asiliantfb.c (16910B)
1/* 2 * drivers/video/asiliantfb.c 3 * frame buffer driver for Asiliant 69000 chip 4 * Copyright (C) 2001-2003 Saito.K & Jeanne 5 * 6 * from driver/video/chipsfb.c and, 7 * 8 * drivers/video/asiliantfb.c -- frame buffer device for 9 * Asiliant 69030 chip (formerly Intel, formerly Chips & Technologies) 10 * Author: apc@agelectronics.co.uk 11 * Copyright (C) 2000 AG Electronics 12 * Note: the data sheets don't seem to be available from Asiliant. 13 * They are available by searching developer.intel.com, but are not otherwise 14 * linked to. 15 * 16 * This driver should be portable with minimal effort to the 69000 display 17 * chip, and to the twin-display mode of the 69030. 18 * Contains code from Thomas Hhenleitner <th@visuelle-maschinen.de> (thanks) 19 * 20 * Derived from the CT65550 driver chipsfb.c: 21 * Copyright (C) 1998 Paul Mackerras 22 * ...which was derived from the Powermac "chips" driver: 23 * Copyright (C) 1997 Fabio Riccardi. 24 * And from the frame buffer device for Open Firmware-initialized devices: 25 * Copyright (C) 1997 Geert Uytterhoeven. 26 * 27 * This file is subject to the terms and conditions of the GNU General Public 28 * License. See the file COPYING in the main directory of this archive for 29 * more details. 30 */ 31 32#include <linux/module.h> 33#include <linux/kernel.h> 34#include <linux/errno.h> 35#include <linux/string.h> 36#include <linux/mm.h> 37#include <linux/vmalloc.h> 38#include <linux/delay.h> 39#include <linux/interrupt.h> 40#include <linux/fb.h> 41#include <linux/init.h> 42#include <linux/pci.h> 43#include <asm/io.h> 44 45/* Built in clock of the 69030 */ 46static const unsigned Fref = 14318180; 47 48#define mmio_base (p->screen_base + 0x400000) 49 50#define mm_write_ind(num, val, ap, dp) do { \ 51 writeb((num), mmio_base + (ap)); writeb((val), mmio_base + (dp)); \ 52} while (0) 53 54static void mm_write_xr(struct fb_info *p, u8 reg, u8 data) 55{ 56 mm_write_ind(reg, data, 0x7ac, 0x7ad); 57} 58#define write_xr(num, val) mm_write_xr(p, num, val) 59 60static void mm_write_fr(struct fb_info *p, u8 reg, u8 data) 61{ 62 mm_write_ind(reg, data, 0x7a0, 0x7a1); 63} 64#define write_fr(num, val) mm_write_fr(p, num, val) 65 66static void mm_write_cr(struct fb_info *p, u8 reg, u8 data) 67{ 68 mm_write_ind(reg, data, 0x7a8, 0x7a9); 69} 70#define write_cr(num, val) mm_write_cr(p, num, val) 71 72static void mm_write_gr(struct fb_info *p, u8 reg, u8 data) 73{ 74 mm_write_ind(reg, data, 0x79c, 0x79d); 75} 76#define write_gr(num, val) mm_write_gr(p, num, val) 77 78static void mm_write_sr(struct fb_info *p, u8 reg, u8 data) 79{ 80 mm_write_ind(reg, data, 0x788, 0x789); 81} 82#define write_sr(num, val) mm_write_sr(p, num, val) 83 84static void mm_write_ar(struct fb_info *p, u8 reg, u8 data) 85{ 86 readb(mmio_base + 0x7b4); 87 mm_write_ind(reg, data, 0x780, 0x780); 88} 89#define write_ar(num, val) mm_write_ar(p, num, val) 90 91static int asiliantfb_pci_init(struct pci_dev *dp, const struct pci_device_id *); 92static int asiliantfb_check_var(struct fb_var_screeninfo *var, 93 struct fb_info *info); 94static int asiliantfb_set_par(struct fb_info *info); 95static int asiliantfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, 96 u_int transp, struct fb_info *info); 97 98static const struct fb_ops asiliantfb_ops = { 99 .owner = THIS_MODULE, 100 .fb_check_var = asiliantfb_check_var, 101 .fb_set_par = asiliantfb_set_par, 102 .fb_setcolreg = asiliantfb_setcolreg, 103 .fb_fillrect = cfb_fillrect, 104 .fb_copyarea = cfb_copyarea, 105 .fb_imageblit = cfb_imageblit, 106}; 107 108/* Calculate the ratios for the dot clocks without using a single long long 109 * value */ 110static void asiliant_calc_dclk2(u32 *ppixclock, u8 *dclk2_m, u8 *dclk2_n, u8 *dclk2_div) 111{ 112 unsigned pixclock = *ppixclock; 113 unsigned Ftarget; 114 unsigned n; 115 unsigned best_error = 0xffffffff; 116 unsigned best_m = 0xffffffff, 117 best_n = 0xffffffff; 118 unsigned ratio; 119 unsigned remainder; 120 unsigned char divisor = 0; 121 122 /* Calculate the frequency required. This is hard enough. */ 123 ratio = 1000000 / pixclock; 124 remainder = 1000000 % pixclock; 125 Ftarget = 1000000 * ratio + (1000000 * remainder) / pixclock; 126 127 while (Ftarget < 100000000) { 128 divisor += 0x10; 129 Ftarget <<= 1; 130 } 131 132 ratio = Ftarget / Fref; 133 remainder = Ftarget % Fref; 134 135 /* This expresses the constraint that 150kHz <= Fref/n <= 5Mhz, 136 * together with 3 <= n <= 257. */ 137 for (n = 3; n <= 257; n++) { 138 unsigned m = n * ratio + (n * remainder) / Fref; 139 140 /* 3 <= m <= 257 */ 141 if (m >= 3 && m <= 257) { 142 unsigned new_error = Ftarget * n >= Fref * m ? 143 ((Ftarget * n) - (Fref * m)) : ((Fref * m) - (Ftarget * n)); 144 if (new_error < best_error) { 145 best_n = n; 146 best_m = m; 147 best_error = new_error; 148 } 149 } 150 /* But if VLD = 4, then 4m <= 1028 */ 151 else if (m <= 1028) { 152 /* remember there are still only 8-bits of precision in m, so 153 * avoid over-optimistic error calculations */ 154 unsigned new_error = Ftarget * n >= Fref * (m & ~3) ? 155 ((Ftarget * n) - (Fref * (m & ~3))) : ((Fref * (m & ~3)) - (Ftarget * n)); 156 if (new_error < best_error) { 157 best_n = n; 158 best_m = m; 159 best_error = new_error; 160 } 161 } 162 } 163 if (best_m > 257) 164 best_m >>= 2; /* divide m by 4, and leave VCO loop divide at 4 */ 165 else 166 divisor |= 4; /* or set VCO loop divide to 1 */ 167 *dclk2_m = best_m - 2; 168 *dclk2_n = best_n - 2; 169 *dclk2_div = divisor; 170 *ppixclock = pixclock; 171 return; 172} 173 174static void asiliant_set_timing(struct fb_info *p) 175{ 176 unsigned hd = p->var.xres / 8; 177 unsigned hs = (p->var.xres + p->var.right_margin) / 8; 178 unsigned he = (p->var.xres + p->var.right_margin + p->var.hsync_len) / 8; 179 unsigned ht = (p->var.left_margin + p->var.xres + p->var.right_margin + p->var.hsync_len) / 8; 180 unsigned vd = p->var.yres; 181 unsigned vs = p->var.yres + p->var.lower_margin; 182 unsigned ve = p->var.yres + p->var.lower_margin + p->var.vsync_len; 183 unsigned vt = p->var.upper_margin + p->var.yres + p->var.lower_margin + p->var.vsync_len; 184 unsigned wd = (p->var.xres_virtual * ((p->var.bits_per_pixel+7)/8)) / 8; 185 186 if ((p->var.xres == 640) && (p->var.yres == 480) && (p->var.pixclock == 39722)) { 187 write_fr(0x01, 0x02); /* LCD */ 188 } else { 189 write_fr(0x01, 0x01); /* CRT */ 190 } 191 192 write_cr(0x11, (ve - 1) & 0x0f); 193 write_cr(0x00, (ht - 5) & 0xff); 194 write_cr(0x01, hd - 1); 195 write_cr(0x02, hd); 196 write_cr(0x03, ((ht - 1) & 0x1f) | 0x80); 197 write_cr(0x04, hs); 198 write_cr(0x05, (((ht - 1) & 0x20) <<2) | (he & 0x1f)); 199 write_cr(0x3c, (ht - 1) & 0xc0); 200 write_cr(0x06, (vt - 2) & 0xff); 201 write_cr(0x30, (vt - 2) >> 8); 202 write_cr(0x07, 0x00); 203 write_cr(0x08, 0x00); 204 write_cr(0x09, 0x00); 205 write_cr(0x10, (vs - 1) & 0xff); 206 write_cr(0x32, ((vs - 1) >> 8) & 0xf); 207 write_cr(0x11, ((ve - 1) & 0x0f) | 0x80); 208 write_cr(0x12, (vd - 1) & 0xff); 209 write_cr(0x31, ((vd - 1) & 0xf00) >> 8); 210 write_cr(0x13, wd & 0xff); 211 write_cr(0x41, (wd & 0xf00) >> 8); 212 write_cr(0x15, (vs - 1) & 0xff); 213 write_cr(0x33, ((vs - 1) >> 8) & 0xf); 214 write_cr(0x38, ((ht - 5) & 0x100) >> 8); 215 write_cr(0x16, (vt - 1) & 0xff); 216 write_cr(0x18, 0x00); 217 218 if (p->var.xres == 640) { 219 writeb(0xc7, mmio_base + 0x784); /* set misc output reg */ 220 } else { 221 writeb(0x07, mmio_base + 0x784); /* set misc output reg */ 222 } 223} 224 225static int asiliantfb_check_var(struct fb_var_screeninfo *var, 226 struct fb_info *p) 227{ 228 unsigned long Ftarget, ratio, remainder; 229 230 if (!var->pixclock) 231 return -EINVAL; 232 233 ratio = 1000000 / var->pixclock; 234 remainder = 1000000 % var->pixclock; 235 Ftarget = 1000000 * ratio + (1000000 * remainder) / var->pixclock; 236 237 /* First check the constraint that the maximum post-VCO divisor is 32, 238 * and the maximum Fvco is 220MHz */ 239 if (Ftarget > 220000000 || Ftarget < 3125000) { 240 printk(KERN_ERR "asiliantfb dotclock must be between 3.125 and 220MHz\n"); 241 return -ENXIO; 242 } 243 var->xres_virtual = var->xres; 244 var->yres_virtual = var->yres; 245 246 if (var->bits_per_pixel == 24) { 247 var->red.offset = 16; 248 var->green.offset = 8; 249 var->blue.offset = 0; 250 var->red.length = var->blue.length = var->green.length = 8; 251 } else if (var->bits_per_pixel == 16) { 252 switch (var->red.offset) { 253 case 11: 254 var->green.length = 6; 255 break; 256 case 10: 257 var->green.length = 5; 258 break; 259 default: 260 return -EINVAL; 261 } 262 var->green.offset = 5; 263 var->blue.offset = 0; 264 var->red.length = var->blue.length = 5; 265 } else if (var->bits_per_pixel == 8) { 266 var->red.offset = var->green.offset = var->blue.offset = 0; 267 var->red.length = var->green.length = var->blue.length = 8; 268 } 269 return 0; 270} 271 272static int asiliantfb_set_par(struct fb_info *p) 273{ 274 u8 dclk2_m; /* Holds m-2 value for register */ 275 u8 dclk2_n; /* Holds n-2 value for register */ 276 u8 dclk2_div; /* Holds divisor bitmask */ 277 278 /* Set pixclock */ 279 asiliant_calc_dclk2(&p->var.pixclock, &dclk2_m, &dclk2_n, &dclk2_div); 