cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sddr09.c (45182B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/*
      3 * Driver for SanDisk SDDR-09 SmartMedia reader
      4 *
      5 *   (c) 2000, 2001 Robert Baruch (autophile@starband.net)
      6 *   (c) 2002 Andries Brouwer (aeb@cwi.nl)
      7 * Developed with the assistance of:
      8 *   (c) 2002 Alan Stern <stern@rowland.org>
      9 *
     10 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
     11 * This chip is a programmable USB controller. In the SDDR-09, it has
     12 * been programmed to obey a certain limited set of SCSI commands.
     13 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
     14 * commands.
     15 */
     16
     17/*
     18 * Known vendor commands: 12 bytes, first byte is opcode
     19 *
     20 * E7: read scatter gather
     21 * E8: read
     22 * E9: write
     23 * EA: erase
     24 * EB: reset
     25 * EC: read status
     26 * ED: read ID
     27 * EE: write CIS (?)
     28 * EF: compute checksum (?)
     29 */
     30
     31#include <linux/errno.h>
     32#include <linux/module.h>
     33#include <linux/slab.h>
     34
     35#include <scsi/scsi.h>
     36#include <scsi/scsi_cmnd.h>
     37#include <scsi/scsi_device.h>
     38
     39#include "usb.h"
     40#include "transport.h"
     41#include "protocol.h"
     42#include "debug.h"
     43#include "scsiglue.h"
     44
     45#define DRV_NAME "ums-sddr09"
     46
     47MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
     48MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
     49MODULE_LICENSE("GPL");
     50MODULE_IMPORT_NS(USB_STORAGE);
     51
     52static int usb_stor_sddr09_dpcm_init(struct us_data *us);
     53static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
     54static int usb_stor_sddr09_init(struct us_data *us);
     55
     56
     57/*
     58 * The table of devices
     59 */
     60#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
     61		    vendorName, productName, useProtocol, useTransport, \
     62		    initFunction, flags) \
     63{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
     64  .driver_info = (flags) }
     65
     66static struct usb_device_id sddr09_usb_ids[] = {
     67#	include "unusual_sddr09.h"
     68	{ }		/* Terminating entry */
     69};
     70MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
     71
     72#undef UNUSUAL_DEV
     73
     74/*
     75 * The flags table
     76 */
     77#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
     78		    vendor_name, product_name, use_protocol, use_transport, \
     79		    init_function, Flags) \
     80{ \
     81	.vendorName = vendor_name,	\
     82	.productName = product_name,	\
     83	.useProtocol = use_protocol,	\
     84	.useTransport = use_transport,	\
     85	.initFunction = init_function,	\
     86}
     87
     88static struct us_unusual_dev sddr09_unusual_dev_list[] = {
     89#	include "unusual_sddr09.h"
     90	{ }		/* Terminating entry */
     91};
     92
     93#undef UNUSUAL_DEV
     94
     95
     96#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
     97#define LSB_of(s) ((s)&0xFF)
     98#define MSB_of(s) ((s)>>8)
     99
    100/*
    101 * First some stuff that does not belong here:
    102 * data on SmartMedia and other cards, completely
    103 * unrelated to this driver.
    104 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
    105 */
    106
    107struct nand_flash_dev {
    108	int model_id;
    109	int chipshift;		/* 1<<cs bytes total capacity */
    110	char pageshift;		/* 1<<ps bytes in a page */
    111	char blockshift;	/* 1<<bs pages in an erase block */
    112	char zoneshift;		/* 1<<zs blocks in a zone */
    113				/* # of logical blocks is 125/128 of this */
    114	char pageadrlen;	/* length of an address in bytes - 1 */
    115};
    116
    117/*
    118 * NAND Flash Manufacturer ID Codes
    119 */
    120#define NAND_MFR_AMD		0x01
    121#define NAND_MFR_NATSEMI	0x8f
    122#define NAND_MFR_TOSHIBA	0x98
    123#define NAND_MFR_SAMSUNG	0xec
    124
    125static inline char *nand_flash_manufacturer(int manuf_id) {
    126	switch(manuf_id) {
    127	case NAND_MFR_AMD:
    128		return "AMD";
    129	case NAND_MFR_NATSEMI:
    130		return "NATSEMI";
    131	case NAND_MFR_TOSHIBA:
    132		return "Toshiba";
    133	case NAND_MFR_SAMSUNG:
    134		return "Samsung";
    135	default:
    136		return "unknown";
    137	}
    138}
    139
    140/*
    141 * It looks like it is unnecessary to attach manufacturer to the
    142 * remaining data: SSFDC prescribes manufacturer-independent id codes.
    143 *
    144 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
    145 */
    146
    147static struct nand_flash_dev nand_flash_ids[] = {
    148	/* NAND flash */
    149	{ 0x6e, 20, 8, 4, 8, 2},	/* 1 MB */
    150	{ 0xe8, 20, 8, 4, 8, 2},	/* 1 MB */
    151	{ 0xec, 20, 8, 4, 8, 2},	/* 1 MB */
    152	{ 0x64, 21, 8, 4, 9, 2}, 	/* 2 MB */
    153	{ 0xea, 21, 8, 4, 9, 2},	/* 2 MB */
    154	{ 0x6b, 22, 9, 4, 9, 2},	/* 4 MB */
    155	{ 0xe3, 22, 9, 4, 9, 2},	/* 4 MB */
    156	{ 0xe5, 22, 9, 4, 9, 2},	/* 4 MB */
    157	{ 0xe6, 23, 9, 4, 10, 2},	/* 8 MB */
    158	{ 0x73, 24, 9, 5, 10, 2},	/* 16 MB */
    159	{ 0x75, 25, 9, 5, 10, 2},	/* 32 MB */
    160	{ 0x76, 26, 9, 5, 10, 3},	/* 64 MB */
    161	{ 0x79, 27, 9, 5, 10, 3},	/* 128 MB */
    162
    163	/* MASK ROM */
    164	{ 0x5d, 21, 9, 4, 8, 2},	/* 2 MB */
    165	{ 0xd5, 22, 9, 4, 9, 2},	/* 4 MB */
    166	{ 0xd6, 23, 9, 4, 10, 2},	/* 8 MB */
    167	{ 0x57, 24, 9, 4, 11, 2},	/* 16 MB */
    168	{ 0x58, 25, 9, 4, 12, 2},	/* 32 MB */
    169	{ 0,}
    170};
    171
    172static struct nand_flash_dev *
    173nand_find_id(unsigned char id) {
    174	int i;
    175
    176	for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
    177		if (nand_flash_ids[i].model_id == id)
    178			return &(nand_flash_ids[i]);
    179	return NULL;
    180}
    181
    182/*
    183 * ECC computation.
