusive access to those.
   5492 */
   5493MODULE_DESCRIPTION(DRIVER_DESC);
   5494MODULE_AUTHOR(DRIVER_AUTHOR);
   5495MODULE_LICENSE("GPL");
   5496
   5497static const struct hc_driver fotg210_fotg210_hc_driver = {
   5498	.description		= hcd_name,
   5499	.product_desc		= "Faraday USB2.0 Host Controller",
   5500	.hcd_priv_size		= sizeof(struct fotg210_hcd),
   5501
   5502	/*
   5503	 * generic hardware linkage
   5504	 */
   5505	.irq			= fotg210_irq,
   5506	.flags			= HCD_MEMORY | HCD_DMA | HCD_USB2,
   5507
   5508	/*
   5509	 * basic lifecycle operations
   5510	 */
   5511	.reset			= hcd_fotg210_init,
   5512	.start			= fotg210_run,
   5513	.stop			= fotg210_stop,
   5514	.shutdown		= fotg210_shutdown,
   5515
   5516	/*
   5517	 * managing i/o requests and associated device resources
   5518	 */
   5519	.urb_enqueue		= fotg210_urb_enqueue,
   5520	.urb_dequeue		= fotg210_urb_dequeue,
   5521	.endpoint_disable	= fotg210_endpoint_disable,
   5522	.endpoint_reset		= fotg210_endpoint_reset,
   5523
   5524	/*
   5525	 * scheduling support
   5526	 */
   5527	.get_frame_number	= fotg210_get_frame,
   5528
   5529	/*
   5530	 * root hub support
   5531	 */
   5532	.hub_status_data	= fotg210_hub_status_data,
   5533	.hub_control		= fotg210_hub_control,
   5534	.bus_suspend		= fotg210_bus_suspend,
   5535	.bus_resume		= fotg210_bus_resume,
   5536
   5537	.relinquish_port	= fotg210_relinquish_port,
   5538	.port_handed_over	= fotg210_port_handed_over,
   5539
   5540	.clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
   5541};
   5542
   5543static void fotg210_init(struct fotg210_hcd *fotg210)
   5544{
   5545	u32 value;
   5546
   5547	iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
   5548			&fotg210->regs->gmir);
   5549
   5550	value = ioread32(&fotg210->regs->otgcsr);
   5551	value &= ~OTGCSR_A_BUS_DROP;
   5552	value |= OTGCSR_A_BUS_REQ;
   5553	iowrite32(value, &fotg210->regs->otgcsr);
   5554}
   5555
   5556/*
   5557 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
   5558 *
   5559 * Allocates basic resources for this USB host controller, and
   5560 * then invokes the start() method for the HCD associated with it
   5561 * through the hotplug entry's driver_data.
   5562 */
   5563static int fotg210_hcd_probe(struct platform_device *pdev)
   5564{
   5565	struct device *dev = &pdev->dev;
   5566	struct usb_hcd *hcd;
   5567	struct resource *res;
   5568	int irq;
   5569	int retval;
   5570	struct fotg210_hcd *fotg210;
   5571
   5572	if (usb_disabled())
   5573		return -ENODEV;
   5574
   5575	pdev->dev.power.power_state = PMSG_ON;
   5576
   5577	irq = platform_get_irq(pdev, 0);
   5578	if (irq < 0)
   5579		return irq;
   5580
   5581	hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
   5582			dev_name(dev));
   5583	if (!hcd) {
   5584		dev_err(dev, "failed to create hcd\n");
   5585		retval = -ENOMEM;
   5586		goto fail_create_hcd;
   5587	}
   5588
   5589	hcd->has_tt = 1;
   5590
   5591	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
   5592	hcd->regs = devm_ioremap_resource(&pdev->dev, res);
   5593	if (IS_ERR(hcd->regs)) {
   5594		retval = PTR_ERR(hcd->regs);
   5595		goto failed_put_hcd;
   5596	}
   5597
   5598	hcd->rsrc_start = res->start;
   5599	hcd->rsrc_len = resource_size(res);
   5600
   5601	fotg210 = hcd_to_fotg210(hcd);
   5602
   5603	fotg210->caps = hcd->regs;
   5604
   5605	/* It's OK not to supply this clock */
   5606	fotg210->pclk = clk_get(dev, "PCLK");
   5607	if (!IS_ERR(fotg210->pclk)) {
   5608		retval = clk_prepare_enable(fotg210->pclk);
   5609		if (retval) {
   5610			dev_err(dev, "failed to enable PCLK\n");
   5611			goto failed_put_hcd;
   5612		}
   5613	} else if (PTR_ERR(fotg210->pclk) == -EPROBE_DEFER) {
   5614		/*
   5615		 * Percolate deferrals, for anything else,
   5616		 * just live without the clocking.
