cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

xhci-mem.c (77116B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * xHCI host controller driver
      4 *
      5 * Copyright (C) 2008 Intel Corp.
      6 *
      7 * Author: Sarah Sharp
      8 * Some code borrowed from the Linux EHCI driver.
      9 */
     10
     11#include <linux/usb.h>
     12#include <linux/pci.h>
     13#include <linux/slab.h>
     14#include <linux/dmapool.h>
     15#include <linux/dma-mapping.h>
     16
     17#include "xhci.h"
     18#include "xhci-trace.h"
     19#include "xhci-debugfs.h"
     20
     21/*
     22 * Allocates a generic ring segment from the ring pool, sets the dma address,
     23 * initializes the segment to zero, and sets the private next pointer to NULL.
     24 *
     25 * Section 4.11.1.1:
     26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
     27 */
     28static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
     29					       unsigned int cycle_state,
     30					       unsigned int max_packet,
     31					       gfp_t flags)
     32{
     33	struct xhci_segment *seg;
     34	dma_addr_t	dma;
     35	int		i;
     36	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
     37
     38	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
     39	if (!seg)
     40		return NULL;
     41
     42	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
     43	if (!seg->trbs) {
     44		kfree(seg);
     45		return NULL;
     46	}
     47
     48	if (max_packet) {
     49		seg->bounce_buf = kzalloc_node(max_packet, flags,
     50					dev_to_node(dev));
     51		if (!seg->bounce_buf) {
     52			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
     53			kfree(seg);
     54			return NULL;
     55		}
     56	}
     57	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
     58	if (cycle_state == 0) {
     59		for (i = 0; i < TRBS_PER_SEGMENT; i++)
     60			seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
     61	}
     62	seg->dma = dma;
     63	seg->next = NULL;
     64
     65	return seg;
     66}
     67
     68static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
     69{
     70	if (seg->trbs) {
     71		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
     72		seg->trbs = NULL;
     73	}
     74	kfree(seg->bounce_buf);
     75	kfree(seg);
     76}
     77
     78static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
     79				struct xhci_segment *first)
     80{
     81	struct xhci_segment *seg;
     82
     83	seg = first->next;
     84	while (seg != first) {
     85		struct xhci_segment *next = seg->next;
     86		xhci_segment_free(xhci, seg);
     87		seg = next;
     88	}
     89	xhci_segment_free(xhci, first);
     90}
     91
     92/*
     93 * Make the prev segment point to the next segment.
     94 *
     95 * Change the last TRB in the prev segment to be a Link TRB which points to the
     96 * DMA address of the next segment.  The caller needs to set any Link TRB
     97 * related flags, such as End TRB, Toggle Cycle, and no snoop.
     98 */
     99static void xhci_link_segments(struct xhci_segment *prev,
    100			       struct xhci_segment *next,
    101			       enum xhci_ring_type type, bool chain_links)
    102{
    103	u32 val;
    104
    105	if (!prev || !next)
    106		return;
    107	prev->next = next;
    108	if (type != TYPE_EVENT) {
    109		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
    110			cpu_to_le64(next->dma);
    111
    112		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
    113		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
    114		val &= ~TRB_TYPE_BITMASK;
    115		val |= TRB_TYPE(TRB_LINK);
    116		if (chain_links)
    117			val |= TRB_CHAIN;
    118		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
    119	}
    120}
    121
    122/*
    123 * Link the ring to the new segments.
    124 * Set Toggle Cycle for the new ring if needed.
    125 */
    126static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
    127		struct xhci_segment *first, struct xhci_segment *last,
    128		unsigned int num_segs)
    129{
    130	struct xhci_segment *next;
    131	bool chain_links;
    132
    133	if (!ring || !first || !last)
    134		return;
    135
    136	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
    137	chain_links = !!(xhci_link_trb_quirk(xhci) ||
    138			 (ring->type == TYPE_ISOC &&
    139			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
    140
    141	next = ring->enq_seg->next;
    142	xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
    143	xhci_link_segments(last, next, ring->type, chain_links);
    144	ring->num_segs += num_segs;
    145	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
    146
    147	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
    148		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
    149			&= ~cpu_to_le32(LINK_TOGGLE);
    150		last->trbs[TRBS_PER_SEGMENT-1].link.control
    151			|= cpu_to_le32(LINK_TOGGLE);
    152		ring->last_seg = last;
    153	}
    154}
    155
    156/*
    157 * We need a radix tree for mapping physical addresses of TRBs to which stream
    158 * ID they belong to.  We need to do this because the host controller won't tell
    159 * us which stream ring the TRB came from.  We could store the stream ID in an
    160 * event data TRB, but that doesn't help us for the cancellation case, since the
    161 * endpoint may stop before it reaches that event data TRB.
    162 *
    163 * The radix tree maps the upper portion of the TRB DMA address to a ring
    164 * segment that has the same upper portion of DMA addresses.  For example, say I
    165 * have segments of size 1KB, that are always 1KB aligned.  A segment may
    166 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
    167 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
    168 * pass the radix tree a key to get the right stream ID:
    169 *
    170 *	0x10c90fff >> 10 = 0x43243
    171 *	0x10c912c0 >> 10 = 0x43244
    172 *	0x10c91400 >> 10 = 0x43245
    173 *
    174 * Obviously, only those TRBs with DMA addresses that are within the segment
    175 * will make the radix tree return the stream ID for that ring.
    176 *
    177 * Caveats for the radix tree:
    178 *
    179 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
    180 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
    181 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
    182 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
    183 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
    184 * extended systems (where the DMA address can be bigger than 32-bits),
    185 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
    186 */
    187static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
    188		struct xhci_ring *ring,
    189		struct xhci_segment *seg,
    190		gfp_t mem_flags)
    191{
    192	unsigned long key;
    193	int ret;
    194
    195	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
    196	/* Skip any segments that were already added. */
    197	if (radix_tree_lookup(trb_address_map, key))
    198		return 0;
    199
    200	ret = radix_tree_maybe_preload(mem_flags);
    201	if (ret)
    202		return ret;
    203	ret = radix_tree_insert(trb_address_map,
    204			key, ring);
    205	radix_tree_preload_end();
    206	return ret;
    207}
    208
    209static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
    210		struct xhci_segment *seg)
    211{
    212	unsigned long key;
    213
    214	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
    215	if (radix_tree_lookup(trb_address_map, key))
    216		radix_tree_delete(trb_address_map, key);
    217}
    218
    219static int xhci_update_stream_segment_mapping(
    220		struct radix_tree_root *trb_address_map,
    221		struct xhci_ring *ring,
    222		struct xhci_segment *first_seg,
    223		struct xhci_segment *last_seg,
    224		gfp_t mem_flags)
    225{
    226	struct xhci_segment *seg;
    227	struct xhci_segment *failed_seg;
    228	int ret;
    229
    230	if (WARN_ON_ONCE(trb_address_map == NULL))
    231		return 0;
    232
    233	seg = first_seg;
    234	do {
    235		ret = xhci_insert_segment_mapping(trb_address_map,
    236				ring, seg, mem_flags);
    237		if (ret)
    238			goto remove_streams;
    239		if (seg == last_seg)
    240			return 0;
    241		seg = seg->next;
    242	} while (seg != first_seg);
    243
    244	return 0;
    245
    246remove_streams:
    247	failed_seg = seg;
    248	seg = first_seg;
    249	do {
    250		xhci_remove_segment_mapping(trb_address_map, seg);
    251		if (seg == failed_seg)
    252			return ret;
    253		seg = seg->next;
    254	} while (seg != first_seg);
    255
    256	return ret;
    257}
    258
    259static void xhci_remove_stream_mapping(struct xhci_ring *ring)
    260{
    261	struct xhci_segment *seg;
    262
    263	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
    264		return;
    265
    266	seg = ring->first_seg;
    267	do {
    268		xhci_remove_segment_mapping(ring->trb_address_map, seg);
    269		seg = seg->next;
    270	} while (seg != ring->first_seg);
    271}
    272
    273static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
    274{
    275	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
    276			ring->first_seg, ring->last_seg, mem_flags);
    277}
    278
    279/* XXX: Do we need the hcd structure in all these functions? */
    280void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
    281{
    282	if (!ring)
    283		return;
    284
    285	trace_xhci_ring_free(ring);
    286
    287	if (ring->first_seg) {
    288		if (ring->type == TYPE_STREAM)
    289			xhci_remove_stream_mapping(ring);
    290		xhci_free_segments_for_ring(xhci, ring->first_seg);
    291	}
    292
    293	kfree(ring);
    294}
    295
    296void xhci_initialize_ring_info(struct xhci_ring *ring,
    297			       unsigned int cycle_state)
    298{
    299	/* The ring is empty, so the enqueue pointer == dequeue pointer */
    300	ring->enqueue = ring->first_seg->trbs;
    301	ring->enq_seg = ring->first_seg;
    302	ring->dequeue = ring->enqueue;
    303	ring->deq_seg = ring->first_seg;
    304	/* The ring is initialized to 0. The producer must write 1 to the cycle
    305	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
    306	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
    307	 *
    308	 * New rings are initialized with cycle state equal to 1; if we are
    309	 * handling ring expansion, set the cycle state equal to the old ring.
    310	 */
    311	ring->cycle_state = cycle_state;
    312
    313	/*
    314	 * Each segment has a link TRB, and leave an extra TRB for SW
    315	 * accounting purpose
    316	 */
    317	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
    318}
    319
    320/* Allocate segments and link them for a ring */
    321static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
    322		struct xhci_segment **first, struct xhci_segment **last,
    323		unsigned int num_segs, unsigned int cycle_state,
    324		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
    325{
    326	struct xhci_segment *prev;
    327	bool chain_links;
    328
    329	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
    330	chain_links = !!(xhci_link_trb_quirk(xhci) ||
    331			 (type == TYPE_ISOC &&
    332			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
    333
    334	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
    335	if (!prev)
    336		return -ENOMEM;
    337	num_segs--;
    338
    339	*first = prev;
    340	while (num_segs > 0) {
    341		struct xhci_segment	*next;
    342
    343		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
    344		if (!next) {
    345			prev = *first;
    346			while (prev) {
    347				next = prev->next;
    348				xhci_segment_free(xhci, prev);
    349				prev = next;
    350			}
    351			return -ENOMEM;
    352		}
    353		xhci_link_segments(prev, next, type, chain_links);
    354
    355		prev = next;
    356		num_segs--;
    357	}
    358	xhci_link_segments(prev, *first, type, chain_links);
    359	*last = prev;
    360
    361	return 0;
    362}
    363
    364/*
    365 * Create a new ring with zero or more segments.
    366 *
    367 * Link each segment together into a ring.
    368 * Set the end flag and the cycle toggle bit on the last segment.
    369 * See section 4.9.1 and figures 15 and 16.
    370 */
    371struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
    372		unsigned int num_segs, unsigned int cycle_state,
    373		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
    374{
    375	struct xhci_ring	*ring;
    376	int ret;
    377	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
    378
    379	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
    380	if (!ring)
    381		return NULL;
    382
    383	ring->num_segs = num_segs;
    384	ring->bounce_buf_len = max_packet;
    385	INIT_LIST_HEAD(&ring->td_list);
    386	ring->type = type;
    387	if (num_segs == 0)
    388		return ring;
    389
    390	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
    391			&ring->last_seg, num_segs, cycle_state, type,
    392			max_packet, flags);
    393	if (ret)
    394		goto fail;
    395
    396	/* Only event ring does not use link TRB */
    397	if (type != TYPE_EVENT) {
    398		/* See section 4.9.2.1 and 6.4.4.1 */
    399		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
    400			cpu_to_le32(LINK_TOGGLE);
    401	}
    402	xhci_initialize_ring_info(ring, cycle_state);
    403	trace_xhci_ring_alloc(ring);
    404	return ring;
    405
    406fail:
    407	kfree(ring);
    408	return NULL;
    409}
    410
    411void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
    412		struct xhci_virt_device *virt_dev,
    413		unsigned int ep_index)
    414{
    415	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
    416	virt_dev->eps[ep_index].ring = NULL;
    417}
    418
    419/*
    420 * Expand an existing ring.
    421 * Allocate a new ring which has same segment numbers and link the two rings.
    422 */
    423int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
    424				unsigned int num_trbs, gfp_t flags)
    425{
    426	struct xhci_segment	*first;
    427	struct xhci_segment	*last;
    428	unsigned int		num_segs;
    429	unsigned int		num_segs_needed;
    430	int			ret;
    431
    432	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
    433				(TRBS_PER_SEGMENT - 1);
    434
    435	/* Allocate number of segments we needed, or double the ring size */
    436	num_segs = max(ring->num_segs, num_segs_needed);
    437
    438	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
    439			num_segs, ring->cycle_state, ring->type,
    440			ring->bounce_buf_len, flags);
    441	if (ret)
    442		return -ENOMEM;
    443
    444	if (ring->type == TYPE_STREAM)
    445		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
    446						ring, first, last, flags);
    447	if (ret) {
    448		struct xhci_segment *next;
    449		do {
    450			next = first->next;
    451			xhci_segment_free(xhci, first);
    452			if (first == last)
    453				break;
    454			first = next;
    455		} while (true);
    456		return ret;
    457	}
    458
    459	xhci_link_rings(xhci, ring, first, last, num_segs);
    460	trace_xhci_ring_expansion(ring);
    461	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
    462			"ring expansion succeed, now has %d segments",
    463			ring->num_segs);
    464
    465	return 0;
    466}
    467
    468struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
    469						    int type, gfp_t flags)
    470{
    471	struct xhci_container_ctx *ctx;
    472	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
    473
    474	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
    475		return NULL;
    476
    477	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
    478	if (!ctx)
    479		return NULL;
    480
    481	ctx->type = type;
    482	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
    483	if (type == XHCI_CTX_TYPE_INPUT)
    484		ctx->size += CTX_SIZE(xhci->hcc_params);
    485
    486	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
    487	if (!ctx->bytes) {
    488		kfree(ctx);
    489		return NULL;
    490	}
    491	return ctx;
    492}
    493
    494void xhci_free_container_ctx(struct xhci_hcd *xhci,
    495			     struct xhci_container_ctx *ctx)
    496{
    497	if (!ctx)
    498		return;
    499	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
    500	kfree(ctx);
    501}
    502
    503struct xhci_input_control_ctx *xhci_get_input_control_ctx(
    504					      struct xhci_container_ctx *ctx)
    505{
    506	if (ctx->type != XHCI_CTX_TYPE_INPUT)
    507		return NULL;
    508
    509	return (struct xhci_input_control_ctx *)ctx->bytes;
    510}
    511
    512struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
    513					struct xhci_container_ctx *ctx)
    514{
    515	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
    516		return (struct xhci_slot_ctx *)ctx->bytes;
    517
    518	return (struct xhci_slot_ctx *)
    519		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
    520}
    521
    522struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
    523				    struct xhci_container_ctx *ctx,
    524				    unsigned int ep_index)
    525{
    526	/* increment ep index by offset of start of ep ctx array */
    527	ep_index++;
    528	if (ctx->type == XHCI_CTX_TYPE_INPUT)
    529		ep_index++;
    530
    531	return (struct xhci_ep_ctx *)
    532		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
    533}
    534EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
    535
    536/***************** Streams structures manipulation *************************/
    537
    538static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
    539		unsigned int num_stream_ctxs,
    540		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
    541{
    542	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
    543	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
    544
    545	if (size > MEDIUM_STREAM_ARRAY_SIZE)
    546		dma_free_coherent(dev, size,
    547				stream_ctx, dma);
    548	else if (size <= SMALL_STREAM_ARRAY_SIZE)
    549		return dma_pool_free(xhci->small_streams_pool,
    550				stream_ctx, dma);
    551	else
    552		return dma_pool_free(xhci->medium_streams_pool,
    553				stream_ctx, dma);
    554}
    555
    556/*
    557 * The stream context array for each endpoint with bulk streams enabled can
    558 * vary in size, based on:
    559 *  - how many streams the endpoint supports,
    560 *  - the maximum primary stream array size the host controller supports,
    561 *  - and how many streams the device driver asks for.
    562 *
    563 * The stream context array must be a power of 2, and can be as small as
    564 * 64 bytes or as large as 1MB.
    565 */
    566static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
    567		unsigned int num_stream_ctxs, dma_addr_t *dma,
    568		gfp_t mem_flags)
    569{
    570	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
    571	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
    572
    573	if (size > MEDIUM_STREAM_ARRAY_SIZE)
    574		return dma_alloc_coherent(dev, size,
    575				dma, mem_flags);
    576	else if (size <= SMALL_STREAM_ARRAY_SIZE)
    577		return dma_pool_alloc(xhci->small_streams_pool,
    578				mem_flags, dma);
    579	else
    580		return dma_pool_alloc(xhci->medium_streams_pool,
    581				mem_flags, dma);
    582}
    583
    584struct xhci_ring *xhci_dma_to_transfer_ring(
    585		struct xhci_virt_ep *ep,
    586		u64 address)
    587{
    588	if (ep->ep_state & EP_HAS_STREAMS)
    589		return radix_tree_lookup(&ep->stream_info->trb_address_map,
    590				address >> TRB_SEGMENT_SHIFT);
    591	return ep->ring;
    592}
    593
    594/*
    595 * Change an endpoint's internal structure so it supports stream IDs.  The
    596 * number of requested streams includes stream 0, which cannot be used by device
    597 * drivers.
    598 *
    599 * The number of stream contexts in the stream context array may be bigger than
    600 * the number of streams the driver wants to use.  This is because the number of
    601 * stream context array entries must be a power of two.
    602 */
    603struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
    604		unsigned int num_stream_ctxs,
    605		unsigned int num_streams,
    606		unsigned int max_packet, gfp_t mem_flags)
    607{
    608	struct xhci_stream_info *stream_info;
    609	u32 cur_stream;
    610	struct xhci_ring *cur_ring;
    611	u64 addr;
    612	int ret;
    613	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
    614
    615	xhci_dbg(xhci, "Allocating %u streams and %u "
    616			"stream context array entries.\n",
    617			num_streams, num_stream_ctxs);
    618	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
    619		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
    620		return NULL;
    621	}
    622	xhci->cmd_ring_reserved_trbs++;
    623
    624	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
    625			dev_to_node(dev));
    626	if (!stream_info)
    627		goto cleanup_trbs;
    628
    629	stream_info->num_streams = num_streams;
    630	stream_info->num_stream_ctxs = num_stream_ctxs;
    631
    632	/* Initialize the array of virtual pointers to stream rings. */
    633	stream_info->stream_rings = kcalloc_node(
    634			num_streams, sizeof(struct xhci_ring *), mem_flags,
    635			dev_to_node(dev));
    636	if (!stream_info->stream_rings)
    637		goto cleanup_info;
    638
    639	/* Initialize the array of DMA addresses for stream rings for the HW. */
    640	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
    641			num_stream_ctxs, &stream_info->ctx_array_dma,
    642			mem_flags);
    643	if (!stream_info->stream_ctx_array)
    644		goto cleanup_ctx;
    645	memset(stream_info->stream_ctx_array, 0,
    646			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
    647
    648	/* Allocate everything needed to free the stream rings later */
    649	stream_info->free_streams_command =
    650		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
    651	if (!stream_info->free_streams_command)
    652		goto cleanup_ctx;
    653
    654	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
    655
    656	/* Allocate rings for all the streams that the driver will use,
    657	 * and add their segment DMA addresses to the radix tree.
    658	 * Stream 0 is reserved.
    659	 */
    660
    661	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
    662		stream_info->stream_rings[cur_stream] =
    663			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
    664					mem_flags);
    665		cur_ring = stream_info->stream_rings[cur_stream];
    666		if (!cur_ring)
    667			goto cleanup_rings;
    668		cur_ring->stream_id = cur_stream;
    669		cur_ring->trb_address_map = &stream_info->trb_address_map;
    670		/* Set deq ptr, cycle bit, and stream context type */
    671		addr = cur_ring->first_seg->dma |
    672			SCT_FOR_CTX(SCT_PRI_TR) |
    673			cur_ring->cycle_state;
    674		stream_info->stream_ctx_array[cur_stream].stream_ring =
    675			cpu_to_le64(addr);
    676		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
    677				cur_stream, (unsigned long long) addr);
    678
    679		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
    680		if (ret) {
    681			xhci_ring_free(xhci, cur_ring);
    682			stream_info->stream_rings[cur_stream] = NULL;
    683			goto cleanup_rings;
    684		}
    685	}
    686	/* Leave the other unused stream ring pointers in the stream context
    687	 * array initialized to zero.  This will cause the xHC to give us an
    688	 * error if the device asks for a stream ID we don't have setup (if it
    689	 * was any other way, the host controller would assume the ring is
    690	 * "empty" and wait forever for data to be queued to that stream ID).
    691	 */
    692
    693	return stream_info;
    694
    695cleanup_rings:
    696	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
    697		cur_ring = stream_info->stream_rings[cur_stream];
    698		if (cur_ring) {
    699			xhci_ring_free(xhci, cur_ring);
    700			stream_info->stream_rings[cur_stream] = NULL;
    701		}
    702	}
    703	xhci_free_command(xhci, stream_info->free_streams_command);
    704cleanup_ctx:
    705	kfree(stream_info->stream_rings);
    706cleanup_info:
    707	kfree(stream_info);
    708cleanup_trbs:
    709	xhci->cmd_ring_reserved_trbs--;
    710	return NULL;
    711}
    712/*
    713 * Sets the MaxPStreams field and the Linear Stream Array field.
    714 * Sets the dequeue pointer to the stream context array.
    715 */
    716void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
    717		struct xhci_ep_ctx *ep_ctx,
    718		struct xhci_stream_info *stream_info)
    719{
    720	u32 max_primary_streams;
    721	/* MaxPStreams is the number of stream context array entries, not the
    722	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
    723	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
    724	 */
    725	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
    726	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
    727			"Setting number of stream ctx array entries to %u",
    728			1 << (max_primary_streams + 1));
    729	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
    730	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
    731				       | EP_HAS_LSA);
    732	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
    733}
    734
    735/*
    736 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
    737 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
    738 * not at the beginning of the ring).
    739 */
    740void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
    741		struct xhci_virt_ep *ep)
    742{
    743	dma_addr_t addr;
    744	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
    745	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
    746	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
    747}
    748
    749/* Frees all stream contexts associated with the endpoint,
    750 *
    751 * Caller should fix the endpoint context streams fields.
    752 */
    753void xhci_free_stream_info(struct xhci_hcd *xhci,
    754		struct xhci_stream_info *stream_info)
    755{
    756	int cur_stream;
    757	struct xhci_ring *cur_ring;
    758
    759	if (!stream_info)
    760		return;
    761
    762	for (cur_stream = 1; cur_stream < stream_info->num_streams;
    763			cur_stream++) {
    764		cur_ring = stream_info->stream_rings[cur_stream];
    765		if (cur_ring) {
    766			xhci_ring_free(xhci, cur_ring);
    767			stream_info->stream_rings[cur_stream] = NULL;
    768		}
    769	}
    770	xhci_free_command(xhci, stream_info->free_streams_command);
    771	xhci->cmd_ring_reserved_trbs--;
    772	if (stream_info->stream_ctx_array)
    773		xhci_free_stream_ctx(xhci,
    774				stream_info->num_stream_ctxs,
    775				stream_info->stream_ctx_array,
    776				stream_info->ctx_array_dma);
    777
    778	kfree(stream_info->stream_rings);
    779	kfree(stream_info);
    780}
    781
    782
    783/***************** Device context manipulation *************************/
    784
    785static void xhci_free_tt_info(struct xhci_hcd *xhci,
    786		struct xhci_virt_device *virt_dev,
    787		int slot_id)
    788{
    789	struct list_head *tt_list_head;
    790	struct xhci_tt_bw_info *tt_info, *next;
    791	bool slot_found = false;
    792
    793	/* If the device never made it past the Set Address stage,
    794	 * it may not have the real_port set correctly.
    795	 */
    796	if (virt_dev->real_port == 0 ||
    797			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
    798		xhci_dbg(xhci, "Bad real port.\n");
    799		return;
    800	}
    801
    802	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
    803	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
    804		/* Multi-TT hubs will have more than one entry */
    805		if (tt_info->slot_id == slot_id) {
    806			slot_found = true;
    807			list_del(&tt_info->tt_list);
    808			kfree(tt_info);
    809		} else if (slot_found) {
    810			break;
    811		}
    812	}
    813}
    814
    815int xhci_alloc_tt_info(struct xhci_hcd *xhci,
    816		struct xhci_virt_device *virt_dev,
    817		struct usb_device *hdev,
    818		struct usb_tt *tt, gfp_t mem_flags)
    819{
    820	struct xhci_tt_bw_info		*tt_info;
    821	unsigned int			num_ports;
    822	int				i, j;
    823	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
    824
    825	if (!tt->multi)
    826		num_ports = 1;
    827	else
    828		num_ports = hdev->maxchild;
    829
    830	for (i = 0; i < num_ports; i++, tt_info++) {
    831		struct xhci_interval_bw_table *bw_table;
    832
    833		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
    834				dev_to_node(dev));
    835		if (!tt_info)
    836			goto free_tts;
    837		INIT_LIST_HEAD(&tt_info->tt_list);
    838		list_add(&tt_info->tt_list,
    839				&xhci->rh_bw[virt_dev->real_port - 1].tts);
    840		tt_info->slot_id = virt_dev->udev->slot_id;
    841		if (tt->multi)
    842			tt_info->ttport = i+1;
    843		bw_table = &tt_info->bw_table;
    844		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
    845			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
    846	}
    847	return 0;
    848
    849free_tts:
    850	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
    851	return -ENOMEM;
    852}
    853
    854
    855/* All the xhci_tds in the ring's TD list should be freed at this point.
    856 * Should be called with xhci->lock held if there is any chance the TT lists
    857 * will be manipulated by the configure endpoint, allocate device, or update
    858 * hub functions while this function is removing the TT entries from the list.
    859 */
    860void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
    861{
    862	struct xhci_virt_device *dev;
    863	int i;
    864	int old_active_eps = 0;
    865
    866	/* Slot ID 0 is reserved */
    867	if (slot_id == 0 || !xhci->devs[slot_id])
    868		return;
    869
    870	dev = xhci->devs[slot_id];
    871
    872	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
    873	if (!dev)
    874		return;
    875
    876	trace_xhci_free_virt_device(dev);
    877
    878	if (dev->tt_info)
    879		old_active_eps = dev->tt_info->active_eps;
    880
    881	for (i = 0; i < 31; i++) {
    882		if (dev->eps[i].ring)
    883			xhci_ring_free(xhci, dev->eps[i].ring);
    884		if (dev->eps[i].stream_info)
    885			xhci_free_stream_info(xhci,
    886					dev->eps[i].stream_info);
    887		/* Endpoints on the TT/root port lists should have been removed
    888		 * when usb_disable_device() was called for the device.
    889		 * We can't drop them anyway, because the udev might have gone
    890		 * away by this point, and we can't tell what speed it was.
    891		 */
    892		if (!list_empty(&dev->eps[i].bw_endpoint_list))
    893			xhci_warn(xhci, "Slot %u endpoint %u "
    894					"not removed from BW list!\n",
    895					slot_id, i);
    896	}
    897	/* If this is a hub, free the TT(s) from the TT list */
    898	xhci_free_tt_info(xhci, dev, slot_id);
    899	/* If necessary, update the number of active TTs on this root port */
    900	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
    901
    902	if (dev->in_ctx)
    903		xhci_free_container_ctx(xhci, dev->in_ctx);
    904	if (dev->out_ctx)
    905		xhci_free_container_ctx(xhci, dev->out_ctx);
    906
    907	if (dev->udev && dev->udev->slot_id)
    908		dev->udev->slot_id = 0;
    909	kfree(xhci->devs[slot_id]);
    910	xhci->devs[slot_id] = NULL;
    911}
    912
    913/*
    914 * Free a virt_device structure.
    915 * If the virt_device added a tt_info (a hub) and has children pointing to
    916 * that tt_info, then free the child first. Recursive.
    917 * We can't rely on udev at this point to find child-parent relationships.
    918 */
    919static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
    920{
    921	struct xhci_virt_device *vdev;
    922	struct list_head *tt_list_head;
    923	struct xhci_tt_bw_info *tt_info, *next;
    924	int i;
    925
    926	vdev = xhci->devs[slot_id];
    927	if (!vdev)
    928		return;
    929
    930	if (vdev->real_port == 0 ||
    931			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
    932		xhci_dbg(xhci, "Bad vdev->real_port.\n");
    933		goto out;
    934	}
    935
    936	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
    937	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
    938		/* is this a hub device that added a tt_info to the tts list */
    939		if (tt_info->slot_id == slot_id) {
    940			/* are any devices using this tt_info? */
    941			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
    942				vdev = xhci->devs[i];
    943				if (vdev && (vdev->tt_info == tt_info))
    944					xhci_free_virt_devices_depth_first(
    945						xhci, i);
    946			}
    947		}
    948	}
    949out:
    950	/* we are now at a leaf device */
    951	xhci_debugfs_remove_slot(xhci, slot_id);
    952	xhci_free_virt_device(xhci, slot_id);
    953}
    954
    955int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
    956		struct usb_device *udev, gfp_t flags)
    957{
    958	struct xhci_virt_device *dev;
    959	int i;
    960
    961	/* Slot ID 0 is reserved */
    962	if (slot_id == 0 || xhci->devs[slot_id]) {
    963		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
    964		return 0;
    965	}
    966
    967	dev = kzalloc(sizeof(*dev), flags);
    968	if (!dev)
    969		return 0;
    970
    971	dev->slot_id = slot_id;
    972
    973	/* Allocate the (output) device context that will be used in the HC. */
    974	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
    975	if (!dev->out_ctx)
    976		goto fail;
    977
    978	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
    979			(unsigned long long)dev->out_ctx->dma);
    980
    981	/* Allocate the (input) device context for address device command */
    982	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
    983	if (!dev->in_ctx)
    984		goto fail;
    985
    986	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
    987			(unsigned long long)dev->in_ctx->dma);
    988
    989	/* Initialize the cancellation and bandwidth list for each ep */
    990	for (i = 0; i < 31; i++) {
    991		dev->eps[i].ep_index = i;
    992		dev->eps[i].vdev = dev;
    993		dev->eps[i].xhci = xhci;
    994		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
    995		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
    996	}
    997
    998	/* Allocate endpoint 0 ring */
    999	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
   1000	if (!dev->eps[0].ring)
   1001		goto fail;
   1002
   1003	dev->udev = udev;
   1004
   1005	/* Point to output device context in dcbaa. */
   1006	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
   1007	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
   1008		 slot_id,
   1009		 &xhci->dcbaa->dev_context_ptrs[slot_id],
   1010		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
   1011
   1012	trace_xhci_alloc_virt_device(dev);
   1013
   1014	xhci->devs[slot_id] = dev;
   1015
   1016	return 1;
   1017fail:
   1018
   1019	if (dev->in_ctx)
   1020		xhci_free_container_ctx(xhci, dev->in_ctx);
   1021	if (dev->out_ctx)
   1022		xhci_free_container_ctx(xhci, dev->out_ctx);
   1023	kfree(dev);
   1024
   1025	return 0;
   1026}
   1027
   1028void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
   1029		struct usb_device *udev)
   1030{
   1031	struct xhci_virt_device *virt_dev;
   1032	struct xhci_ep_ctx	*ep0_ctx;
   1033	struct xhci_ring	*ep_ring;
   1034
   1035	virt_dev = xhci->devs[udev->slot_id];
   1036	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
   1037	ep_ring = virt_dev->eps[0].ring;
   1038	/*
   1039	 * FIXME we don't keep track of the dequeue pointer very well after a
   1040	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
   1041	 * host to our enqueue pointer.  This should only be called after a
   1042	 * configured device has reset, so all control transfers should have
   1043	 * been completed or cancelled before the reset.
   1044	 */
   1045	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
   1046							ep_ring->enqueue)
   1047				   | ep_ring->cycle_state);
   1048}
   1049
   1050/*
   1051 * The xHCI roothub may have ports of differing speeds in any order in the port
   1052 * status registers.
   1053 *
   1054 * The xHCI hardware wants to know the roothub port number that the USB device
   1055 * is attached to (or the roothub port its ancestor hub is attached to).  All we
   1056 * know is the index of that port under either the USB 2.0 or the USB 3.0
   1057 * roothub, but that doesn't give us the real index into the HW port status
   1058 * registers. Call xhci_find_raw_port_number() to get real index.
   1059 */
   1060static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
   1061		struct usb_device *udev)
   1062{
   1063	struct usb_device *top_dev;
   1064	struct usb_hcd *hcd;
   1065
   1066	if (udev->speed >= USB_SPEED_SUPER)
   1067		hcd = xhci_get_usb3_hcd(xhci);
   1068	else
   1069		hcd = xhci->main_hcd;
   1070
   1071	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
   1072			top_dev = top_dev->parent)
   1073		/* Found device below root hub */;
   1074
   1075	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
   1076}
   1077
   1078/* Setup an xHCI virtual device for a Set Address command */
   1079int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
   1080{
   1081	struct xhci_virt_device *dev;
   1082	struct xhci_ep_ctx	*ep0_ctx;
   1083	struct xhci_slot_ctx    *slot_ctx;
   1084	u32			port_num;
   1085	u32			max_packets;
   1086	struct usb_device *top_dev;
   1087
   1088	dev = xhci->devs[udev->slot_id];
   1089	/* Slot ID 0 is reserved */
   1090	if (udev->slot_id == 0 || !dev) {
   1091		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
   1092				udev->slot_id);
   1093		return -EINVAL;
   1094	}
   1095	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
   1096	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
   1097
   1098	/* 3) Only the control endpoint is valid - one endpoint context */
   1099	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
   1100	switch (udev->speed) {
   1101	case USB_SPEED_SUPER_PLUS:
   1102		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
   1103		max_packets = MAX_PACKET(512);
   1104		break;
   1105	case USB_SPEED_SUPER:
   1106		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
   1107		max_packets = MAX_PACKET(512);
   1108		break;
   1109	case USB_SPEED_HIGH:
   1110		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
   1111		max_packets = MAX_PACKET(64);
   1112		break;
   1113	/* USB core guesses at a 64-byte max packet first for FS devices */
   1114	case USB_SPEED_FULL:
   1115		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
   1116		max_packets = MAX_PACKET(64);
   1117		break;
   1118	case USB_SPEED_LOW:
   1119		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
   1120		max_packets = MAX_PACKET(8);
   1121		break;
   1122	case USB_SPEED_WIRELESS:
   1123		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
   1124		return -EINVAL;
   1125	default:
   1126		/* Speed was set earlier, this shouldn't happen. */
   1127		return -EINVAL;
   1128	}
   1129	/* Find the root hub port this device is under */
   1130	port_num = xhci_find_real_port_number(xhci, udev);
   1131	if (!port_num)
   1132		return -EINVAL;
   1133	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
   1134	/* Set the port number in the virtual_device to the faked port number */
   1135	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
   1136			top_dev = top_dev->parent)
   1137		/* Found device below root hub */;
   1138	dev->fake_port = top_dev->portnum;
   1139	dev->real_port = port_num;
   1140	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
   1141	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
   1142
   1143	/* Find the right bandwidth table that this device will be a part of.
   1144	 * If this is a full speed device attached directly to a root port (or a
   1145	 * decendent of one), it counts as a primary bandwidth domain, not a
   1146	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
   1147	 * will never be created for the HS root hub.
   1148	 */
   1149	if (!udev->tt || !udev->tt->hub->parent) {
   1150		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
   1151	} else {
   1152		struct xhci_root_port_bw_info *rh_bw;
   1153		struct xhci_tt_bw_info *tt_bw;
   1154
   1155		rh_bw = &xhci->rh_bw[port_num - 1];
   1156		/* Find the right TT. */
   1157		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
   1158			if (tt_bw->slot_id != udev->tt->hub->slot_id)
   1159				continue;
   1160
   1161			if (!dev->udev->tt->multi ||
   1162					(udev->tt->multi &&
   1163					 tt_bw->ttport == dev->udev->ttport)) {
   1164				dev->bw_table = &tt_bw->bw_table;
   1165				dev->tt_info = tt_bw;
   1166				break;
   1167			}
   1168		}
   1169		if (!dev->tt_info)
   1170			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
   1171	}
   1172
   1173	/* Is this a LS/FS device under an external HS hub? */
   1174	if (udev->tt && udev->tt->hub->parent) {
   1175		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
   1176						(udev->ttport << 8));
   1177		if (udev->tt->multi)
   1178			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
   1179	}
   1180	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
   1181	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
   1182
   1183	/* Step 4 - ring already allocated */
   1184	/* Step 5 */
   1185	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
   1186
   1187	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
   1188	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
   1189					 max_packets);
   1190
   1191	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
   1192				   dev->eps[0].ring->cycle_state);
   1193
   1194	trace_xhci_setup_addressable_virt_device(dev);
   1195
   1196	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
   1197
   1198	return 0;
   1199}
   1200
   1201/*
   1202 * Convert interval expressed as 2^(bInterval - 1) == interval into
   1203 * straight exponent value 2^n == interval.
   1204 *
   1205 */
   1206static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
   1207		struct usb_host_endpoint *ep)
   1208{
   1209	unsigned int interval;
   1210
   1211	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
   1212	if (interval != ep->desc.bInterval - 1)
   1213		dev_warn(&udev->dev,
   1214			 "ep %#x - rounding interval to %d %sframes\n",
   1215			 ep->desc.bEndpointAddress,
   1216			 1 << interval,
   1217			 udev->speed == USB_SPEED_FULL ? "" : "micro");
   1218
   1219	if (udev->speed == USB_SPEED_FULL) {
   1220		/*
   1221		 * Full speed isoc endpoints specify interval in frames,
   1222		 * not microframes. We are using microframes everywhere,
   1223		 * so adjust accordingly.
   1224		 */
   1225		interval += 3;	/* 1 frame = 2^3 uframes */
   1226	}
   1227
   1228	return interval;
   1229}
   1230
   1231/*
   1232 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
   1233 * microframes, rounded down to nearest power of 2.
   1234 */
   1235static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
   1236		struct usb_host_endpoint *ep, unsigned int desc_interval,
   1237		unsigned int min_exponent, unsigned int max_exponent)
   1238{
   1239	unsigned int interval;
   1240
   1241	interval = fls(desc_interval) - 1;
   1242	interval = clamp_val(interval, min_exponent, max_exponent);
   1243	if ((1 << interval) != desc_interval)
   1244		dev_dbg(&udev->dev,
   1245			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
   1246			 ep->desc.bEndpointAddress,
   1247			 1 << interval,
   1248			 desc_interval);
   1249
   1250	return interval;
   1251}
   1252
   1253static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
   1254		struct usb_host_endpoint *ep)
   1255{
   1256	if (ep->desc.bInterval == 0)
   1257		return 0;
   1258	return xhci_microframes_to_exponent(udev, ep,
   1259			ep->desc.bInterval, 0, 15);
   1260}
   1261
   1262
   1263static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
   1264		struct usb_host_endpoint *ep)
   1265{
   1266	return xhci_microframes_to_exponent(udev, ep,
   1267			ep->desc.bInterval * 8, 3, 10);
   1268}
   1269
   1270/* Return the polling or NAK interval.
   1271 *
   1272 * The polling interval is expressed in "microframes".  If xHCI's Interval field
   1273 * is set to N, it will service the endpoint every 2^(Interval)*125us.
   1274 *
   1275 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
   1276 * is set to 0.
   1277 */
   1278static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
   1279		struct usb_host_endpoint *ep)
   1280{
   1281	unsigned int interval = 0;
   1282
   1283	switch (udev->speed) {
   1284	case USB_SPEED_HIGH:
   1285		/* Max NAK rate */
   1286		if (usb_endpoint_xfer_control(&ep->desc) ||
   1287		    usb_endpoint_xfer_bulk(&ep->desc)) {
   1288			interval = xhci_parse_microframe_interval(udev, ep);
   1289			break;
   1290		}
   1291		fallthrough;	/* SS and HS isoc/int have same decoding */
   1292
   1293	case USB_SPEED_SUPER_PLUS:
   1294	case USB_SPEED_SUPER:
   1295		if (usb_endpoint_xfer_int(&ep->desc) ||
   1296		    usb_endpoint_xfer_isoc(&ep->desc)) {
   1297			interval = xhci_parse_exponent_interval(udev, ep);
   1298		}
   1299		break;
   1300
   1301	case USB_SPEED_FULL:
   1302		if (usb_endpoint_xfer_isoc(&ep->desc)) {
   1303			interval = xhci_parse_exponent_interval(udev, ep);
   1304			break;
   1305		}
   1306		/*
   1307		 * Fall through for interrupt endpoint interval decoding
   1308		 * since it uses the same rules as low speed interrupt
   1309		 * endpoints.
   1310		 */
   1311		fallthrough;
   1312
   1313	case USB_SPEED_LOW:
   1314		if (usb_endpoint_xfer_int(&ep->desc) ||
   1315		    usb_endpoint_xfer_isoc(&ep->desc)) {
   1316
   1317			interval = xhci_parse_frame_interval(udev, ep);
   1318		}
   1319		break;
   1320
   1321	default:
   1322		BUG();
   1323	}
   1324	return interval;
   1325}
   1326
   1327/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
   1328 * High speed endpoint descriptors can define "the number of additional
   1329 * transaction opportunities per microframe", but that goes in the Max Burst
   1330 * endpoint context field.
   1331 */
   1332static u32 xhci_get_endpoint_mult(struct usb_device *udev,
   1333		struct usb_host_endpoint *ep)
   1334{
   1335	if (udev->speed < USB_SPEED_SUPER ||
   1336			!usb_endpoint_xfer_isoc(&ep->desc))
   1337		return 0;
   1338	return ep->ss_ep_comp.bmAttributes;
   1339}
   1340
   1341static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
   1342				       struct usb_host_endpoint *ep)
   1343{
   1344	/* Super speed and Plus have max burst in ep companion desc */
   1345	if (udev->speed >= USB_SPEED_SUPER)
   1346		return ep->ss_ep_comp.bMaxBurst;
   1347
   1348	if (udev->speed == USB_SPEED_HIGH &&
   1349	    (usb_endpoint_xfer_isoc(&ep->desc) ||
   1350	     usb_endpoint_xfer_int(&ep->desc)))
   1351		return usb_endpoint_maxp_mult(&ep->desc) - 1;
   1352
   1353	return 0;
   1354}
   1355
   1356static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
   1357{
   1358	int in;
   1359
   1360	in = usb_endpoint_dir_in(&ep->desc);
   1361
   1362	switch (usb_endpoint_type(&ep->desc)) {
   1363	case USB_ENDPOINT_XFER_CONTROL:
   1364		return CTRL_EP;
   1365	case USB_ENDPOINT_XFER_BULK:
   1366		return in ? BULK_IN_EP : BULK_OUT_EP;
   1367	case USB_ENDPOINT_XFER_ISOC:
   1368		return in ? ISOC_IN_EP : ISOC_OUT_EP;
   1369	case USB_ENDPOINT_XFER_INT:
   1370		return in ? INT_IN_EP : INT_OUT_EP;
   1371	}
   1372	return 0;
   1373}
   1374
   1375/* Return the maximum endpoint service interval time (ESIT) payload.
   1376 * Basically, this is the maxpacket size, multiplied by the burst size
   1377 * and mult size.
   1378 */
   1379static u32 xhci_get_max_esit_payload(struct usb_device *udev,
   1380		struct usb_host_endpoint *ep)
   1381{
   1382	int max_burst;
   1383	int max_packet;
   1384
   1385	/* Only applies for interrupt or isochronous endpoints */
   1386	if (usb_endpoint_xfer_control(&ep->desc) ||
   1387			usb_endpoint_xfer_bulk(&ep->desc))
   1388		return 0;
   1389
   1390	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
   1391	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
   1392	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
   1393		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
   1394	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
   1395	else if (udev->speed >= USB_SPEED_SUPER)
   1396		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
   1397
   1398	max_packet = usb_endpoint_maxp(&ep->desc);
   1399	max_burst = usb_endpoint_maxp_mult(&ep->desc);
   1400	/* A 0 in max burst means 1 transfer per ESIT */
   1401	return max_packet * max_burst;
   1402}
   1403
   1404/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
   1405 * Drivers will have to call usb_alloc_streams() to do that.
   1406 */
   1407int xhci_endpoint_init(struct xhci_hcd *xhci,
   1408		struct xhci_virt_device *virt_dev,
   1409		struct usb_device *udev,
   1410		struct usb_host_endpoint *ep,
   1411		gfp_t mem_flags)
   1412{
   1413	unsigned int ep_index;
   1414	struct xhci_ep_ctx *ep_ctx;
   1415	struct xhci_ring *ep_ring;
   1416	unsigned int max_packet;
   1417	enum xhci_ring_type ring_type;
   1418	u32 max_esit_payload;
   1419	u32 endpoint_type;
   1420	unsigned int max_burst;
   1421	unsigned int interval;
   1422	unsigned int mult;
   1423	unsigned int avg_trb_len;
   1424	unsigned int err_count = 0;
   1425
   1426	ep_index = xhci_get_endpoint_index(&ep->desc);
   1427	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
   1428
   1429	endpoint_type = xhci_get_endpoint_type(ep);
   1430	if (!endpoint_type)
   1431		return -EINVAL;
   1432
   1433	ring_type = usb_endpoint_type(&ep->desc);
   1434
   1435	/*
   1436	 * Get values to fill the endpoint context, mostly from ep descriptor.
   1437	 * The average TRB buffer lengt for bulk endpoints is unclear as we
   1438	 * have no clue on scatter gather list entry size. For Isoc and Int,
   1439	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
   1440	 */
   1441	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
   1442	interval = xhci_get_endpoint_interval(udev, ep);
   1443
   1444	/* Periodic endpoint bInterval limit quirk */
   1445	if (usb_endpoint_xfer_int(&ep->desc) ||
   1446	    usb_endpoint_xfer_isoc(&ep->desc)) {
   1447		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
   1448		    udev->speed >= USB_SPEED_HIGH &&
   1449		    interval >= 7) {
   1450			interval = 6;
   1451		}
   1452	}
   1453
   1454	mult = xhci_get_endpoint_mult(udev, ep);
   1455	max_packet = usb_endpoint_maxp(&ep->desc);
   1456	max_burst = xhci_get_endpoint_max_burst(udev, ep);
   1457	avg_trb_len = max_esit_payload;
   1458
   1459	/* FIXME dig Mult and streams info out of ep companion desc */
   1460
   1461	/* Allow 3 retries for everything but isoc, set CErr = 3 */
   1462	if (!usb_endpoint_xfer_isoc(&ep->desc))
   1463		err_count = 3;
   1464	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
   1465	if (usb_endpoint_xfer_bulk(&ep->desc)) {
   1466		if (udev->speed == USB_SPEED_HIGH)
   1467			max_packet = 512;
   1468		if (udev->speed == USB_SPEED_FULL) {
   1469			max_packet = rounddown_pow_of_two(max_packet);
   1470			max_packet = clamp_val(max_packet, 8, 64);
   1471		}
   1472	}
   1473	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
   1474	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
   1475		avg_trb_len = 8;
   1476	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
   1477	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
   1478		mult = 0;
   1479
   1480	/* Set up the endpoint ring */
   1481	virt_dev->eps[ep_index].new_ring =
   1482		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
   1483	if (!virt_dev->eps[ep_index].new_ring)
   1484		return -ENOMEM;
   1485
   1486	virt_dev->eps[ep_index].skip = false;
   1487	ep_ring = virt_dev->eps[ep_index].new_ring;
   1488
   1489	/* Fill the endpoint context */
   1490	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
   1491				      EP_INTERVAL(interval) |
   1492				      EP_MULT(mult));
   1493	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
   1494				       MAX_PACKET(max_packet) |
   1495				       MAX_BURST(max_burst) |
   1496				       ERROR_COUNT(err_count));
   1497	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
   1498				  ep_ring->cycle_state);
   1499
   1500	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
   1501				      EP_AVG_TRB_LENGTH(avg_trb_len));
   1502
   1503	return 0;
   1504}
   1505
   1506void xhci_endpoint_zero(struct xhci_hcd *xhci,
   1507		struct xhci_virt_device *virt_dev,
   1508		struct usb_host_endpoint *ep)
   1509{
   1510	unsigned int ep_index;
   1511	struct xhci_ep_ctx *ep_ctx;
   1512
   1513	ep_index = xhci_get_endpoint_index(&ep->desc);
   1514	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
   1515
   1516	ep_ctx->ep_info = 0;
   1517	ep_ctx->ep_info2 = 0;
   1518	ep_ctx->deq = 0;
   1519	ep_ctx->tx_info = 0;
   1520	/* Don't free the endpoint ring until the set interface or configuration
   1521	 * request succeeds.
   1522	 */
   1523}
   1524
   1525void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
   1526{
   1527	bw_info->ep_interval = 0;
   1528	bw_info->mult = 0;
   1529	bw_info->num_packets = 0;
   1530	bw_info->max_packet_size = 0;
   1531	bw_info->type = 0;
   1532	bw_info->max_esit_payload = 0;
   1533}
   1534
   1535void xhci_update_bw_info(struct xhci_hcd *xhci,
   1536		struct xhci_container_ctx *in_ctx,
   1537		struct xhci_input_control_ctx *ctrl_ctx,
   1538		struct xhci_virt_device *virt_dev)
   1539{
   1540	struct xhci_bw_info *bw_info;
   1541	struct xhci_ep_ctx *ep_ctx;
   1542	unsigned int ep_type;
   1543	int i;
   1544
   1545	for (i = 1; i < 31; i++) {
   1546		bw_info = &virt_dev->eps[i].bw_info;
   1547
   1548		/* We can't tell what endpoint type is being dropped, but
   1549		 * unconditionally clearing the bandwidth info for non-periodic
   1550		 * endpoints should be harmless because the info will never be
   1551		 * set in the first place.
   1552		 */
   1553		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
   1554			/* Dropped endpoint */
   1555			xhci_clear_endpoint_bw_info(bw_info);
   1556			continue;
   1557		}
   1558
   1559		if (EP_IS_ADDED(ctrl_ctx, i)) {
   1560			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
   1561			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
   1562
   1563			/* Ignore non-periodic endpoints */
   1564			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
   1565					ep_type != ISOC_IN_EP &&
   1566					ep_type != INT_IN_EP)
   1567				continue;
   1568
   1569			/* Added or changed endpoint */
   1570			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
   1571					le32_to_cpu(ep_ctx->ep_info));
   1572			/* Number of packets and mult are zero-based in the
   1573			 * input context, but we want one-based for the
   1574			 * interval table.
   1575			 */
   1576			bw_info->mult = CTX_TO_EP_MULT(
   1577					le32_to_cpu(ep_ctx->ep_info)) + 1;
   1578			bw_info->num_packets = CTX_TO_MAX_BURST(
   1579					le32_to_cpu(ep_ctx->ep_info2)) + 1;
   1580			bw_info->max_packet_size = MAX_PACKET_DECODED(
   1581					le32_to_cpu(ep_ctx->ep_info2));
   1582			bw_info->type = ep_type;
   1583			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
   1584					le32_to_cpu(ep_ctx->tx_info));
   1585		}
   1586	}
   1587}
   1588
   1589/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
   1590 * Useful when you want to change one particular aspect of the endpoint and then
   1591 * issue a configure endpoint command.
   1592 */
   1593void xhci_endpoint_copy(struct xhci_hcd *xhci,
   1594		struct xhci_container_ctx *in_ctx,
   1595		struct xhci_container_ctx *out_ctx,
   1596		unsigned int ep_index)
   1597{
   1598	struct xhci_ep_ctx *out_ep_ctx;
   1599	struct xhci_ep_ctx *in_ep_ctx;
   1600
   1601	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
   1602	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
   1603
   1604	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
   1605	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
   1606	in_ep_ctx->deq = out_ep_ctx->deq;
   1607	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
   1608	if (xhci->quirks & XHCI_MTK_HOST) {
   1609		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
   1610		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
   1611	}
   1612}
   1613
   1614/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
   1615 * Useful when you want to change one particular aspect of the endpoint and then
   1616 * issue a configure endpoint command.  Only the context entries field matters,
   1617 * but we'll copy the whole thing anyway.
   1618 */
   1619void xhci_slot_copy(struct xhci_hcd *xhci,
   1620		struct xhci_container_ctx *in_ctx,
   1621		struct xhci_container_ctx *out_ctx)
   1622{
   1623	struct xhci_slot_ctx *in_slot_ctx;
   1624	struct xhci_slot_ctx *out_slot_ctx;
   1625
   1626	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
   1627	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
   1628
   1629	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
   1630	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
   1631	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
   1632	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
   1633}
   1634
   1635/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
   1636static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
   1637{
   1638	int i;
   1639	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
   1640	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
   1641
   1642	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
   1643			"Allocating %d scratchpad buffers", num_sp);
   1644
   1645	if (!num_sp)
   1646		return 0;
   1647
   1648	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
   1649				dev_to_node(dev));
   1650	if (!xhci->scratchpad)
   1651		goto fail_sp;
   1652
   1653	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
   1654				     num_sp * sizeof(u64),
   1655				     &xhci->scratchpad->sp_dma, flags);
   1656	if (!xhci->scratchpad->sp_array)
   1657		goto fail_sp2;
   1658
   1659	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
   1660					flags, dev_to_node(dev));
   1661	if (!xhci->scratchpad->sp_buffers)
   1662		goto fail_sp3;
   1663
   1664	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
   1665	for (i = 0; i < num_sp; i++) {
   1666		dma_addr_t dma;
   1667		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
   1668					       flags);
   1669		if (!buf)
   1670			goto fail_sp4;
   1671
   1672		xhci->scratchpad->sp_array[i] = dma;
   1673		xhci->scratchpad->sp_buffers[i] = buf;
   1674	}
   1675
   1676	return 0;
   1677
   1678 fail_sp4:
   1679	for (i = i - 1; i >= 0; i--) {
   1680		dma_free_coherent(dev, xhci->page_size,
   1681				    xhci->scratchpad->sp_buffers[i],
   1682				    xhci->scratchpad->sp_array[i]);
   1683	}
   1684
   1685	kfree(xhci->scratchpad->sp_buffers);
   1686
   1687 fail_sp3:
   1688	dma_free_coherent(dev, num_sp * sizeof(u64),
   1689			    xhci->scratchpad->sp_array,
   1690			    xhci->scratchpad->sp_dma);
   1691
   1692 fail_sp2:
   1693	kfree(xhci->scratchpad);
   1694	xhci->scratchpad = NULL;
   1695
   1696 fail_sp:
   1697	return -ENOMEM;
   1698}
   1699
   1700static void scratchpad_free(struct xhci_hcd *xhci)
   1701{
   1702	int num_sp;
   1703	int i;
   1704	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
   1705
   1706	if (!xhci->scratchpad)
   1707		return;
   1708
   1709	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
   1710
   1711	for (i = 0; i < num_sp; i++) {
   1712		dma_free_coherent(dev, xhci->page_size,
   1713				    xhci->scratchpad->sp_buffers[i],
   1714				    xhci->scratchpad->sp_array[i]);
   1715	}
   1716	kfree(xhci->scratchpad->sp_buffers);
   1717	dma_free_coherent(dev, num_sp * sizeof(u64),
   1718			    xhci->scratchpad->sp_array,
   1719			    xhci->scratchpad->sp_dma);
   1720	kfree(xhci->scratchpad);
   1721	xhci->scratchpad = NULL;
   1722}
   1723
   1724struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
   1725		bool allocate_completion, gfp_t mem_flags)
   1726{
   1727	struct xhci_command *command;
   1728	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
   1729
   1730	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
   1731	if (!command)
   1732		return NULL;
   1733
   1734	if (allocate_completion) {
   1735		command->completion =
   1736			kzalloc_node(sizeof(struct completion), mem_flags,
   1737				dev_to_node(dev));
   1738		if (!command->completion) {
   1739			kfree(command);
   1740			return NULL;
   1741		}
   1742		init_completion(command->completion);
   1743	}
   1744
   1745	command->status = 0;
   1746	INIT_LIST_HEAD(&command->cmd_list);
   1747	return command;
   1748}
   1749
   1750struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
   1751		bool allocate_completion, gfp_t mem_flags)
   1752{
   1753	struct xhci_command *command;
   1754
   1755	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
   1756	if (!command)
   1757		return NULL;
   1758
   1759	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
   1760						   mem_flags);
   1761	if (!command->in_ctx) {
   1762		kfree(command->completion);
   1763		kfree(command);
   1764		return NULL;
   1765	}
   1766	return command;
   1767}
   1768
   1769void xhci_urb_free_priv(struct urb_priv *urb_priv)
   1770{
   1771	kfree(urb_priv);
   1772}
   1773
   1774void xhci_free_command(struct xhci_hcd *xhci,
   1775		struct xhci_command *command)
   1776{
   1777	xhci_free_container_ctx(xhci,
   1778			command->in_ctx);
   1779	kfree(command->completion);
   1780	kfree(command);
   1781}
   1782
   1783int xhci_alloc_erst(struct xhci_hcd *xhci,
   1784		    struct xhci_ring *evt_ring,
   1785		    struct xhci_erst *erst,
   1786		    gfp_t flags)
   1787{
   1788	size_t size;
   1789	unsigned int val;
   1790	struct xhci_segment *seg;
   1791	struct xhci_erst_entry *entry;
   1792
   1793	size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
   1794	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
   1795					   size, &erst->erst_dma_addr, flags);
   1796	if (!erst->entries)
   1797		return -ENOMEM;
   1798
   1799	erst->num_entries = evt_ring->num_segs;
   1800
   1801	seg = evt_ring->first_seg;
   1802	for (val = 0; val < evt_ring->num_segs; val++) {
   1803		entry = &erst->entries[val];
   1804		entry->seg_addr = cpu_to_le64(seg->dma);
   1805		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
   1806		entry->rsvd = 0;
   1807		seg = seg->next;
   1808	}
   1809
   1810	return 0;
   1811}
   1812
   1813void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
   1814{
   1815	size_t size;
   1816	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
   1817
   1818	size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
   1819	if (erst->entries)
   1820		dma_free_coherent(dev, size,
   1821				erst->entries,
   1822				erst->erst_dma_addr);
   1823	erst->entries = NULL;
   1824}
   1825
   1826void xhci_mem_cleanup(struct xhci_hcd *xhci)
   1827{
   1828	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
   1829	int i, j, num_ports;
   1830
   1831	cancel_delayed_work_sync(&xhci->cmd_timer);
   1832
   1833	xhci_free_erst(xhci, &xhci->erst);
   1834
   1835	if (xhci->event_ring)
   1836		xhci_ring_free(xhci, xhci->event_ring);
   1837	xhci->event_ring = NULL;
   1838	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
   1839
   1840	if (xhci->cmd_ring)
   1841		xhci_ring_free(xhci, xhci->cmd_ring);
   1842	xhci->cmd_ring = NULL;
   1843	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
   1844	xhci_cleanup_command_queue(xhci);
   1845
   1846	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
   1847	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
   1848		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
   1849		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
   1850			struct list_head *ep = &bwt->interval_bw[j].endpoints;
   1851			while (!list_empty(ep))
   1852				list_del_init(ep->next);
   1853		}
   1854	}
   1855
   1856	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
   1857		xhci_free_virt_devices_depth_first(xhci, i);
   1858
   1859	dma_pool_destroy(xhci->segment_pool);
   1860	xhci->segment_pool = NULL;
   1861	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
   1862
   1863	dma_pool_destroy(xhci->device_pool);
   1864	xhci->device_pool = NULL;
   1865	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
   1866
   1867	dma_pool_destroy(xhci->small_streams_pool);
   1868	xhci->small_streams_pool = NULL;
   1869	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
   1870			"Freed small stream array pool");
   1871
   1872	dma_pool_destroy(xhci->medium_streams_pool);
   1873	xhci->medium_streams_pool = NULL;
   1874	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
   1875			"Freed medium stream array pool");
   1876
   1877	if (xhci->dcbaa)
   1878		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
   1879				xhci->dcbaa, xhci->dcbaa->dma);
   1880	xhci->dcbaa = NULL;
   1881
   1882	scratchpad_free(xhci);
   1883
   1884	if (!xhci->rh_bw)
   1885		goto no_bw;
   1886
   1887	for (i = 0; i < num_ports; i++) {
   1888		struct xhci_tt_bw_info *tt, *n;
   1889		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
   1890			list_del(&tt->tt_list);
   1891			kfree(tt);
   1892		}
   1893	}
   1894
   1895no_bw:
   1896	xhci->cmd_ring_reserved_trbs = 0;
   1897	xhci->usb2_rhub.num_ports = 0;
   1898	xhci->usb3_rhub.num_ports = 0;
   1899	xhci->num_active_eps = 0;
   1900	kfree(xhci->usb2_rhub.ports);
   1901	kfree(xhci->usb3_rhub.ports);
   1902	kfree(xhci->hw_ports);
   1903	kfree(xhci->rh_bw);
   1904	kfree(xhci->ext_caps);
   1905	for (i = 0; i < xhci->num_port_caps; i++)
   1906		kfree(xhci->port_caps[i].psi);
   1907	kfree(xhci->port_caps);
   1908	xhci->num_port_caps = 0;
   1909
   1910	xhci->usb2_rhub.ports = NULL;
   1911	xhci->usb3_rhub.ports = NULL;
   1912	xhci->hw_ports = NULL;
   1913	xhci->rh_bw = NULL;
   1914	xhci->ext_caps = NULL;
   1915	xhci->port_caps = NULL;
   1916
   1917	xhci->page_size = 0;
   1918	xhci->page_shift = 0;
   1919	xhci->usb2_rhub.bus_state.bus_suspended = 0;
   1920	xhci->usb3_rhub.bus_state.bus_suspended = 0;
   1921}
   1922
   1923static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
   1924		struct xhci_segment *input_seg,
   1925		union xhci_trb *start_trb,
   1926		union xhci_trb *end_trb,
   1927		dma_addr_t input_dma,
   1928		struct xhci_segment *result_seg,
   1929		char *test_name, int test_number)
   1930{
   1931	unsigned long long start_dma;
   1932	unsigned long long end_dma;
   1933	struct xhci_segment *seg;
   1934
   1935	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
   1936	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
   1937
   1938	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
   1939	if (seg != result_seg) {
   1940		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
   1941				test_name, test_number);
   1942		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
   1943				"input DMA 0x%llx\n",
   1944				input_seg,
   1945				(unsigned long long) input_dma);
   1946		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
   1947				"ending TRB %p (0x%llx DMA)\n",
   1948				start_trb, start_dma,
   1949				end_trb, end_dma);
   1950		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
   1951				result_seg, seg);
   1952		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
   1953			  true);
   1954		return -1;
   1955	}
   1956	return 0;
   1957}
   1958
   1959/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
   1960static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
   1961{
   1962	struct {
   1963		dma_addr_t		input_dma;
   1964		struct xhci_segment	*result_seg;
   1965	} simple_test_vector [] = {
   1966		/* A zeroed DMA field should fail */
   1967		{ 0, NULL },
   1968		/* One TRB before the ring start should fail */
   1969		{ xhci->event_ring->first_seg->dma - 16, NULL },
   1970		/* One byte before the ring start should fail */
   1971		{ xhci->event_ring->first_seg->dma - 1, NULL },
   1972		/* Starting TRB should succeed */
   1973		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
   1974		/* Ending TRB should succeed */
   1975		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
   1976			xhci->event_ring->first_seg },
   1977		/* One byte after the ring end should fail */
   1978		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
   1979		/* One TRB after the ring end should fail */
   1980		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
   1981		/* An address of all ones should fail */
   1982		{ (dma_addr_t) (~0), NULL },
   1983	};
   1984	struct {
   1985		struct xhci_segment	*input_seg;
   1986		union xhci_trb		*start_trb;
   1987		union xhci_trb		*end_trb;
   1988		dma_addr_t		input_dma;
   1989		struct xhci_segment	*result_seg;
   1990	} complex_test_vector [] = {
   1991		/* Test feeding a valid DMA address from a different ring */
   1992		{	.input_seg = xhci->event_ring->first_seg,
   1993			.start_trb = xhci->event_ring->first_seg->trbs,
   1994			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
   1995			.input_dma = xhci->cmd_ring->first_seg->dma,
   1996			.result_seg = NULL,
   1997		},
   1998		/* Test feeding a valid end TRB from a different ring */
   1999		{	.input_seg = xhci->event_ring->first_seg,
   2000			.start_trb = xhci->event_ring->first_seg->trbs,
   2001			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
   2002			.input_dma = xhci->cmd_ring->first_seg->dma,
   2003			.result_seg = NULL,
   2004		},
   2005		/* Test feeding a valid start and end TRB from a different ring */
   2006		{	.input_seg = xhci->event_ring->first_seg,
   2007			.start_trb = xhci->cmd_ring->first_seg->trbs,
   2008			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
   2009			.input_dma = xhci->cmd_ring->first_seg->dma,
   2010			.result_seg = NULL,
   2011		},
   2012		/* TRB in this ring, but after this TD */
   2013		{	.input_seg = xhci->event_ring->first_seg,
   2014			.start_trb = &xhci->event_ring->first_seg->trbs[0],
   2015			.end_trb = &xhci->event_ring->first_seg->trbs[3],
   2016			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
   2017			.result_seg = NULL,
   2018		},
   2019		/* TRB in this ring, but before this TD */
   2020		{	.input_seg = xhci->event_ring->first_seg,
   2021			.start_trb = &xhci->event_ring->first_seg->trbs[3],
   2022			.end_trb = &xhci->event_ring->first_seg->trbs[6],
   2023			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
   2024			.result_seg = NULL,
   2025		},
   2026		/* TRB in this ring, but after this wrapped TD */
   2027		{	.input_seg = xhci->event_ring->first_seg,
   2028			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
   2029			.end_trb = &xhci->event_ring->first_seg->trbs[1],
   2030			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
   2031			.result_seg = NULL,
   2032		},
   2033		/* TRB in this ring, but before this wrapped TD */
   2034		{	.input_seg = xhci->event_ring->first_seg,
   2035			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
   2036			.end_trb = &xhci->event_ring->first_seg->trbs[1],
   2037			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
   2038			.result_seg = NULL,
   2039		},
   2040		/* TRB not in this ring, and we have a wrapped TD */
   2041		{	.input_seg = xhci->event_ring->first_seg,
   2042			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
   2043			.end_trb = &xhci->event_ring->first_seg->trbs[1],
   2044			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
   2045			.result_seg = NULL,
   2046		},
   2047	};
   2048
   2049	unsigned int num_tests;
   2050	int i, ret;
   2051
   2052	num_tests = ARRAY_SIZE(simple_test_vector);
   2053	for (i = 0; i < num_tests; i++) {
   2054		ret = xhci_test_trb_in_td(xhci,
   2055				xhci->event_ring->first_seg,
   2056				xhci->event_ring->first_seg->trbs,
   2057				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
   2058				simple_test_vector[i].input_dma,
   2059				simple_test_vector[i].result_seg,
   2060				"Simple", i);
   2061		if (ret < 0)
   2062			return ret;
   2063	}
   2064
   2065	num_tests = ARRAY_SIZE(complex_test_vector);
   2066	for (i = 0; i < num_tests; i++) {
   2067		ret = xhci_test_trb_in_td(xhci,
   2068				complex_test_vector[i].input_seg,
   2069				complex_test_vector[i].start_trb,
   2070				complex_test_vector[i].end_trb,
   2071				complex_test_vector[i].input_dma,
   2072				complex_test_vector[i].result_seg,
   2073				"Complex", i);
   2074		if (ret < 0)
   2075			return ret;
   2076	}
   2077	xhci_dbg(xhci, "TRB math tests passed.\n");
   2078	return 0;
   2079}
   2080
   2081static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
   2082{
   2083	u64 temp;
   2084	dma_addr_t deq;
   2085
   2086	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
   2087			xhci->event_ring->dequeue);
   2088	if (!deq)
   2089		xhci_warn(xhci, "WARN something wrong with SW event ring "
   2090				"dequeue ptr.\n");
   2091	/* Update HC event ring dequeue pointer */
   2092	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
   2093	temp &= ERST_PTR_MASK;
   2094	/* Don't clear the EHB bit (which is RW1C) because
   2095	 * there might be more events to service.
   2096	 */
   2097	temp &= ~ERST_EHB;
   2098	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
   2099			"// Write event ring dequeue pointer, "
   2100			"preserving EHB bit");
   2101	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
   2102			&xhci->ir_set->erst_dequeue);
   2103}
   2104
   2105static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
   2106		__le32 __iomem *addr, int max_caps)
   2107{
   2108	u32 temp, port_offset, port_count;
   2109	int i;
   2110	u8 major_revision, minor_revision;
   2111	struct xhci_hub *rhub;
   2112	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
   2113	struct xhci_port_cap *port_cap;
   2114
   2115	temp = readl(addr);
   2116	major_revision = XHCI_EXT_PORT_MAJOR(temp);
   2117	minor_revision = XHCI_EXT_PORT_MINOR(temp);
   2118
   2119	if (major_revision == 0x03) {
   2120		rhub = &xhci->usb3_rhub;
   2121		/*
   2122		 * Some hosts incorrectly use sub-minor version for minor
   2123		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
   2124		 * for bcdUSB 0x310). Since there is no USB release with sub
   2125		 * minor version 0x301 to 0x309, we can assume that they are
   2126		 * incorrect and fix it here.
   2127		 */
   2128		if (minor_revision > 0x00 && minor_revision < 0x10)
   2129			minor_revision <<= 4;
   2130	} else if (major_revision <= 0x02) {
   2131		rhub = &xhci->usb2_rhub;
   2132	} else {
   2133		xhci_warn(xhci, "Ignoring unknown port speed, "
   2134				"Ext Cap %p, revision = 0x%x\n",
   2135				addr, major_revision);
   2136		/* Ignoring port protocol we can't understand. FIXME */
   2137		return;
   2138	}
   2139	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
   2140
   2141	if (rhub->min_rev < minor_revision)
   2142		rhub->min_rev = minor_revision;
   2143
   2144	/* Port offset and count in the third dword, see section 7.2 */
   2145	temp = readl(addr + 2);
   2146	port_offset = XHCI_EXT_PORT_OFF(temp);
   2147	port_count = XHCI_EXT_PORT_COUNT(temp);
   2148	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
   2149			"Ext Cap %p, port offset = %u, "
   2150			"count = %u, revision = 0x%x",
   2151			addr, port_offset, port_count, major_revision);
   2152	/* Port count includes the current port offset */
   2153	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
   2154		/* WTF? "Valid values are ‘1’ to MaxPorts" */
   2155		return;
   2156
   2157	port_cap = &xhci->port_caps[xhci->num_port_caps++];
   2158	if (xhci->num_port_caps > max_caps)
   2159		return;
   2160
   2161	port_cap->maj_rev = major_revision;
   2162	port_cap->min_rev = minor_revision;
   2163	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
   2164
   2165	if (port_cap->psi_count) {
   2166		port_cap->psi = kcalloc_node(port_cap->psi_count,
   2167					     sizeof(*port_cap->psi),
   2168					     GFP_KERNEL, dev_to_node(dev));
   2169		if (!port_cap->psi)
   2170			port_cap->psi_count = 0;
   2171
   2172		port_cap->psi_uid_count++;
   2173		for (i = 0; i < port_cap->psi_count; i++) {
   2174			port_cap->psi[i] = readl(addr + 4 + i);
   2175
   2176			/* count unique ID values, two consecutive entries can
   2177			 * have the same ID if link is assymetric
   2178			 */
   2179			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
   2180				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
   2181				port_cap->psi_uid_count++;
   2182
   2183			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
   2184				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
   2185				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
   2186				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
   2187				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
   2188				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
   2189				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
   2190		}
   2191	}
   2192	/* cache usb2 port capabilities */
   2193	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
   2194		xhci->ext_caps[xhci->num_ext_caps++] = temp;
   2195
   2196	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
   2197		 (temp & XHCI_HLC)) {
   2198		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
   2199			       "xHCI 1.0: support USB2 hardware lpm");
   2200		xhci->hw_lpm_support = 1;
   2201	}
   2202
   2203	port_offset--;
   2204	for (i = port_offset; i < (port_offset + port_count); i++) {
   2205		struct xhci_port *hw_port = &xhci->hw_ports[i];
   2206		/* Duplicate entry.  Ignore the port if the revisions differ. */
   2207		if (hw_port->rhub) {
   2208			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
   2209					" port %u\n", addr, i);
   2210			xhci_warn(xhci, "Port was marked as USB %u, "
   2211					"duplicated as USB %u\n",
   2212					hw_port->rhub->maj_rev, major_revision);
   2213			/* Only adjust the roothub port counts if we haven't
   2214			 * found a similar duplicate.
   2215			 */
   2216			if (hw_port->rhub != rhub &&
   2217				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
   2218				hw_port->rhub->num_ports--;
   2219				hw_port->hcd_portnum = DUPLICATE_ENTRY;
   2220			}
   2221			continue;
   2222		}
   2223		hw_port->rhub = rhub;
   2224		hw_port->port_cap = port_cap;
   2225		rhub->num_ports++;
   2226	}
   2227	/* FIXME: Should we disable ports not in the Extended Capabilities? */
   2228}
   2229
   2230static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
   2231					struct xhci_hub *rhub, gfp_t flags)
   2232{
   2233	int port_index = 0;
   2234	int i;
   2235	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
   2236
   2237	if (!rhub->num_ports)
   2238		return;
   2239	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
   2240			flags, dev_to_node(dev));
   2241	if (!rhub->ports)
   2242		return;
   2243
   2244	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
   2245		if (xhci->hw_ports[i].rhub != rhub ||
   2246		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
   2247			continue;
   2248		xhci->hw_ports[i].hcd_portnum = port_index;
   2249		rhub->ports[port_index] = &xhci->hw_ports[i];
   2250		port_index++;
   2251		if (port_index == rhub->num_ports)
   2252			break;
   2253	}
   2254}
   2255
   2256/*
   2257 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
   2258 * specify what speeds each port is supposed to be.  We can't count on the port
   2259 * speed bits in the PORTSC register being correct until a device is connected,
   2260 * but we need to set up the two fake roothubs with the correct number of USB
   2261 * 3.0 and USB 2.0 ports at host controller initialization time.
   2262 */
   2263static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
   2264{
   2265	void __iomem *base;
   2266	u32 offset;
   2267	unsigned int num_ports;
   2268	int i, j;
   2269	int cap_count = 0;
   2270	u32 cap_start;
   2271	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
   2272
   2273	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
   2274	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
   2275				flags, dev_to_node(dev));
   2276	if (!xhci->hw_ports)
   2277		return -ENOMEM;
   2278
   2279	for (i = 0; i < num_ports; i++) {
   2280		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
   2281			NUM_PORT_REGS * i;
   2282		xhci->hw_ports[i].hw_portnum = i;
   2283	}
   2284
   2285	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
   2286				   dev_to_node(dev));
   2287	if (!xhci->rh_bw)
   2288		return -ENOMEM;
   2289	for (i = 0; i < num_ports; i++) {
   2290		struct xhci_interval_bw_table *bw_table;
   2291
   2292		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
   2293		bw_table = &xhci->rh_bw[i].bw_table;
   2294		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
   2295			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
   2296	}
   2297	base = &xhci->cap_regs->hc_capbase;
   2298
   2299	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
   2300	if (!cap_start) {
   2301		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
   2302		return -ENODEV;
   2303	}
   2304
   2305	offset = cap_start;
   2306	/* count extended protocol capability entries for later caching */
   2307	while (offset) {
   2308		cap_count++;
   2309		offset = xhci_find_next_ext_cap(base, offset,
   2310						      XHCI_EXT_CAPS_PROTOCOL);
   2311	}
   2312
   2313	xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
   2314				flags, dev_to_node(dev));
   2315	if (!xhci->ext_caps)
   2316		return -ENOMEM;
   2317
   2318	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
   2319				flags, dev_to_node(dev));
   2320	if (!xhci->port_caps)
   2321		return -ENOMEM;
   2322
   2323	offset = cap_start;
   2324
   2325	while (offset) {
   2326		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
   2327		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
   2328		    num_ports)
   2329			break;
   2330		offset = xhci_find_next_ext_cap(base, offset,
   2331						XHCI_EXT_CAPS_PROTOCOL);
   2332	}
   2333	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
   2334		xhci_warn(xhci, "No ports on the roothubs?\n");
   2335		return -ENODEV;
   2336	}
   2337	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
   2338		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
   2339		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
   2340
   2341	/* Place limits on the number of roothub ports so that the hub
   2342	 * descriptors aren't longer than the USB core will allocate.
   2343	 */
   2344	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
   2345		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
   2346				"Limiting USB 3.0 roothub ports to %u.",
   2347				USB_SS_MAXPORTS);
   2348		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
   2349	}
   2350	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
   2351		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
   2352				"Limiting USB 2.0 roothub ports to %u.",
   2353				USB_MAXCHILDREN);
   2354		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
   2355	}
   2356
   2357	if (!xhci->usb2_rhub.num_ports)
   2358		xhci_info(xhci, "USB2 root hub has no ports\n");
   2359
   2360	if (!xhci->usb3_rhub.num_ports)
   2361		xhci_info(xhci, "USB3 root hub has no ports\n");
   2362
   2363	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
   2364	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
   2365
   2366	return 0;
   2367}
   2368
   2369int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
   2370{
   2371	dma_addr_t	dma;
   2372	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
   2373	unsigned int	val, val2;
   2374	u64		val_64;
   2375	u32		page_size, temp;
   2376	int		i, ret;
   2377
   2378	INIT_LIST_HEAD(&xhci->cmd_list);
   2379
   2380	/* init command timeout work */
   2381	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
   2382	init_completion(&xhci->cmd_ring_stop_completion);
   2383
   2384	page_size = readl(&xhci->op_regs->page_size);
   2385	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
   2386			"Supported page size register = 0x%x", page_size);
   2387	i = ffs(page_size);
   2388	if (i < 16)
   2389		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
   2390			"Supported page size of %iK", (1 << (i+12)) / 1024);
   2391	else
   2392		xhci_warn(xhci, "WARN: no supported page size\n");
   2393	/* Use 4K pages, since that's common and the minimum the HC supports */
   2394	xhci->page_shift = 12;
   2395	xhci->page_size = 1 << xhci->page_shift;
   2396	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
   2397			"HCD page size set to %iK", xhci->page_size / 1024);
   2398
   2399	/*
   2400	 * Program the Number of Device Slots Enabled field in the CONFIG
   2401	 * register with the max value of slots the HC can handle.
   2402	 */
   2403	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
   2404	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
   2405			"// xHC can handle at most %d device slots.", val);
   2406	val2 = readl(&xhci->op_regs->config_reg);
   2407	val |= (val2 & ~HCS_SLOTS_MASK);
   2408	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
   2409			"// Setting Max device slots reg = 0x%x.", val);
   2410	writel(val, &xhci->op_regs->config_reg);
   2411
   2412	/*
   2413	 * xHCI section 5.4.6 - Device Context array must be
   2414	 * "physically contiguous and 64-byte (cache line) aligned".
   2415	 */
   2416	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
   2417			flags);
   2418	if (!xhci->dcbaa)
   2419		goto fail;
   2420	xhci->dcbaa->dma = dma;
   2421	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
   2422			"// Device context base array address = 0x%llx (DMA), %p (virt)",
   2423			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
   2424	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
   2425
   2426	/*
   2427	 * Initialize the ring segment pool.  The ring must be a contiguous
   2428	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
   2429	 * however, the command ring segment needs 64-byte aligned segments
   2430	 * and our use of dma addresses in the trb_address_map radix tree needs
   2431	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
   2432	 */
   2433	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
   2434			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
   2435
   2436	/* See Table 46 and Note on Figure 55 */
   2437	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
   2438			2112, 64, xhci->page_size);
   2439	if (!xhci->segment_pool || !xhci->device_pool)
   2440		goto fail;
   2441
   2442	/* Linear stream context arrays don't have any boundary restrictions,
   2443	 * and only need to be 16-byte aligned.
   2444	 */
   2445	xhci->small_streams_pool =
   2446		dma_pool_create("xHCI 256 byte stream ctx arrays",
   2447			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
   2448	xhci->medium_streams_pool =
   2449		dma_pool_create("xHCI 1KB stream ctx arrays",
   2450			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
   2451	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
   2452	 * will be allocated with dma_alloc_coherent()
   2453	 */
   2454
   2455	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
   2456		goto fail;
   2457
   2458	/* Set up the command ring to have one segments for now. */
   2459	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
   2460	if (!xhci->cmd_ring)
   2461		goto fail;
   2462	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
   2463			"Allocated command ring at %p", xhci->cmd_ring);
   2464	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
   2465			(unsigned long long)xhci->cmd_ring->first_seg->dma);
   2466
   2467	/* Set the address in the Command Ring Control register */
   2468	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
   2469	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
   2470		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
   2471		xhci->cmd_ring->cycle_state;
   2472	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
   2473			"// Setting command ring address to 0x%016llx", val_64);
   2474	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
   2475
   2476	/* Reserve one command ring TRB for disabling LPM.
   2477	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
   2478	 * disabling LPM, we only need to reserve one TRB for all devices.
   2479	 */
   2480	xhci->cmd_ring_reserved_trbs++;
   2481
   2482	val = readl(&xhci->cap_regs->db_off);
   2483	val &= DBOFF_MASK;
   2484	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
   2485			"// Doorbell array is located at offset 0x%x"
   2486			" from cap regs base addr", val);
   2487	xhci->dba = (void __iomem *) xhci->cap_regs + val;
   2488	/* Set ir_set to interrupt register set 0 */
   2489	xhci->ir_set = &xhci->run_regs->ir_set[0];
   2490
   2491	/*
   2492	 * Event ring setup: Allocate a normal ring, but also setup
   2493	 * the event ring segment table (ERST).  Section 4.9.3.
   2494	 */
   2495	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
   2496	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
   2497					0, flags);
   2498	if (!xhci->event_ring)
   2499		goto fail;
   2500	if (xhci_check_trb_in_td_math(xhci) < 0)
   2501		goto fail;
   2502
   2503	ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
   2504	if (ret)
   2505		goto fail;
   2506
   2507	/* set ERST count with the number of entries in the segment table */
   2508	val = readl(&xhci->ir_set->erst_size);
   2509	val &= ERST_SIZE_MASK;
   2510	val |= ERST_NUM_SEGS;
   2511	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
   2512			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
   2513			val);
   2514	writel(val, &xhci->ir_set->erst_size);
   2515
   2516	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
   2517			"// Set ERST entries to point to event ring.");
   2518	/* set the segment table base address */
   2519	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
   2520			"// Set ERST base address for ir_set 0 = 0x%llx",
   2521			(unsigned long long)xhci->erst.erst_dma_addr);
   2522	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
   2523	val_64 &= ERST_PTR_MASK;
   2524	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
   2525	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
   2526
   2527	/* Set the event ring dequeue address */
   2528	xhci_set_hc_event_deq(xhci);
   2529	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
   2530			"Wrote ERST address to ir_set 0.");
   2531
   2532	xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
   2533
   2534	/*
   2535	 * XXX: Might need to set the Interrupter Moderation Register to
   2536	 * something other than the default (~1ms minimum between interrupts).
   2537	 * See section 5.5.1.2.
   2538	 */
   2539	for (i = 0; i < MAX_HC_SLOTS; i++)
   2540		xhci->devs[i] = NULL;
   2541	for (i = 0; i < USB_MAXCHILDREN; i++) {
   2542		xhci->usb2_rhub.bus_state.resume_done[i] = 0;
   2543		xhci->usb3_rhub.bus_state.resume_done[i] = 0;
   2544		/* Only the USB 2.0 completions will ever be used. */
   2545		init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
   2546		init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
   2547	}
   2548
   2549	if (scratchpad_alloc(xhci, flags))
   2550		goto fail;
   2551	if (xhci_setup_port_arrays(xhci, flags))
   2552		goto fail;
   2553
   2554	/* Enable USB 3.0 device notifications for function remote wake, which
   2555	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
   2556	 * U3 (device suspend).
   2557	 */
   2558	temp = readl(&xhci->op_regs->dev_notification);
   2559	temp &= ~DEV_NOTE_MASK;
   2560	temp |= DEV_NOTE_FWAKE;
   2561	writel(temp, &xhci->op_regs->dev_notification);
   2562
   2563	return 0;
   2564
   2565fail:
   2566	xhci_halt(xhci);
   2567	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
   2568	xhci_mem_cleanup(xhci);
   2569	return -ENOMEM;
   2570}