cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

alauda.c (33109B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/*
      3 * Driver for Alauda-based card readers
      4 *
      5 * Current development and maintenance by:
      6 *   (c) 2005 Daniel Drake <dsd@gentoo.org>
      7 *
      8 * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
      9 *
     10 * Alauda implements a vendor-specific command set to access two media reader
     11 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
     12 * which are accepted by these devices.
     13 *
     14 * The driver was developed through reverse-engineering, with the help of the
     15 * sddr09 driver which has many similarities, and with some help from the
     16 * (very old) vendor-supplied GPL sma03 driver.
     17 *
     18 * For protocol info, see http://alauda.sourceforge.net
     19 */
     20
     21#include <linux/module.h>
     22#include <linux/slab.h>
     23
     24#include <scsi/scsi.h>
     25#include <scsi/scsi_cmnd.h>
     26#include <scsi/scsi_device.h>
     27
     28#include "usb.h"
     29#include "transport.h"
     30#include "protocol.h"
     31#include "debug.h"
     32#include "scsiglue.h"
     33
     34#define DRV_NAME "ums-alauda"
     35
     36MODULE_DESCRIPTION("Driver for Alauda-based card readers");
     37MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
     38MODULE_LICENSE("GPL");
     39MODULE_IMPORT_NS(USB_STORAGE);
     40
     41/*
     42 * Status bytes
     43 */
     44#define ALAUDA_STATUS_ERROR		0x01
     45#define ALAUDA_STATUS_READY		0x40
     46
     47/*
     48 * Control opcodes (for request field)
     49 */
     50#define ALAUDA_GET_XD_MEDIA_STATUS	0x08
     51#define ALAUDA_GET_SM_MEDIA_STATUS	0x98
     52#define ALAUDA_ACK_XD_MEDIA_CHANGE	0x0a
     53#define ALAUDA_ACK_SM_MEDIA_CHANGE	0x9a
     54#define ALAUDA_GET_XD_MEDIA_SIG		0x86
     55#define ALAUDA_GET_SM_MEDIA_SIG		0x96
     56
     57/*
     58 * Bulk command identity (byte 0)
     59 */
     60#define ALAUDA_BULK_CMD			0x40
     61
     62/*
     63 * Bulk opcodes (byte 1)
     64 */
     65#define ALAUDA_BULK_GET_REDU_DATA	0x85
     66#define ALAUDA_BULK_READ_BLOCK		0x94
     67#define ALAUDA_BULK_ERASE_BLOCK		0xa3
     68#define ALAUDA_BULK_WRITE_BLOCK		0xb4
     69#define ALAUDA_BULK_GET_STATUS2		0xb7
     70#define ALAUDA_BULK_RESET_MEDIA		0xe0
     71
     72/*
     73 * Port to operate on (byte 8)
     74 */
     75#define ALAUDA_PORT_XD			0x00
     76#define ALAUDA_PORT_SM			0x01
     77
     78/*
     79 * LBA and PBA are unsigned ints. Special values.
     80 */
     81#define UNDEF    0xffff
     82#define SPARE    0xfffe
     83#define UNUSABLE 0xfffd
     84
     85struct alauda_media_info {
     86	unsigned long capacity;		/* total media size in bytes */
     87	unsigned int pagesize;		/* page size in bytes */
     88	unsigned int blocksize;		/* number of pages per block */
     89	unsigned int uzonesize;		/* number of usable blocks per zone */
     90	unsigned int zonesize;		/* number of blocks per zone */
     91	unsigned int blockmask;		/* mask to get page from address */
     92
     93	unsigned char pageshift;
     94	unsigned char blockshift;
     95	unsigned char zoneshift;
     96
     97	u16 **lba_to_pba;		/* logical to physical block map */
     98	u16 **pba_to_lba;		/* physical to logical block map */
     99};
    100
    101struct alauda_info {
    102	struct alauda_media_info port[2];
    103	int wr_ep;			/* endpoint to write data out of */
    104
    105	unsigned char sense_key;
    106	unsigned long sense_asc;	/* additional sense code */
    107	unsigned long sense_ascq;	/* additional sense code qualifier */
    108};
    109
    110#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
    111#define LSB_of(s) ((s)&0xFF)
    112#define MSB_of(s) ((s)>>8)
    113
    114#define MEDIA_PORT(us) us->srb->device->lun
    115#define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
    116
    117#define PBA_LO(pba) ((pba & 0xF) << 5)
    118#define PBA_HI(pba) (pba >> 3)
    119#define PBA_ZONE(pba) (pba >> 11)
    120
    121static int init_alauda(struct us_data *us);
    122
    123
    124/*
    125 * The table of devices
    126 */
    127#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
    128		    vendorName, productName, useProtocol, useTransport, \
    129		    initFunction, flags) \
    130{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
    131  .driver_info = (flags) }
    132
    133static struct usb_device_id alauda_usb_ids[] = {
    134#	include "unusual_alauda.h"
    135	{ }		/* Terminating entry */
    136};
    137MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
    138
    139#undef UNUSUAL_DEV
    140
    141/*
    142 * The flags table
    143 */
    144#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
    145		    vendor_name, product_name, use_protocol, use_transport, \
    146		    init_function, Flags) \
    147{ \
    148	.vendorName = vendor_name,	\
    149	.productName = product_name,	\
    150	.useProtocol = use_protocol,	\
    151	.useTransport = use_transport,	\
    152	.initFunction = init_function,	\
    153}
    154
    155static struct us_unusual_dev alauda_unusual_dev_list[] = {
