cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

transport.c (44731B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/*
      3 * Driver for USB Mass Storage compliant devices
      4 *
      5 * Current development and maintenance by:
      6 *   (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net)
      7 *
      8 * Developed with the assistance of:
      9 *   (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org)
     10 *   (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov)
     11 *   (c) 2002 Alan Stern <stern@rowland.org>
     12 *
     13 * Initial work by:
     14 *   (c) 1999 Michael Gee (michael@linuxspecific.com)
     15 *
     16 * This driver is based on the 'USB Mass Storage Class' document. This
     17 * describes in detail the protocol used to communicate with such
     18 * devices.  Clearly, the designers had SCSI and ATAPI commands in
     19 * mind when they created this document.  The commands are all very
     20 * similar to commands in the SCSI-II and ATAPI specifications.
     21 *
     22 * It is important to note that in a number of cases this class
     23 * exhibits class-specific exemptions from the USB specification.
     24 * Notably the usage of NAK, STALL and ACK differs from the norm, in
     25 * that they are used to communicate wait, failed and OK on commands.
     26 *
     27 * Also, for certain devices, the interrupt endpoint is used to convey
     28 * status of a command.
     29 */
     30
     31#include <linux/sched.h>
     32#include <linux/gfp.h>
     33#include <linux/errno.h>
     34#include <linux/export.h>
     35
     36#include <linux/usb/quirks.h>
     37
     38#include <scsi/scsi.h>
     39#include <scsi/scsi_eh.h>
     40#include <scsi/scsi_device.h>
     41
     42#include "usb.h"
     43#include "transport.h"
     44#include "protocol.h"
     45#include "scsiglue.h"
     46#include "debug.h"
     47
     48#include <linux/blkdev.h>
     49#include "../../scsi/sd.h"
     50
     51
     52/***********************************************************************
     53 * Data transfer routines
     54 ***********************************************************************/
     55
     56/*
     57 * This is subtle, so pay attention:
     58 * ---------------------------------
     59 * We're very concerned about races with a command abort.  Hanging this code
     60 * is a sure fire way to hang the kernel.  (Note that this discussion applies
     61 * only to transactions resulting from a scsi queued-command, since only
     62 * these transactions are subject to a scsi abort.  Other transactions, such
     63 * as those occurring during device-specific initialization, must be handled
     64 * by a separate code path.)
     65 *
     66 * The abort function (usb_storage_command_abort() in scsiglue.c) first
     67 * sets the machine state and the ABORTING bit in us->dflags to prevent
     68 * new URBs from being submitted.  It then calls usb_stor_stop_transport()
     69 * below, which atomically tests-and-clears the URB_ACTIVE bit in us->dflags
     70 * to see if the current_urb needs to be stopped.  Likewise, the SG_ACTIVE
     71 * bit is tested to see if the current_sg scatter-gather request needs to be
     72 * stopped.  The timeout callback routine does much the same thing.
     73 *
     74 * When a disconnect occurs, the DISCONNECTING bit in us->dflags is set to
     75 * prevent new URBs from being submitted, and usb_stor_stop_transport() is
     76 * called to stop any ongoing requests.
     77 *
     78 * The submit function first verifies that the submitting is allowed
     79 * (neither ABORTING nor DISCONNECTING bits are set) and that the submit
     80 * completes without errors, and only then sets the URB_ACTIVE bit.  This
     81 * prevents the stop_transport() function from trying to cancel the URB
     82 * while the submit call is underway.  Next, the submit function must test
     83 * the flags to see if an abort or disconnect occurred during the submission
     84 * or before the URB_ACTIVE bit was set.  If so, it's essential to cancel
     85 * the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit
     86 * is still set).  Either way, the function must then wait for the URB to
     87 * finish.  Note that the URB can still be in progress even after a call to
     88 * usb_unlink_urb() returns.
     89 *
     90 * The idea is that (1) once the ABORTING or DISCONNECTING bit is set,
     91 * either the stop_transport() function or the submitting function
     92 * is guaranteed to call usb_unlink_urb() for an active URB,
     93 * and (2) test_and_clear_bit() prevents usb_unlink_urb() from being
     94 * called more than once or from being called during usb_submit_urb().
     95 */
     96
     97/*
     98 * This is the completion handler which will wake us up when an URB
     99 * completes.
    100 */
    101static void usb_stor_blocking_completion(struct urb *urb)
    102{
    103	struct completion *urb_done_ptr = urb->context;
    104
    105	complete(urb_done_ptr);
    106}
    107
    108/*
    109 * This is the common part of the URB message submission code
    110 *
    111 * All URBs from the usb-storage driver involved in handling a queued scsi
    112 * command _must_ pass through this function (or something like it) for the
    113 * abort mechanisms to work properly.
    114 */
    115static int usb_stor_msg_common(struct us_data *us, int timeout)
    116{
    117	struct completion urb_done;
    118	long timeleft;
    119	int status;
    120
    121	/* don't submit URBs during abort processing */
    122	if (test_bit(US_FLIDX_ABORTING, &us->dflags))
    123		return -EIO;
    124
    125	/* set up data structures for the wakeup system */
    126	init_completion(&urb_done);
    127
    128	/* fill the common fields in the URB */
    129	us->current_urb->context = &urb_done;
    130	us->current_urb->transfer_flags = 0;
    131
    132	/*
    133	 * we assume that if transfer_buffer isn't us->iobuf then it
    134	 * hasn't been mapped for DMA.  Yes, this is clunky, but it's
    135	 * easier than always having the caller tell us whether the
    136	 * transfer buffer has already been mapped.
    137	 */
    138	if (us->current_urb->transfer_buffer == us->iobuf)
    139		us->current_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
    140	us->current_urb->transfer_dma = us->iobuf_dma;
    141
    142	/* submit the URB */
    143	status = usb_submit_urb(us->current_urb, GFP_NOIO);
    144	if (status) {
    145		/* something went wrong */
    146		return status;
    147	}
    148
    149	/*
    150	 * since the URB has been submitted successfully, it's now okay
    151	 * to cancel it
    152	 */
    153	set_bit(US_FLIDX_URB_ACTIVE, &us->dflags);
    154
    155	/* did an abort occur during the submission? */
    156	if (test_bit(US_FLIDX_ABORTING, &us->dflags)) {
    157
    158		/* cancel the URB, if it hasn't been cancelled already */
    159		if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) {
    160			usb_stor_dbg(us, "-- cancelling URB\n");
    161			usb_unlink_urb(us->current_urb);
    162		}
    163	}
    164 
    165	/* wait for the completion of the URB */
    166	timeleft = wait_for_completion_interruptible_timeout(
    167			&urb_done, timeout ? : MAX_SCHEDULE_TIMEOUT);
    168 
    169	clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags);
    170
    171	if (timeleft <= 0) {
    172		usb_stor_dbg(us, "%s -- cancelling URB\n",
    173			     timeleft == 0 ? "Timeout" : "Signal");
    174		usb_kill_urb(us->current_urb);
    175	}
    176
    177	/* return the URB status */
    178	return us->current_urb->status;
    179}
    180
    181/*
    182 * Transfer one control message, with timeouts, and allowing early
    183 * termination.  Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx.