   5617		 */
   5618		retval = PTR_ERR(fotg210->pclk);
   5619		goto failed_dis_clk;
   5620	}
   5621
   5622	retval = fotg210_setup(hcd);
   5623	if (retval)
   5624		goto failed_dis_clk;
   5625
   5626	fotg210_init(fotg210);
   5627
   5628	retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
   5629	if (retval) {
   5630		dev_err(dev, "failed to add hcd with err %d\n", retval);
   5631		goto failed_dis_clk;
   5632	}
   5633	device_wakeup_enable(hcd->self.controller);
   5634	platform_set_drvdata(pdev, hcd);
   5635
   5636	return retval;
   5637
   5638failed_dis_clk:
   5639	if (!IS_ERR(fotg210->pclk)) {
   5640		clk_disable_unprepare(fotg210->pclk);
   5641		clk_put(fotg210->pclk);
   5642	}
   5643failed_put_hcd:
   5644	usb_put_hcd(hcd);
   5645fail_create_hcd:
   5646	dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
   5647	return retval;
   5648}
   5649
   5650/*
   5651 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
   5652 * @dev: USB Host Controller being removed
   5653 *
   5654 */
   5655static int fotg210_hcd_remove(struct platform_device *pdev)
   5656{
   5657	struct usb_hcd *hcd = platform_get_drvdata(pdev);
   5658	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
   5659
   5660	if (!IS_ERR(fotg210->pclk)) {
   5661		clk_disable_unprepare(fotg210->pclk);
   5662		clk_put(fotg210->pclk);
   5663	}
   5664
   5665	usb_remove_hcd(hcd);
   5666	usb_put_hcd(hcd);
   5667
   5668	return 0;
   5669}
   5670
   5671#ifdef CONFIG_OF
   5672static const struct of_device_id fotg210_of_match[] = {
   5673	{ .compatible = "faraday,fotg210" },
   5674	{},
   5675};
   5676MODULE_DEVICE_TABLE(of, fotg210_of_match);
   5677#endif
   5678
   5679static struct platform_driver fotg210_hcd_driver = {
   5680	.driver = {
   5681		.name   = "fotg210-hcd",
   5682		.of_match_table = of_match_ptr(fotg210_of_match),
   5683	},
   5684	.probe  = fotg210_hcd_probe,
   5685	.remove = fotg210_hcd_remove,
   5686};
   5687
   5688static int __init fotg210_hcd_init(void)
   5689{
   5690	int retval = 0;
   5691
   5692	if (usb_disabled())
   5693		return -ENODEV;
   5694
   5695	pr_info("%s: " DRIVER_DESC "\n", hcd_name);
   5696	set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
   5697	if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
   5698			test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
   5699		pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
   5700
   5701	pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
   5702			hcd_name, sizeof(struct fotg210_qh),
   5703			sizeof(struct fotg210_qtd),
   5704			sizeof(struct fotg210_itd));
   5705
   5706	fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
   5707
   5708	retval = platform_driver_register(&fotg210_hcd_driver);
   5709	if (retval < 0)
   5710		goto clean;
   5711	return retval;
   5712
   5713clean:
   5714	debugfs_remove(fotg210_debug_root);
   5715	fotg210_debug_root = NULL;
   5716
   5717	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
   5718	return retval;
   5719}
   5720module_init(fotg210_hcd_init);
   5721
   5722static void __exit fotg210_hcd_cleanup(void)
   5723{
   5724	platform_driver_unregister(&fotg210_hcd_driver);
   5725	debugfs_remove(fotg210_debug_root);
   5726	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
   5727}
   5728module_exit(fotg210_hcd_cleanup);