    156#	include "unusual_alauda.h"
    157	{ }		/* Terminating entry */
    158};
    159
    160#undef UNUSUAL_DEV
    161
    162
    163/*
    164 * Media handling
    165 */
    166
    167struct alauda_card_info {
    168	unsigned char id;		/* id byte */
    169	unsigned char chipshift;	/* 1<<cs bytes total capacity */
    170	unsigned char pageshift;	/* 1<<ps bytes in a page */
    171	unsigned char blockshift;	/* 1<<bs pages per block */
    172	unsigned char zoneshift;	/* 1<<zs blocks per zone */
    173};
    174
    175static struct alauda_card_info alauda_card_ids[] = {
    176	/* NAND flash */
    177	{ 0x6e, 20, 8, 4, 8},	/* 1 MB */
    178	{ 0xe8, 20, 8, 4, 8},	/* 1 MB */
    179	{ 0xec, 20, 8, 4, 8},	/* 1 MB */
    180	{ 0x64, 21, 8, 4, 9}, 	/* 2 MB */
    181	{ 0xea, 21, 8, 4, 9},	/* 2 MB */
    182	{ 0x6b, 22, 9, 4, 9},	/* 4 MB */
    183	{ 0xe3, 22, 9, 4, 9},	/* 4 MB */
    184	{ 0xe5, 22, 9, 4, 9},	/* 4 MB */
    185	{ 0xe6, 23, 9, 4, 10},	/* 8 MB */
    186	{ 0x73, 24, 9, 5, 10},	/* 16 MB */
    187	{ 0x75, 25, 9, 5, 10},	/* 32 MB */
    188	{ 0x76, 26, 9, 5, 10},	/* 64 MB */
    189	{ 0x79, 27, 9, 5, 10},	/* 128 MB */
    190	{ 0x71, 28, 9, 5, 10},	/* 256 MB */
    191
    192	/* MASK ROM */
    193	{ 0x5d, 21, 9, 4, 8},	/* 2 MB */
    194	{ 0xd5, 22, 9, 4, 9},	/* 4 MB */
    195	{ 0xd6, 23, 9, 4, 10},	/* 8 MB */
    196	{ 0x57, 24, 9, 4, 11},	/* 16 MB */
    197	{ 0x58, 25, 9, 4, 12},	/* 32 MB */
    198	{ 0,}
    199};
    200
    201static struct alauda_card_info *alauda_card_find_id(unsigned char id)
    202{
    203	int i;
    204
    205	for (i = 0; alauda_card_ids[i].id != 0; i++)
    206		if (alauda_card_ids[i].id == id)
    207			return &(alauda_card_ids[i]);
    208	return NULL;
    209}
    210
    211/*
    212 * ECC computation.
    213 */
    214
    215static unsigned char parity[256];
    216static unsigned char ecc2[256];
    217
    218static void nand_init_ecc(void)
    219{
    220	int i, j, a;
    221
    222	parity[0] = 0;
    223	for (i = 1; i < 256; i++)
    224		parity[i] = (parity[i&(i-1)] ^ 1);
    225
    226	for (i = 0; i < 256; i++) {
    227		a = 0;
    228		for (j = 0; j < 8; j++) {
    229			if (i & (1<<j)) {
    230				if ((j & 1) == 0)
    231					a ^= 0x04;
    232				if ((j & 2) == 0)
    233					a ^= 0x10;
    234				if ((j & 4) == 0)
    235					a ^= 0x40;
    236			}
    237		}
    238		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
    239	}
    240}
    241
    242/* compute 3-byte ecc on 256 bytes */
    243static void nand_compute_ecc(unsigned char *data, unsigned char *ecc)
    244{
    245	int i, j, a;
    246	unsigned char par = 0, bit, bits[8] = {0};
    247
    248	/* collect 16 checksum bits */
    249	for (i = 0; i < 256; i++) {
    250		par ^= data[i];
    251		bit = parity[data[i]];
    252		for (j = 0; j < 8; j++)
    253			if ((i & (1<<j)) == 0)
    254				bits[j] ^= bit;
    255	}
    256
    257	/* put 4+4+4 = 12 bits in the ecc */
    258	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
    259	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
    260
    261	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
    262	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
    263
    264	ecc[2] = ecc2[par];
    265}
    266
    267static int nand_compare_ecc(unsigned char *data, unsigned char *ecc)
    268{
    269	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
    270}
    271
    272static void nand_store_ecc(unsigned char *data, unsigned char *ecc)
    273{
    274	memcpy(data, ecc, 3);
    275}
    276
    277/*
    278 * Alauda driver
    279 */
    280
    281/*
    282 * Forget our PBA <---> LBA mappings for a particular port
    283 */
    284static void alauda_free_maps (struct alauda_media_info *media_info)
    285{
    286	unsigned int shift = media_info->zoneshift
    287		+ media_info->blockshift + media_info->pageshift;
    288	unsigned int num_zones = media_info->capacity >> shift;
    289	unsigned int i;
    290
    291	if (media_info->lba_to_pba != NULL)
    292		for (i = 0; i < num_zones; i++) {
    293			kfree(media_info->lba_to_pba[i]);
    294			media_info->lba_to_pba[i] = NULL;
    295		}
    296
    297	if (media_info->pba_to_lba != NULL)
    298		for (i = 0; i < num_zones; i++) {
    299			kfree(media_info->pba_to_lba[i]);
    300			media_info->pba_to_lba[i] = NULL;
    301		}
    302}
    303
    304/*
    305 * Returns 2 bytes of status data
    306 * The first byte describes media status, and second byte describes door status
    307 */
    308static int alauda_get_media_status(struct us_data *us, unsigned char *data)
    309{
    310	int rc;
    311	unsigned char command;
    312
    313	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
    314		command = ALAUDA_GET_XD_MEDIA_STATUS;
    315	else
    316		command = ALAUDA_GET_SM_MEDIA_STATUS;
    317
    318	rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
    319		command, 0xc0, 0, 1, data, 2);
    320
    321	usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
    322
    323	return rc;
    324}
    325
    326/*
    327 * Clears the "media was changed" bit so that we know when it changes again
    328 * in the future.