    184 */
    185int usb_stor_control_msg(struct us_data *us, unsigned int pipe,
    186		 u8 request, u8 requesttype, u16 value, u16 index, 
    187		 void *data, u16 size, int timeout)
    188{
    189	int status;
    190
    191	usb_stor_dbg(us, "rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
    192		     request, requesttype, value, index, size);
    193
    194	/* fill in the devrequest structure */
    195	us->cr->bRequestType = requesttype;
    196	us->cr->bRequest = request;
    197	us->cr->wValue = cpu_to_le16(value);
    198	us->cr->wIndex = cpu_to_le16(index);
    199	us->cr->wLength = cpu_to_le16(size);
    200
    201	/* fill and submit the URB */
    202	usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe, 
    203			 (unsigned char*) us->cr, data, size, 
    204			 usb_stor_blocking_completion, NULL);
    205	status = usb_stor_msg_common(us, timeout);
    206
    207	/* return the actual length of the data transferred if no error */
    208	if (status == 0)
    209		status = us->current_urb->actual_length;
    210	return status;
    211}
    212EXPORT_SYMBOL_GPL(usb_stor_control_msg);
    213
    214/*
    215 * This is a version of usb_clear_halt() that allows early termination and
    216 * doesn't read the status from the device -- this is because some devices
    217 * crash their internal firmware when the status is requested after a halt.
    218 *
    219 * A definitive list of these 'bad' devices is too difficult to maintain or
    220 * make complete enough to be useful.  This problem was first observed on the
    221 * Hagiwara FlashGate DUAL unit.  However, bus traces reveal that neither
    222 * MacOS nor Windows checks the status after clearing a halt.
    223 *
    224 * Since many vendors in this space limit their testing to interoperability
    225 * with these two OSes, specification violations like this one are common.
    226 */
    227int usb_stor_clear_halt(struct us_data *us, unsigned int pipe)
    228{
    229	int result;
    230	int endp = usb_pipeendpoint(pipe);
    231
    232	if (usb_pipein (pipe))
    233		endp |= USB_DIR_IN;
    234
    235	result = usb_stor_control_msg(us, us->send_ctrl_pipe,
    236		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
    237		USB_ENDPOINT_HALT, endp,
    238		NULL, 0, 3*HZ);
    239
    240	if (result >= 0)
    241		usb_reset_endpoint(us->pusb_dev, endp);
    242
    243	usb_stor_dbg(us, "result = %d\n", result);
    244	return result;
    245}
    246EXPORT_SYMBOL_GPL(usb_stor_clear_halt);
    247
    248
    249/*
    250 * Interpret the results of a URB transfer
    251 *
    252 * This function prints appropriate debugging messages, clears halts on
    253 * non-control endpoints, and translates the status to the corresponding
    254 * USB_STOR_XFER_xxx return code.
    255 */
    256static int interpret_urb_result(struct us_data *us, unsigned int pipe,
    257		unsigned int length, int result, unsigned int partial)
    258{
    259	usb_stor_dbg(us, "Status code %d; transferred %u/%u\n",
    260		     result, partial, length);
    261	switch (result) {
    262
    263	/* no error code; did we send all the data? */
    264	case 0:
    265		if (partial != length) {
    266			usb_stor_dbg(us, "-- short transfer\n");
    267			return USB_STOR_XFER_SHORT;
    268		}
    269
    270		usb_stor_dbg(us, "-- transfer complete\n");
    271		return USB_STOR_XFER_GOOD;
    272
    273	/* stalled */
    274	case -EPIPE:
    275		/*
    276		 * for control endpoints, (used by CB[I]) a stall indicates
    277		 * a failed command
    278		 */
    279		if (usb_pipecontrol(pipe)) {
    280			usb_stor_dbg(us, "-- stall on control pipe\n");
    281			return USB_STOR_XFER_STALLED;
    282		}
    283
    284		/* for other sorts of endpoint, clear the stall */
    285		usb_stor_dbg(us, "clearing endpoint halt for pipe 0x%x\n",
    286			     pipe);
    287		if (usb_stor_clear_halt(us, pipe) < 0)
    288			return USB_STOR_XFER_ERROR;
    289		return USB_STOR_XFER_STALLED;
    290
    291	/* babble - the device tried to send more than we wanted to read */
    292	case -EOVERFLOW:
    293		usb_stor_dbg(us, "-- babble\n");
    294		return USB_STOR_XFER_LONG;
    295
    296	/* the transfer was cancelled by abort, disconnect, or timeout */
    297	case -ECONNRESET:
    298		usb_stor_dbg(us, "-- transfer cancelled\n");
    299		return USB_STOR_XFER_ERROR;
    300
    301	/* short scatter-gather read transfer */
    302	case -EREMOTEIO:
    303		usb_stor_dbg(us, "-- short read transfer\n");
    304		return USB_STOR_XFER_SHORT;
    305
    306	/* abort or disconnect in progress */
    307	case -EIO:
    308		usb_stor_dbg(us, "-- abort or disconnect in progress\n");
    309		return USB_STOR_XFER_ERROR;
    310
    311	/* the catch-all error case */
    312	default:
    313		usb_stor_dbg(us, "-- unknown error\n");
    314		return USB_STOR_XFER_ERROR;
    315	}
    316}
    317
    318/*
    319 * Transfer one control message, without timeouts, but allowing early
    320 * termination.  Return codes are USB_STOR_XFER_xxx.
    321 */
    322int usb_stor_ctrl_transfer(struct us_data *us, unsigned int pipe,
    323		u8 request, u8 requesttype, u16 value, u16 index,
    324		void *data, u16 size)
    325{
    326	int result;
    327
    328	usb_stor_dbg(us, "rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
    329		     request, requesttype, value, index, size);
    330
    331	/* fill in the devrequest structure */
    332	us->cr->bRequestType = requesttype;
    333	us->cr->bRequest = request;
    334	us->cr->wValue = cpu_to_le16(value);
    335	us->cr->wIndex = cpu_to_le16(index);
    336	us->cr->wLength = cpu_to_le16(size);
    337
    338	/* fill and submit the URB */
    339	usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe, 
    340			 (unsigned char*) us->cr, data, size, 
    341			 usb_stor_blocking_completion, NULL);
    342	result = usb_stor_msg_common(us, 0);
    343
    344	return interpret_urb_result(us, pipe, size, result,
    345			us->current_urb->actual_length);
    346}
    347EXPORT_SYMBOL_GPL(usb_stor_ctrl_transfer);
    348
    349/*
    350 * Receive one interrupt buffer, without timeouts, but allowing early
    351 * termination.  Return codes are USB_STOR_XFER_xxx.
    352 *
    353 * This routine always uses us->recv_intr_pipe as the pipe and
    354 * us->ep_bInterval as the interrupt interval.
    355 */
    356static int usb_stor_intr_transfer(struct us_data *us, void *buf,
    357				  unsigned int length)
    358{
    359	int result;
    360	unsigned int pipe = us->recv_intr_pipe;
    361	unsigned int maxp;
    362
    363	usb_stor_dbg(us, "xfer %u bytes\n", length);
    364
    365	/* calculate the max packet size */
    366	maxp = usb_maxpacket(us->pusb_dev, pipe);
    367	if (maxp > length)
    368		maxp = length;
    369
    370	/* fill and submit the URB */
    371	usb_fill_int_urb(us->current_urb, us->pusb_dev, pipe, buf,
    372			maxp, usb_stor_blocking_completion, NULL,
    373			us->ep_bInterval);
    374	result = usb_stor_msg_common(us, 0);
    375
    376	return interpret_urb_result(us, pipe, length, result,
    377			us->current_urb->actual_length);
    378}
    379
    380/*
    381 * Transfer one buffer via bulk pipe, without timeouts, but allowing early
    382 * termination.  Return codes are USB_STOR_XFER_xxx.  If the bulk pipe
    383 * stalls during the transfer, the halt is automatically cleared.
    384 */
    385int usb_stor_bulk_transfer_buf(struct us_data *us, unsigned int pipe,
    386	void *buf, unsigned int length, unsigned int *act_len)
    387{
    388	int result;
    389
    390	usb_stor_dbg(us, "xfer %u bytes\n", length);
    391
    392	/* fill and submit the URB */
    393	usb_fill_bulk_urb(us->current_urb, us->pusb_dev, pipe, buf, length,
    394		      usb_stor_blocking_completion, NULL);
    395	result = usb_stor_msg_common(us, 0);
    396
    397	/* store the actual length of the data transferred */
    398	if (act_len)
    399		*act_len = us->current_urb->actual_length;
    400	return interpret_urb_result(us, pipe, length, result, 
    401			us->current_urb->actual_length);
    402}
    403EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_buf);
    404
    405/*
    406 * Transfer a scatter-gather list via bulk transfer
    407 *
    408 * This function does basically the same thing as usb_stor_bulk_transfer_buf()
    409 * above, but it uses the usbcore scatter-gather library.
    410 */
    411static int usb_stor_bulk_transfer_sglist(struct us_data *us, unsigned int pipe,
    412		struct scatterlist *sg, int num_sg, unsigned int length,
    413		unsigned int *act_len)
    414{
    415	int result;
    416
    417	/* don't submit s-g requests during abort processing */
    418	if (test_bit(US_FLIDX_ABORTING, &us->dflags))
    419		goto usb_stor_xfer_error;
    420
    421	/* initialize the scatter-gather request block */
    422	usb_stor_dbg(us, "xfer %u bytes, %d entries\n", length, num_sg);
    423	result = usb_sg_init(&us->current_sg, us->pusb_dev, pipe, 0,
    424			sg, num_sg, length, GFP_NOIO);
    425	if (result) {
    426		usb_stor_dbg(us, "usb_sg_init returned %d\n", result);
    427		goto usb_stor_xfer_error;
    428	}
    429
    430	/*
    431	 * since the block has been initialized successfully, it's now
    432	 * okay to cancel it
    433	 */
    434	set_bit(US_FLIDX_SG_ACTIVE, &us->dflags);
    435
    436	/* did an abort occur during the submission? */
    437	if (test_bit(US_FLIDX_ABORTING, &us->dflags)) {
    438
    439		/* cancel the request, if it hasn't been cancelled already */
    440		if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) {
    441			usb_stor_dbg(us, "-- cancelling sg request\n");
    442			usb_sg_cancel(&us->current_sg);
    443		}
    444	}
    445
    446	/* wait for the completion of the transfer */
    447	usb_sg_wait(&us->current_sg);
    448	clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags);
    449
    450	result = us->current_sg.status;
    451	if (act_len)
    452		*act_len = us->current_sg.bytes;
    453	return interpret_urb_result(us, pipe, length, result,
    454			us->current_sg.bytes);
    455
    456usb_stor_xfer_error:
    457	if (act_len)
    458		*act_len = 0;
    459	return USB_STOR_XFER_ERROR;
    460}
    461
    462/*
    463 * Common used function. Transfer a complete command
    464 * via usb_stor_bulk_transfer_sglist() above. Set cmnd resid
    465 */
    466int usb_stor_bulk_srb(struct us_data* us, unsigned int pipe,
    467		      struct scsi_cmnd* srb)
    468{
    469	unsigned int partial;
    470	int result = usb_stor_bulk_transfer_sglist(us, pipe, scsi_sglist(srb),
    471				      scsi_sg_count(srb), scsi_bufflen(srb),
    472				      &partial);
    473
    474	scsi_set_resid(srb, scsi_bufflen(srb) - partial);
    475	return result;
    476}
    477EXPORT_SYMBOL_GPL(usb_stor_bulk_srb);
    478
    479/*
    480 * Transfer an entire SCSI command's worth of data payload over the bulk
    481 * pipe.
    482 *
    483 * Note that this uses usb_stor_bulk_transfer_buf() and
    484 * usb_stor_bulk_transfer_sglist() to achieve its goals --
    485 * this function simply determines whether we're going to use
    486 * scatter-gather or not, and acts appropriately.
    487 */
    488int usb_stor_bulk_transfer_sg(struct us_data* us, unsigned int pipe,
    489		void *buf, unsigned int length_left, int use_sg, int *residual)
    490{
    491	int result;
    492	unsigned int partial;
    493
    494	/* are we scatter-gathering? */
    495	if (use_sg) {
    496		/* use the usb core scatter-gather primitives */
    497		result = usb_stor_bulk_transfer_sglist(us, pipe,
    498				(struct scatterlist *) buf, use_sg,
    499				length_left, &partial);
    500		length_left -= partial;
    501	} else {
    502		/* no scatter-gather, just make the request */
    503		result = usb_stor_bulk_transfer_buf(us, pipe, buf, 
    504				length_left, &partial);
    505		length_left -= partial;
    506	}
    507
    508	/* store the residual and return the error code */
    509	if (residual)
    510		*residual = length_left;
    511	return result;
    512}
    513EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_sg);
    514
    515/***********************************************************************
    516 * Transport routines
    517 ***********************************************************************/
    518
    519/*
    520 * There are so many devices that report the capacity incorrectly,
    521 * this routine was written to counteract some of the resulting
    522 * problems.
    523 */
    524static void last_sector_hacks(struct us_data *us, struct scsi_cmnd *srb)
    525{
    526	struct gendisk *disk;
    527	struct scsi_disk *sdkp;
    528	u32 sector;
    529
    530	/* To Report "Medium Error: Record Not Found */
    531	static unsigned char record_not_found[18] = {
    532		[0]	= 0x70,			/* current error */
    533		[2]	= MEDIUM_ERROR,		/* = 0x03 */
    534		[7]	= 0x0a,			/* additional length */
    535		[12]	= 0x14			/* Record Not Found */
    536	};
    537
    538	/*
    539	 * If last-sector problems can't occur, whether because the
    540	 * capacity was already decremented or because the device is
    541	 * known to report the correct capacity, then we don't need
    542	 * to do anything.
    543	 */
    544	if (!us->use_last_sector_hacks)
    545		return;
    546
    547	/* Was this command a READ(10) or a WRITE(10)? */
    548	if (srb->cmnd[0] != READ_10 && srb->cmnd[0] != WRITE_10)
    549		goto done;
    550
    551	/* Did this command access the last sector? */
    552	sector = (srb->cmnd[2] << 24) | (srb->cmnd[3] << 16) |
    553			(srb->cmnd[4] << 8) | (srb->cmnd[5]);
    554	disk = scsi_cmd_to_rq(srb)->q->disk;
    555	if (!disk)
    556		goto done;
    557	sdkp = scsi_disk(disk);
    558	if (!sdkp)
    559		goto done;
    560	if (sector + 1 != sdkp->capacity)
    561		goto done;
    562
    563	if (srb->result == SAM_STAT_GOOD && scsi_get_resid(srb) == 0) {
    564
    565		/*
    566		 * The command succeeded.  We know this device doesn't
    567		 * have the last-sector bug, so stop checking it.
    568		 */
    569		us->use_last_sector_hacks = 0;
    570
    571	} else {
    572		/*
    573		 * The command failed.  Allow up to 3 retries in case this
    574		 * is some normal sort of failure.  After that, assume the
    575		 * capacity is wrong and we're trying to access the sector
    576		 * beyond the end.  Replace the result code and sense data
    577		 * with values that will cause the SCSI core to fail the
    578		 * command immediately, instead of going into an infinite
    579		 * (or even just a very long) retry loop.
    580		 */
    581		if (++us->last_sector_retries < 3)
    582			return;
    583		srb->result = SAM_STAT_CHECK_CONDITION;
    584		memcpy(srb->sense_buffer, record_not_found,
    585				sizeof(record_not_found));
    586	}
    587
    588 done:
    589	/*
    590	 * Don't reset the retry counter for TEST UNIT READY commands,
    591	 * because they get issued after device resets which might be
    592	 * caused by a failed last-sector access.
    593	 */
    594	if (srb->cmnd[0] != TEST_UNIT_READY)
    595		us->last_sector_retries = 0;
    596}
    597
    598/*
    599 * Invoke the transport and basic error-handling/recovery methods
    600 *
    601 * This is used by the protocol layers to actually send the message to
    602 * the device and receive the response.
    603 */
    604void usb_stor_invoke_transport(struct scsi_cmnd *srb, struct us_data *us)
    605{
    606	int need_auto_sense;
    607	int result;
    608
    609	/* send the command to the transport layer */
    610	scsi_set_resid(srb, 0);
    611	result = us->transport(srb, us);
    612
    613	/*
    614	 * if the command gets aborted by the higher layers, we need to
    615	 * short-circuit all other processing
    616	 */
    617	if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) {
    618		usb_stor_dbg(us, "-- command was aborted\n");
    619		srb->result = DID_ABORT << 16;
    620		goto Handle_Errors;
    621	}
    622
    623	/* if there is a transport error, reset and don't auto-sense */
    624	if (result == USB_STOR_TRANSPORT_ERROR) {
    625		usb_stor_dbg(us, "-- transport indicates error, resetting\n");
    626		srb->result = DID_ERROR << 16;
    627		goto Handle_Errors;
    628	}
    629
    630	/* if the transport provided its own sense data, don't auto-sense */
    631	if (result == USB_STOR_TRANSPORT_NO_SENSE) {
    632		srb->result = SAM_STAT_CHECK_CONDITION;
    633		last_sector_hacks(us, srb);
    634		return;
    635	}
    636
    637	srb->result = SAM_STAT_GOOD;
    638
    639	/*
    640	 * Determine if we need to auto-sense
    641	 *
    642	 * I normally don't use a flag like this, but it's almost impossible
    643	 * to understand what's going on here if I don't.
    644	 */
    645	need_auto_sense = 0;
    646
    647	/*
    648	 * If we're running the CB transport, which is incapable
    649	 * of determining status on its own, we will auto-sense
    650	 * unless the operation involved a data-in transfer.  Devices
    651	 * can signal most data-in errors by stalling the bulk-in pipe.
    652	 */
    653	if ((us->protocol == USB_PR_CB || us->protocol == USB_PR_DPCM_USB) &&
    654			srb->sc_data_direction != DMA_FROM_DEVICE) {
    655		usb_stor_dbg(us, "-- CB transport device requiring auto-sense\n");
    656		need_auto_sense = 1;
    657	}
    658
    659	/* Some devices (Kindle) require another command after SYNC CACHE */
    660	if ((us->fflags & US_FL_SENSE_AFTER_SYNC) &&
    661			srb->cmnd[0] == SYNCHRONIZE_CACHE) {
    662		usb_stor_dbg(us, "-- sense after SYNC CACHE\n");
    663		need_auto_sense = 1;
    664	}
    665
    666	/*
    667	 * If we have a failure, we're going to do a REQUEST_SENSE 
    668	 * automatically.  Note that we differentiate between a command
    669	 * "failure" and an "error" in the transport mechanism.
    670	 */
    671	if (result == USB_STOR_TRANSPORT_FAILED) {
    672		usb_stor_dbg(us, "-- transport indicates command failure\n");
    673		need_auto_sense = 1;
    674	}
    675
    676	/*
    677	 * Determine if this device is SAT by seeing if the
    678	 * command executed successfully.  Otherwise we'll have
    679	 * to wait for at least one CHECK_CONDITION to determine
    680	 * SANE_SENSE support
    681	 */
    682	if (unlikely((srb->cmnd[0] == ATA_16 || srb->cmnd[0] == ATA_12) &&
    683	    result == USB_STOR_TRANSPORT_GOOD &&
    684	    !(us->fflags & US_FL_SANE_SENSE) &&
    685	    !(us->fflags & US_FL_BAD_SENSE) &&
    686	    !(srb->cmnd[2] & 0x20))) {
    687		usb_stor_dbg(us, "-- SAT supported, increasing auto-sense\n");
    688		us->fflags |= US_FL_SANE_SENSE;
    689	}
    690
    691	/*
    692	 * A short transfer on a command where we don't expect it
    693	 * is unusual, but it doesn't mean we need to auto-sense.
    694	 */
    695	if ((scsi_get_resid(srb) > 0) &&
    696	    !((srb->cmnd[0] == REQUEST_SENSE) ||
    697	      (srb->cmnd[0] == INQUIRY) ||
    698	      (srb->cmnd[0] == MODE_SENSE) ||
    699	      (srb->cmnd[0] == LOG_SENSE) ||
    700	      (srb->cmnd[0] == MODE_SENSE_10))) {
    701		usb_stor_dbg(us, "-- unexpectedly short transfer\n");
    702	}
    703
    704	/* Now, if we need to do the auto-sense, let's do it */
    705	if (need_auto_sense) {
    706		int temp_result;
    707		struct scsi_eh_save ses;
    708		int sense_size = US_SENSE_SIZE;
    709		struct scsi_sense_hdr sshdr;
    710		const u8 *scdd;
    711		u8 fm_ili;
    712
    713		/* device supports and needs bigger sense buffer */
    714		if (us->fflags & US_FL_SANE_SENSE)
    715			sense_size = ~0;
    716Retry_Sense:
    717		usb_stor_dbg(us, "Issuing auto-REQUEST_SENSE\n");
    718
    719		scsi_eh_prep_cmnd(srb, &ses, NULL, 0, sense_size);
    720
    721		/* FIXME: we must do the protocol translation here */
    722		if (us->subclass == USB_SC_RBC || us->subclass == USB_SC_SCSI ||
    723				us->subclass == USB_SC_CYP_ATACB)
    724			srb->cmd_len = 6;
    725		else
    726			srb->cmd_len = 12;
    727
    728		/* issue the auto-sense command */
    729		scsi_set_resid(srb, 0);
    730		temp_result = us->transport(us->srb, us);
    731
    732		/* let's clean up right away */
    733		scsi_eh_restore_cmnd(srb, &ses);
    734
    735		if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) {
    736			usb_stor_dbg(us, "-- auto-sense aborted\n");
    737			srb->result = DID_ABORT << 16;
    738
    739			/* If SANE_SENSE caused this problem, disable it */
    740			if (sense_size != US_SENSE_SIZE) {
    741				us->fflags &= ~US_FL_SANE_SENSE;
    742				us->fflags |= US_FL_BAD_SENSE;
    743			}
    744			goto Handle_Errors;
    745		}
    746
    747		/*
    748		 * Some devices claim to support larger sense but fail when
    749		 * trying to request it. When a transport failure happens
    750		 * using US_FS_SANE_SENSE, we always retry with a standard
    751		 * (small) sense request. This fixes some USB GSM modems
    752		 */
    753		if (temp_result == USB_STOR_TRANSPORT_FAILED &&
    754				sense_size != US_SENSE_SIZE) {
    755			usb_stor_dbg(us, "-- auto-sense failure, retry small sense\n");
    756			sense_size = US_SENSE_SIZE;
    757			us->fflags &= ~US_FL_SANE_SENSE;
    758			us->fflags |= US_FL_BAD_SENSE;
    759			goto Retry_Sense;
    760		}
    761
    762		/* Other failures */
    763		if (temp_result != USB_STOR_TRANSPORT_GOOD) {
    764			usb_stor_dbg(us, "-- auto-sense failure\n");
    765
    766			/*
    767			 * we skip the reset if this happens to be a
    768			 * multi-target device, since failure of an
    769			 * auto-sense is perfectly valid
    770			 */
    771			srb->result = DID_ERROR << 16;
    772			if (!(us->fflags & US_FL_SCM_MULT_TARG))
    773				goto Handle_Errors;
    774			return;
    775		}
    776
    777		/*
    778		 * If the sense data returned is larger than 18-bytes then we
    779		 * assume this device supports requesting more in the future.
    780		 * The response code must be 70h through 73h inclusive.
    781		 */
    782		if (srb->sense_buffer[7] > (US_SENSE_SIZE - 8) &&
    783		    !(us->fflags & US_FL_SANE_SENSE) &&
    784		    !(us->fflags & US_FL_BAD_SENSE) &&
    785		    (srb->sense_buffer[0] & 0x7C) == 0x70) {
    786			usb_stor_dbg(us, "-- SANE_SENSE support enabled\n");
    787			us->fflags |= US_FL_SANE_SENSE;
    788
    789			/*
    790			 * Indicate to the user that we truncated their sense
    791			 * because we didn't know it supported larger sense.
    792			 */
    793			usb_stor_dbg(us, "-- Sense data truncated to %i from %i\n",
    794				     US_SENSE_SIZE,
    795				     srb->sense_buffer[7] + 8);
    796			srb->sense_buffer[7] = (US_SENSE_SIZE - 8);
    797		}
    798
    799		scsi_normalize_sense(srb->sense_buffer, SCSI_SENSE_BUFFERSIZE,
    800				     &sshdr);
    801
    802		usb_stor_dbg(us, "-- Result from auto-sense is %d\n",
    803			     temp_result);
    804		usb_stor_dbg(us, "-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n",
    805			     sshdr.response_code, sshdr.sense_key,
    806			     sshdr.asc, sshdr.ascq);
    807#ifdef CONFIG_USB_STORAGE_DEBUG
    808		usb_stor_show_sense(us, sshdr.sense_key, sshdr.asc, sshdr.ascq);
    809#endif
    810
    811		/* set the result so the higher layers expect this data */
    812		srb->result = SAM_STAT_CHECK_CONDITION;
    813
    814		scdd = scsi_sense_desc_find(srb->sense_buffer,
    815					    SCSI_SENSE_BUFFERSIZE, 4);
    816		fm_ili = (scdd ? scdd[3] : srb->sense_buffer[2]) & 0xA0;
    817
    818		/*
    819		 * We often get empty sense data.  This could indicate that
    820		 * everything worked or that there was an unspecified
    821		 * problem.  We have to decide which.
    822		 */
    823		if (sshdr.sense_key == 0 && sshdr.asc == 0 && sshdr.ascq == 0 &&
    824		    fm_ili == 0) {
    825			/*
    826			 * If things are really okay, then let's show that.
    827			 * Zero out the sense buffer so the higher layers
    828			 * won't realize we did an unsolicited auto-sense.
    829			 */
    830			if (result == USB_STOR_TRANSPORT_GOOD) {
    831				srb->result = SAM_STAT_GOOD;
    832				srb->sense_buffer[0] = 0x0;
    833			}
    834
    835			/*
    836			 * ATA-passthru commands use sense data to report
    837			 * the command completion status, and often devices
    838			 * return Check Condition status when nothing is
    839			 * wrong.
    840			 */
    841			else if (srb->cmnd[0] == ATA_16 ||
    842					srb->cmnd[0] == ATA_12) {
    843				/* leave the data alone */
    844			}
    845
    846			/*
    847			 * If there was a problem, report an unspecified
    848			 * hardware error to prevent the higher layers from
    849			 * entering an infinite retry loop.
    850			 */
    851			else {
    852				srb->result = DID_ERROR << 16;
    853				if ((sshdr.response_code & 0x72) == 0x72)
    854					srb->sense_buffer[1] = HARDWARE_ERROR;
    855				else
    856					srb->sense_buffer[2] = HARDWARE_ERROR;
    857			}
    858		}
    859	}
    860
    861	/*
    862	 * Some devices don't work or return incorrect data the first
    863	 * time they get a READ(10) command, or for the first READ(10)
    864	 * after a media change.  If the INITIAL_READ10 flag is set,
    865	 * keep track of whether READ(10) commands succeed.  If the
    866	 * previous one succeeded and this one failed, set the REDO_READ10
    867	 * flag to force a retry.
    868	 */
    869	if (unlikely((us->fflags & US_FL_INITIAL_READ10) &&
    870			srb->cmnd[0] == READ_10)) {
    871		if (srb->result == SAM_STAT_GOOD) {
    872			set_bit(US_FLIDX_READ10_WORKED, &us->dflags);
    873		} else if (test_bit(US_FLIDX_READ10_WORKED, &us->dflags)) {
    874			clear_bit(US_FLIDX_READ10_WORKED, &us->dflags);
    875			set_bit(US_FLIDX_REDO_READ10, &us->dflags);
    876		}
    877
    878		/*
    879		 * Next, if the REDO_READ10 flag is set, return a result
    880		 * code that will cause the SCSI core to retry the READ(10)
    881		 * command immediately.
    882		 */
    883		if (test_bit(US_FLIDX_REDO_READ10, &us->dflags)) {
    884			clear_bit(US_FLIDX_REDO_READ10, &us->dflags);
    885			srb->result = DID_IMM_RETRY << 16;
    886			srb->sense_buffer[0] = 0;
    887		}
    888	}
    889
    890	/* Did we transfer less than the minimum amount required? */
    891	if ((srb->result == SAM_STAT_GOOD || srb->sense_buffer[2] == 0) &&
    892			scsi_bufflen(srb) - scsi_get_resid(srb) < srb->underflow)
    893		srb->result = DID_ERROR << 16;
    894
    895	last_sector_hacks(us, srb);
    896	return;
    897
    898	/*
    899	 * Error and abort processing: try to resynchronize with the device
    900	 * by issuing a port reset.  If that fails, try a class-specific
    901	 * device reset.
    902	 */
    903  Handle_Errors:
    904
    905	/*
    906	 * Set the RESETTING bit, and clear the ABORTING bit so that
    907	 * the reset may proceed.
    908	 */
    909	scsi_lock(us_to_host(us));
    910	set_bit(US_FLIDX_RESETTING, &us->dflags);
    911	clear_bit(US_FLIDX_ABORTING, &us->dflags);
    912	scsi_unlock(us_to_host(us));
    913
    914	/*
    915	 * We must release the device lock because the pre_reset routine
    916	 * will want to acquire it.
    917	 */
    918	mutex_unlock(&us->dev_mutex);
    919	result = usb_stor_port_reset(us);
    920	mutex_lock(&us->dev_mutex);
    921
    922	if (result < 0) {
    923		scsi_lock(us_to_host(us));
    924		usb_stor_report_device_reset(us);
    925		scsi_unlock(us_to_host(us));
    926		us->transport_reset(us);
    927	}
    928	clear_bit(US_FLIDX_RESETTING, &us->dflags);
    929	last_sector_hacks(us, srb);
    930}
    931
    932/* Stop the current URB transfer */
    933void usb_stor_stop_transport(struct us_data *us)
    934{
    935	/*
    936	 * If the state machine is blocked waiting for an URB,
    937	 * let's wake it up.  The test_and_clear_bit() call
    938	 * guarantees that if a URB has just been submitted,
    939	 * it won't be cancelled more than once.
    940	 */
    941	if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) {
    942		usb_stor_dbg(us, "-- cancelling URB\n");
    943		usb_unlink_urb(us->current_urb);
    944	}
    945
    946	/* If we are waiting for a scatter-gather operation, cancel it. */
    947	if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) {
    948		usb_stor_dbg(us, "-- cancelling sg request\n");
    949		usb_sg_cancel(&us->current_sg);
    950	}
    951}
    952
    953/*
    954 * Control/Bulk and Control/Bulk/Interrupt transport
    955 */
    956
    957int usb_stor_CB_transport(struct scsi_cmnd *srb, struct us_data *us)
    958{
    959	unsigned int transfer_length = scsi_bufflen(srb);
    960	unsigned int pipe = 0;
    961	int result;
    962
    963	/* COMMAND STAGE */
    964	/* let's send the command via the control pipe */
    965	/*
    966	 * Command is sometime (f.e. after scsi_eh_prep_cmnd) on the stack.
    967	 * Stack may be vmallocated.  So no DMA for us.  Make a copy.
    968	 */
    969	memcpy(us->iobuf, srb->cmnd, srb->cmd_len);
    970	result = usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
    971				      US_CBI_ADSC, 
    972				      USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0, 
    973				      us->ifnum, us->iobuf, srb->cmd_len);
    974
    975	/* check the return code for the command */
    976	usb_stor_dbg(us, "Call to usb_stor_ctrl_transfer() returned %d\n",
    977		     result);
    978
    979	/* if we stalled the command, it means command failed */
    980	if (result == USB_STOR_XFER_STALLED) {
    981		return USB_STOR_TRANSPORT_FAILED;
    982	}
    983
    984	/* Uh oh... serious problem here */
    985	if (result != USB_STOR_XFER_GOOD) {
    986		return USB_STOR_TRANSPORT_ERROR;
    987	}
    988
    989	/* DATA STAGE */
    990	/* transfer the data payload for this command, if one exists*/
    991	if (transfer_length) {
    992		pipe = srb->sc_data_direction == DMA_FROM_DEVICE ? 
    993				us->recv_bulk_pipe : us->send_bulk_pipe;
    994		result = usb_stor_bulk_srb(us, pipe, srb);
    995		usb_stor_dbg(us, "CBI data stage result is 0x%x\n", result);
    996
    997		/* if we stalled the data transfer it means command failed */
    998		if (result == USB_STOR_XFER_STALLED)
    999			return USB_STOR_TRANSPORT_FAILED;
   1000		if (result > USB_STOR_XFER_STALLED)
   1001			return USB_STOR_TRANSPORT_ERROR;
   1002	}
   1003
   1004	/* STATUS STAGE */
   1005
   1006	/*
   1007	 * NOTE: CB does not have a status stage.  Silly, I know.  So
   1008	 * we have to catch this at a higher level.
   1009	 */
   1010	if (us->protocol != USB_PR_CBI)
   1011		return USB_STOR_TRANSPORT_GOOD;
   1012
   1013	result = usb_stor_intr_transfer(us, us->iobuf, 2);
   1014	usb_stor_dbg(us, "Got interrupt data (0x%x, 0x%x)\n",
   1015		     us->iobuf[0], us->iobuf[1]);
   1016	if (result != USB_STOR_XFER_GOOD)
   1017		return USB_STOR_TRANSPORT_ERROR;
   1018
   1019	/*
   1020	 * UFI gives us ASC and ASCQ, like a request sense
   1021	 *
   1022	 * REQUEST_SENSE and INQUIRY don't affect the sense data on UFI
   1023	 * devices, so we ignore the information for those commands.  Note
   1024	 * that this means we could be ignoring a real error on these
   1025	 * commands, but that can't be helped.
   1026	 */
   1027	if (us->subclass == USB_SC_UFI) {
   1028		if (srb->cmnd[0] == REQUEST_SENSE ||
   1029		    srb->cmnd[0] == INQUIRY)
   1030			return USB_STOR_TRANSPORT_GOOD;
   1031		if (us->iobuf[0])
   1032			goto Failed;
   1033		return USB_STOR_TRANSPORT_GOOD;
   1034	}
   1035
   1036	/*
   1037	 * If not UFI, we interpret the data as a result code 
   1038	 * The first byte should always be a 0x0.
   1039	 *
   1040	 * Some bogus devices don't follow that rule.  They stuff the ASC
   1041	 * into the first byte -- so if it's non-zero, call it a failure.
   1042	 */
   1043	if (us->iobuf[0]) {
   1044		usb_stor_dbg(us, "CBI IRQ data showed reserved bType 0x%x\n",
   1045			     us->iobuf[0]);
   1046		goto Failed;
   1047
   1048	}
   1049
   1050	/* The second byte & 0x0F should be 0x0 for good, otherwise error */
   1051	switch (us->iobuf[1] & 0x0F) {
   1052		case 0x00: 
   1053			return USB_STOR_TRANSPORT_GOOD;
   1054		case 0x01: 
   1055			goto Failed;
   1056	}
   1057	return USB_STOR_TRANSPORT_ERROR;
   1058
   1059	/*
   1060	 * the CBI spec requires that the bulk pipe must be cleared
   1061	 * following any data-in/out command failure (section 2.4.3.1.3)
   1062	 */
   1063  Failed:
   1064	if (pipe)
   1065		usb_stor_clear_halt(us, pipe);
   1066	return USB_STOR_TRANSPORT_FAILED;
   1067}
   1068EXPORT_SYMBOL_GPL(usb_stor_CB_transport);
   1069
   1070/*
   1071 * Bulk only transport
   1072 */
   1073
   1074/* Determine what the maximum LUN supported is */
   1075int usb_stor_Bulk_max_lun(struct us_data *us)
   1076{
   1077	int result;
   1078
   1079	/* issue the command */
   1080	us->iobuf[0] = 0;
   1081	result = usb_stor_control_msg(us, us->recv_ctrl_pipe,
   1082				 US_BULK_GET_MAX_LUN, 
   1083				 USB_DIR_IN | USB_TYPE_CLASS | 
   1084				 USB_RECIP_INTERFACE,
   1085				 0, us->ifnum, us->iobuf, 1, 10*HZ);
   1086
   1087	usb_stor_dbg(us, "GetMaxLUN command result is %d, data is %d\n",
   1088		     result, us->iobuf[0]);
   1089
   1090	/*
   1091	 * If we have a successful request, return the result if valid. The
   1092	 * CBW LUN field is 4 bits wide, so the value reported by the device
   1093	 * should fit into that.
   1094	 */
   1095	if (result > 0) {
   1096		if (us->iobuf[0] < 16) {
   1097			return us->iobuf[0];
   1098		} else {
   1099			dev_info(&us->pusb_intf->dev,
   1100				 "Max LUN %d is not valid, using 0 instead",
   1101				 us->iobuf[0]);
   1102		}
   1103	}
   1104
   1105	/*
   1106	 * Some devices don't like GetMaxLUN.  They may STALL the control
   1107	 * pipe, they may return a zero-length result, they may do nothing at
   1108	 * all and timeout, or they may fail in even more bizarrely creative
   1109	 * ways.  In these cases the best approach is to use the default
   1110	 * value: only one LUN.
   1111	 */
   1112	return 0;
   1113}
   1114
   1115int usb_stor_Bulk_transport(struct scsi_cmnd *srb, struct us_data *us)
   1116{
   1117	struct bulk_cb_wrap *bcb = (struct bulk_cb_wrap *) us->iobuf;
   1118	struct bulk_cs_wrap *bcs = (struct bulk_cs_wrap *) us->iobuf;
   1119	unsigned int transfer_length = scsi_bufflen(srb);
   1120	unsigned int residue;
   1121	int result;
   1122	int fake_sense = 0;
   1123	unsigned int cswlen;
   1124	unsigned int cbwlen = US_BULK_CB_WRAP_LEN;
   1125
   1126	/* Take care of BULK32 devices; set extra byte to 0 */
   1127	if (unlikely(us->fflags & US_FL_BULK32)) {
   1128		cbwlen = 32;
   1129		us->iobuf[31] = 0;
   1130	}
   1131
   1132	/* set up the command wrapper */
   1133	bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN);
   1134	bcb->DataTransferLength = cpu_to_le32(transfer_length);
   1135	bcb->Flags = srb->sc_data_direction == DMA_FROM_DEVICE ?
   1136		US_BULK_FLAG_IN : 0;
   1137	bcb->Tag = ++us->tag;
   1138	bcb->Lun = srb->device->lun;
   1139	if (us->fflags & US_FL_SCM_MULT_TARG)
   1140		bcb->Lun |= srb->device->id << 4;
   1141	bcb->Length = srb->cmd_len;
   1142
   1143	/* copy the command payload */
   1144	memset(bcb->CDB, 0, sizeof(bcb->CDB));
   1145	memcpy(bcb->CDB, srb->cmnd, bcb->Length);
   1146
   1147	/* send it to out endpoint */
   1148	usb_stor_dbg(us, "Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n",
   1149		     le32_to_cpu(bcb->Signature), bcb->Tag,
   1150		     le32_to_cpu(bcb->DataTransferLength), bcb->Flags,
   1151		     (bcb->Lun >> 4), (bcb->Lun & 0x0F),
   1152		     bcb->Length);
   1153	result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
   1154				bcb, cbwlen, NULL);
   1155	usb_stor_dbg(us, "Bulk command transfer result=%d\n", result);
   1156	if (result != USB_STOR_XFER_GOOD)
   1157		return USB_STOR_TRANSPORT_ERROR;
   1158
   1159	/* DATA STAGE */
   1160	/* send/receive data payload, if there is any */
   1161
   1162	/*
   1163	 * Some USB-IDE converter chips need a 100us delay between the
   1164	 * command phase and the data phase.  Some devices need a little
   1165	 * more than that, probably because of clock rate inaccuracies.
   1166	 */
   1167	if (unlikely(us->fflags & US_FL_GO_SLOW))
   1168		usleep_range(125, 150);
   1169
   1170	if (transfer_length) {
   1171		unsigned int pipe = srb->sc_data_direction == DMA_FROM_DEVICE ? 
   1172				us->recv_bulk_pipe : us->send_bulk_pipe;
   1173		result = usb_stor_bulk_srb(us, pipe, srb);
   1174		usb_stor_dbg(us, "Bulk data transfer result 0x%x\n", result);
   1175		if (result == USB_STOR_XFER_ERROR)
   1176			return USB_STOR_TRANSPORT_ERROR;
   1177
   1178		/*
   1179		 * If the device tried to send back more data than the
   1180		 * amount requested, the spec requires us to transfer
   1181		 * the CSW anyway.  Since there's no point retrying the
   1182		 * the command, we'll return fake sense data indicating
   1183		 * Illegal Request, Invalid Field in CDB.
   1184		 */
   1185		if (result == USB_STOR_XFER_LONG)
   1186			fake_sense = 1;
   1187
   1188		/*
   1189		 * Sometimes a device will mistakenly skip the data phase
   1190		 * and go directly to the status phase without sending a
   1191		 * zero-length packet.  If we get a 13-byte response here,
   1192		 * check whether it really is a CSW.
   1193		 */
   1194		if (result == USB_STOR_XFER_SHORT &&
   1195				srb->sc_data_direction == DMA_FROM_DEVICE &&
   1196				transfer_length - scsi_get_resid(srb) ==
   1197					US_BULK_CS_WRAP_LEN) {
   1198			struct scatterlist *sg = NULL;
   1199			unsigned int offset = 0;
   1200
   1201			if (usb_stor_access_xfer_buf((unsigned char *) bcs,
   1202					US_BULK_CS_WRAP_LEN, srb, &sg,
   1203					&offset, FROM_XFER_BUF) ==
   1204						US_BULK_CS_WRAP_LEN &&
   1205					bcs->Signature ==
   1206						cpu_to_le32(US_BULK_CS_SIGN)) {
   1207				usb_stor_dbg(us, "Device skipped data phase\n");
   1208				scsi_set_resid(srb, transfer_length);
   1209				goto skipped_data_phase;
   1210			}
   1211		}
   1212	}
   1213
   1214	/*
   1215	 * See flow chart on pg 15 of the Bulk Only Transport spec for
   1216	 * an explanation of how this code works.
   1217	 */
   1218
   1219	/* get CSW for device status */
   1220	usb_stor_dbg(us, "Attempting to get CSW...\n");
   1221	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
   1222				bcs, US_BULK_CS_WRAP_LEN, &cswlen);
   1223
   1224	/*
   1225	 * Some broken devices add unnecessary zero-length packets to the
   1226	 * end of their data transfers.  Such packets show up as 0-length
   1227	 * CSWs.  If we encounter such a thing, try to read the CSW again.
   1228	 */
   1229	if (result == USB_STOR_XFER_SHORT && cswlen == 0) {
   1230		usb_stor_dbg(us, "Received 0-length CSW; retrying...\n");
   1231		result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
   1232				bcs, US_BULK_CS_WRAP_LEN, &cswlen);
   1233	}
   1234
   1235	/* did the attempt to read the CSW fail? */
   1236	if (result == USB_STOR_XFER_STALLED) {
   1237
   1238		/* get the status again */
   1239		usb_stor_dbg(us, "Attempting to get CSW (2nd try)...\n");
   1240		result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
   1241				bcs, US_BULK_CS_WRAP_LEN, NULL);
   1242	}
   1243
   1244	/* if we still have a failure at this point, we're in trouble */
   1245	usb_stor_dbg(us, "Bulk status result = %d\n", result);
   1246	if (result != USB_STOR_XFER_GOOD)
   1247		return USB_STOR_TRANSPORT_ERROR;
   1248
   1249 skipped_data_phase:
   1250	/* check bulk status */
   1251	residue = le32_to_cpu(bcs->Residue);
   1252	usb_stor_dbg(us, "Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n",
   1253		     le32_to_cpu(bcs->Signature), bcs->Tag,
   1254		     residue, bcs->Status);
   1255	if (!(bcs->Tag == us->tag || (us->fflags & US_FL_BULK_IGNORE_TAG)) ||
   1256		bcs->Status > US_BULK_STAT_PHASE) {
   1257		usb_stor_dbg(us, "Bulk logical error\n");
   1258		return USB_STOR_TRANSPORT_ERROR;
   1259	}
   1260
   1261	/*
   1262	 * Some broken devices report odd signatures, so we do not check them
   1263	 * for validity against the spec. We store the first one we see,
   1264	 * and check subsequent transfers for validity against this signature.
   1265	 */
   1266	if (!us->bcs_signature) {
   1267		us->bcs_signature = bcs->Signature;
   1268		if (us->bcs_signature != cpu_to_le32(US_BULK_CS_SIGN))
   1269			usb_stor_dbg(us, "Learnt BCS signature 0x%08X\n",
   1270				     le32_to_cpu(us->bcs_signature));
   1271	} else if (bcs->Signature != us->bcs_signature) {
   1272		usb_stor_dbg(us, "Signature mismatch: got %08X, expecting %08X\n",
   1273			     le32_to_cpu(bcs->Signature),
   1274			     le32_to_cpu(us->bcs_signature));
   1275		return USB_STOR_TRANSPORT_ERROR;
   1276	}
   1277
   1278	/*
   1279	 * try to compute the actual residue, based on how much data
   1280	 * was really transferred and what the device tells us
   1281	 */
   1282	if (residue && !(us->fflags & US_FL_IGNORE_RESIDUE)) {
   1283
   1284		/*
   1285		 * Heuristically detect devices that generate bogus residues
   1286		 * by seeing what happens with INQUIRY and READ CAPACITY
   1287		 * commands.
   1288		 */
   1289		if (bcs->Status == US_BULK_STAT_OK &&
   1290				scsi_get_resid(srb) == 0 &&
   1291					((srb->cmnd[0] == INQUIRY &&
   1292						transfer_length == 36) ||
   1293					(srb->cmnd[0] == READ_CAPACITY &&
   1294						transfer_length == 8))) {
   1295			us->fflags |= US_FL_IGNORE_RESIDUE;
   1296
   1297		} else {
   1298			residue = min(residue, transfer_length);
   1299			scsi_set_resid(srb, max(scsi_get_resid(srb), residue));
   1300		}
   1301	}
   1302
   1303	/* based on the status code, we report good or bad */
   1304	switch (bcs->Status) {
   1305		case US_BULK_STAT_OK:
   1306			/* device babbled -- return fake sense data */
   1307			if (fake_sense) {
   1308				memcpy(srb->sense_buffer, 
   1309				       usb_stor_sense_invalidCDB, 
   1310				       sizeof(usb_stor_sense_invalidCDB));
   1311				return USB_STOR_TRANSPORT_NO_SENSE;
   1312			}
   1313
   1314			/* command good -- note that data could be short */
   1315			return USB_STOR_TRANSPORT_GOOD;
   1316
   1317		case US_BULK_STAT_FAIL:
   1318			/* command failed */
   1319			return USB_STOR_TRANSPORT_FAILED;
   1320
   1321		case US_BULK_STAT_PHASE:
   1322			/*
   1323			 * phase error -- note that a transport reset will be
   1324			 * invoked by the invoke_transport() function
   1325			 */
   1326			return USB_STOR_TRANSPORT_ERROR;
   1327	}
   1328
   1329	/* we should never get here, but if we do, we're in trouble */
   1330	return USB_STOR_TRANSPORT_ERROR;
   1331}
   1332EXPORT_SYMBOL_GPL(usb_stor_Bulk_transport);
   1333
   1334/***********************************************************************
   1335 * Reset routines
   1336 ***********************************************************************/
   1337
   1338/*
   1339 * This is the common part of the device reset code.
   1340 *
   1341 * It's handy that every transport mechanism uses the control endpoint for
   1342 * resets.
   1343 *
   1344 * Basically, we send a reset with a 5-second timeout, so we don't get
   1345 * jammed attempting to do the reset.
   1346 */
   1347static int usb_stor_reset_common(struct us_data *us,
   1348		u8 request, u8 requesttype,
   1349		u16 value, u16 index, void *data, u16 size)
   1350{
   1351	int result;
   1352	int result2;
   1353
   1354	if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
   1355		usb_stor_dbg(us, "No reset during disconnect\n");
   1356		return -EIO;
   1357	}
   1358
   1359	result = usb_stor_control_msg(us, us->send_ctrl_pipe,
   1360			request, requesttype, value, index, data, size,
   1361			5*HZ);
   1362	if (result < 0) {
   1363		usb_stor_dbg(us, "Soft reset failed: %d\n", result);
   1364		return result;
   1365	}
   1366
   1367	/*
   1368	 * Give the device some time to recover from the reset,
   1369	 * but don't delay disconnect processing.
   1370	 */
   1371	wait_event_interruptible_timeout(us->delay_wait,
   1372			test_bit(US_FLIDX_DISCONNECTING, &us->dflags),
   1373			HZ*6);
   1374	if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
   1375		usb_stor_dbg(us, "Reset interrupted by disconnect\n");
   1376		return -EIO;
   1377	}
   1378
   1379	usb_stor_dbg(us, "Soft reset: clearing bulk-in endpoint halt\n");
   1380	result = usb_stor_clear_halt(us, us->recv_bulk_pipe);
   1381
   1382	usb_stor_dbg(us, "Soft reset: clearing bulk-out endpoint halt\n");
   1383	result2 = usb_stor_clear_halt(us, us->send_bulk_pipe);
   1384
   1385	/* return a result code based on the result of the clear-halts */
   1386	if (result >= 0)
   1387		result = result2;
   1388	if (result < 0)
   1389		usb_stor_dbg(us, "Soft reset failed\n");
   1390	else
   1391		usb_stor_dbg(us, "Soft reset done\n");
   1392	return result;
   1393}
   1394
   1395/* This issues a CB[I] Reset to the device in question */
   1396#define CB_RESET_CMD_SIZE	12
   1397
   1398int usb_stor_CB_reset(struct us_data *us)
   1399{
   1400	memset(us->iobuf, 0xFF, CB_RESET_CMD_SIZE);
   1401	us->iobuf[0] = SEND_DIAGNOSTIC;
   1402	us->iobuf[1] = 4;
   1403	return usb_stor_reset_common(us, US_CBI_ADSC, 
   1404				 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
   1405				 0, us->ifnum, us->iobuf, CB_RESET_CMD_SIZE);
   1406}
   1407EXPORT_SYMBOL_GPL(usb_stor_CB_reset);
   1408
   1409/*
   1410 * This issues a Bulk-only Reset to the device in question, including
   1411 * clearing the subsequent endpoint halts that may occur.
   1412 */
   1413int usb_stor_Bulk_reset(struct us_data *us)
   1414{
   1415	return usb_stor_reset_common(us, US_BULK_RESET_REQUEST, 
   1416				 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
   1417				 0, us->ifnum, NULL, 0);
   1418}
   1419EXPORT_SYMBOL_GPL(usb_stor_Bulk_reset);
   1420
   1421/*
   1422 * Issue a USB port reset to the device.  The caller must not hold
   1423 * us->dev_mutex.
   1424 */
   1425int usb_stor_port_reset(struct us_data *us)
   1426{
   1427	int result;
   1428
   1429	/*for these devices we must use the class specific method */
   1430	if (us->pusb_dev->quirks & USB_QUIRK_RESET)
   1431		return -EPERM;
   1432
   1433	result = usb_lock_device_for_reset(us->pusb_dev, us->pusb_intf);
   1434	if (result < 0)
   1435		usb_stor_dbg(us, "unable to lock device for reset: %d\n",
   1436			     result);
   1437	else {
   1438		/* Were we disconnected while waiting for the lock? */
   1439		if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
   1440			result = -EIO;
   1441			usb_stor_dbg(us, "No reset during disconnect\n");
   1442		} else {
   1443			result = usb_reset_device(us->pusb_dev);
   1444			usb_stor_dbg(us, "usb_reset_device returns %d\n",
   1445				     result);
   1446		}
   1447		usb_unlock_device(us->pusb_dev);
   1448	}
   1449	return result;
   1450}