cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

STG4000InitDevice.c (9723B)


      1/*
      2 *  linux/drivers/video/kyro/STG4000InitDevice.c
      3 *
      4 *  Copyright (C) 2000 Imagination Technologies Ltd
      5 *  Copyright (C) 2002 STMicroelectronics
      6 *
      7 * This file is subject to the terms and conditions of the GNU General Public
      8 * License.  See the file COPYING in the main directory of this archive
      9 * for more details.
     10 */
     11
     12#include <linux/kernel.h>
     13#include <linux/errno.h>
     14#include <linux/types.h>
     15#include <linux/pci.h>
     16
     17#include "STG4000Reg.h"
     18#include "STG4000Interface.h"
     19
     20/* SDRAM fixed settings */
     21#define SDRAM_CFG_0   0x49A1
     22#define SDRAM_CFG_1   0xA732
     23#define SDRAM_CFG_2   0x31
     24#define SDRAM_ARB_CFG 0xA0
     25#define SDRAM_REFRESH 0x20
     26
     27/* Reset values */
     28#define PMX2_SOFTRESET_DAC_RST		0x0001
     29#define PMX2_SOFTRESET_C1_RST		0x0004
     30#define PMX2_SOFTRESET_C2_RST		0x0008
     31#define PMX2_SOFTRESET_3D_RST		0x0010
     32#define PMX2_SOFTRESET_VIDIN_RST	0x0020
     33#define PMX2_SOFTRESET_TLB_RST		0x0040
     34#define PMX2_SOFTRESET_SD_RST		0x0080
     35#define PMX2_SOFTRESET_VGA_RST		0x0100
     36#define PMX2_SOFTRESET_ROM_RST		0x0200	/* reserved bit, do not reset */
     37#define PMX2_SOFTRESET_TA_RST		0x0400
     38#define PMX2_SOFTRESET_REG_RST		0x4000
     39#define PMX2_SOFTRESET_ALL		0x7fff
     40
     41/* Core clock freq */
     42#define CORE_PLL_FREQ 1000000
     43
     44/* Reference Clock freq */
     45#define REF_FREQ 14318
     46
     47/* PCI Registers */
     48static u16 CorePllControl = 0x70;
     49
     50#define	PCI_CONFIG_SUBSYS_ID	0x2e
     51
     52/* Misc */
     53#define CORE_PLL_MODE_REG_0_7      3
     54#define CORE_PLL_MODE_REG_8_15     2
     55#define CORE_PLL_MODE_CONFIG_REG   1
     56#define DAC_PLL_CONFIG_REG         0
     57
     58#define STG_MAX_VCO 500000
     59#define STG_MIN_VCO 100000
     60
     61/* PLL Clock */
     62#define    STG4K3_PLL_SCALER      8	/* scale numbers by 2^8 for fixed point calc */
     63#define    STG4K3_PLL_MIN_R       2	/* Minimum multiplier */
     64#define    STG4K3_PLL_MAX_R       33	/* Max */
     65#define    STG4K3_PLL_MIN_F       2	/* Minimum divisor */
     66#define    STG4K3_PLL_MAX_F       513	/* Max */
     67#define    STG4K3_PLL_MIN_OD      0	/* Min output divider (shift) */
     68#define    STG4K3_PLL_MAX_OD      2	/* Max */
     69#define    STG4K3_PLL_MIN_VCO_SC  (100000000 >> STG4K3_PLL_SCALER)	/* Min VCO rate */
     70#define    STG4K3_PLL_MAX_VCO_SC  (500000000 >> STG4K3_PLL_SCALER)	/* Max VCO rate */
     71#define    STG4K3_PLL_MINR_VCO_SC (100000000 >> STG4K3_PLL_SCALER)	/* Min VCO rate (restricted) */
     72#define    STG4K3_PLL_MAXR_VCO_SC (500000000 >> STG4K3_PLL_SCALER)	/* Max VCO rate (restricted) */
     73#define    STG4K3_PLL_MINR_VCO    100000000	/* Min VCO rate (restricted) */
     74#define    STG4K3_PLL_MAX_VCO     500000000	/* Max VCO rate */
     75#define    STG4K3_PLL_MAXR_VCO    500000000	/* Max VCO rate (restricted) */
     76
     77#define OS_DELAY(X) \
     78{ \
     79volatile u32 i,count=0; \
     80    for(i=0;i<X;i++) count++; \
     81}
     82
     83static u32 InitSDRAMRegisters(volatile STG4000REG __iomem *pSTGReg,
     84			      u32 dwSubSysID, u32 dwRevID)
     85{
     86	u32 adwSDRAMArgCfg0[] = { 0xa0, 0x80, 0xa0, 0xa0, 0xa0 };
     87	u32 adwSDRAMCfg1[] = { 0x8732, 0x8732, 0xa732, 0xa732, 0x8732 };
     88	u32 adwSDRAMCfg2[] = { 0x87d2, 0x87d2, 0xa7d2, 0x87d2, 0xa7d2 };
     89	u32 adwSDRAMRsh[] = { 36, 39, 40 };
     90	u32 adwChipSpeed[] = { 110, 120, 125 };
     91	u32 dwMemTypeIdx;
     92	u32 dwChipSpeedIdx;
     93
     94	/* Get memory tpye and chip speed indexs from the SubSysDevID */
     95	dwMemTypeIdx = (dwSubSysID & 0x70) >> 4;
     96	dwChipSpeedIdx = (dwSubSysID & 0x180) >> 7;
     97
     98	if (dwMemTypeIdx > 4 || dwChipSpeedIdx > 2)
     99		return 0;
    100
    101	/* Program SD-RAM interface */
    102	STG_WRITE_REG(SDRAMArbiterConf, adwSDRAMArgCfg0[dwMemTypeIdx]);
    103	if (dwRevID < 5) {
    104		STG_WRITE_REG(SDRAMConf0, 0x49A1);
    105		STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg1[dwMemTypeIdx]);
    106	} else {
    107		STG_WRITE_REG(SDRAMConf0, 0x4DF1);
    108		STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg2[dwMemTypeIdx]);
    109	}
    110
    111	STG_WRITE_REG(SDRAMConf2, 0x31);
    112	STG_WRITE_REG(SDRAMRefresh, adwSDRAMRsh[dwChipSpeedIdx]);
    113
    114	return adwChipSpeed[dwChipSpeedIdx] * 10000;
    115}
    116
    117u32 ProgramClock(u32 refClock,
    118		   u32 coreClock,
    119		   u32 * FOut, u32 * ROut, u32 * POut)
    120{
    121	u32 R = 0, F = 0, OD = 0, ODIndex = 0;
    122	u32 ulBestR = 0, ulBestF = 0, ulBestOD = 0;
    123	u32 ulBestClk = 0, ulBestScore = 0;
    124	u32 ulScore, ulPhaseScore, ulVcoScore;
    125	u32 ulTmp = 0, ulVCO;
    126	u32 ulScaleClockReq, ulMinClock, ulMaxClock;
    127	static const unsigned char ODValues[] = { 1, 2, 0 };
    128
    129	/* Translate clock in Hz */
    130	coreClock *= 100;	/* in Hz */
    131	refClock *= 1000;	/* in Hz */
    132
    133	/* Work out acceptable clock
    134	 * The method calculates ~ +- 0.4% (1/256)
    135	 */
    136	ulMinClock = coreClock - (coreClock >> 8);
    137	ulMaxClock = coreClock + (coreClock >> 8);
    138
    139	/* Scale clock required for use in calculations */
    140	ulScaleClockReq = coreClock >> STG4K3_PLL_SCALER;
    141
    142	/* Iterate through post divider values */
    143	for (ODIndex = 0; ODIndex < 3; ODIndex++) {
    144		OD = ODValues[ODIndex];
    145		R = STG4K3_PLL_MIN_R;
    146
    147		/* loop for pre-divider from min to max  */
    148		while (R <= STG4K3_PLL_MAX_R) {
    149			/* estimate required feedback multiplier */
    150			ulTmp = R * (ulScaleClockReq << OD);
    151
    152			/* F = ClkRequired * R * (2^OD) / Fref */
    153			F = (u32)(ulTmp / (refClock >> STG4K3_PLL_SCALER));
    154
    155			/* compensate for accuracy */
    156			if (F > STG4K3_PLL_MIN_F)
    157				F--;
    158
    159
    160			/*
    161			 * We should be close to our target frequency (if it's
    162			 * achievable with current OD & R) let's iterate
    163			 * through F for best fit
    164			 */
    165			while ((F >= STG4K3_PLL_MIN_F) &&
    166			       (F <= STG4K3_PLL_MAX_F)) {
    167				/* Calc VCO at full accuracy */
    168				ulVCO = refClock / R;
    169				ulVCO = F * ulVCO;
    170
    171				/*
    172				 * Check it's within restricted VCO range
    173				 * unless of course the desired frequency is
    174				 * above the restricted range, then test
    175				 * against VCO limit
    176				 */
    177				if ((ulVCO >= STG4K3_PLL_MINR_VCO) &&
    178				    ((ulVCO <= STG4K3_PLL_MAXR_VCO) ||
    179				     ((coreClock > STG4K3_PLL_MAXR_VCO)
    180				      && (ulVCO <= STG4K3_PLL_MAX_VCO)))) {
    181					ulTmp = (ulVCO >> OD);	/* Clock = VCO / (2^OD) */
    182
    183					/* Is this clock good enough? */
    184					if ((ulTmp >= ulMinClock)
    185					    && (ulTmp <= ulMaxClock)) {
    186						ulPhaseScore = (((refClock / R) - (refClock / STG4K3_PLL_MAX_R))) / ((refClock - (refClock / STG4K3_PLL_MAX_R)) >> 10);
    187
    188						ulVcoScore = ((ulVCO - STG4K3_PLL_MINR_VCO)) / ((STG4K3_PLL_MAXR_VCO - STG4K3_PLL_MINR_VCO) >> 10);
    189						ulScore = ulPhaseScore + ulVcoScore;
    190
    191						if (!ulBestScore) {
    192							ulBestOD = OD;
    193							ulBestF = F;
    194							ulBestR = R;
    195							ulBestClk = ulTmp;
    196							ulBestScore =
    197							    ulScore;
    198						}
    199						/* is this better, ( aim for highest Score) */
    200			/*--------------------------------------------------------------------------
    201                             Here we want to use a scoring system which will take account of both the
    202                            value at the phase comparater and the VCO output
    203                             to do this we will use a cumulative score between the two
    204                          The way this ends up is that we choose the first value in the loop anyway
    205                          but we shall keep this code in case new restrictions come into play
    206                          --------------------------------------------------------------------------*/
    207						if ((ulScore >= ulBestScore) && (OD > 0)) {
    208							ulBestOD = OD;
    209							ulBestF = F;
    210							ulBestR = R;
    211							ulBestClk = ulTmp;
    212							ulBestScore =
    213							    ulScore;
    214						}
    215					}
    216				}
    217				F++;
    218			}
    219			R++;
    220		}
    221	}
    222
    223	/*
    224	   did we find anything?
    225	   Then return RFOD
    226	 */
    227	if (ulBestScore) {
    228		*ROut = ulBestR;
    229		*FOut = ulBestF;
    230
    231		if ((ulBestOD == 2) || (ulBestOD == 3)) {
    232			*POut = 3;
    233		} else
    234			*POut = ulBestOD;
    235
    236	}
    237
    238	return (ulBestClk);
    239}
    240
    241int SetCoreClockPLL(volatile STG4000REG __iomem *pSTGReg, struct pci_dev *pDev)
    242{
    243	u32 F, R, P;
    244	u16 core_pll = 0, sub;
    245	u32 tmp;
    246	u32 ulChipSpeed;
    247
    248	STG_WRITE_REG(IntMask, 0xFFFF);
    249
    250	/* Disable Primary Core Thread0 */
    251	tmp = STG_READ_REG(Thread0Enable);
    252	CLEAR_BIT(0);
    253	STG_WRITE_REG(Thread0Enable, tmp);
    254
    255	/* Disable Primary Core Thread1 */
    256	tmp = STG_READ_REG(Thread1Enable);
    257	CLEAR_BIT(0);
    258	STG_WRITE_REG(Thread1Enable, tmp);
    259
    260	STG_WRITE_REG(SoftwareReset,
    261		      PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST);
    262	STG_WRITE_REG(SoftwareReset,
    263		      PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST |
    264		      PMX2_SOFTRESET_ROM_RST);
    265
    266	/* Need to play around to reset TA */
    267	STG_WRITE_REG(TAConfiguration, 0);
    268	STG_WRITE_REG(SoftwareReset,
    269		      PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST);
    270	STG_WRITE_REG(SoftwareReset,
    271		      PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST |
    272		      PMX2_SOFTRESET_ROM_RST);
    273
    274	pci_read_config_word(pDev, PCI_CONFIG_SUBSYS_ID, &sub);
    275
    276	ulChipSpeed = InitSDRAMRegisters(pSTGReg, (u32)sub,
    277		                         (u32)pDev->revision);
    278
    279	if (ulChipSpeed == 0)
    280		return -EINVAL;
    281
    282	ProgramClock(REF_FREQ, CORE_PLL_FREQ, &F, &R, &P);
    283
    284	core_pll |= ((P) | ((F - 2) << 2) | ((R - 2) << 11));
    285
    286	/* Set Core PLL Control to Core PLL Mode  */
    287
    288	/* Send bits 0:7 of the Core PLL Mode register */
    289	tmp = ((CORE_PLL_MODE_REG_0_7 << 8) | (core_pll & 0x00FF));
    290	pci_write_config_word(pDev, CorePllControl, tmp);
    291	/* Without some delay between the PCI config writes the clock does
    292	   not reliably set when the code is compiled -O3
    293	 */
    294	OS_DELAY(1000000);
    295
    296	tmp |= SET_BIT(14);
    297	pci_write_config_word(pDev, CorePllControl, tmp);
    298	OS_DELAY(1000000);
    299
    300	/* Send bits 8:15 of the Core PLL Mode register */
    301	tmp =
    302	    ((CORE_PLL_MODE_REG_8_15 << 8) | ((core_pll & 0xFF00) >> 8));
    303	pci_write_config_word(pDev, CorePllControl, tmp);
    304	OS_DELAY(1000000);
    305
    306	tmp |= SET_BIT(14);
    307	pci_write_config_word(pDev, CorePllControl, tmp);
    308	OS_DELAY(1000000);
    309
    310	STG_WRITE_REG(SoftwareReset, PMX2_SOFTRESET_ALL);
    311
    312#if 0
    313	/* Enable Primary Core Thread0 */
    314	tmp = ((STG_READ_REG(Thread0Enable)) | SET_BIT(0));
    315	STG_WRITE_REG(Thread0Enable, tmp);
    316
    317	/* Enable Primary Core Thread1 */
    318	tmp = ((STG_READ_REG(Thread1Enable)) | SET_BIT(0));
    319	STG_WRITE_REG(Thread1Enable, tmp);
    320#endif
    321
    322	return 0;
    323}