    184 */
    185static unsigned char parity[256];
    186static unsigned char ecc2[256];
    187
    188static void nand_init_ecc(void) {
    189	int i, j, a;
    190
    191	parity[0] = 0;
    192	for (i = 1; i < 256; i++)
    193		parity[i] = (parity[i&(i-1)] ^ 1);
    194
    195	for (i = 0; i < 256; i++) {
    196		a = 0;
    197		for (j = 0; j < 8; j++) {
    198			if (i & (1<<j)) {
    199				if ((j & 1) == 0)
    200					a ^= 0x04;
    201				if ((j & 2) == 0)
    202					a ^= 0x10;
    203				if ((j & 4) == 0)
    204					a ^= 0x40;
    205			}
    206		}
    207		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
    208	}
    209}
    210
    211/* compute 3-byte ecc on 256 bytes */
    212static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
    213	int i, j, a;
    214	unsigned char par = 0, bit, bits[8] = {0};
    215
    216	/* collect 16 checksum bits */
    217	for (i = 0; i < 256; i++) {
    218		par ^= data[i];
    219		bit = parity[data[i]];
    220		for (j = 0; j < 8; j++)
    221			if ((i & (1<<j)) == 0)
    222				bits[j] ^= bit;
    223	}
    224
    225	/* put 4+4+4 = 12 bits in the ecc */
    226	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
    227	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
    228
    229	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
    230	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
    231
    232	ecc[2] = ecc2[par];
    233}
    234
    235static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
    236	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
    237}
    238
    239static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
    240	memcpy(data, ecc, 3);
    241}
    242
    243/*
    244 * The actual driver starts here.
    245 */
    246
    247struct sddr09_card_info {
    248	unsigned long	capacity;	/* Size of card in bytes */
    249	int		pagesize;	/* Size of page in bytes */
    250	int		pageshift;	/* log2 of pagesize */
    251	int		blocksize;	/* Size of block in pages */
    252	int		blockshift;	/* log2 of blocksize */
    253	int		blockmask;	/* 2^blockshift - 1 */
    254	int		*lba_to_pba;	/* logical to physical map */
    255	int		*pba_to_lba;	/* physical to logical map */
    256	int		lbact;		/* number of available pages */
    257	int		flags;
    258#define	SDDR09_WP	1		/* write protected */
    259};
    260
    261/*
    262 * On my 16MB card, control blocks have size 64 (16 real control bytes,
    263 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
    264 * so the reader makes up the remaining 48. Don't know whether these numbers
    265 * depend on the card. For now a constant.
    266 */
    267#define CONTROL_SHIFT 6
    268
    269/*
    270 * On my Combo CF/SM reader, the SM reader has LUN 1.
    271 * (and things fail with LUN 0).
    272 * It seems LUN is irrelevant for others.
    273 */
    274#define LUN	1
    275#define	LUNBITS	(LUN << 5)
    276
    277/*
    278 * LBA and PBA are unsigned ints. Special values.
    279 */
    280#define UNDEF    0xffffffff
    281#define SPARE    0xfffffffe
    282#define UNUSABLE 0xfffffffd
    283
    284static const int erase_bad_lba_entries = 0;
    285
    286/* send vendor interface command (0x41) */
    287/* called for requests 0, 1, 8 */
    288static int
    289sddr09_send_command(struct us_data *us,
    290		    unsigned char request,
    291		    unsigned char direction,
    292		    unsigned char *xfer_data,
    293		    unsigned int xfer_len) {
    294	unsigned int pipe;
    295	unsigned char requesttype = (0x41 | direction);
    296	int rc;
    297
    298	// Get the receive or send control pipe number
    299
    300	if (direction == USB_DIR_IN)
    301		pipe = us->recv_ctrl_pipe;
    302	else
    303		pipe = us->send_ctrl_pipe;
    304
    305	rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
    306				   0, 0, xfer_data, xfer_len);
    307	switch (rc) {
    308		case USB_STOR_XFER_GOOD:	return 0;
    309		case USB_STOR_XFER_STALLED:	return -EPIPE;
    310		default:			return -EIO;
    311	}
    312}
    313
    314static int
    315sddr09_send_scsi_command(struct us_data *us,
    316			 unsigned char *command,
    317			 unsigned int command_len) {
    318	return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
    319}
    320
    321#if 0
    322/*
    323 * Test Unit Ready Command: 12 bytes.
    324 * byte 0: opcode: 00
    325 */
    326static int
    327sddr09_test_unit_ready(struct us_data *us) {
    328	unsigned char *command = us->iobuf;
    329	int result;
    330
    331	memset(command, 0, 6);
    332	command[1] = LUNBITS;
    333
    334	result = sddr09_send_scsi_command(us, command, 6);
    335
    336	usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
    337
    338	return result;
    339}
    340#endif
    341
    342/*
    343 * Request Sense Command: 12 bytes.
    344 * byte 0: opcode: 03
    345 * byte 4: data length
    346 */
    347static int
    348sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
    349	unsigned char *command = us->iobuf;
    350	int result;
    351
    352	memset(command, 0, 12);
    353	command[0] = 0x03;
    354	command[1] = LUNBITS;
    355	command[4] = buflen;
    356
    357	result = sddr09_send_scsi_command(us, command, 12);
    358	if (result)
    359		return result;
    360
    361	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
    362			sensebuf, buflen, NULL);
    363	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
    364}
    365
    366/*
    367 * Read Command: 12 bytes.
    368 * byte 0: opcode: E8
    369 * byte 1: last two bits: 00: read data, 01: read blockwise control,
    370 *			10: read both, 11: read pagewise control.
    371 *	 It turns out we need values 20, 21, 22, 23 here (LUN 1).
    372 * bytes 2-5: address (interpretation depends on byte 1, see below)
    373 * bytes 10-11: count (idem)
    374 *
    375 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
    376 * A read data command gets data in 512-byte pages.
    377 * A read control command gets control in 64-byte chunks.
    378 * A read both command gets data+control in 576-byte chunks.
    379 *
    380 * Blocks are groups of 32 pages, and read blockwise control jumps to the
    381 * next block, while read pagewise control jumps to the next page after
    382 * reading a group of 64 control bytes.
    383 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
    384 *
    385 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
    386 */
    387
    388static int
    389sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
    390	     int nr_of_pages, int bulklen, unsigned char *buf,
    391	     int use_sg) {
    392
    393	unsigned char *command = us->iobuf;
    394	int result;
    395
    396	command[0] = 0xE8;
    397	command[1] = LUNBITS | x;
    398	command[2] = MSB_of(fromaddress>>16);
    399	command[3] = LSB_of(fromaddress>>16); 
    400	command[4] = MSB_of(fromaddress & 0xFFFF);
    401	command[5] = LSB_of(fromaddress & 0xFFFF); 
    402	command[6] = 0;
    403	command[7] = 0;
    404	command[8] = 0;
    405	command[9] = 0;
    406	command[10] = MSB_of(nr_of_pages);
    407	command[11] = LSB_of(nr_of_pages);
    408
    409	result = sddr09_send_scsi_command(us, command, 12);
    410
    411	if (result) {
    412		usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
    413			     x, result);
    414		return result;
    415	}
    416
    417	result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
    418				       buf, bulklen, use_sg, NULL);
    419
    420	if (result != USB_STOR_XFER_GOOD) {
    421		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
    422			     x, result);
    423		return -EIO;
    424	}
    425	return 0;
    426}
    427
    428/*
    429 * Read Data
    430 *
    431 * fromaddress counts data shorts:
    432 * increasing it by 256 shifts the bytestream by 512 bytes;
    433 * the last 8 bits are ignored.
    434 *
    435 * nr_of_pages counts pages of size (1 << pageshift).
    436 */
    437static int
    438sddr09_read20(struct us_data *us, unsigned long fromaddress,
    439	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
    440	int bulklen = nr_of_pages << pageshift;
    441
    442	/* The last 8 bits of fromaddress are ignored. */
    443	return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
    444			    buf, use_sg);
    445}
    446
    447/*
    448 * Read Blockwise Control
    449 *
    450 * fromaddress gives the starting position (as in read data;
    451 * the last 8 bits are ignored); increasing it by 32*256 shifts
    452 * the output stream by 64 bytes.