    329 */
    330static int alauda_ack_media(struct us_data *us)
    331{
    332	unsigned char command;
    333
    334	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
    335		command = ALAUDA_ACK_XD_MEDIA_CHANGE;
    336	else
    337		command = ALAUDA_ACK_SM_MEDIA_CHANGE;
    338
    339	return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
    340		command, 0x40, 0, 1, NULL, 0);
    341}
    342
    343/*
    344 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
    345 * and some other details.
    346 */
    347static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
    348{
    349	unsigned char command;
    350
    351	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
    352		command = ALAUDA_GET_XD_MEDIA_SIG;
    353	else
    354		command = ALAUDA_GET_SM_MEDIA_SIG;
    355
    356	return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
    357		command, 0xc0, 0, 0, data, 4);
    358}
    359
    360/*
    361 * Resets the media status (but not the whole device?)
    362 */
    363static int alauda_reset_media(struct us_data *us)
    364{
    365	unsigned char *command = us->iobuf;
    366
    367	memset(command, 0, 9);
    368	command[0] = ALAUDA_BULK_CMD;
    369	command[1] = ALAUDA_BULK_RESET_MEDIA;
    370	command[8] = MEDIA_PORT(us);
    371
    372	return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
    373		command, 9, NULL);
    374}
    375
    376/*
    377 * Examines the media and deduces capacity, etc.
    378 */
    379static int alauda_init_media(struct us_data *us)
    380{
    381	unsigned char *data = us->iobuf;
    382	int ready = 0;
    383	struct alauda_card_info *media_info;
    384	unsigned int num_zones;
    385
    386	while (ready == 0) {
    387		msleep(20);
    388
    389		if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
    390			return USB_STOR_TRANSPORT_ERROR;
    391
    392		if (data[0] & 0x10)
    393			ready = 1;
    394	}
    395
    396	usb_stor_dbg(us, "We are ready for action!\n");
    397
    398	if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
    399		return USB_STOR_TRANSPORT_ERROR;
    400
    401	msleep(10);
    402
    403	if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
    404		return USB_STOR_TRANSPORT_ERROR;
    405
    406	if (data[0] != 0x14) {
    407		usb_stor_dbg(us, "Media not ready after ack\n");
    408		return USB_STOR_TRANSPORT_ERROR;
    409	}
    410
    411	if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
    412		return USB_STOR_TRANSPORT_ERROR;
    413
    414	usb_stor_dbg(us, "Media signature: %4ph\n", data);
    415	media_info = alauda_card_find_id(data[1]);
    416	if (media_info == NULL) {
    417		pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n",
    418			data);
    419		return USB_STOR_TRANSPORT_ERROR;
    420	}
    421
    422	MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
    423	usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
    424		     MEDIA_INFO(us).capacity >> 20);
    425
    426	MEDIA_INFO(us).pageshift = media_info->pageshift;
    427	MEDIA_INFO(us).blockshift = media_info->blockshift;
    428	MEDIA_INFO(us).zoneshift = media_info->zoneshift;
    429
    430	MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
    431	MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
    432	MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
    433
    434	MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
    435	MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
    436
    437	num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
    438		+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
    439	MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
    440	MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
    441
    442	if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
    443		return USB_STOR_TRANSPORT_ERROR;
    444
    445	return USB_STOR_TRANSPORT_GOOD;
    446}
    447
    448/*
    449 * Examines the media status and does the right thing when the media has gone,
    450 * appeared, or changed.