280 281 /* Set color depth */ 282 if (p->var.bits_per_pixel == 24) { 283 write_xr(0x81, 0x16); /* 24 bit packed color mode */ 284 write_xr(0x82, 0x00); /* Disable palettes */ 285 write_xr(0x20, 0x20); /* 24 bit blitter mode */ 286 } else if (p->var.bits_per_pixel == 16) { 287 if (p->var.red.offset == 11) 288 write_xr(0x81, 0x15); /* 16 bit color mode */ 289 else 290 write_xr(0x81, 0x14); /* 15 bit color mode */ 291 write_xr(0x82, 0x00); /* Disable palettes */ 292 write_xr(0x20, 0x10); /* 16 bit blitter mode */ 293 } else if (p->var.bits_per_pixel == 8) { 294 write_xr(0x0a, 0x02); /* Linear */ 295 write_xr(0x81, 0x12); /* 8 bit color mode */ 296 write_xr(0x82, 0x00); /* Graphics gamma enable */ 297 write_xr(0x20, 0x00); /* 8 bit blitter mode */ 298 } 299 p->fix.line_length = p->var.xres * (p->var.bits_per_pixel >> 3); 300 p->fix.visual = (p->var.bits_per_pixel == 8) ? FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_TRUECOLOR; 301 write_xr(0xc4, dclk2_m); 302 write_xr(0xc5, dclk2_n); 303 write_xr(0xc7, dclk2_div); 304 /* Set up the CR registers */ 305 asiliant_set_timing(p); 306 return 0; 307} 308 309static int asiliantfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, 310 u_int transp, struct fb_info *p) 311{ 312 if (regno > 255) 313 return 1; 314 red >>= 8; 315 green >>= 8; 316 blue >>= 8; 317 318 /* Set hardware palete */ 319 writeb(regno, mmio_base + 0x790); 320 udelay(1); 321 writeb(red, mmio_base + 0x791); 322 writeb(green, mmio_base + 0x791); 323 writeb(blue, mmio_base + 0x791); 324 325 if (regno < 16) { 326 switch(p->var.red.offset) { 327 case 10: /* RGB 555 */ 328 ((u32 *)(p->pseudo_palette))[regno] = 329 ((red & 0xf8) << 7) | 330 ((green & 0xf8) << 2) | 331 ((blue & 0xf8) >> 3); 332 break; 333 case 11: /* RGB 565 */ 334 ((u32 *)(p->pseudo_palette))[regno] = 335 ((red & 0xf8) << 8) | 336 ((green & 0xfc) << 3) | 337 ((blue & 0xf8) >> 3); 338 break; 339 case 16: /* RGB 888 */ 340 ((u32 *)(p->pseudo_palette))[regno] = 341 (red << 16) | 342 (green << 8) | 343 (blue); 344 break; 345 } 346 } 347 348 return 0; 349} 350 351struct chips_init_reg { 352 unsigned char addr; 353 unsigned char data; 354}; 355 356static struct chips_init_reg chips_init_sr[] = 357{ 358 {0x00, 0x03}, /* Reset register */ 359 {0x01, 0x01}, /* Clocking mode */ 360 {0x02, 0x0f}, /* Plane mask */ 361 {0x04, 0x0e} /* Memory mode */ 362}; 363 364static struct chips_init_reg chips_init_gr[] = 365{ 366 {0x03, 0x00}, /* Data rotate */ 367 {0x05, 0x00}, /* Graphics mode */ 368 {0x06, 0x01}, /* Miscellaneous */ 369 {0x08, 0x00} /* Bit mask */ 370}; 371 372static struct chips_init_reg chips_init_ar[] = 373{ 374 {0x10, 0x01}, /* Mode control */ 375 {0x11, 0x00}, /* Overscan */ 376 {0x12, 0x0f}, /* Memory plane enable */ 377 {0x13, 0x00} /* Horizontal pixel panning */ 378}; 379 380static struct chips_init_reg chips_init_cr[] = 381{ 382 {0x0c, 0x00}, /* Start address high */ 383 {0x0d, 0x00}, /* Start address low */ 384 {0x40, 0x00}, /* Extended Start Address */ 385 {0x41, 0x00}, /* Extended Start Address */ 386 {0x14, 0x00}, /* Underline location */ 387 {0x17, 0xe3}, /* CRT mode control */ 388 {0x70, 0x00} /* Interlace control */ 389}; 390 391 392static struct chips_init_reg chips_init_fr[] = 393{ 394 {0x01, 0x02}, 395 {0x03, 0x08}, 396 {0x08, 0xcc}, 397 {0x0a, 0x08}, 398 {0x18, 0x00}, 399 {0x1e, 0x80}, 400 {0x40, 0x83}, 401 {0x41, 0x00}, 402 {0x48, 0x13}, 403 {0x4d, 0x60}, 404 {0x4e, 0x0f}, 405 406 {0x0b, 0x01}, 407 408 {0x21, 0x51}, 409 {0x22, 0x1d}, 410 {0x23, 0x5f}, 411 {0x20, 0x4f}, 412 {0x34, 0x00}, 413 {0x24, 0x51}, 414 {0x25, 0x00}, 415 {0x27, 0x0b}, 416 {0x26, 0x00}, 417 {0x37, 0x80}, 418 {0x33, 0x0b}, 419 {0x35, 0x11}, 420 {0x36, 0x02}, 421 {0x31, 0xea}, 422 {0x32, 0x0c}, 423 {0x30, 0xdf}, 424 {0x10, 0x0c}, 425 {0x11, 0xe0}, 426 {0x12, 0x50}, 427 {0x13, 0x00}, 428 {0x16, 0x03}, 429 {0x17, 0xbd}, 430 {0x1a, 0x00}, 431}; 432 433 434static struct chips_init_reg chips_init_xr[] = 435{ 436 {0xce, 0x00}, /* set default memory clock */ 437 {0xcc, 200 }, /* MCLK ratio M */ 438 {0xcd, 18 }, /* MCLK ratio N */ 439 {0xce, 0x90}, /* MCLK divisor = 2 */ 440 441 {0xc4, 209 }, 442 {0xc5, 118 }, 443 {0xc7, 32 }, 444 {0xcf, 0x06}, 445 {0x09, 0x01}, /* IO Control - CRT controller extensions */ 446 {0x0a, 0x02}, /* Frame buffer mapping */ 447 {0x0b, 0x01}, /* PCI burst write */ 448 {0x40, 0x03}, /* Memory access control */ 449 {0x80, 0x82}, /* Pixel pipeline configuration 0 */ 450 {0x81, 0x12}, /* Pixel pipeline configuration 1 */ 451 {0x82, 0x08}, /* Pixel pipeline configuration 2 */ 452 453 {0xd0, 0x0f}, 454 {0xd1, 0x01}, 455}; 456 457static void chips_hw_init(struct fb_info *p) 458{ 459 int i; 460 461 for (i = 0; i < ARRAY_SIZE(chips_init_xr); ++i) 462 write_xr(chips_init_xr[i].addr, chips_init_xr[i].data); 463 write_xr(0x81, 0x12); 464 write_xr(0x82, 0x08); 465 write_xr(0x20, 0x00); 466 for (i = 0; i < ARRAY_SIZE(chips_init_sr); ++i) 467 write_sr(chips_init_sr[i].addr, chips_init_sr[i].data); 468 for (i = 0; i < ARRAY_SIZE(chips_init_gr); ++i) 469 write_gr(chips_init_gr[i].addr, chips_init_gr[i].data); 470 for (i = 0; i < ARRAY_SIZE(chips_init_ar); ++i) 471 write_ar(chips_init_ar[i].addr, chips_init_ar[i].data); 472 /* Enable video output in attribute index register */ 473 writeb(0x20, mmio_base + 0x780); 474 for (i = 0; i < ARRAY_SIZE(chips_init_cr); ++i) 475 write_cr(chips_init_cr[i].addr, chips_init_cr[i].data); 476 for (i = 0; i < ARRAY_SIZE(chips_init_fr); ++i) 477 write_fr(chips_init_fr[i].addr, chips_init_fr[i].data); 478} 479 480static const struct fb_fix_screeninfo asiliantfb_fix = { 481 .id = "Asiliant 69000", 482 .type = FB_TYPE_PACKED_PIXELS, 483 .visual = FB_VISUAL_PSEUDOCOLOR, 484 .accel = FB_ACCEL_NONE, 485 .line_length = 640, 486 .smem_len = 0x200000, /* 2MB */ 487}; 488 489static const struct fb_var_screeninfo asiliantfb_var = { 490 .xres = 640, 491 .yres = 480, 492 .xres_virtual = 640, 493 .yres_virtual = 480, 494 .bits_per_pixel = 8, 495 .red = { .length = 8 }, 496 .green = { .length = 8 }, 497 .blue = { .length = 8 }, 498 .height = -1, 499 .width = -1, 500 .vmode = FB_VMODE_NONINTERLACED, 501 .pixclock = 39722, 502 .left_margin = 48, 503 .right_margin = 16, 504 .upper_margin = 33, 505 .lower_margin = 10, 506 .hsync_len = 96, 507 .vsync_len = 2, 508}; 509 510static int init_asiliant(struct fb_info *p, unsigned long addr) 511{ 512 int err; 513 514 p->fix = asiliantfb_fix; 515 p->fix.smem_start = addr; 516 p->var = asiliantfb_var; 517 p->fbops = &asiliantfb_ops; 518 p->flags = FBINFO_DEFAULT; 519 520 err = fb_alloc_cmap(&p->cmap, 256, 0); 521 if (err) { 522 printk(KERN_ERR "C&T 69000 fb failed to alloc cmap memory\n"); 523 return err; 524 } 525 526 err = register_framebuffer(p); 527 if (err < 0) { 528 printk(KERN_ERR "C&T 69000 framebuffer failed to register\n"); 529 fb_dealloc_cmap(&p->cmap); 530 return err; 531 } 532 533 fb_info(p, "Asiliant 69000 frame buffer (%dK RAM detected)\n", 534 p->fix.smem_len / 1024); 535 536 writeb(0xff, mmio_base + 0x78c); 537 chips_hw_init(p); 538 return 0; 539} 540 541static int asiliantfb_pci_init(struct pci_dev *dp, 542 const struct pci_device_id *ent) 543{ 544 unsigned long addr, size; 545 struct fb_info *p; 546 int err; 547 548 if ((dp->resource[0].flags & IORESOURCE_MEM) == 0) 549 return -ENODEV; 550 addr = pci_resource_start(dp, 0); 551 size = pci_resource_len(dp, 0); 552 if (addr == 0) 553 return -ENODEV; 554 if (!request_mem_region(addr, size, "asiliantfb")) 555 return -EBUSY; 556 557 p = framebuffer_alloc(sizeof(u32) * 16, &dp->dev); 558 if (!p) { 559 release_mem_region(addr, size); 560 return -ENOMEM; 561 } 562 p->pseudo_palette = p->par; 563 p->par = NULL; 564 565 p->screen_base = ioremap(addr, 0x800000); 566 if (p->screen_base == NULL) { 567 release_mem_region(addr, size); 568 framebuffer_release(p); 569 return -ENOMEM; 570 } 571 572 pci_write_config_dword(dp, 4, 0x02800083); 573 writeb(3, p->screen_base + 0x400784); 574 575 err = init_asiliant(p, addr); 576 if (err) { 577 iounmap(p->screen_base); 578 release_mem_region(addr, size); 579 framebuffer_release(p); 580 return err; 581 } 582 583 pci_set_drvdata(dp, p); 584 return 0; 585} 586 587static void asiliantfb_remove(struct pci_dev *dp) 588{ 589 struct fb_info *p = pci_get_drvdata(dp); 590 591 unregister_framebuffer(p); 592 fb_dealloc_cmap(&p->cmap); 593 iounmap(p->screen_base); 594 release_mem_region(pci_resource_start(dp, 0), pci_resource_len(dp, 0)); 595 framebuffer_release(p); 596} 597 598static const struct pci_device_id asiliantfb_pci_tbl[] = { 599 { PCI_VENDOR_ID_CT, PCI_DEVICE_ID_CT_69000, PCI_ANY_ID, PCI_ANY_ID }, 600 { 0 } 601}; 602 603MODULE_DEVICE_TABLE(pci, asiliantfb_pci_tbl); 604 605static struct pci_driver asiliantfb_driver = { 606 .name = "asiliantfb", 607 .id_table = asiliantfb_pci_tbl, 608 .probe = asiliantfb_pci_init, 609 .remove = asiliantfb_remove, 610}; 611 612static int __init asiliantfb_init(void) 613{ 614 if (fb_get_options("asiliantfb", NULL)) 615 return -ENODEV; 616 617 return pci_register_driver(&asiliantfb_driver); 618} 619 620module_init(asiliantfb_init); 621 622static void __exit asiliantfb_exit(void) 623{ 624 pci_unregister_driver(&asiliantfb_driver); 625} 626 627MODULE_LICENSE("GPL");