    453 *
    454 * count counts control groups of size (1 << controlshift).
    455 * For me, controlshift = 6. Is this constant?
    456 *
    457 * After getting one control group, jump to the next block
    458 * (fromaddress += 8192).
    459 */
    460static int
    461sddr09_read21(struct us_data *us, unsigned long fromaddress,
    462	      int count, int controlshift, unsigned char *buf, int use_sg) {
    463
    464	int bulklen = (count << controlshift);
    465	return sddr09_readX(us, 1, fromaddress, count, bulklen,
    466			    buf, use_sg);
    467}
    468
    469/*
    470 * Read both Data and Control
    471 *
    472 * fromaddress counts data shorts, ignoring control:
    473 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
    474 * the last 8 bits are ignored.
    475 *
    476 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
    477 */
    478static int
    479sddr09_read22(struct us_data *us, unsigned long fromaddress,
    480	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
    481
    482	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
    483	usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
    484	return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
    485			    buf, use_sg);
    486}
    487
    488#if 0
    489/*
    490 * Read Pagewise Control
    491 *
    492 * fromaddress gives the starting position (as in read data;
    493 * the last 8 bits are ignored); increasing it by 256 shifts
    494 * the output stream by 64 bytes.
    495 *
    496 * count counts control groups of size (1 << controlshift).
    497 * For me, controlshift = 6. Is this constant?
    498 *
    499 * After getting one control group, jump to the next page
    500 * (fromaddress += 256).
    501 */
    502static int
    503sddr09_read23(struct us_data *us, unsigned long fromaddress,
    504	      int count, int controlshift, unsigned char *buf, int use_sg) {
    505
    506	int bulklen = (count << controlshift);
    507	return sddr09_readX(us, 3, fromaddress, count, bulklen,
    508			    buf, use_sg);
    509}
    510#endif
    511
    512/*
    513 * Erase Command: 12 bytes.
    514 * byte 0: opcode: EA
    515 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
    516 * 
    517 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
    518 * The byte address being erased is 2*Eaddress.
    519 * The CIS cannot be erased.
    520 */
    521static int
    522sddr09_erase(struct us_data *us, unsigned long Eaddress) {
    523	unsigned char *command = us->iobuf;
    524	int result;
    525
    526	usb_stor_dbg(us, "erase address %lu\n", Eaddress);
    527
    528	memset(command, 0, 12);
    529	command[0] = 0xEA;
    530	command[1] = LUNBITS;
    531	command[6] = MSB_of(Eaddress>>16);
    532	command[7] = LSB_of(Eaddress>>16);
    533	command[8] = MSB_of(Eaddress & 0xFFFF);
    534	command[9] = LSB_of(Eaddress & 0xFFFF);
    535
    536	result = sddr09_send_scsi_command(us, command, 12);
    537
    538	if (result)
    539		usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
    540			     result);
    541
    542	return result;
    543}
    544
    545/*
    546 * Write CIS Command: 12 bytes.
    547 * byte 0: opcode: EE
    548 * bytes 2-5: write address in shorts
    549 * bytes 10-11: sector count
    550 *
    551 * This writes at the indicated address. Don't know how it differs
    552 * from E9. Maybe it does not erase? However, it will also write to
    553 * the CIS.
    554 *
    555 * When two such commands on the same page follow each other directly,
    556 * the second one is not done.
    557 */
    558
    559/*
    560 * Write Command: 12 bytes.
    561 * byte 0: opcode: E9
    562 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
    563 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
    564 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
    565 *
    566 * If write address equals erase address, the erase is done first,
    567 * otherwise the write is done first. When erase address equals zero
    568 * no erase is done?
    569 */
    570static int
    571sddr09_writeX(struct us_data *us,
    572	      unsigned long Waddress, unsigned long Eaddress,
    573	      int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
    574
    575	unsigned char *command = us->iobuf;
    576	int result;
    577
    578	command[0] = 0xE9;
    579	command[1] = LUNBITS;
    580
    581	command[2] = MSB_of(Waddress>>16);
    582	command[3] = LSB_of(Waddress>>16);
    583	command[4] = MSB_of(Waddress & 0xFFFF);
    584	command[5] = LSB_of(Waddress & 0xFFFF);
    585
    586	command[6] = MSB_of(Eaddress>>16);
    587	command[7] = LSB_of(Eaddress>>16);
    588	command[8] = MSB_of(Eaddress & 0xFFFF);
    589	command[9] = LSB_of(Eaddress & 0xFFFF);
    590
    591	command[10] = MSB_of(nr_of_pages);
    592	command[11] = LSB_of(nr_of_pages);
    593
    594	result = sddr09_send_scsi_command(us, command, 12);
    595
    596	if (result) {
    597		usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
    598			     result);
    599		return result;
    600	}
    601
    602	result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
    603				       buf, bulklen, use_sg, NULL);
    604
    605	if (result != USB_STOR_XFER_GOOD) {
    606		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
    607			     result);
    608		return -EIO;
    609	}
    610	return 0;
    611}
    612
    613/* erase address, write same address */
    614static int
    615sddr09_write_inplace(struct us_data *us, unsigned long address,
    616		     int nr_of_pages, int pageshift, unsigned char *buf,
    617		     int use_sg) {
    618	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
    619	return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
    620			     buf, use_sg);
    621}
    622
    623#if 0
    624/*
    625 * Read Scatter Gather Command: 3+4n bytes.
    626 * byte 0: opcode E7
    627 * byte 2: n
    628 * bytes 4i-1,4i,4i+1: page address
    629 * byte 4i+2: page count
    630 * (i=1..n)
    631 *
    632 * This reads several pages from the card to a single memory buffer.
    633 * The last two bits of byte 1 have the same meaning as for E8.
    634 */
    635static int
    636sddr09_read_sg_test_only(struct us_data *us) {
    637	unsigned char *command = us->iobuf;
    638	int result, bulklen, nsg, ct;
    639	unsigned char *buf;
    640	unsigned long address;
    641
    642	nsg = bulklen = 0;
    643	command[0] = 0xE7;
    644	command[1] = LUNBITS;
    645	command[2] = 0;
    646	address = 040000; ct = 1;
    647	nsg++;
    648	bulklen += (ct << 9);
    649	command[4*nsg+2] = ct;
    650	command[4*nsg+1] = ((address >> 9) & 0xFF);
    651	command[4*nsg+0] = ((address >> 17) & 0xFF);
    652	command[4*nsg-1] = ((address >> 25) & 0xFF);
    653
    654	address = 0340000; ct = 1;
    655	nsg++;
    656	bulklen += (ct << 9);
    657	command[4*nsg+2] = ct;
    658	command[4*nsg+1] = ((address >> 9) & 0xFF);
    659	command[4*nsg+0] = ((address >> 17) & 0xFF);
    660	command[4*nsg-1] = ((address >> 25) & 0xFF);
    661
    662	address = 01000000; ct = 2;
    663	nsg++;
    664	bulklen += (ct << 9);
    665	command[4*nsg+2] = ct;
    666	command[4*nsg+1] = ((address >> 9) & 0xFF);
    667	command[4*nsg+0] = ((address >> 17) & 0xFF);
    668	command[4*nsg-1] = ((address >> 25) & 0xFF);
    669
    670	command[2] = nsg;
    671
    672	result = sddr09_send_scsi_command(us, command, 4*nsg+3);
    673
    674	if (result) {
    675		usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
    676			     result);
    677		return result;
    678	}
    679
    680	buf = kmalloc(bulklen, GFP_NOIO);
    681	if (!buf)
    682		return -ENOMEM;
    683
    684	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
    685				       buf, bulklen, NULL);
    686	kfree(buf);
    687	if (result != USB_STOR_XFER_GOOD) {
    688		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
    689			     result);
    690		return -EIO;
    691	}
    692
    693	return 0;
    694}
    695#endif
    696
    697/*
    698 * Read Status Command: 12 bytes.