    451 */
    452static int alauda_check_media(struct us_data *us)
    453{
    454	struct alauda_info *info = (struct alauda_info *) us->extra;
    455	unsigned char status[2];
    456
    457	alauda_get_media_status(us, status);
    458
    459	/* Check for no media or door open */
    460	if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
    461		|| ((status[1] & 0x01) == 0)) {
    462		usb_stor_dbg(us, "No media, or door open\n");
    463		alauda_free_maps(&MEDIA_INFO(us));
    464		info->sense_key = 0x02;
    465		info->sense_asc = 0x3A;
    466		info->sense_ascq = 0x00;
    467		return USB_STOR_TRANSPORT_FAILED;
    468	}
    469
    470	/* Check for media change */
    471	if (status[0] & 0x08) {
    472		usb_stor_dbg(us, "Media change detected\n");
    473		alauda_free_maps(&MEDIA_INFO(us));
    474		alauda_init_media(us);
    475
    476		info->sense_key = UNIT_ATTENTION;
    477		info->sense_asc = 0x28;
    478		info->sense_ascq = 0x00;
    479		return USB_STOR_TRANSPORT_FAILED;
    480	}
    481
    482	return USB_STOR_TRANSPORT_GOOD;
    483}
    484
    485/*
    486 * Checks the status from the 2nd status register
    487 * Returns 3 bytes of status data, only the first is known
    488 */
    489static int alauda_check_status2(struct us_data *us)
    490{
    491	int rc;
    492	unsigned char command[] = {
    493		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
    494		0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
    495	};
    496	unsigned char data[3];
    497
    498	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
    499		command, 9, NULL);
    500	if (rc != USB_STOR_XFER_GOOD)
    501		return rc;
    502
    503	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
    504		data, 3, NULL);
    505	if (rc != USB_STOR_XFER_GOOD)
    506		return rc;
    507
    508	usb_stor_dbg(us, "%3ph\n", data);
    509	if (data[0] & ALAUDA_STATUS_ERROR)
    510		return USB_STOR_XFER_ERROR;
    511
    512	return USB_STOR_XFER_GOOD;
    513}
    514
    515/*
    516 * Gets the redundancy data for the first page of a PBA
    517 * Returns 16 bytes.
    518 */
    519static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
    520{
    521	int rc;
    522	unsigned char command[] = {
    523		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
    524		PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
    525	};
    526
    527	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
    528		command, 9, NULL);
    529	if (rc != USB_STOR_XFER_GOOD)
    530		return rc;
    531
    532	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
    533		data, 16, NULL);
    534}
    535
    536/*
    537 * Finds the first unused PBA in a zone
    538 * Returns the absolute PBA of an unused PBA, or 0 if none found.
    539 */
    540static u16 alauda_find_unused_pba(struct alauda_media_info *info,
    541	unsigned int zone)
    542{
    543	u16 *pba_to_lba = info->pba_to_lba[zone];
    544	unsigned int i;
    545
    546	for (i = 0; i < info->zonesize; i++)
    547		if (pba_to_lba[i] == UNDEF)
    548			return (zone << info->zoneshift) + i;
    549
    550	return 0;
    551}
    552
    553/*
    554 * Reads the redundancy data for all PBA's in a zone
    555 * Produces lba <--> pba mappings
    556 */
    557static int alauda_read_map(struct us_data *us, unsigned int zone)
    558{
    559	unsigned char *data = us->iobuf;
    560	int result;
    561	int i, j;
    562	unsigned int zonesize = MEDIA_INFO(us).zonesize;
    563	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
    564	unsigned int lba_offset, lba_real, blocknum;
    565	unsigned int zone_base_lba = zone * uzonesize;
    566	unsigned int zone_base_pba = zone * zonesize;
    567	u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
    568	u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
    569	if (lba_to_pba == NULL || pba_to_lba == NULL) {
    570		result = USB_STOR_TRANSPORT_ERROR;
    571		goto error;
    572	}
    573
    574	usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
    575
    576	/* 1024 PBA's per zone */
    577	for (i = 0; i < zonesize; i++)
    578		lba_to_pba[i] = pba_to_lba[i] = UNDEF;
    579
    580	for (i = 0; i < zonesize; i++) {
    581		blocknum = zone_base_pba + i;
    582
    583		result = alauda_get_redu_data(us, blocknum, data);
    584		if (result != USB_STOR_XFER_GOOD) {
    585			result = USB_STOR_TRANSPORT_ERROR;
    586			goto error;
    587		}
    588
    589		/* special PBAs have control field 0^16 */
    590		for (j = 0; j < 16; j++)
    591			if (data[j] != 0)
    592				goto nonz;
    593		pba_to_lba[i] = UNUSABLE;
    594		usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
    595		continue;
    596
    597	nonz:
    598		/* unwritten PBAs have control field FF^16 */
    599		for (j = 0; j < 16; j++)
    600			if (data[j] != 0xff)
    601				goto nonff;
    602		continue;
    603
    604	nonff:
    605		/* normal PBAs start with six FFs */
    606		if (j < 6) {
    607			usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
    608				     blocknum,
    609				     data[0], data[1], data[2], data[3],
    610				     data[4], data[5]);
    611			pba_to_lba[i] = UNUSABLE;
    612			continue;
    613		}
    614
    615		if ((data[6] >> 4) != 0x01) {
    616			usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
    617				     blocknum, data[6], data[7],
    618				     data[11], data[12]);
    619			pba_to_lba[i] = UNUSABLE;
    620			continue;
    621		}
    622
    623		/* check even parity */
    624		if (parity[data[6] ^ data[7]]) {
    625			printk(KERN_WARNING
    626			       "alauda_read_map: Bad parity in LBA for block %d"
    627			       " (%02X %02X)\n", i, data[6], data[7]);
    628			pba_to_lba[i] = UNUSABLE;
    629			continue;
    630		}
    631
    632		lba_offset = short_pack(data[7], data[6]);
    633		lba_offset = (lba_offset & 0x07FF) >> 1;
    634		lba_real = lba_offset + zone_base_lba;
    635
    636		/*
    637		 * Every 1024 physical blocks ("zone"), the LBA numbers
    638		 * go back to zero, but are within a higher block of LBA's.
    639		 * Also, there is a maximum of 1000 LBA's per zone.
    640		 * In other words, in PBA 1024-2047 you will find LBA 0-999
    641		 * which are really LBA 1000-1999. This allows for 24 bad
    642		 * or special physical blocks per zone.
    643		 */
    644
    645		if (lba_offset >= uzonesize) {
    646			printk(KERN_WARNING
    647			       "alauda_read_map: Bad low LBA %d for block %d\n",
    648			       lba_real, blocknum);
    649			continue;
    650		}
    651
    652		if (lba_to_pba[lba_offset] != UNDEF) {
    653			printk(KERN_WARNING
    654			       "alauda_read_map: "
    655			       "LBA %d seen for PBA %d and %d\n",
    656			       lba_real, lba_to_pba[lba_offset], blocknum);
    657			continue;
    658		}
    659
    660		pba_to_lba[i] = lba_real;
    661		lba_to_pba[lba_offset] = blocknum;
    662		continue;
    663	}
    664
    665	MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
    666	MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
    667	result = 0;
    668	goto out;
    669
    670error:
    671	kfree(lba_to_pba);
    672	kfree(pba_to_lba);
    673out:
    674	return result;
    675}
    676
    677/*
    678 * Checks to see whether we have already mapped a certain zone
    679 * If we haven't, the map is generated
    680 */
    681static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
    682{
    683	if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
    684		|| MEDIA_INFO(us).pba_to_lba[zone] == NULL)
    685		alauda_read_map(us, zone);
    686}
    687
    688/*
    689 * Erases an entire block
    690 */
    691static int alauda_erase_block(struct us_data *us, u16 pba)
    692{
    693	int rc;
    694	unsigned char command[] = {
    695		ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
    696		PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
    697	};
    698	unsigned char buf[2];
    699
    700	usb_stor_dbg(us, "Erasing PBA %d\n", pba);
    701
    702	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
    703		command, 9, NULL);
    704	if (rc != USB_STOR_XFER_GOOD)
    705		return rc;
    706
    707	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
    708		buf, 2, NULL);
    709	if (rc != USB_STOR_XFER_GOOD)
    710		return rc;
    711
    712	usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
    713	return rc;
    714}
    715
    716/*
    717 * Reads data from a certain offset page inside a PBA, including interleaved
    718 * redundancy data. Returns (pagesize+64)*pages bytes in data.
    719 */
    720static int alauda_read_block_raw(struct us_data *us, u16 pba,
    721		unsigned int page, unsigned int pages, unsigned char *data)
    722{
    723	int rc;
    724	unsigned char command[] = {
    725		ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
    726		PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
    727	};
    728
    729	usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
    730
    731	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
    732		command, 9, NULL);
    733	if (rc != USB_STOR_XFER_GOOD)
    734		return rc;
    735
    736	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
    737		data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
    738}
    739
    740/*
    741 * Reads data from a certain offset page inside a PBA, excluding redundancy
    742 * data. Returns pagesize*pages bytes in data. Note that data must be big enough
    743 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
    744 * trailing bytes outside this function.
    745 */
    746static int alauda_read_block(struct us_data *us, u16 pba,
    747		unsigned int page, unsigned int pages, unsigned char *data)
    748{
    749	int i, rc;
    750	unsigned int pagesize = MEDIA_INFO(us).pagesize;
    751
    752	rc = alauda_read_block_raw(us, pba, page, pages, data);
    753	if (rc != USB_STOR_XFER_GOOD)
    754		return rc;
    755
    756	/* Cut out the redundancy data */
    757	for (i = 0; i < pages; i++) {
    758		int dest_offset = i * pagesize;
    759		int src_offset = i * (pagesize + 64);
    760		memmove(data + dest_offset, data + src_offset, pagesize);
    761	}
    762
    763	return rc;
    764}
    765
    766/*
    767 * Writes an entire block of data and checks status after write.
    768 * Redundancy data must be already included in data. Data should be
    769 * (pagesize+64)*blocksize bytes in length.
    770 */
    771static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
    772{
    773	int rc;
    774	struct alauda_info *info = (struct alauda_info *) us->extra;
    775	unsigned char command[] = {
    776		ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
    777		PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
    778	};
    779
    780	usb_stor_dbg(us, "pba %d\n", pba);
    781
    782	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
    783		command, 9, NULL);
    784	if (rc != USB_STOR_XFER_GOOD)
    785		return rc;
    786
    787	rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
    788		(MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
    789		NULL);
    790	if (rc != USB_STOR_XFER_GOOD)
    791		return rc;
    792
    793	return alauda_check_status2(us);
    794}
    795
    796/*
    797 * Write some data to a specific LBA.
    798 */
    799static int alauda_write_lba(struct us_data *us, u16 lba,
    800		 unsigned int page, unsigned int pages,
    801		 unsigned char *ptr, unsigned char *blockbuffer)
    802{
    803	u16 pba, lbap, new_pba;
    804	unsigned char *bptr, *cptr, *xptr;
    805	unsigned char ecc[3];
    806	int i, result;
    807	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
    808	unsigned int zonesize = MEDIA_INFO(us).zonesize;
    809	unsigned int pagesize = MEDIA_INFO(us).pagesize;
    810	unsigned int blocksize = MEDIA_INFO(us).blocksize;
    811	unsigned int lba_offset = lba % uzonesize;
    812	unsigned int new_pba_offset;
    813	unsigned int zone = lba / uzonesize;
    814
    815	alauda_ensure_map_for_zone(us, zone);
    816
    817	pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
    818	if (pba == 1) {
    819		/*
    820		 * Maybe it is impossible to write to PBA 1.
    821		 * Fake success, but don't do anything.
    822		 */
    823		printk(KERN_WARNING
    824		       "alauda_write_lba: avoid writing to pba 1\n");
    825		return USB_STOR_TRANSPORT_GOOD;
    826	}
    827
    828	new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
    829	if (!new_pba) {
    830		printk(KERN_WARNING
    831		       "alauda_write_lba: Out of unused blocks\n");
    832		return USB_STOR_TRANSPORT_ERROR;
    833	}
    834
    835	/* read old contents */
    836	if (pba != UNDEF) {
    837		result = alauda_read_block_raw(us, pba, 0,
    838			blocksize, blockbuffer);
    839		if (result != USB_STOR_XFER_GOOD)
    840			return result;
    841	} else {
    842		memset(blockbuffer, 0, blocksize * (pagesize + 64));
    843	}
    844
    845	lbap = (lba_offset << 1) | 0x1000;
    846	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
    847		lbap ^= 1;
    848
    849	/* check old contents and fill lba */
    850	for (i = 0; i < blocksize; i++) {
    851		bptr = blockbuffer + (i * (pagesize + 64));
    852		cptr = bptr + pagesize;
    853		nand_compute_ecc(bptr, ecc);
    854		if (!nand_compare_ecc(cptr+13, ecc)) {
    855			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
    856				     i, pba);
    857			nand_store_ecc(cptr+13, ecc);
    858		}
    859		nand_compute_ecc(bptr + (pagesize / 2), ecc);
    860		if (!nand_compare_ecc(cptr+8, ecc)) {
    861			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
    862				     i, pba);
    863			nand_store_ecc(cptr+8, ecc);
    864		}
    865		cptr[6] = cptr[11] = MSB_of(lbap);
    866		cptr[7] = cptr[12] = LSB_of(lbap);
    867	}
    868
    869	/* copy in new stuff and compute ECC */
    870	xptr = ptr;
    871	for (i = page; i < page+pages; i++) {
    872		bptr = blockbuffer + (i * (pagesize + 64));
    873		cptr = bptr + pagesize;
    874		memcpy(bptr, xptr, pagesize);
    875		xptr += pagesize;
    876		nand_compute_ecc(bptr, ecc);
    877		nand_store_ecc(cptr+13, ecc);
    878		nand_compute_ecc(bptr + (pagesize / 2), ecc);
    879		nand_store_ecc(cptr+8, ecc);
    880	}
    881
    882	result = alauda_write_block(us, new_pba, blockbuffer);
    883	if (result != USB_STOR_XFER_GOOD)
    884		return result;
    885
    886	new_pba_offset = new_pba - (zone * zonesize);
    887	MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
    888	MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
    889	usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
    890
    891	if (pba != UNDEF) {
    892		unsigned int pba_offset = pba - (zone * zonesize);
    893		result = alauda_erase_block(us, pba);
    894		if (result != USB_STOR_XFER_GOOD)
    895			return result;
    896		MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
    897	}
    898
    899	return USB_STOR_TRANSPORT_GOOD;
    900}
    901
    902/*
    903 * Read data from a specific sector address
    904 */
    905static int alauda_read_data(struct us_data *us, unsigned long address,
    906		unsigned int sectors)
    907{
    908	unsigned char *buffer;
    909	u16 lba, max_lba;
    910	unsigned int page, len, offset;
    911	unsigned int blockshift = MEDIA_INFO(us).blockshift;
    912	unsigned int pageshift = MEDIA_INFO(us).pageshift;
    913	unsigned int blocksize = MEDIA_INFO(us).blocksize;
    914	unsigned int pagesize = MEDIA_INFO(us).pagesize;
    915	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
    916	struct scatterlist *sg;
    917	int result;
    918
    919	/*
    920	 * Since we only read in one block at a time, we have to create
    921	 * a bounce buffer and move the data a piece at a time between the
    922	 * bounce buffer and the actual transfer buffer.
    923	 * We make this buffer big enough to hold temporary redundancy data,
    924	 * which we use when reading the data blocks.
    925	 */
    926
    927	len = min(sectors, blocksize) * (pagesize + 64);
    928	buffer = kmalloc(len, GFP_NOIO);
    929	if (!buffer)
    930		return USB_STOR_TRANSPORT_ERROR;
    931
    932	/* Figure out the initial LBA and page */
    933	lba = address >> blockshift;
    934	page = (address & MEDIA_INFO(us).blockmask);
    935	max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
    936
    937	result = USB_STOR_TRANSPORT_GOOD;
    938	offset = 0;
    939	sg = NULL;
    940
    941	while (sectors > 0) {
    942		unsigned int zone = lba / uzonesize; /* integer division */
    943		unsigned int lba_offset = lba - (zone * uzonesize);
    944		unsigned int pages;
    945		u16 pba;
    946		alauda_ensure_map_for_zone(us, zone);
    947
    948		/* Not overflowing capacity? */
    949		if (lba >= max_lba) {
    950			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
    951				     lba, max_lba);
    952			result = USB_STOR_TRANSPORT_ERROR;
    953			break;
    954		}
    955
    956		/* Find number of pages we can read in this block */
    957		pages = min(sectors, blocksize - page);
    958		len = pages << pageshift;
    959
    960		/* Find where this lba lives on disk */
    961		pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
    962
    963		if (pba == UNDEF) {	/* this lba was never written */
    964			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
    965				     pages, lba, page);
    966
    967			/*
    968			 * This is not really an error. It just means
    969			 * that the block has never been written.
    970			 * Instead of returning USB_STOR_TRANSPORT_ERROR
    971			 * it is better to return all zero data.
    972			 */
    973
    974			memset(buffer, 0, len);
    975		} else {
    976			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
    977				     pages, pba, lba, page);
    978
    979			result = alauda_read_block(us, pba, page, pages, buffer);
    980			if (result != USB_STOR_TRANSPORT_GOOD)
    981				break;
    982		}
    983
    984		/* Store the data in the transfer buffer */
    985		usb_stor_access_xfer_buf(buffer, len, us->srb,
    986				&sg, &offset, TO_XFER_BUF);
    987
    988		page = 0;
    989		lba++;
    990		sectors -= pages;
    991	}
    992
    993	kfree(buffer);
    994	return result;
    995}
    996
    997/*
    998 * Write data to a specific sector address
    999 */
   1000static int alauda_write_data(struct us_data *us, unsigned long address,
   1001		unsigned int sectors)
   1002{
   1003	unsigned char *buffer, *blockbuffer;
   1004	unsigned int page, len, offset;
   1005	unsigned int blockshift = MEDIA_INFO(us).blockshift;
   1006	unsigned int pageshift = MEDIA_INFO(us).pageshift;
   1007	unsigned int blocksize = MEDIA_INFO(us).blocksize;
   1008	unsigned int pagesize = MEDIA_INFO(us).pagesize;
   1009	struct scatterlist *sg;
   1010	u16 lba, max_lba;
   1011	int result;
   1012
   1013	/*
   1014	 * Since we don't write the user data directly to the device,
   1015	 * we have to create a bounce buffer and move the data a piece
   1016	 * at a time between the bounce buffer and the actual transfer buffer.
   1017	 */
   1018
   1019	len = min(sectors, blocksize) * pagesize;
   1020	buffer = kmalloc(len, GFP_NOIO);
   1021	if (!buffer)
   1022		return USB_STOR_TRANSPORT_ERROR;
   1023
   1024	/*
   1025	 * We also need a temporary block buffer, where we read in the old data,
   1026	 * overwrite parts with the new data, and manipulate the redundancy data
   1027	 */
   1028	blockbuffer = kmalloc_array(pagesize + 64, blocksize, GFP_NOIO);
   1029	if (!blockbuffer) {
   1030		kfree(buffer);
   1031		return USB_STOR_TRANSPORT_ERROR;
   1032	}
   1033
   1034	/* Figure out the initial LBA and page */
   1035	lba = address >> blockshift;
   1036	page = (address & MEDIA_INFO(us).blockmask);
   1037	max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
   1038
   1039	result = USB_STOR_TRANSPORT_GOOD;
   1040	offset = 0;
   1041	sg = NULL;
   1042
   1043	while (sectors > 0) {
   1044		/* Write as many sectors as possible in this block */
   1045		unsigned int pages = min(sectors, blocksize - page);
   1046		len = pages << pageshift;
   1047
   1048		/* Not overflowing capacity? */
   1049		if (lba >= max_lba) {
   1050			usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
   1051				     lba, max_lba);
   1052			result = USB_STOR_TRANSPORT_ERROR;
   1053			break;
   1054		}
   1055
   1056		/* Get the data from the transfer buffer */
   1057		usb_stor_access_xfer_buf(buffer, len, us->srb,
   1058				&sg, &offset, FROM_XFER_BUF);
   1059
   1060		result = alauda_write_lba(us, lba, page, pages, buffer,
   1061			blockbuffer);
   1062		if (result != USB_STOR_TRANSPORT_GOOD)
   1063			break;
   1064
   1065		page = 0;
   1066		lba++;
   1067		sectors -= pages;
   1068	}
   1069
   1070	kfree(buffer);
   1071	kfree(blockbuffer);
   1072	return result;
   1073}
   1074
   1075/*
   1076 * Our interface with the rest of the world
   1077 */
   1078
   1079static void alauda_info_destructor(void *extra)
   1080{
   1081	struct alauda_info *info = (struct alauda_info *) extra;
   1082	int port;
   1083
   1084	if (!info)
   1085		return;
   1086
   1087	for (port = 0; port < 2; port++) {
   1088		struct alauda_media_info *media_info = &info->port[port];
   1089
   1090		alauda_free_maps(media_info);
   1091		kfree(media_info->lba_to_pba);
   1092		kfree(media_info->pba_to_lba);
   1093	}
   1094}
   1095
   1096/*
   1097 * Initialize alauda_info struct and find the data-write endpoint
   1098 */
   1099static int init_alauda(struct us_data *us)
   1100{
   1101	struct alauda_info *info;
   1102	struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
   1103	nand_init_ecc();
   1104
   1105	us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
   1106	if (!us->extra)
   1107		return -ENOMEM;
   1108
   1109	info = (struct alauda_info *) us->extra;
   1110	us->extra_destructor = alauda_info_destructor;
   1111
   1112	info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
   1113		altsetting->endpoint[0].desc.bEndpointAddress
   1114		& USB_ENDPOINT_NUMBER_MASK);
   1115
   1116	return 0;
   1117}
   1118
   1119static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
   1120{
   1121	int rc;
   1122	struct alauda_info *info = (struct alauda_info *) us->extra;
   1123	unsigned char *ptr = us->iobuf;
   1124	static unsigned char inquiry_response[36] = {
   1125		0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
   1126	};
   1127
   1128	if (srb->cmnd[0] == INQUIRY) {
   1129		usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
   1130		memcpy(ptr, inquiry_response, sizeof(inquiry_response));
   1131		fill_inquiry_response(us, ptr, 36);
   1132		return USB_STOR_TRANSPORT_GOOD;
   1133	}
   1134
   1135	if (srb->cmnd[0] == TEST_UNIT_READY) {
   1136		usb_stor_dbg(us, "TEST_UNIT_READY\n");
   1137		return alauda_check_media(us);
   1138	}
   1139
   1140	if (srb->cmnd[0] == READ_CAPACITY) {
   1141		unsigned int num_zones;
   1142		unsigned long capacity;
   1143
   1144		rc = alauda_check_media(us);
   1145		if (rc != USB_STOR_TRANSPORT_GOOD)
   1146			return rc;
   1147
   1148		num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
   1149			+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
   1150
   1151		capacity = num_zones * MEDIA_INFO(us).uzonesize
   1152			* MEDIA_INFO(us).blocksize;
   1153
   1154		/* Report capacity and page size */
   1155		((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
   1156		((__be32 *) ptr)[1] = cpu_to_be32(512);
   1157
   1158		usb_stor_set_xfer_buf(ptr, 8, srb);
   1159		return USB_STOR_TRANSPORT_GOOD;
   1160	}
   1161
   1162	if (srb->cmnd[0] == READ_10) {
   1163		unsigned int page, pages;
   1164
   1165		rc = alauda_check_media(us);
   1166		if (rc != USB_STOR_TRANSPORT_GOOD)
   1167			return rc;
   1168
   1169		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
   1170		page <<= 16;
   1171		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
   1172		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
   1173
   1174		usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
   1175
   1176		return alauda_read_data(us, page, pages);
   1177	}
   1178
   1179	if (srb->cmnd[0] == WRITE_10) {
   1180		unsigned int page, pages;
   1181
   1182		rc = alauda_check_media(us);
   1183		if (rc != USB_STOR_TRANSPORT_GOOD)
   1184			return rc;
   1185
   1186		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
   1187		page <<= 16;
   1188		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
   1189		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
   1190
   1191		usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
   1192
   1193		return alauda_write_data(us, page, pages);
   1194	}
   1195
   1196	if (srb->cmnd[0] == REQUEST_SENSE) {
   1197		usb_stor_dbg(us, "REQUEST_SENSE\n");
   1198
   1199		memset(ptr, 0, 18);
   1200		ptr[0] = 0xF0;
   1201		ptr[2] = info->sense_key;
   1202		ptr[7] = 11;
   1203		ptr[12] = info->sense_asc;
   1204		ptr[13] = info->sense_ascq;
   1205		usb_stor_set_xfer_buf(ptr, 18, srb);
   1206
   1207		return USB_STOR_TRANSPORT_GOOD;
   1208	}
   1209
   1210	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
   1211		/*
   1212		 * sure.  whatever.  not like we can stop the user from popping
   1213		 * the media out of the device (no locking doors, etc)
   1214		 */
   1215		return USB_STOR_TRANSPORT_GOOD;
   1216	}
   1217
   1218	usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
   1219		     srb->cmnd[0], srb->cmnd[0]);
   1220	info->sense_key = 0x05;
   1221	info->sense_asc = 0x20;
   1222	info->sense_ascq = 0x00;
   1223	return USB_STOR_TRANSPORT_FAILED;
   1224}
   1225
   1226static struct scsi_host_template alauda_host_template;
   1227
   1228static int alauda_probe(struct usb_interface *intf,
   1229			 const struct usb_device_id *id)
   1230{
   1231	struct us_data *us;
   1232	int result;
   1233
   1234	result = usb_stor_probe1(&us, intf, id,
   1235			(id - alauda_usb_ids) + alauda_unusual_dev_list,
   1236			&alauda_host_template);
   1237	if (result)
   1238		return result;
   1239
   1240	us->transport_name  = "Alauda Control/Bulk";
   1241	us->transport = alauda_transport;
   1242	us->transport_reset = usb_stor_Bulk_reset;
   1243	us->max_lun = 1;
   1244
   1245	result = usb_stor_probe2(us);
   1246	return result;
   1247}
   1248
   1249static struct usb_driver alauda_driver = {
   1250	.name =		DRV_NAME,
   1251	.probe =	alauda_probe,
   1252	.disconnect =	usb_stor_disconnect,
   1253	.suspend =	usb_stor_suspend,
   1254	.resume =	usb_stor_resume,
   1255	.reset_resume =	usb_stor_reset_resume,
   1256	.pre_reset =	usb_stor_pre_reset,
   1257	.post_reset =	usb_stor_post_reset,
   1258	.id_table =	alauda_usb_ids,
   1259	.soft_unbind =	1,
   1260	.no_dynamic_id = 1,
   1261};
   1262
   1263module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME);