cppi_dma.c (44809B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2005-2006 by Texas Instruments 4 * 5 * This file implements a DMA interface using TI's CPPI DMA. 6 * For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB. 7 * The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci. 8 */ 9 10#include <linux/module.h> 11#include <linux/platform_device.h> 12#include <linux/slab.h> 13#include <linux/usb.h> 14 15#include "musb_core.h" 16#include "musb_debug.h" 17#include "cppi_dma.h" 18#include "davinci.h" 19 20 21/* CPPI DMA status 7-mar-2006: 22 * 23 * - See musb_{host,gadget}.c for more info 24 * 25 * - Correct RX DMA generally forces the engine into irq-per-packet mode, 26 * which can easily saturate the CPU under non-mass-storage loads. 27 * 28 * NOTES 24-aug-2006 (2.6.18-rc4): 29 * 30 * - peripheral RXDMA wedged in a test with packets of length 512/512/1. 31 * evidently after the 1 byte packet was received and acked, the queue 32 * of BDs got garbaged so it wouldn't empty the fifo. (rxcsr 0x2003, 33 * and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401 34 * 004001ff 00000001 .. 8feff860) Host was just getting NAKed on tx 35 * of its next (512 byte) packet. IRQ issues? 36 * 37 * REVISIT: the "transfer DMA" glue between CPPI and USB fifos will 38 * evidently also directly update the RX and TX CSRs ... so audit all 39 * host and peripheral side DMA code to avoid CSR access after DMA has 40 * been started. 41 */ 42 43/* REVISIT now we can avoid preallocating these descriptors; or 44 * more simply, switch to a global freelist not per-channel ones. 45 * Note: at full speed, 64 descriptors == 4K bulk data. 46 */ 47#define NUM_TXCHAN_BD 64 48#define NUM_RXCHAN_BD 64 49 50static inline void cpu_drain_writebuffer(void) 51{ 52 wmb(); 53#ifdef CONFIG_CPU_ARM926T 54 /* REVISIT this "should not be needed", 55 * but lack of it sure seemed to hurt ... 56 */ 57 asm("mcr p15, 0, r0, c7, c10, 4 @ drain write buffer\n"); 58#endif 59} 60 61static inline struct cppi_descriptor *cppi_bd_alloc(struct cppi_channel *c) 62{ 63 struct cppi_descriptor *bd = c->freelist; 64 65 if (bd) 66 c->freelist = bd->next; 67 return bd; 68} 69 70static inline void 71cppi_bd_free(struct cppi_channel *c, struct cppi_descriptor *bd) 72{ 73 if (!bd) 74 return; 75 bd->next = c->freelist; 76 c->freelist = bd; 77} 78 79/* 80 * Start DMA controller 81 * 82 * Initialize the DMA controller as necessary. 83 */ 84 85/* zero out entire rx state RAM entry for the channel */ 86static void cppi_reset_rx(struct cppi_rx_stateram __iomem *rx) 87{ 88 musb_writel(&rx->rx_skipbytes, 0, 0); 89 musb_writel(&rx->rx_head, 0, 0); 90 musb_writel(&rx->rx_sop, 0, 0); 91 musb_writel(&rx->rx_current, 0, 0); 92 musb_writel(&rx->rx_buf_current, 0, 0); 93 musb_writel(&rx->rx_len_len, 0, 0); 94 musb_writel(&rx->rx_cnt_cnt, 0, 0); 95} 96 97/* zero out entire tx state RAM entry for the channel */ 98static void cppi_reset_tx(struct cppi_tx_stateram __iomem *tx, u32 ptr) 99{ 100 musb_writel(&tx->tx_head, 0, 0); 101 musb_writel(&tx->tx_buf, 0, 0); 102 musb_writel(&tx->tx_current, 0, 0); 103 musb_writel(&tx->tx_buf_current, 0, 0); 104 musb_writel(&tx->tx_info, 0, 0); 105 musb_writel(&tx->tx_rem_len, 0, 0); 106 /* musb_writel(&tx->tx_dummy, 0, 0); */ 107 musb_writel(&tx->tx_complete, 0, ptr); 108} 109 110static void cppi_pool_init(struct cppi *cppi, struct cppi_channel *c) 111{ 112 int j; 113 114 /* initialize channel fields */ 115 c->head = NULL; 116 c->tail = NULL; 117 c->last_processed = NULL; 118 c->channel.status = MUSB_DMA_STATUS_UNKNOWN; 119 c->controller = cppi; 120 c->is_rndis = 0; 121 c->freelist = NULL; 122 123 /* build the BD Free list for the channel */ 124 for (j = 0; j < NUM_TXCHAN_BD + 1; j++) { 125 struct cppi_descriptor *bd; 126 dma_addr_t dma; 127 128 bd = dma_pool_alloc(cppi->pool, GFP_KERNEL, &dma); 129 bd->dma = dma; 130 cppi_bd_free(c, bd); 131 } 132} 133 134static int cppi_channel_abort(struct dma_channel *); 135 136static void cppi_pool_free(struct cppi_channel *c) 137{ 138 struct cppi *cppi = c->controller; 139 struct cppi_descriptor *bd; 140 141 (void) cppi_channel_abort(&c->channel); 142 c->channel.status = MUSB_DMA_STATUS_UNKNOWN; 143 c->controller = NULL; 144 145 /* free all its bds */ 146 bd = c->last_processed; 147 do { 148 if (bd) 149 dma_pool_free(cppi->pool, bd, bd->dma); 150 bd = cppi_bd_alloc(c); 151 } while (bd); 152 c->last_processed = NULL; 153} 154 155static void cppi_controller_start(struct cppi *controller) 156{ 157 void __iomem *tibase; 158 int i; 159 160 /* do whatever is necessary to start controller */ 161 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) { 162 controller->tx[i].transmit = true; 163 controller->tx[i].index = i; 164 } 165 for (i = 0; i < ARRAY_SIZE(controller->rx); i++) { 166 controller->rx[i].transmit = false; 167 controller->rx[i].index = i; 168 } 169 170 /* setup BD list on a per channel basis */ 171 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) 172 cppi_pool_init(controller, controller->tx + i); 173 for (i = 0; i < ARRAY_SIZE(controller->rx); i++) 174 cppi_pool_init(controller, controller->rx + i); 175 176 tibase = controller->tibase; 177 INIT_LIST_HEAD(&controller->tx_complete); 178 179 /* initialise tx/rx channel head pointers to zero */ 180 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) { 181 struct cppi_channel *tx_ch = controller->tx + i; 182 struct cppi_tx_stateram __iomem *tx; 183 184 INIT_LIST_HEAD(&tx_ch->tx_complete); 185 186 tx = tibase + DAVINCI_TXCPPI_STATERAM_OFFSET(i); 187 tx_ch->state_ram = tx; 188 cppi_reset_tx(tx, 0); 189 } 190 for (i = 0; i < ARRAY_SIZE(controller->rx); i++) { 191 struct cppi_channel *rx_ch = controller->rx + i; 192 struct cppi_rx_stateram __iomem *rx; 193 194 INIT_LIST_HEAD(&rx_ch->tx_complete); 195 196 rx = tibase + DAVINCI_RXCPPI_STATERAM_OFFSET(i); 197 rx_ch->state_ram = rx; 198 cppi_reset_rx(rx); 199 } 200 201 /* enable individual cppi channels */ 202 musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG, 203 DAVINCI_DMA_ALL_CHANNELS_ENABLE); 204 musb_writel(tibase, DAVINCI_RXCPPI_INTENAB_REG, 205 DAVINCI_DMA_ALL_CHANNELS_ENABLE); 206 207 /* enable tx/rx CPPI control */ 208 musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE); 209 musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE); 210 211 /* disable RNDIS mode, also host rx RNDIS autorequest */ 212 musb_writel(tibase, DAVINCI_RNDIS_REG, 0); 213 musb_writel(tibase, DAVINCI_AUTOREQ_REG, 0); 214} 215 216/* 217 * Stop DMA controller 218 * 219 * De-Init the DMA controller as necessary. 220 */ 221 222static void cppi_controller_stop(struct cppi *controller) 223{ 224 void __iomem *tibase; 225 int i; 226 struct musb *musb; 227 228 musb = controller->controller.musb; 229 230 tibase = controller->tibase; 231 /* DISABLE INDIVIDUAL CHANNEL Interrupts */ 232 musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG, 233 DAVINCI_DMA_ALL_CHANNELS_ENABLE); 234 musb_writel(tibase, DAVINCI_RXCPPI_INTCLR_REG, 235 DAVINCI_DMA_ALL_CHANNELS_ENABLE); 236 237 musb_dbg(musb, "Tearing down RX and TX Channels"); 238 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) { 239 /* FIXME restructure of txdma to use bds like rxdma */ 240 controller->tx[i].last_processed = NULL; 241 cppi_pool_free(controller->tx + i); 242 } 243 for (i = 0; i < ARRAY_SIZE(controller->rx); i++) 244 cppi_pool_free(controller->rx + i); 245 246 /* in Tx Case proper teardown is supported. We resort to disabling 247 * Tx/Rx CPPI after cleanup of Tx channels. Before TX teardown is 248 * complete TX CPPI cannot be disabled. 249 */ 250 /*disable tx/rx cppi */ 251 musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE); 252 musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE); 253} 254 255/* While dma channel is allocated, we only want the core irqs active 256 * for fault reports, otherwise we'd get irqs that we don't care about. 257 * Except for TX irqs, where dma done != fifo empty and reusable ... 258 * 259 * NOTE: docs don't say either way, but irq masking **enables** irqs. 260 * 261 * REVISIT same issue applies to pure PIO usage too, and non-cppi dma... 262 */ 263static inline void core_rxirq_disable(void __iomem *tibase, unsigned epnum) 264{ 265 musb_writel(tibase, DAVINCI_USB_INT_MASK_CLR_REG, 1 << (epnum + 8)); 266} 267 268static inline void core_rxirq_enable(void __iomem *tibase, unsigned epnum) 269{ 270 musb_writel(tibase, DAVINCI_USB_INT_MASK_SET_REG, 1 << (epnum + 8)); 271} 272 273 274/* 275 * Allocate a CPPI Channel for DMA. With CPPI, channels are bound to 276 * each transfer direction of a non-control endpoint, so allocating 277 * (and deallocating) is mostly a way to notice bad housekeeping on 278 * the software side. We assume the irqs are always active. 279 */ 280static struct dma_channel * 281cppi_channel_allocate(struct dma_controller *c, 282 struct musb_hw_ep *ep, u8 transmit) 283{ 284 struct cppi *controller; 285 u8 index; 286 struct cppi_channel *cppi_ch; 287 void __iomem *tibase; 288 struct musb *musb; 289 290 controller = container_of(c, struct cppi, controller); 291 tibase = controller->tibase; 292 musb = c->musb; 293 294 /* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */ 295 index = ep->epnum - 1; 296 297 /* return the corresponding CPPI Channel Handle, and 298 * probably disable the non-CPPI irq until we need it. 299 */ 300 if (transmit) { 301 if (index >= ARRAY_SIZE(controller->tx)) { 302 musb_dbg(musb, "no %cX%d CPPI channel", 'T', index); 303 return NULL; 304 } 305 cppi_ch = controller->tx + index; 306 } else { 307 if (index >= ARRAY_SIZE(controller->rx)) { 308 musb_dbg(musb, "no %cX%d CPPI channel", 'R', index); 309 return NULL; 310 } 311 cppi_ch = controller->rx + index; 312 core_rxirq_disable(tibase, ep->epnum); 313 } 314 315 /* REVISIT make this an error later once the same driver code works 316 * with the other DMA engine too 317 */ 318 if (cppi_ch->hw_ep) 319 musb_dbg(musb, "re-allocating DMA%d %cX channel %p", 320 index, transmit ? 'T' : 'R', cppi_ch); 321 cppi_ch->hw_ep = ep; 322 cppi_ch->channel.status = MUSB_DMA_STATUS_FREE; 323 cppi_ch->channel.max_len = 0x7fffffff; 324 325 musb_dbg(musb, "Allocate CPPI%d %cX", index, transmit ? 'T' : 'R'); 326 return &cppi_ch->channel; 327} 328 329/* Release a CPPI Channel. */ 330static void cppi_channel_release(struct dma_channel *channel) 331{ 332 struct cppi_channel *c; 333 void __iomem *tibase; 334 335 /* REVISIT: for paranoia, check state and abort if needed... */ 336 337 c = container_of(channel, struct cppi_channel, channel); 338 tibase = c->controller->tibase; 339 if (!c->hw_ep) 340 musb_dbg(c->controller->controller.musb, 341 "releasing idle DMA channel %p", c); 342 else if (!c->transmit) 343 core_rxirq_enable(tibase, c->index + 1); 344 345 /* for now, leave its cppi IRQ enabled (we won't trigger it) */ 346 c->hw_ep = NULL; 347 channel->status = MUSB_DMA_STATUS_UNKNOWN; 348} 349 350/* Context: controller irqlocked */ 351static void 352cppi_dump_rx(int level, struct cppi_channel *c, const char *tag) 353{ 354 void __iomem *base = c->controller->mregs; 355 struct cppi_rx_stateram __iomem *rx = c->state_ram; 356 357 musb_ep_select(base, c->index + 1); 358 359 musb_dbg(c->controller->controller.musb, 360 "RX DMA%d%s: %d left, csr %04x, " 361 "%08x H%08x S%08x C%08x, " 362 "B%08x L%08x %08x .. %08x", 363 c->index, tag, 364 musb_readl(c->controller->tibase, 365 DAVINCI_RXCPPI_BUFCNT0_REG + 4 * c->index), 366 musb_readw(c->hw_ep->regs, MUSB_RXCSR), 367 368 musb_readl(&rx->rx_skipbytes, 0), 369 musb_readl(&rx->rx_head, 0), 370 musb_readl(&rx->rx_sop, 0), 371 musb_readl(&rx->rx_current, 0), 372 373 musb_readl(&rx->rx_buf_current, 0), 374 musb_readl(&rx->rx_len_len, 0), 375 musb_readl(&rx->rx_cnt_cnt, 0), 376 musb_readl(&rx->rx_complete, 0) 377 ); 378} 379 380/* Context: controller irqlocked */ 381static void 382cppi_dump_tx(int level, struct cppi_channel *c, const char *tag) 383{ 384 void __iomem *base = c->controller->mregs; 385 struct cppi_tx_stateram __iomem *tx = c->state_ram; 386 387 musb_ep_select(base, c->index + 1); 388 389 musb_dbg(c->controller->controller.musb, 390 "TX DMA%d%s: csr %04x, " 391 "H%08x S%08x C%08x %08x, " 392 "F%08x L%08x .. %08x", 393 c->index, tag, 394 musb_readw(c->hw_ep->regs, MUSB_TXCSR), 395 396 musb_readl(&tx->tx_head, 0), 397 musb_readl(&tx->tx_buf, 0), 398 musb_readl(&tx->tx_current, 0), 399 musb_readl(&tx->tx_buf_current, 0), 400 401 musb_readl(&tx->tx_info, 0), 402 musb_readl(&tx->tx_rem_len, 0), 403 /* dummy/unused word 6 */ 404 musb_readl(&tx->tx_complete, 0) 405 ); 406} 407 408/* Context: controller irqlocked */ 409static inline void 410cppi_rndis_update(struct cppi_channel *c, int is_rx, 411 void __iomem *tibase, int is_rndis) 412{ 413 /* we may need to change the rndis flag for this cppi channel */ 414 if (c->is_rndis != is_rndis) { 415 u32 value = musb_readl(tibase, DAVINCI_RNDIS_REG); 416 u32 temp = 1 << (c->index); 417 418 if (is_rx) 419 temp <<= 16; 420 if (is_rndis) 421 value |= temp; 422 else 423 value &= ~temp; 424 musb_writel(tibase, DAVINCI_RNDIS_REG, value); 425 c->is_rndis = is_rndis; 426 } 427} 428 429static void cppi_dump_rxbd(const char *tag, struct cppi_descriptor *bd) 430{ 431 pr_debug("RXBD/%s %08x: " 432 "nxt %08x buf %08x off.blen %08x opt.plen %08x\n", 433 tag, bd->dma, 434 bd->hw_next, bd->hw_bufp, bd->hw_off_len, 435 bd->hw_options); 436} 437 438static void cppi_dump_rxq(int level, const char *tag, struct cppi_channel *rx) 439{ 440 struct cppi_descriptor *bd; 441 442 cppi_dump_rx(level, rx, tag); 443 if (rx->last_processed) 444 cppi_dump_rxbd("last", rx->last_processed); 445 for (bd = rx->head; bd; bd = bd->next) 446 cppi_dump_rxbd("active", bd); 447} 448 449 450/* NOTE: DaVinci autoreq is ignored except for host side "RNDIS" mode RX; 451 * so we won't ever use it (see "CPPI RX Woes" below). 452 */ 453static inline int cppi_autoreq_update(struct cppi_channel *rx, 454 void __iomem *tibase, int onepacket, unsigned n_bds) 455{ 456 u32 val; 457 458#ifdef RNDIS_RX_IS_USABLE 459 u32 tmp; 460 /* assert(is_host_active(musb)) */ 461 462 /* start from "AutoReq never" */ 463 tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG); 464 val = tmp & ~((0x3) << (rx->index * 2)); 465 466 /* HCD arranged reqpkt for packet #1. we arrange int 467 * for all but the last one, maybe in two segments. 468 */ 469 if (!onepacket) { 470#if 0 471 /* use two segments, autoreq "all" then the last "never" */ 472 val |= ((0x3) << (rx->index * 2)); 473 n_bds--; 474#else 475 /* one segment, autoreq "all-but-last" */ 476 val |= ((0x1) << (rx->index * 2)); 477#endif 478 } 479 480 if (val != tmp) { 481 int n = 100; 482 483 /* make sure that autoreq is updated before continuing */ 484 musb_writel(tibase, DAVINCI_AUTOREQ_REG, val); 485 do { 486 tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG); 487 if (tmp == val) 488 break; 489 cpu_relax(); 490 } while (n-- > 0); 491 } 492#endif 493 494 /* REQPKT is turned off after each segment */ 495 if (n_bds && rx->channel.actual_len) { 496 void __iomem *regs = rx->hw_ep->regs; 497 498 val = musb_readw(regs, MUSB_RXCSR); 499 if (!(val & MUSB_RXCSR_H_REQPKT)) { 500 val |= MUSB_RXCSR_H_REQPKT | MUSB_RXCSR_H_WZC_BITS; 501 musb_writew(regs, MUSB_RXCSR, val); 502 /* flush writebuffer */ 503 val = musb_readw(regs, MUSB_RXCSR); 504 } 505 } 506 return n_bds; 507} 508 509 510/* Buffer enqueuing Logic: 511 * 512 * - RX builds new queues each time, to help handle routine "early 513 * termination" cases (faults, including errors and short reads) 514 * more correctly. 515 * 516 * - for now, TX reuses the same queue of BDs every time 517 * 518 * REVISIT long term, we want a normal dynamic model. 519 * ... the goal will be to append to the 520 * existing queue, processing completed "dma buffers" (segments) on the fly. 521 * 522 * Otherwise we force an IRQ latency between requests, which slows us a lot 523 * (especially in "transparent" dma). Unfortunately that model seems to be 524 * inherent in the DMA model from the Mentor code, except in the rare case 525 * of transfers big enough (~128+ KB) that we could append "middle" segments 526 * in the TX paths. (RX can't do this, see below.) 527 * 528 * That's true even in the CPPI- friendly iso case, where most urbs have 529 * several small segments provided in a group and where the "packet at a time" 530 * "transparent" DMA model is always correct, even on the RX side. 531 */ 532 533/* 534 * CPPI TX: 535 * ======== 536 * TX is a lot more reasonable than RX; it doesn't need to run in 537 * irq-per-packet mode very often. RNDIS mode seems to behave too 538 * (except how it handles the exactly-N-packets case). Building a 539 * txdma queue with multiple requests (urb or usb_request) looks 540 * like it would work ... but fault handling would need much testing. 541 * 542 * The main issue with TX mode RNDIS relates to transfer lengths that 543 * are an exact multiple of the packet length. It appears that there's 544 * a hiccup in that case (maybe the DMA completes before the ZLP gets 545 * written?) boiling down to not being able to rely on CPPI writing any 546 * terminating zero length packet before the next transfer is written. 547 * So that's punted to PIO; better yet, gadget drivers can avoid it. 548 * 549 * Plus, there's allegedly an undocumented constraint that rndis transfer 550 * length be a multiple of 64 bytes ... but the chip doesn't act that 551 * way, and we really don't _want_ that behavior anyway. 552 * 553 * On TX, "transparent" mode works ... although experiments have shown 554 * problems trying to use the SOP/EOP bits in different USB packets. 555 * 556 * REVISIT try to handle terminating zero length packets using CPPI 557 * instead of doing it by PIO after an IRQ. (Meanwhile, make Ethernet 558 * links avoid that issue by forcing them to avoid zlps.) 559 */ 560static void 561cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx) 562{ 563 unsigned maxpacket = tx->maxpacket; 564 dma_addr_t addr = tx->buf_dma + tx->offset; 565 size_t length = tx->buf_len - tx->offset; 566 struct cppi_descriptor *bd; 567 unsigned n_bds; 568 unsigned i; 569 struct cppi_tx_stateram __iomem *tx_ram = tx->state_ram; 570 int rndis; 571 572 /* TX can use the CPPI "rndis" mode, where we can probably fit this 573 * transfer in one BD and one IRQ. The only time we would NOT want 574 * to use it is when hardware constraints prevent it, or if we'd 575 * trigger the "send a ZLP?" confusion. 576 */ 577 rndis = (maxpacket & 0x3f) == 0 578 && length > maxpacket 579 && length < 0xffff 580 && (length % maxpacket) != 0; 581 582 if (rndis) { 583 maxpacket = length; 584 n_bds = 1; 585 } else { 586 if (length) 587 n_bds = DIV_ROUND_UP(length, maxpacket); 588 else 589 n_bds = 1; 590 n_bds = min(n_bds, (unsigned) NUM_TXCHAN_BD); 591 length = min(n_bds * maxpacket, length); 592 } 593 594 musb_dbg(musb, "TX DMA%d, pktSz %d %s bds %d dma 0x%llx len %u", 595 tx->index, 596 maxpacket, 597 rndis ? "rndis" : "transparent", 598 n_bds, 599 (unsigned long long)addr, length); 600 601 cppi_rndis_update(tx, 0, musb->ctrl_base, rndis); 602 603 /* assuming here that channel_program is called during 604 * transfer initiation ... current code maintains state 605 * for one outstanding request only (no queues, not even 606 * the implicit ones of an iso urb). 607 */ 608 609 bd = tx->freelist; 610 tx->head = bd; 611 tx->last_processed = NULL; 612 613 /* FIXME use BD pool like RX side does, and just queue 614 * the minimum number for this request. 615 */ 616 617 /* Prepare queue of BDs first, then hand it to hardware. 618 * All BDs except maybe the last should be of full packet 619 * size; for RNDIS there _is_ only that last packet. 620 */ 621 for (i = 0; i < n_bds; ) { 622 if (++i < n_bds && bd->next) 623 bd->hw_next = bd->next->dma; 624 else 625 bd->hw_next = 0; 626 627 bd->hw_bufp = tx->buf_dma + tx->offset; 628 629 /* FIXME set EOP only on the last packet, 630 * SOP only on the first ... avoid IRQs 631 */ 632 if ((tx->offset + maxpacket) <= tx->buf_len) { 633 tx->offset += maxpacket; 634 bd->hw_off_len = maxpacket; 635 bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET 636 | CPPI_OWN_SET | maxpacket; 637 } else { 638 /* only this one may be a partial USB Packet */ 639 u32 partial_len; 640 641 partial_len = tx->buf_len - tx->offset; 642 tx->offset = tx->buf_len; 643 bd->hw_off_len = partial_len; 644 645 bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET 646 | CPPI_OWN_SET | partial_len; 647 if (partial_len == 0) 648 bd->hw_options |= CPPI_ZERO_SET; 649 } 650 651 musb_dbg(musb, "TXBD %p: nxt %08x buf %08x len %04x opt %08x", 652 bd, bd->hw_next, bd->hw_bufp, 653 bd->hw_off_len, bd->hw_options); 654 655 /* update the last BD enqueued to the list */ 656 tx->tail = bd; 657 bd = bd->next; 658 } 659 660 /* BDs live in DMA-coherent memory, but writes might be pending */ 661 cpu_drain_writebuffer(); 662 663 /* Write to the HeadPtr in state RAM to trigger */ 664 musb_writel(&tx_ram->tx_head, 0, (u32)tx->freelist->dma); 665 666 cppi_dump_tx(5, tx, "/S"); 667} 668 669/* 670 * CPPI RX Woes: 671 * ============= 672 * Consider a 1KB bulk RX buffer in two scenarios: (a) it's fed two 300 byte 673 * packets back-to-back, and (b) it's fed two 512 byte packets back-to-back. 674 * (Full speed transfers have similar scenarios.) 675 * 676 * The correct behavior for Linux is that (a) fills the buffer with 300 bytes, 677 * and the next packet goes into a buffer that's queued later; while (b) fills 678 * the buffer with 1024 bytes. How to do that with CPPI? 679 * 680 * - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but 681 * (b) loses **BADLY** because nothing (!) happens when that second packet 682 * fills the buffer, much less when a third one arrives. (Which makes this 683 * not a "true" RNDIS mode. In the RNDIS protocol short-packet termination 684 * is optional, and it's fine if peripherals -- not hosts! -- pad messages 685 * out to end-of-buffer. Standard PCI host controller DMA descriptors 686 * implement that mode by default ... which is no accident.) 687 * 688 * - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have 689 * converse problems: (b) is handled right, but (a) loses badly. CPPI RX 690 * ignores SOP/EOP markings and processes both of those BDs; so both packets 691 * are loaded into the buffer (with a 212 byte gap between them), and the next 692 * buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP 693 * are intended as outputs for RX queues, not inputs...) 694 * 695 * - A variant of "transparent" mode -- one BD at a time -- is the only way to 696 * reliably make both cases work, with software handling both cases correctly 697 * and at the significant penalty of needing an IRQ per packet. (The lack of 698 * I/O overlap can be slightly ameliorated by enabling double buffering.) 699 * 700 * So how to get rid of IRQ-per-packet? The transparent multi-BD case could 701 * be used in special cases like mass storage, which sets URB_SHORT_NOT_OK 702 * (or maybe its peripheral side counterpart) to flag (a) scenarios as errors 703 * with guaranteed driver level fault recovery and scrubbing out what's left 704 * of that garbaged datastream. 705 * 706 * But there seems to be no way to identify the cases where CPPI RNDIS mode 707 * is appropriate -- which do NOT include RNDIS host drivers, but do include 708 * the CDC Ethernet driver! -- and the documentation is incomplete/wrong. 709 * So we can't _ever_ use RX RNDIS mode ... except by using a heuristic 710 * that applies best on the peripheral side (and which could fail rudely). 711 * 712 * Leaving only "transparent" mode; we avoid multi-bd modes in almost all 713 * cases other than mass storage class. Otherwise we're correct but slow, 714 * since CPPI penalizes our need for a "true RNDIS" default mode. 715 */ 716 717 718/* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY 719 * 720 * IFF 721 * (a) peripheral mode ... since rndis peripherals could pad their 722 * writes to hosts, causing i/o failure; or we'd have to cope with 723 * a largely unknowable variety of host side protocol variants 724 * (b) and short reads are NOT errors ... since full reads would 725 * cause those same i/o failures 726 * (c) and read length is 727 * - less than 64KB (max per cppi descriptor) 728 * - not a multiple of 4096 (g_zero default, full reads typical) 729 * - N (>1) packets long, ditto (full reads not EXPECTED) 730 * THEN 731 * try rx rndis mode 732 * 733 * Cost of heuristic failing: RXDMA wedges at the end of transfers that 734 * fill out the whole buffer. Buggy host side usb network drivers could 735 * trigger that, but "in the field" such bugs seem to be all but unknown. 736 * 737 * So this module parameter lets the heuristic be disabled. When using 738 * gadgetfs, the heuristic will probably need to be disabled. 739 */ 740static bool cppi_rx_rndis = 1; 741 742module_param(cppi_rx_rndis, bool, 0); 743MODULE_PARM_DESC(cppi_rx_rndis, "enable/disable RX RNDIS heuristic"); 744 745 746/** 747 * cppi_next_rx_segment - dma read for the next chunk of a buffer 748 * @musb: the controller 749 * @rx: dma channel 750 * @onepacket: true unless caller treats short reads as errors, and 751 * performs fault recovery above usbcore. 752 * Context: controller irqlocked 753 * 754 * See above notes about why we can't use multi-BD RX queues except in 755 * rare cases (mass storage class), and can never use the hardware "rndis" 756 * mode (since it's not a "true" RNDIS mode) with complete safety.. 757 * 758 * It's ESSENTIAL that callers specify "onepacket" mode unless they kick in 759 * code to recover from corrupted datastreams after each short transfer. 760 */ 761static void 762cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket) 763{ 764 unsigned maxpacket = rx->maxpacket; 765 dma_addr_t addr = rx->buf_dma + rx->offset; 766 size_t length = rx->buf_len - rx->offset; 767 struct cppi_descriptor *bd, *tail; 768 unsigned n_bds; 769 unsigned i; 770 void __iomem *tibase = musb->ctrl_base; 771 int is_rndis = 0; 772 struct cppi_rx_stateram __iomem *rx_ram = rx->state_ram; 773 struct cppi_descriptor *d; 774 775 if (onepacket) { 776 /* almost every USB driver, host or peripheral side */ 777 n_bds = 1; 778 779 /* maybe apply the heuristic above */ 780 if (cppi_rx_rndis 781 && is_peripheral_active(musb) 782 && length > maxpacket 783 && (length & ~0xffff) == 0 784 && (length & 0x0fff) != 0 785 && (length & (maxpacket - 1)) == 0) { 786 maxpacket = length; 787 is_rndis = 1; 788 } 789 } else { 790 /* virtually nothing except mass storage class */ 791 if (length > 0xffff) { 792 n_bds = 0xffff / maxpacket; 793 length = n_bds * maxpacket; 794 } else { 795 n_bds = DIV_ROUND_UP(length, maxpacket); 796 } 797 if (n_bds == 1) 798 onepacket = 1; 799 else 800 n_bds = min(n_bds, (unsigned) NUM_RXCHAN_BD); 801 } 802 803 /* In host mode, autorequest logic can generate some IN tokens; it's 804 * tricky since we can't leave REQPKT set in RXCSR after the transfer 805 * finishes. So: multipacket transfers involve two or more segments. 806 * And always at least two IRQs ... RNDIS mode is not an option. 807 */ 808 if (is_host_active(musb)) 809 n_bds = cppi_autoreq_update(rx, tibase, onepacket, n_bds); 810 811 cppi_rndis_update(rx, 1, musb->ctrl_base, is_rndis); 812 813 length = min(n_bds * maxpacket, length); 814 815 musb_dbg(musb, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) " 816 "dma 0x%llx len %u %u/%u", 817 rx->index, maxpacket, 818 onepacket 819 ? (is_rndis ? "rndis" : "onepacket") 820 : "multipacket", 821 n_bds, 822 musb_readl(tibase, 823 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4)) 824 & 0xffff, 825 (unsigned long long)addr, length, 826 rx->channel.actual_len, rx->buf_len); 827 828 /* only queue one segment at a time, since the hardware prevents 829 * correct queue shutdown after unexpected short packets 830 */ 831 bd = cppi_bd_alloc(rx); 832 rx->head = bd; 833 834 /* Build BDs for all packets in this segment */ 835 for (i = 0, tail = NULL; bd && i < n_bds; i++, tail = bd) { 836 u32 bd_len; 837 838 if (i) { 839 bd = cppi_bd_alloc(rx); 840 if (!bd) 841 break; 842 tail->next = bd; 843 tail->hw_next = bd->dma; 844 } 845 bd->hw_next = 0; 846 847 /* all but the last packet will be maxpacket size */ 848 if (maxpacket < length) 849 bd_len = maxpacket; 850 else 851 bd_len = length; 852 853 bd->hw_bufp = addr; 854 addr += bd_len; 855 rx->offset += bd_len; 856 857 bd->hw_off_len = (0 /*offset*/ << 16) + bd_len; 858 bd->buflen = bd_len; 859 860 bd->hw_options = CPPI_OWN_SET | (i == 0 ? length : 0); 861 length -= bd_len; 862 } 863 864 /* we always expect at least one reusable BD! */ 865 if (!tail) { 866 WARNING("rx dma%d -- no BDs? need %d\n", rx->index, n_bds); 867 return; 868 } else if (i < n_bds) 869 WARNING("rx dma%d -- only %d of %d BDs\n", rx->index, i, n_bds); 870 871 tail->next = NULL; 872 tail->hw_next = 0; 873 874 bd = rx->head; 875 rx->tail = tail; 876 877 /* short reads and other faults should terminate this entire 878 * dma segment. we want one "dma packet" per dma segment, not 879 * one per USB packet, terminating the whole queue at once... 880 * NOTE that current hardware seems to ignore SOP and EOP. 881 */ 882 bd->hw_options |= CPPI_SOP_SET; 883 tail->hw_options |= CPPI_EOP_SET; 884 885 for (d = rx->head; d; d = d->next) 886 cppi_dump_rxbd("S", d); 887 888 /* in case the preceding transfer left some state... */ 889 tail = rx->last_processed; 890 if (tail) { 891 tail->next = bd; 892 tail->hw_next = bd->dma; 893 } 894 895 core_rxirq_enable(tibase, rx->index + 1); 896 897 /* BDs live in DMA-coherent memory, but writes might be pending */ 898 cpu_drain_writebuffer(); 899 900 /* REVISIT specs say to write this AFTER the BUFCNT register 901 * below ... but that loses badly. 902 */ 903 musb_writel(&rx_ram->rx_head, 0, bd->dma); 904 905 /* bufferCount must be at least 3, and zeroes on completion 906 * unless it underflows below zero, or stops at two, or keeps 907 * growing ... grr. 908 */ 909 i = musb_readl(tibase, 910 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4)) 911 & 0xffff; 912 913 if (!i) 914 musb_writel(tibase, 915 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4), 916 n_bds + 2); 917 else if (n_bds > (i - 3)) 918 musb_writel(tibase, 919 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4), 920 n_bds - (i - 3)); 921 922 i = musb_readl(tibase, 923 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4)) 924 & 0xffff; 925 if (i < (2 + n_bds)) { 926 musb_dbg(musb, "bufcnt%d underrun - %d (for %d)", 927 rx->index, i, n_bds); 928 musb_writel(tibase, 929 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4), 930 n_bds + 2); 931 } 932 933 cppi_dump_rx(4, rx, "/S"); 934} 935 936/** 937 * cppi_channel_program - program channel for data transfer 938 * @ch: the channel 939 * @maxpacket: max packet size 940 * @mode: For RX, 1 unless the usb protocol driver promised to treat 941 * all short reads as errors and kick in high level fault recovery. 942 * For TX, ignored because of RNDIS mode races/glitches. 943 * @dma_addr: dma address of buffer 944 * @len: length of buffer 945 * Context: controller irqlocked 946 */ 947static int cppi_channel_program(struct dma_channel *ch, 948 u16 maxpacket, u8 mode, 949 dma_addr_t dma_addr, u32 len) 950{ 951 struct cppi_channel *cppi_ch; 952 struct cppi *controller; 953 struct musb *musb; 954 955 cppi_ch = container_of(ch, struct cppi_channel, channel); 956 controller = cppi_ch->controller; 957 musb = controller->controller.musb; 958 959 switch (ch->status) { 960 case MUSB_DMA_STATUS_BUS_ABORT: 961 case MUSB_DMA_STATUS_CORE_ABORT: 962 /* fault irq handler should have handled cleanup */ 963 WARNING("%cX DMA%d not cleaned up after abort!\n", 964 cppi_ch->transmit ? 'T' : 'R', 965 cppi_ch->index); 966 /* WARN_ON(1); */ 967 break; 968 case MUSB_DMA_STATUS_BUSY: 969 WARNING("program active channel? %cX DMA%d\n", 970 cppi_ch->transmit ? 'T' : 'R', 971 cppi_ch->index); 972 /* WARN_ON(1); */ 973 break; 974 case MUSB_DMA_STATUS_UNKNOWN: 975 musb_dbg(musb, "%cX DMA%d not allocated!", 976 cppi_ch->transmit ? 'T' : 'R', 977 cppi_ch->index); 978 fallthrough; 979 case MUSB_DMA_STATUS_FREE: 980 break; 981 } 982 983 ch->status = MUSB_DMA_STATUS_BUSY; 984 985 /* set transfer parameters, then queue up its first segment */ 986 cppi_ch->buf_dma = dma_addr; 987 cppi_ch->offset = 0; 988 cppi_ch->maxpacket = maxpacket; 989 cppi_ch->buf_len = len; 990 cppi_ch->channel.actual_len = 0; 991 992 /* TX channel? or RX? */ 993 if (cppi_ch->transmit) 994 cppi_next_tx_segment(musb, cppi_ch); 995 else 996 cppi_next_rx_segment(musb, cppi_ch, mode); 997 998 return true; 999} 1000 1001static bool cppi_rx_scan(struct cppi *cppi, unsigned ch) 1002{ 1003 struct cppi_channel *rx = &cppi->rx[ch]; 1004 struct cppi_rx_stateram __iomem *state = rx->state_ram; 1005 struct cppi_descriptor *bd; 1006 struct cppi_descriptor *last = rx->last_processed; 1007 bool completed = false; 1008 bool acked = false; 1009 int i; 1010 dma_addr_t safe2ack; 1011 void __iomem *regs = rx->hw_ep->regs; 1012 struct musb *musb = cppi->controller.musb; 1013 1014 cppi_dump_rx(6, rx, "/K"); 1015 1016 bd = last ? last->next : rx->head; 1017 if (!bd) 1018 return false; 1019 1020 /* run through all completed BDs */ 1021 for (i = 0, safe2ack = musb_readl(&state->rx_complete, 0); 1022 (safe2ack || completed) && bd && i < NUM_RXCHAN_BD; 1023 i++, bd = bd->next) { 1024 u16 len; 1025 1026 /* catch latest BD writes from CPPI */ 1027 rmb(); 1028 if (!completed && (bd->hw_options & CPPI_OWN_SET)) 1029 break; 1030 1031 musb_dbg(musb, "C/RXBD %llx: nxt %08x buf %08x " 1032 "off.len %08x opt.len %08x (%d)", 1033 (unsigned long long)bd->dma, bd->hw_next, bd->hw_bufp, 1034 bd->hw_off_len, bd->hw_options, 1035 rx->channel.actual_len); 1036 1037 /* actual packet received length */ 1038 if ((bd->hw_options & CPPI_SOP_SET) && !completed) 1039 len = bd->hw_off_len & CPPI_RECV_PKTLEN_MASK; 1040 else 1041 len = 0; 1042 1043 if (bd->hw_options & CPPI_EOQ_MASK) 1044 completed = true; 1045 1046 if (!completed && len < bd->buflen) { 1047 /* NOTE: when we get a short packet, RXCSR_H_REQPKT 1048 * must have been cleared, and no more DMA packets may 1049 * active be in the queue... TI docs didn't say, but 1050 * CPPI ignores those BDs even though OWN is still set. 1051 */ 1052 completed = true; 1053 musb_dbg(musb, "rx short %d/%d (%d)", 1054 len, bd->buflen, 1055 rx->channel.actual_len); 1056 } 1057 1058 /* If we got here, we expect to ack at least one BD; meanwhile 1059 * CPPI may completing other BDs while we scan this list... 1060 * 1061 * RACE: we can notice OWN cleared before CPPI raises the 1062 * matching irq by writing that BD as the completion pointer. 1063 * In such cases, stop scanning and wait for the irq, avoiding 1064 * lost acks and states where BD ownership is unclear. 1065 */ 1066 if (bd->dma == safe2ack) { 1067 musb_writel(&state->rx_complete, 0, safe2ack); 1068 safe2ack = musb_readl(&state->rx_complete, 0); 1069 acked = true; 1070 if (bd->dma == safe2ack) 1071 safe2ack = 0; 1072 } 1073 1074 rx->channel.actual_len += len; 1075 1076 cppi_bd_free(rx, last); 1077 last = bd; 1078 1079 /* stop scanning on end-of-segment */ 1080 if (bd->hw_next == 0) 1081 completed = true; 1082 } 1083 rx->last_processed = last; 1084 1085 /* dma abort, lost ack, or ... */ 1086 if (!acked && last) { 1087 int csr; 1088 1089 if (safe2ack == 0 || safe2ack == rx->last_processed->dma) 1090 musb_writel(&state->rx_complete, 0, safe2ack); 1091 if (safe2ack == 0) { 1092 cppi_bd_free(rx, last); 1093 rx->last_processed = NULL; 1094 1095 /* if we land here on the host side, H_REQPKT will 1096 * be clear and we need to restart the queue... 1097 */ 1098 WARN_ON(rx->head); 1099 } 1100 musb_ep_select(cppi->mregs, rx->index + 1); 1101 csr = musb_readw(regs, MUSB_RXCSR); 1102 if (csr & MUSB_RXCSR_DMAENAB) { 1103 musb_dbg(musb, "list%d %p/%p, last %llx%s, csr %04x", 1104 rx->index, 1105 rx->head, rx->tail, 1106 rx->last_processed 1107 ? (unsigned long long) 1108 rx->last_processed->dma 1109 : 0, 1110 completed ? ", completed" : "", 1111 csr); 1112 cppi_dump_rxq(4, "/what?", rx); 1113 } 1114 } 1115 if (!completed) { 1116 int csr; 1117 1118 rx->head = bd; 1119 1120 /* REVISIT seems like "autoreq all but EOP" doesn't... 1121 * setting it here "should" be racey, but seems to work 1122 */ 1123 csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR); 1124 if (is_host_active(cppi->controller.musb) 1125 && bd 1126 && !(csr & MUSB_RXCSR_H_REQPKT)) { 1127 csr |= MUSB_RXCSR_H_REQPKT; 1128 musb_writew(regs, MUSB_RXCSR, 1129 MUSB_RXCSR_H_WZC_BITS | csr); 1130 csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR); 1131 } 1132 } else { 1133 rx->head = NULL; 1134 rx->tail = NULL; 1135 } 1136 1137 cppi_dump_rx(6, rx, completed ? "/completed" : "/cleaned"); 1138 return completed; 1139} 1140 1141irqreturn_t cppi_interrupt(int irq, void *dev_id) 1142{ 1143 struct musb *musb = dev_id; 1144 struct cppi *cppi; 1145 void __iomem *tibase; 1146 struct musb_hw_ep *hw_ep = NULL; 1147 u32 rx, tx; 1148 int i, index; 1149 unsigned long flags; 1150 1151 cppi = container_of(musb->dma_controller, struct cppi, controller); 1152 if (cppi->irq) 1153 spin_lock_irqsave(&musb->lock, flags); 1154 1155 tibase = musb->ctrl_base; 1156 1157 tx = musb_readl(tibase, DAVINCI_TXCPPI_MASKED_REG); 1158 rx = musb_readl(tibase, DAVINCI_RXCPPI_MASKED_REG); 1159 1160 if (!tx && !rx) { 1161 if (cppi->irq) 1162 spin_unlock_irqrestore(&musb->lock, flags); 1163 return IRQ_NONE; 1164 } 1165 1166 musb_dbg(musb, "CPPI IRQ Tx%x Rx%x", tx, rx); 1167 1168 /* process TX channels */ 1169 for (index = 0; tx; tx = tx >> 1, index++) { 1170 struct cppi_channel *tx_ch; 1171 struct cppi_tx_stateram __iomem *tx_ram; 1172 bool completed = false; 1173 struct cppi_descriptor *bd; 1174 1175 if (!(tx & 1)) 1176 continue; 1177 1178 tx_ch = cppi->tx + index; 1179 tx_ram = tx_ch->state_ram; 1180 1181 /* FIXME need a cppi_tx_scan() routine, which 1182 * can also be called from abort code 1183 */ 1184 1185 cppi_dump_tx(5, tx_ch, "/E"); 1186 1187 bd = tx_ch->head; 1188 1189 /* 1190 * If Head is null then this could mean that a abort interrupt 1191 * that needs to be acknowledged. 1192 */ 1193 if (NULL == bd) { 1194 musb_dbg(musb, "null BD"); 1195 musb_writel(&tx_ram->tx_complete, 0, 0); 1196 continue; 1197 } 1198 1199 /* run through all completed BDs */ 1200 for (i = 0; !completed && bd && i < NUM_TXCHAN_BD; 1201 i++, bd = bd->next) { 1202 u16 len; 1203 1204 /* catch latest BD writes from CPPI */ 1205 rmb(); 1206 if (bd->hw_options & CPPI_OWN_SET) 1207 break; 1208 1209 musb_dbg(musb, "C/TXBD %p n %x b %x off %x opt %x", 1210 bd, bd->hw_next, bd->hw_bufp, 1211 bd->hw_off_len, bd->hw_options); 1212 1213 len = bd->hw_off_len & CPPI_BUFFER_LEN_MASK; 1214 tx_ch->channel.actual_len += len; 1215 1216 tx_ch->last_processed = bd; 1217 1218 /* write completion register to acknowledge 1219 * processing of completed BDs, and possibly 1220 * release the IRQ; EOQ might not be set ... 1221 * 1222 * REVISIT use the same ack strategy as rx 1223 * 1224 * REVISIT have observed bit 18 set; huh?? 1225 */ 1226 /* if ((bd->hw_options & CPPI_EOQ_MASK)) */ 1227 musb_writel(&tx_ram->tx_complete, 0, bd->dma); 1228 1229 /* stop scanning on end-of-segment */ 1230 if (bd->hw_next == 0) 1231 completed = true; 1232 } 1233 1234 /* on end of segment, maybe go to next one */ 1235 if (completed) { 1236 /* cppi_dump_tx(4, tx_ch, "/complete"); */ 1237 1238 /* transfer more, or report completion */ 1239 if (tx_ch->offset >= tx_ch->buf_len) { 1240 tx_ch->head = NULL; 1241 tx_ch->tail = NULL; 1242 tx_ch->channel.status = MUSB_DMA_STATUS_FREE; 1243 1244 hw_ep = tx_ch->hw_ep; 1245 1246 musb_dma_completion(musb, index + 1, 1); 1247 1248 } else { 1249 /* Bigger transfer than we could fit in 1250 * that first batch of descriptors... 1251 */ 1252 cppi_next_tx_segment(musb, tx_ch); 1253 } 1254 } else 1255 tx_ch->head = bd; 1256 } 1257 1258 /* Start processing the RX block */ 1259 for (index = 0; rx; rx = rx >> 1, index++) { 1260 1261 if (rx & 1) { 1262 struct cppi_channel *rx_ch; 1263 1264 rx_ch = cppi->rx + index; 1265 1266 /* let incomplete dma segments finish */ 1267 if (!cppi_rx_scan(cppi, index)) 1268 continue; 1269 1270 /* start another dma segment if needed */ 1271 if (rx_ch->channel.actual_len != rx_ch->buf_len 1272 && rx_ch->channel.actual_len 1273 == rx_ch->offset) { 1274 cppi_next_rx_segment(musb, rx_ch, 1); 1275 continue; 1276 } 1277 1278 /* all segments completed! */ 1279 rx_ch->channel.status = MUSB_DMA_STATUS_FREE; 1280 1281 hw_ep = rx_ch->hw_ep; 1282 1283 core_rxirq_disable(tibase, index + 1); 1284 musb_dma_completion(musb, index + 1, 0); 1285 } 1286 } 1287 1288 /* write to CPPI EOI register to re-enable interrupts */ 1289 musb_writel(tibase, DAVINCI_CPPI_EOI_REG, 0); 1290 1291 if (cppi->irq) 1292 spin_unlock_irqrestore(&musb->lock, flags); 1293 1294 return IRQ_HANDLED; 1295} 1296EXPORT_SYMBOL_GPL(cppi_interrupt); 1297 1298/* Instantiate a software object representing a DMA controller. */ 1299struct dma_controller * 1300cppi_dma_controller_create(struct musb *musb, void __iomem *mregs) 1301{ 1302 struct cppi *controller; 1303 struct device *dev = musb->controller; 1304 struct platform_device *pdev = to_platform_device(dev); 1305 int irq = platform_get_irq_byname(pdev, "dma"); 1306 1307 controller = kzalloc(sizeof *controller, GFP_KERNEL); 1308 if (!controller) 1309 return NULL; 1310 1311 controller->mregs = mregs; 1312 controller->tibase = mregs - DAVINCI_BASE_OFFSET; 1313 1314 controller->controller.musb = musb; 1315 controller->controller.channel_alloc = cppi_channel_allocate; 1316 controller->controller.channel_release = cppi_channel_release; 1317 controller->controller.channel_program = cppi_channel_program; 1318 controller->controller.channel_abort = cppi_channel_abort; 1319 1320 /* NOTE: allocating from on-chip SRAM would give the least 1321 * contention for memory access, if that ever matters here. 1322 */ 1323 1324 /* setup BufferPool */ 1325 controller->pool = dma_pool_create("cppi", 1326 controller->controller.musb->controller, 1327 sizeof(struct cppi_descriptor), 1328 CPPI_DESCRIPTOR_ALIGN, 0); 1329 if (!controller->pool) { 1330 kfree(controller); 1331 return NULL; 1332 } 1333 1334 if (irq > 0) { 1335 if (request_irq(irq, cppi_interrupt, 0, "cppi-dma", musb)) { 1336 dev_err(dev, "request_irq %d failed!\n", irq); 1337 musb_dma_controller_destroy(&controller->controller); 1338 return NULL; 1339 } 1340 controller->irq = irq; 1341 } 1342 1343 cppi_controller_start(controller); 1344 return &controller->controller; 1345} 1346EXPORT_SYMBOL_GPL(cppi_dma_controller_create); 1347 1348/* 1349 * Destroy a previously-instantiated DMA controller. 1350 */ 1351void cppi_dma_controller_destroy(struct dma_controller *c) 1352{ 1353 struct cppi *cppi; 1354 1355 cppi = container_of(c, struct cppi, controller); 1356 1357 cppi_controller_stop(cppi); 1358 1359 if (cppi->irq) 1360 free_irq(cppi->irq, cppi->controller.musb); 1361 1362 /* assert: caller stopped the controller first */ 1363 dma_pool_destroy(cppi->pool); 1364 1365 kfree(cppi); 1366} 1367EXPORT_SYMBOL_GPL(cppi_dma_controller_destroy); 1368 1369/* 1370 * Context: controller irqlocked, endpoint selected 1371 */ 1372static int cppi_channel_abort(struct dma_channel *channel) 1373{ 1374 struct cppi_channel *cppi_ch; 1375 struct cppi *controller; 1376 void __iomem *mbase; 1377 void __iomem *tibase; 1378 void __iomem *regs; 1379 u32 value; 1380 struct cppi_descriptor *queue; 1381 1382 cppi_ch = container_of(channel, struct cppi_channel, channel); 1383 1384 controller = cppi_ch->controller; 1385 1386 switch (channel->status) { 1387 case MUSB_DMA_STATUS_BUS_ABORT: 1388 case MUSB_DMA_STATUS_CORE_ABORT: 1389 /* from RX or TX fault irq handler */ 1390 case MUSB_DMA_STATUS_BUSY: 1391 /* the hardware needs shutting down */ 1392 regs = cppi_ch->hw_ep->regs; 1393 break; 1394 case MUSB_DMA_STATUS_UNKNOWN: 1395 case MUSB_DMA_STATUS_FREE: 1396 return 0; 1397 default: 1398 return -EINVAL; 1399 } 1400 1401 if (!cppi_ch->transmit && cppi_ch->head) 1402 cppi_dump_rxq(3, "/abort", cppi_ch); 1403 1404 mbase = controller->mregs; 1405 tibase = controller->tibase; 1406 1407 queue = cppi_ch->head; 1408 cppi_ch->head = NULL; 1409 cppi_ch->tail = NULL; 1410 1411 /* REVISIT should rely on caller having done this, 1412 * and caller should rely on us not changing it. 1413 * peripheral code is safe ... check host too. 1414 */ 1415 musb_ep_select(mbase, cppi_ch->index + 1); 1416 1417 if (cppi_ch->transmit) { 1418 struct cppi_tx_stateram __iomem *tx_ram; 1419 /* REVISIT put timeouts on these controller handshakes */ 1420 1421 cppi_dump_tx(6, cppi_ch, " (teardown)"); 1422 1423 /* teardown DMA engine then usb core */ 1424 do { 1425 value = musb_readl(tibase, DAVINCI_TXCPPI_TEAR_REG); 1426 } while (!(value & CPPI_TEAR_READY)); 1427 musb_writel(tibase, DAVINCI_TXCPPI_TEAR_REG, cppi_ch->index); 1428 1429 tx_ram = cppi_ch->state_ram; 1430 do { 1431 value = musb_readl(&tx_ram->tx_complete, 0); 1432 } while (0xFFFFFFFC != value); 1433 1434 /* FIXME clean up the transfer state ... here? 1435 * the completion routine should get called with 1436 * an appropriate status code. 1437 */ 1438 1439 value = musb_readw(regs, MUSB_TXCSR); 1440 value &= ~MUSB_TXCSR_DMAENAB; 1441 value |= MUSB_TXCSR_FLUSHFIFO; 1442 musb_writew(regs, MUSB_TXCSR, value); 1443 musb_writew(regs, MUSB_TXCSR, value); 1444 1445 /* 1446 * 1. Write to completion Ptr value 0x1(bit 0 set) 1447 * (write back mode) 1448 * 2. Wait for abort interrupt and then put the channel in 1449 * compare mode by writing 1 to the tx_complete register. 1450 */ 1451 cppi_reset_tx(tx_ram, 1); 1452 cppi_ch->head = NULL; 1453 musb_writel(&tx_ram->tx_complete, 0, 1); 1454 cppi_dump_tx(5, cppi_ch, " (done teardown)"); 1455 1456 /* REVISIT tx side _should_ clean up the same way 1457 * as the RX side ... this does no cleanup at all! 1458 */ 1459 1460 } else /* RX */ { 1461 u16 csr; 1462 1463 /* NOTE: docs don't guarantee any of this works ... we 1464 * expect that if the usb core stops telling the cppi core 1465 * to pull more data from it, then it'll be safe to flush 1466 * current RX DMA state iff any pending fifo transfer is done. 1467 */ 1468 1469 core_rxirq_disable(tibase, cppi_ch->index + 1); 1470 1471 /* for host, ensure ReqPkt is never set again */ 1472 if (is_host_active(cppi_ch->controller->controller.musb)) { 1473 value = musb_readl(tibase, DAVINCI_AUTOREQ_REG); 1474 value &= ~((0x3) << (cppi_ch->index * 2)); 1475 musb_writel(tibase, DAVINCI_AUTOREQ_REG, value); 1476 } 1477 1478 csr = musb_readw(regs, MUSB_RXCSR); 1479 1480 /* for host, clear (just) ReqPkt at end of current packet(s) */ 1481 if (is_host_active(cppi_ch->controller->controller.musb)) { 1482 csr |= MUSB_RXCSR_H_WZC_BITS; 1483 csr &= ~MUSB_RXCSR_H_REQPKT; 1484 } else 1485 csr |= MUSB_RXCSR_P_WZC_BITS; 1486 1487 /* clear dma enable */ 1488 csr &= ~(MUSB_RXCSR_DMAENAB); 1489 musb_writew(regs, MUSB_RXCSR, csr); 1490 csr = musb_readw(regs, MUSB_RXCSR); 1491 1492 /* Quiesce: wait for current dma to finish (if not cleanup). 1493 * We can't use bit zero of stateram->rx_sop, since that 1494 * refers to an entire "DMA packet" not just emptying the 1495 * current fifo. Most segments need multiple usb packets. 1496 */ 1497 if (channel->status == MUSB_DMA_STATUS_BUSY) 1498 udelay(50); 1499 1500 /* scan the current list, reporting any data that was 1501 * transferred and acking any IRQ 1502 */ 1503 cppi_rx_scan(controller, cppi_ch->index); 1504 1505 /* clobber the existing state once it's idle 1506 * 1507 * NOTE: arguably, we should also wait for all the other 1508 * RX channels to quiesce (how??) and then temporarily 1509 * disable RXCPPI_CTRL_REG ... but it seems that we can 1510 * rely on the controller restarting from state ram, with 1511 * only RXCPPI_BUFCNT state being bogus. BUFCNT will 1512 * correct itself after the next DMA transfer though. 1513 * 1514 * REVISIT does using rndis mode change that? 1515 */ 1516 cppi_reset_rx(cppi_ch->state_ram); 1517 1518 /* next DMA request _should_ load cppi head ptr */ 1519 1520 /* ... we don't "free" that list, only mutate it in place. */ 1521 cppi_dump_rx(5, cppi_ch, " (done abort)"); 1522 1523 /* clean up previously pending bds */ 1524 cppi_bd_free(cppi_ch, cppi_ch->last_processed); 1525 cppi_ch->last_processed = NULL; 1526 1527 while (queue) { 1528 struct cppi_descriptor *tmp = queue->next; 1529 1530 cppi_bd_free(cppi_ch, queue); 1531 queue = tmp; 1532 } 1533 } 1534 1535 channel->status = MUSB_DMA_STATUS_FREE; 1536 cppi_ch->buf_dma = 0; 1537 cppi_ch->offset = 0; 1538 cppi_ch->buf_len = 0; 1539 cppi_ch->maxpacket = 0; 1540 return 0; 1541} 1542 1543/* TBD Queries: 1544 * 1545 * Power Management ... probably turn off cppi during suspend, restart; 1546 * check state ram? Clocking is presumably shared with usb core. 1547 */