    699 * byte 0: opcode: EC
    700 *
    701 * Returns 64 bytes, all zero except for the first.
    702 * bit 0: 1: Error
    703 * bit 5: 1: Suspended
    704 * bit 6: 1: Ready
    705 * bit 7: 1: Not write-protected
    706 */
    707
    708static int
    709sddr09_read_status(struct us_data *us, unsigned char *status) {
    710
    711	unsigned char *command = us->iobuf;
    712	unsigned char *data = us->iobuf;
    713	int result;
    714
    715	usb_stor_dbg(us, "Reading status...\n");
    716
    717	memset(command, 0, 12);
    718	command[0] = 0xEC;
    719	command[1] = LUNBITS;
    720
    721	result = sddr09_send_scsi_command(us, command, 12);
    722	if (result)
    723		return result;
    724
    725	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
    726				       data, 64, NULL);
    727	*status = data[0];
    728	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
    729}
    730
    731static int
    732sddr09_read_data(struct us_data *us,
    733		 unsigned long address,
    734		 unsigned int sectors) {
    735
    736	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
    737	unsigned char *buffer;
    738	unsigned int lba, maxlba, pba;
    739	unsigned int page, pages;
    740	unsigned int len, offset;
    741	struct scatterlist *sg;
    742	int result;
    743
    744	// Figure out the initial LBA and page
    745	lba = address >> info->blockshift;
    746	page = (address & info->blockmask);
    747	maxlba = info->capacity >> (info->pageshift + info->blockshift);
    748	if (lba >= maxlba)
    749		return -EIO;
    750
    751	// Since we only read in one block at a time, we have to create
    752	// a bounce buffer and move the data a piece at a time between the
    753	// bounce buffer and the actual transfer buffer.
    754
    755	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
    756	buffer = kmalloc(len, GFP_NOIO);
    757	if (!buffer)
    758		return -ENOMEM;
    759
    760	// This could be made much more efficient by checking for
    761	// contiguous LBA's. Another exercise left to the student.
    762
    763	result = 0;
    764	offset = 0;
    765	sg = NULL;
    766
    767	while (sectors > 0) {
    768
    769		/* Find number of pages we can read in this block */
    770		pages = min(sectors, info->blocksize - page);
    771		len = pages << info->pageshift;
    772
    773		/* Not overflowing capacity? */
    774		if (lba >= maxlba) {
    775			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
    776				     lba, maxlba);
    777			result = -EIO;
    778			break;
    779		}
    780
    781		/* Find where this lba lives on disk */
    782		pba = info->lba_to_pba[lba];
    783
    784		if (pba == UNDEF) {	/* this lba was never written */
    785
    786			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
    787				     pages, lba, page);
    788
    789			/*
    790			 * This is not really an error. It just means
    791			 * that the block has never been written.
    792			 * Instead of returning an error
    793			 * it is better to return all zero data.
    794			 */
    795
    796			memset(buffer, 0, len);
    797
    798		} else {
    799			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
    800				     pages, pba, lba, page);
    801
    802			address = ((pba << info->blockshift) + page) << 
    803				info->pageshift;
    804
    805			result = sddr09_read20(us, address>>1,
    806					pages, info->pageshift, buffer, 0);
    807			if (result)
    808				break;
    809		}
    810
    811		// Store the data in the transfer buffer
    812		usb_stor_access_xfer_buf(buffer, len, us->srb,
    813				&sg, &offset, TO_XFER_BUF);
    814
    815		page = 0;
    816		lba++;
    817		sectors -= pages;
    818	}
    819
    820	kfree(buffer);
    821	return result;
    822}
    823
    824static unsigned int
    825sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
    826	static unsigned int lastpba = 1;
    827	int zonestart, end, i;
    828
    829	zonestart = (lba/1000) << 10;
    830	end = info->capacity >> (info->blockshift + info->pageshift);
    831	end -= zonestart;
    832	if (end > 1024)
    833		end = 1024;
    834
    835	for (i = lastpba+1; i < end; i++) {
    836		if (info->pba_to_lba[zonestart+i] == UNDEF) {
    837			lastpba = i;
    838			return zonestart+i;
    839		}
    840	}
    841	for (i = 0; i <= lastpba; i++) {
    842		if (info->pba_to_lba[zonestart+i] == UNDEF) {
    843			lastpba = i;
    844			return zonestart+i;
    845		}
    846	}
    847	return 0;
    848}
    849
    850static int
    851sddr09_write_lba(struct us_data *us, unsigned int lba,
    852		 unsigned int page, unsigned int pages,
    853		 unsigned char *ptr, unsigned char *blockbuffer) {
    854
    855	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
    856	unsigned long address;
    857	unsigned int pba, lbap;
    858	unsigned int pagelen;
    859	unsigned char *bptr, *cptr, *xptr;
    860	unsigned char ecc[3];
    861	int i, result;
    862
    863	lbap = ((lba % 1000) << 1) | 0x1000;
    864	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
    865		lbap ^= 1;
    866	pba = info->lba_to_pba[lba];
    867
    868	if (pba == UNDEF) {
    869		pba = sddr09_find_unused_pba(info, lba);
    870		if (!pba) {
    871			printk(KERN_WARNING
    872			       "sddr09_write_lba: Out of unused blocks\n");
    873			return -ENOSPC;
    874		}
    875		info->pba_to_lba[pba] = lba;
    876		info->lba_to_pba[lba] = pba;
    877	}
    878
    879	if (pba == 1) {
    880		/*
    881		 * Maybe it is impossible to write to PBA 1.
    882		 * Fake success, but don't do anything.
    883		 */
    884		printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
    885		return 0;
    886	}
    887
    888	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
    889
    890	/* read old contents */
    891	address = (pba << (info->pageshift + info->blockshift));
    892	result = sddr09_read22(us, address>>1, info->blocksize,
    893			       info->pageshift, blockbuffer, 0);
    894	if (result)
    895		return result;
    896
    897	/* check old contents and fill lba */
    898	for (i = 0; i < info->blocksize; i++) {
    899		bptr = blockbuffer + i*pagelen;
    900		cptr = bptr + info->pagesize;
    901		nand_compute_ecc(bptr, ecc);
    902		if (!nand_compare_ecc(cptr+13, ecc)) {
    903			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
    904				     i, pba);
    905			nand_store_ecc(cptr+13, ecc);
    906		}
    907		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
    908		if (!nand_compare_ecc(cptr+8, ecc)) {
    909			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
    910				     i, pba);
    911			nand_store_ecc(cptr+8, ecc);
    912		}
    913		cptr[6] = cptr[11] = MSB_of(lbap);
    914		cptr[7] = cptr[12] = LSB_of(lbap);
    915	}
    916
    917	/* copy in new stuff and compute ECC */
    918	xptr = ptr;
    919	for (i = page; i < page+pages; i++) {
    920		bptr = blockbuffer + i*pagelen;
    921		cptr = bptr + info->pagesize;
    922		memcpy(bptr, xptr, info->pagesize);
    923		xptr += info->pagesize;
    924		nand_compute_ecc(bptr, ecc);
    925		nand_store_ecc(cptr+13, ecc);
    926		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
    927		nand_store_ecc(cptr+8, ecc);
    928	}
    929
    930	usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
    931
    932	result = sddr09_write_inplace(us, address>>1, info->blocksize,
    933				      info->pageshift, blockbuffer, 0);
    934
    935	usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
    936
    937#if 0
    938	{
    939		unsigned char status = 0;
    940		int result2 = sddr09_read_status(us, &status);
    941		if (result2)
    942			usb_stor_dbg(us, "cannot read status\n");
    943		else if (status != 0xc0)
    944			usb_stor_dbg(us, "status after write: 0x%x\n", status);
    945	}
    946#endif
    947
    948#if 0
    949	{
    950		int result2 = sddr09_test_unit_ready(us);
    951	}
    952#endif
    953
    954	return result;
    955}
    956
    957static int
    958sddr09_write_data(struct us_data *us,
    959		  unsigned long address,
    960		  unsigned int sectors) {
    961
    962	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
    963	unsigned int lba, maxlba, page, pages;
    964	unsigned int pagelen, blocklen;
    965	unsigned char *blockbuffer;
    966	unsigned char *buffer;
    967	unsigned int len, offset;
    968	struct scatterlist *sg;
    969	int result;
    970
    971	/* Figure out the initial LBA and page */
    972	lba = address >> info->blockshift;
    973	page = (address & info->blockmask);
    974	maxlba = info->capacity >> (info->pageshift + info->blockshift);
    975	if (lba >= maxlba)
    976		return -EIO;
    977
    978	/*
    979	 * blockbuffer is used for reading in the old data, overwriting
    980	 * with the new data, and performing ECC calculations
    981	 */
    982
    983	/*
    984	 * TODO: instead of doing kmalloc/kfree for each write,
    985	 * add a bufferpointer to the info structure
    986	 */
    987
    988	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
    989	blocklen = (pagelen << info->blockshift);
    990	blockbuffer = kmalloc(blocklen, GFP_NOIO);
    991	if (!blockbuffer)
    992		return -ENOMEM;
    993
    994	/*
    995	 * Since we don't write the user data directly to the device,
    996	 * we have to create a bounce buffer and move the data a piece
    997	 * at a time between the bounce buffer and the actual transfer buffer.
    998	 */
    999
   1000	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
   1001	buffer = kmalloc(len, GFP_NOIO);
   1002	if (!buffer) {
   1003		kfree(blockbuffer);
   1004		return -ENOMEM;
   1005	}
   1006
   1007	result = 0;
   1008	offset = 0;
   1009	sg = NULL;
   1010
   1011	while (sectors > 0) {
   1012
   1013		/* Write as many sectors as possible in this block */
   1014
   1015		pages = min(sectors, info->blocksize - page);
   1016		len = (pages << info->pageshift);
   1017
   1018		/* Not overflowing capacity? */
   1019		if (lba >= maxlba) {
   1020			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
   1021				     lba, maxlba);
   1022			result = -EIO;
   1023			break;
   1024		}
   1025
   1026		/* Get the data from the transfer buffer */
   1027		usb_stor_access_xfer_buf(buffer, len, us->srb,
   1028				&sg, &offset, FROM_XFER_BUF);
   1029
   1030		result = sddr09_write_lba(us, lba, page, pages,
   1031				buffer, blockbuffer);
   1032		if (result)
   1033			break;
   1034
   1035		page = 0;
   1036		lba++;
   1037		sectors -= pages;
   1038	}
   1039
   1040	kfree(buffer);
   1041	kfree(blockbuffer);
   1042
   1043	return result;
   1044}
   1045
   1046static int
   1047sddr09_read_control(struct us_data *us,
   1048		unsigned long address,
   1049		unsigned int blocks,
   1050		unsigned char *content,
   1051		int use_sg) {
   1052
   1053	usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
   1054		     address, blocks);
   1055
   1056	return sddr09_read21(us, address, blocks,
   1057			     CONTROL_SHIFT, content, use_sg);
   1058}
   1059
   1060/*
   1061 * Read Device ID Command: 12 bytes.
   1062 * byte 0: opcode: ED
   1063 *
   1064 * Returns 2 bytes: Manufacturer ID and Device ID.
   1065 * On more recent cards 3 bytes: the third byte is an option code A5
   1066 * signifying that the secret command to read an 128-bit ID is available.
   1067 * On still more recent cards 4 bytes: the fourth byte C0 means that
   1068 * a second read ID cmd is available.
   1069 */
   1070static int
   1071sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
   1072	unsigned char *command = us->iobuf;
   1073	unsigned char *content = us->iobuf;
   1074	int result, i;
   1075
   1076	memset(command, 0, 12);
   1077	command[0] = 0xED;
   1078	command[1] = LUNBITS;
   1079
   1080	result = sddr09_send_scsi_command(us, command, 12);
   1081	if (result)
   1082		return result;
   1083
   1084	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
   1085			content, 64, NULL);
   1086
   1087	for (i = 0; i < 4; i++)
   1088		deviceID[i] = content[i];
   1089
   1090	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
   1091}
   1092
   1093static int
   1094sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
   1095	int result;
   1096	unsigned char status;
   1097	const char *wp_fmt;
   1098
   1099	result = sddr09_read_status(us, &status);
   1100	if (result) {
   1101		usb_stor_dbg(us, "read_status fails\n");
   1102		return result;
   1103	}
   1104	if ((status & 0x80) == 0) {
   1105		info->flags |= SDDR09_WP;	/* write protected */
   1106		wp_fmt = " WP";
   1107	} else {
   1108		wp_fmt = "";
   1109	}
   1110	usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt,
   1111		     status & 0x40 ? " Ready" : "",
   1112		     status & LUNBITS ? " Suspended" : "",
   1113		     status & 0x01 ? " Error" : "");
   1114
   1115	return 0;
   1116}
   1117
   1118#if 0
   1119/*
   1120 * Reset Command: 12 bytes.
   1121 * byte 0: opcode: EB
   1122 */
   1123static int
   1124sddr09_reset(struct us_data *us) {
   1125
   1126	unsigned char *command = us->iobuf;
   1127
   1128	memset(command, 0, 12);
   1129	command[0] = 0xEB;
   1130	command[1] = LUNBITS;
   1131
   1132	return sddr09_send_scsi_command(us, command, 12);
   1133}
   1134#endif
   1135
   1136static struct nand_flash_dev *
   1137sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
   1138	struct nand_flash_dev *cardinfo;
   1139	unsigned char deviceID[4];
   1140	char blurbtxt[256];
   1141	int result;
   1142
   1143	usb_stor_dbg(us, "Reading capacity...\n");
   1144
   1145	result = sddr09_read_deviceID(us, deviceID);
   1146
   1147	if (result) {
   1148		usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
   1149		printk(KERN_WARNING "sddr09: could not read card info\n");
   1150		return NULL;
   1151	}
   1152
   1153	sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
   1154
   1155	/* Byte 0 is the manufacturer */
   1156	sprintf(blurbtxt + strlen(blurbtxt),
   1157		": Manuf. %s",
   1158		nand_flash_manufacturer(deviceID[0]));
   1159
   1160	/* Byte 1 is the device type */
   1161	cardinfo = nand_find_id(deviceID[1]);
   1162	if (cardinfo) {
   1163		/*
   1164		 * MB or MiB? It is neither. A 16 MB card has
   1165		 * 17301504 raw bytes, of which 16384000 are
   1166		 * usable for user data.
   1167		 */
   1168		sprintf(blurbtxt + strlen(blurbtxt),
   1169			", %d MB", 1<<(cardinfo->chipshift - 20));
   1170	} else {
   1171		sprintf(blurbtxt + strlen(blurbtxt),
   1172			", type unrecognized");
   1173	}
   1174
   1175	/* Byte 2 is code to signal availability of 128-bit ID */
   1176	if (deviceID[2] == 0xa5) {
   1177		sprintf(blurbtxt + strlen(blurbtxt),
   1178			", 128-bit ID");
   1179	}
   1180
   1181	/* Byte 3 announces the availability of another read ID command */
   1182	if (deviceID[3] == 0xc0) {
   1183		sprintf(blurbtxt + strlen(blurbtxt),
   1184			", extra cmd");
   1185	}
   1186
   1187	if (flags & SDDR09_WP)
   1188		sprintf(blurbtxt + strlen(blurbtxt),
   1189			", WP");
   1190
   1191	printk(KERN_WARNING "%s\n", blurbtxt);
   1192
   1193	return cardinfo;
   1194}
   1195
   1196static int
   1197sddr09_read_map(struct us_data *us) {
   1198
   1199	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
   1200	int numblocks, alloc_len, alloc_blocks;
   1201	int i, j, result;
   1202	unsigned char *buffer, *buffer_end, *ptr;
   1203	unsigned int lba, lbact;
   1204
   1205	if (!info->capacity)
   1206		return -1;
   1207
   1208	/*
   1209	 * size of a block is 1 << (blockshift + pageshift) bytes
   1210	 * divide into the total capacity to get the number of blocks
   1211	 */
   1212
   1213	numblocks = info->capacity >> (info->blockshift + info->pageshift);
   1214
   1215	/*
   1216	 * read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
   1217	 * but only use a 64 KB buffer
   1218	 * buffer size used must be a multiple of (1 << CONTROL_SHIFT)
   1219	 */
   1220#define SDDR09_READ_MAP_BUFSZ 65536
   1221
   1222	alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
   1223	alloc_len = (alloc_blocks << CONTROL_SHIFT);
   1224	buffer = kmalloc(alloc_len, GFP_NOIO);
   1225	if (!buffer) {
   1226		result = -1;
   1227		goto done;
   1228	}
   1229	buffer_end = buffer + alloc_len;
   1230
   1231#undef SDDR09_READ_MAP_BUFSZ
   1232
   1233	kfree(info->lba_to_pba);
   1234	kfree(info->pba_to_lba);
   1235	info->lba_to_pba = kmalloc_array(numblocks, sizeof(int), GFP_NOIO);
   1236	info->pba_to_lba = kmalloc_array(numblocks, sizeof(int), GFP_NOIO);
   1237
   1238	if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
   1239		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
   1240		result = -1;
   1241		goto done;
   1242	}
   1243
   1244	for (i = 0; i < numblocks; i++)
   1245		info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
   1246
   1247	/*
   1248	 * Define lba-pba translation table
   1249	 */
   1250
   1251	ptr = buffer_end;
   1252	for (i = 0; i < numblocks; i++) {
   1253		ptr += (1 << CONTROL_SHIFT);
   1254		if (ptr >= buffer_end) {
   1255			unsigned long address;
   1256
   1257			address = i << (info->pageshift + info->blockshift);
   1258			result = sddr09_read_control(
   1259				us, address>>1,
   1260				min(alloc_blocks, numblocks - i),
   1261				buffer, 0);
   1262			if (result) {
   1263				result = -1;
   1264				goto done;
   1265			}
   1266			ptr = buffer;
   1267		}
   1268
   1269		if (i == 0 || i == 1) {
   1270			info->pba_to_lba[i] = UNUSABLE;
   1271			continue;
   1272		}
   1273
   1274		/* special PBAs have control field 0^16 */
   1275		for (j = 0; j < 16; j++)
   1276			if (ptr[j] != 0)
   1277				goto nonz;
   1278		info->pba_to_lba[i] = UNUSABLE;
   1279		printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
   1280		       i);
   1281		continue;
   1282
   1283	nonz:
   1284		/* unwritten PBAs have control field FF^16 */
   1285		for (j = 0; j < 16; j++)
   1286			if (ptr[j] != 0xff)
   1287				goto nonff;
   1288		continue;
   1289
   1290	nonff:
   1291		/* normal PBAs start with six FFs */
   1292		if (j < 6) {
   1293			printk(KERN_WARNING
   1294			       "sddr09: PBA %d has no logical mapping: "
   1295			       "reserved area = %02X%02X%02X%02X "
   1296			       "data status %02X block status %02X\n",
   1297			       i, ptr[0], ptr[1], ptr[2], ptr[3],
   1298			       ptr[4], ptr[5]);
   1299			info->pba_to_lba[i] = UNUSABLE;
   1300			continue;
   1301		}
   1302
   1303		if ((ptr[6] >> 4) != 0x01) {
   1304			printk(KERN_WARNING
   1305			       "sddr09: PBA %d has invalid address field "
   1306			       "%02X%02X/%02X%02X\n",
   1307			       i, ptr[6], ptr[7], ptr[11], ptr[12]);
   1308			info->pba_to_lba[i] = UNUSABLE;
   1309			continue;
   1310		}
   1311
   1312		/* check even parity */
   1313		if (parity[ptr[6] ^ ptr[7]]) {
   1314			printk(KERN_WARNING
   1315			       "sddr09: Bad parity in LBA for block %d"
   1316			       " (%02X %02X)\n", i, ptr[6], ptr[7]);
   1317			info->pba_to_lba[i] = UNUSABLE;
   1318			continue;
   1319		}
   1320
   1321		lba = short_pack(ptr[7], ptr[6]);
   1322		lba = (lba & 0x07FF) >> 1;
   1323
   1324		/*
   1325		 * Every 1024 physical blocks ("zone"), the LBA numbers
   1326		 * go back to zero, but are within a higher block of LBA's.
   1327		 * Also, there is a maximum of 1000 LBA's per zone.
   1328		 * In other words, in PBA 1024-2047 you will find LBA 0-999
   1329		 * which are really LBA 1000-1999. This allows for 24 bad
   1330		 * or special physical blocks per zone.
   1331		 */
   1332
   1333		if (lba >= 1000) {
   1334			printk(KERN_WARNING
   1335			       "sddr09: Bad low LBA %d for block %d\n",
   1336			       lba, i);
   1337			goto possibly_erase;
   1338		}
   1339
   1340		lba += 1000*(i/0x400);
   1341
   1342		if (info->lba_to_pba[lba] != UNDEF) {
   1343			printk(KERN_WARNING
   1344			       "sddr09: LBA %d seen for PBA %d and %d\n",
   1345			       lba, info->lba_to_pba[lba], i);
   1346			goto possibly_erase;
   1347		}
   1348
   1349		info->pba_to_lba[i] = lba;
   1350		info->lba_to_pba[lba] = i;
   1351		continue;
   1352
   1353	possibly_erase:
   1354		if (erase_bad_lba_entries) {
   1355			unsigned long address;
   1356
   1357			address = (i << (info->pageshift + info->blockshift));
   1358			sddr09_erase(us, address>>1);
   1359			info->pba_to_lba[i] = UNDEF;
   1360		} else
   1361			info->pba_to_lba[i] = UNUSABLE;
   1362	}
   1363
   1364	/*
   1365	 * Approximate capacity. This is not entirely correct yet,
   1366	 * since a zone with less than 1000 usable pages leads to
   1367	 * missing LBAs. Especially if it is the last zone, some
   1368	 * LBAs can be past capacity.
   1369	 */
   1370	lbact = 0;
   1371	for (i = 0; i < numblocks; i += 1024) {
   1372		int ct = 0;
   1373
   1374		for (j = 0; j < 1024 && i+j < numblocks; j++) {
   1375			if (info->pba_to_lba[i+j] != UNUSABLE) {
   1376				if (ct >= 1000)
   1377					info->pba_to_lba[i+j] = SPARE;
   1378				else
   1379					ct++;
   1380			}
   1381		}
   1382		lbact += ct;
   1383	}
   1384	info->lbact = lbact;
   1385	usb_stor_dbg(us, "Found %d LBA's\n", lbact);
   1386	result = 0;
   1387
   1388 done:
   1389	if (result != 0) {
   1390		kfree(info->lba_to_pba);
   1391		kfree(info->pba_to_lba);
   1392		info->lba_to_pba = NULL;
   1393		info->pba_to_lba = NULL;
   1394	}
   1395	kfree(buffer);
   1396	return result;
   1397}
   1398
   1399static void
   1400sddr09_card_info_destructor(void *extra) {
   1401	struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
   1402
   1403	if (!info)
   1404		return;
   1405
   1406	kfree(info->lba_to_pba);
   1407	kfree(info->pba_to_lba);
   1408}
   1409
   1410static int
   1411sddr09_common_init(struct us_data *us) {
   1412	int result;
   1413
   1414	/* set the configuration -- STALL is an acceptable response here */
   1415	if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
   1416		usb_stor_dbg(us, "active config #%d != 1 ??\n",
   1417			     us->pusb_dev->actconfig->desc.bConfigurationValue);
   1418		return -EINVAL;
   1419	}
   1420
   1421	result = usb_reset_configuration(us->pusb_dev);
   1422	usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
   1423	if (result == -EPIPE) {
   1424		usb_stor_dbg(us, "-- stall on control interface\n");
   1425	} else if (result != 0) {
   1426		/* it's not a stall, but another error -- time to bail */
   1427		usb_stor_dbg(us, "-- Unknown error.  Rejecting device\n");
   1428		return -EINVAL;
   1429	}
   1430
   1431	us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
   1432	if (!us->extra)
   1433		return -ENOMEM;
   1434	us->extra_destructor = sddr09_card_info_destructor;
   1435
   1436	nand_init_ecc();
   1437	return 0;
   1438}
   1439
   1440
   1441/*
   1442 * This is needed at a very early stage. If this is not listed in the
   1443 * unusual devices list but called from here then LUN 0 of the combo reader
   1444 * is not recognized. But I do not know what precisely these calls do.
   1445 */
   1446static int
   1447usb_stor_sddr09_dpcm_init(struct us_data *us) {
   1448	int result;
   1449	unsigned char *data = us->iobuf;
   1450
   1451	result = sddr09_common_init(us);
   1452	if (result)
   1453		return result;
   1454
   1455	result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
   1456	if (result) {
   1457		usb_stor_dbg(us, "send_command fails\n");
   1458		return result;
   1459	}
   1460
   1461	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
   1462	// get 07 02
   1463
   1464	result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
   1465	if (result) {
   1466		usb_stor_dbg(us, "2nd send_command fails\n");
   1467		return result;
   1468	}
   1469
   1470	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
   1471	// get 07 00
   1472
   1473	result = sddr09_request_sense(us, data, 18);
   1474	if (result == 0 && data[2] != 0) {
   1475		int j;
   1476		for (j=0; j<18; j++)
   1477			printk(" %02X", data[j]);
   1478		printk("\n");
   1479		// get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
   1480		// 70: current command
   1481		// sense key 0, sense code 0, extd sense code 0
   1482		// additional transfer length * = sizeof(data) - 7
   1483		// Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
   1484		// sense key 06, sense code 28: unit attention,
   1485		// not ready to ready transition
   1486	}
   1487
   1488	// test unit ready
   1489
   1490	return 0;		/* not result */
   1491}
   1492
   1493/*
   1494 * Transport for the Microtech DPCM-USB
   1495 */
   1496static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
   1497{
   1498	int ret;
   1499
   1500	usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
   1501
   1502	switch (srb->device->lun) {
   1503	case 0:
   1504
   1505		/*
   1506		 * LUN 0 corresponds to the CompactFlash card reader.
   1507		 */
   1508		ret = usb_stor_CB_transport(srb, us);
   1509		break;
   1510
   1511	case 1:
   1512
   1513		/*
   1514		 * LUN 1 corresponds to the SmartMedia card reader.
   1515		 */
   1516
   1517		/*
   1518		 * Set the LUN to 0 (just in case).
   1519		 */
   1520		srb->device->lun = 0;
   1521		ret = sddr09_transport(srb, us);
   1522		srb->device->lun = 1;
   1523		break;
   1524
   1525	default:
   1526	    usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
   1527		ret = USB_STOR_TRANSPORT_ERROR;
   1528		break;
   1529	}
   1530	return ret;
   1531}
   1532
   1533
   1534/*
   1535 * Transport for the Sandisk SDDR-09
   1536 */
   1537static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
   1538{
   1539	static unsigned char sensekey = 0, sensecode = 0;
   1540	static unsigned char havefakesense = 0;
   1541	int result, i;
   1542	unsigned char *ptr = us->iobuf;
   1543	unsigned long capacity;
   1544	unsigned int page, pages;
   1545
   1546	struct sddr09_card_info *info;
   1547
   1548	static unsigned char inquiry_response[8] = {
   1549		0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
   1550	};
   1551
   1552	/* note: no block descriptor support */
   1553	static unsigned char mode_page_01[19] = {
   1554		0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
   1555		0x01, 0x0A,
   1556		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
   1557	};
   1558
   1559	info = (struct sddr09_card_info *)us->extra;
   1560
   1561	if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
   1562		/* for a faked command, we have to follow with a faked sense */
   1563		memset(ptr, 0, 18);
   1564		ptr[0] = 0x70;
   1565		ptr[2] = sensekey;
   1566		ptr[7] = 11;
   1567		ptr[12] = sensecode;
   1568		usb_stor_set_xfer_buf(ptr, 18, srb);
   1569		sensekey = sensecode = havefakesense = 0;
   1570		return USB_STOR_TRANSPORT_GOOD;
   1571	}
   1572
   1573	havefakesense = 1;
   1574
   1575	/*
   1576	 * Dummy up a response for INQUIRY since SDDR09 doesn't
   1577	 * respond to INQUIRY commands
   1578	 */
   1579
   1580	if (srb->cmnd[0] == INQUIRY) {
   1581		memcpy(ptr, inquiry_response, 8);
   1582		fill_inquiry_response(us, ptr, 36);
   1583		return USB_STOR_TRANSPORT_GOOD;
   1584	}
   1585
   1586	if (srb->cmnd[0] == READ_CAPACITY) {
   1587		struct nand_flash_dev *cardinfo;
   1588
   1589		sddr09_get_wp(us, info);	/* read WP bit */
   1590
   1591		cardinfo = sddr09_get_cardinfo(us, info->flags);
   1592		if (!cardinfo) {
   1593			/* probably no media */
   1594		init_error:
   1595			sensekey = 0x02;	/* not ready */
   1596			sensecode = 0x3a;	/* medium not present */
   1597			return USB_STOR_TRANSPORT_FAILED;
   1598		}
   1599
   1600		info->capacity = (1 << cardinfo->chipshift);
   1601		info->pageshift = cardinfo->pageshift;
   1602		info->pagesize = (1 << info->pageshift);
   1603		info->blockshift = cardinfo->blockshift;
   1604		info->blocksize = (1 << info->blockshift);
   1605		info->blockmask = info->blocksize - 1;
   1606
   1607		// map initialization, must follow get_cardinfo()
   1608		if (sddr09_read_map(us)) {
   1609			/* probably out of memory */
   1610			goto init_error;
   1611		}
   1612
   1613		// Report capacity
   1614
   1615		capacity = (info->lbact << info->blockshift) - 1;
   1616
   1617		((__be32 *) ptr)[0] = cpu_to_be32(capacity);
   1618
   1619		// Report page size
   1620
   1621		((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
   1622		usb_stor_set_xfer_buf(ptr, 8, srb);
   1623
   1624		return USB_STOR_TRANSPORT_GOOD;
   1625	}
   1626
   1627	if (srb->cmnd[0] == MODE_SENSE_10) {
   1628		int modepage = (srb->cmnd[2] & 0x3F);
   1629
   1630		/*
   1631		 * They ask for the Read/Write error recovery page,
   1632		 * or for all pages.
   1633		 */
   1634		/* %% We should check DBD %% */
   1635		if (modepage == 0x01 || modepage == 0x3F) {
   1636			usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
   1637				     modepage);
   1638
   1639			memcpy(ptr, mode_page_01, sizeof(mode_page_01));
   1640			((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
   1641			ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
   1642			usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
   1643			return USB_STOR_TRANSPORT_GOOD;
   1644		}
   1645
   1646		sensekey = 0x05;	/* illegal request */
   1647		sensecode = 0x24;	/* invalid field in CDB */
   1648		return USB_STOR_TRANSPORT_FAILED;
   1649	}
   1650
   1651	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
   1652		return USB_STOR_TRANSPORT_GOOD;
   1653
   1654	havefakesense = 0;
   1655
   1656	if (srb->cmnd[0] == READ_10) {
   1657
   1658		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
   1659		page <<= 16;
   1660		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
   1661		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
   1662
   1663		usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
   1664			     page, pages);
   1665
   1666		result = sddr09_read_data(us, page, pages);
   1667		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
   1668				USB_STOR_TRANSPORT_ERROR);
   1669	}
   1670
   1671	if (srb->cmnd[0] == WRITE_10) {
   1672
   1673		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
   1674		page <<= 16;
   1675		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
   1676		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
   1677
   1678		usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
   1679			     page, pages);
   1680
   1681		result = sddr09_write_data(us, page, pages);
   1682		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
   1683				USB_STOR_TRANSPORT_ERROR);
   1684	}
   1685
   1686	/*
   1687	 * catch-all for all other commands, except
   1688	 * pass TEST_UNIT_READY and REQUEST_SENSE through
   1689	 */
   1690	if (srb->cmnd[0] != TEST_UNIT_READY &&
   1691	    srb->cmnd[0] != REQUEST_SENSE) {
   1692		sensekey = 0x05;	/* illegal request */
   1693		sensecode = 0x20;	/* invalid command */
   1694		havefakesense = 1;
   1695		return USB_STOR_TRANSPORT_FAILED;
   1696	}
   1697
   1698	for (; srb->cmd_len<12; srb->cmd_len++)
   1699		srb->cmnd[srb->cmd_len] = 0;
   1700
   1701	srb->cmnd[1] = LUNBITS;
   1702
   1703	ptr[0] = 0;
   1704	for (i=0; i<12; i++)
   1705		sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
   1706
   1707	usb_stor_dbg(us, "Send control for command %s\n", ptr);
   1708
   1709	result = sddr09_send_scsi_command(us, srb->cmnd, 12);
   1710	if (result) {
   1711		usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
   1712			     result);
   1713		return USB_STOR_TRANSPORT_ERROR;
   1714	}
   1715
   1716	if (scsi_bufflen(srb) == 0)
   1717		return USB_STOR_TRANSPORT_GOOD;
   1718
   1719	if (srb->sc_data_direction == DMA_TO_DEVICE ||
   1720	    srb->sc_data_direction == DMA_FROM_DEVICE) {
   1721		unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
   1722				? us->send_bulk_pipe : us->recv_bulk_pipe;
   1723
   1724		usb_stor_dbg(us, "%s %d bytes\n",
   1725			     (srb->sc_data_direction == DMA_TO_DEVICE) ?
   1726			     "sending" : "receiving",
   1727			     scsi_bufflen(srb));
   1728
   1729		result = usb_stor_bulk_srb(us, pipe, srb);
   1730
   1731		return (result == USB_STOR_XFER_GOOD ?
   1732			USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
   1733	} 
   1734
   1735	return USB_STOR_TRANSPORT_GOOD;
   1736}
   1737
   1738/*
   1739 * Initialization routine for the sddr09 subdriver
   1740 */
   1741static int
   1742usb_stor_sddr09_init(struct us_data *us) {
   1743	return sddr09_common_init(us);
   1744}
   1745
   1746static struct scsi_host_template sddr09_host_template;
   1747
   1748static int sddr09_probe(struct usb_interface *intf,
   1749			 const struct usb_device_id *id)
   1750{
   1751	struct us_data *us;
   1752	int result;
   1753
   1754	result = usb_stor_probe1(&us, intf, id,
   1755			(id - sddr09_usb_ids) + sddr09_unusual_dev_list,
   1756			&sddr09_host_template);
   1757	if (result)
   1758		return result;
   1759
   1760	if (us->protocol == USB_PR_DPCM_USB) {
   1761		us->transport_name = "Control/Bulk-EUSB/SDDR09";
   1762		us->transport = dpcm_transport;
   1763		us->transport_reset = usb_stor_CB_reset;
   1764		us->max_lun = 1;
   1765	} else {
   1766		us->transport_name = "EUSB/SDDR09";
   1767		us->transport = sddr09_transport;
   1768		us->transport_reset = usb_stor_CB_reset;
   1769		us->max_lun = 0;
   1770	}
   1771
   1772	result = usb_stor_probe2(us);
   1773	return result;
   1774}
   1775
   1776static struct usb_driver sddr09_driver = {
   1777	.name =		DRV_NAME,
   1778	.probe =	sddr09_probe,
   1779	.disconnect =	usb_stor_disconnect,
   1780	.suspend =	usb_stor_suspend,
   1781	.resume =	usb_stor_resume,
   1782	.reset_resume =	usb_stor_reset_resume,
   1783	.pre_reset =	usb_stor_pre_reset,
   1784	.post_reset =	usb_stor_post_reset,
   1785	.id_table =	sddr09_usb_ids,
   1786	.soft_unbind =	1,
   1787	.no_dynamic_id = 1,
   1788};
   1789
   1790module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME);