vme.c (53387B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * VME Bridge Framework 4 * 5 * Author: Martyn Welch <martyn.welch@ge.com> 6 * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc. 7 * 8 * Based on work by Tom Armistead and Ajit Prem 9 * Copyright 2004 Motorola Inc. 10 */ 11 12#include <linux/init.h> 13#include <linux/export.h> 14#include <linux/mm.h> 15#include <linux/types.h> 16#include <linux/kernel.h> 17#include <linux/errno.h> 18#include <linux/pci.h> 19#include <linux/poll.h> 20#include <linux/highmem.h> 21#include <linux/interrupt.h> 22#include <linux/pagemap.h> 23#include <linux/device.h> 24#include <linux/dma-mapping.h> 25#include <linux/syscalls.h> 26#include <linux/mutex.h> 27#include <linux/spinlock.h> 28#include <linux/slab.h> 29#include <linux/vme.h> 30 31#include "vme_bridge.h" 32 33/* Bitmask and list of registered buses both protected by common mutex */ 34static unsigned int vme_bus_numbers; 35static LIST_HEAD(vme_bus_list); 36static DEFINE_MUTEX(vme_buses_lock); 37 38static int __init vme_init(void); 39 40static struct vme_dev *dev_to_vme_dev(struct device *dev) 41{ 42 return container_of(dev, struct vme_dev, dev); 43} 44 45/* 46 * Find the bridge that the resource is associated with. 47 */ 48static struct vme_bridge *find_bridge(struct vme_resource *resource) 49{ 50 /* Get list to search */ 51 switch (resource->type) { 52 case VME_MASTER: 53 return list_entry(resource->entry, struct vme_master_resource, 54 list)->parent; 55 case VME_SLAVE: 56 return list_entry(resource->entry, struct vme_slave_resource, 57 list)->parent; 58 case VME_DMA: 59 return list_entry(resource->entry, struct vme_dma_resource, 60 list)->parent; 61 case VME_LM: 62 return list_entry(resource->entry, struct vme_lm_resource, 63 list)->parent; 64 default: 65 printk(KERN_ERR "Unknown resource type\n"); 66 return NULL; 67 } 68} 69 70/** 71 * vme_alloc_consistent - Allocate contiguous memory. 72 * @resource: Pointer to VME resource. 73 * @size: Size of allocation required. 74 * @dma: Pointer to variable to store physical address of allocation. 75 * 76 * Allocate a contiguous block of memory for use by the driver. This is used to 77 * create the buffers for the slave windows. 78 * 79 * Return: Virtual address of allocation on success, NULL on failure. 80 */ 81void *vme_alloc_consistent(struct vme_resource *resource, size_t size, 82 dma_addr_t *dma) 83{ 84 struct vme_bridge *bridge; 85 86 if (!resource) { 87 printk(KERN_ERR "No resource\n"); 88 return NULL; 89 } 90 91 bridge = find_bridge(resource); 92 if (!bridge) { 93 printk(KERN_ERR "Can't find bridge\n"); 94 return NULL; 95 } 96 97 if (!bridge->parent) { 98 printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name); 99 return NULL; 100 } 101 102 if (!bridge->alloc_consistent) { 103 printk(KERN_ERR "alloc_consistent not supported by bridge %s\n", 104 bridge->name); 105 return NULL; 106 } 107 108 return bridge->alloc_consistent(bridge->parent, size, dma); 109} 110EXPORT_SYMBOL(vme_alloc_consistent); 111 112/** 113 * vme_free_consistent - Free previously allocated memory. 114 * @resource: Pointer to VME resource. 115 * @size: Size of allocation to free. 116 * @vaddr: Virtual address of allocation. 117 * @dma: Physical address of allocation. 118 * 119 * Free previously allocated block of contiguous memory. 120 */ 121void vme_free_consistent(struct vme_resource *resource, size_t size, 122 void *vaddr, dma_addr_t dma) 123{ 124 struct vme_bridge *bridge; 125 126 if (!resource) { 127 printk(KERN_ERR "No resource\n"); 128 return; 129 } 130 131 bridge = find_bridge(resource); 132 if (!bridge) { 133 printk(KERN_ERR "Can't find bridge\n"); 134 return; 135 } 136 137 if (!bridge->parent) { 138 printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name); 139 return; 140 } 141 142 if (!bridge->free_consistent) { 143 printk(KERN_ERR "free_consistent not supported by bridge %s\n", 144 bridge->name); 145 return; 146 } 147 148 bridge->free_consistent(bridge->parent, size, vaddr, dma); 149} 150EXPORT_SYMBOL(vme_free_consistent); 151 152/** 153 * vme_get_size - Helper function returning size of a VME window 154 * @resource: Pointer to VME slave or master resource. 155 * 156 * Determine the size of the VME window provided. This is a helper 157 * function, wrappering the call to vme_master_get or vme_slave_get 158 * depending on the type of window resource handed to it. 159 * 160 * Return: Size of the window on success, zero on failure. 161 */ 162size_t vme_get_size(struct vme_resource *resource) 163{ 164 int enabled, retval; 165 unsigned long long base, size; 166 dma_addr_t buf_base; 167 u32 aspace, cycle, dwidth; 168 169 switch (resource->type) { 170 case VME_MASTER: 171 retval = vme_master_get(resource, &enabled, &base, &size, 172 &aspace, &cycle, &dwidth); 173 if (retval) 174 return 0; 175 176 return size; 177 case VME_SLAVE: 178 retval = vme_slave_get(resource, &enabled, &base, &size, 179 &buf_base, &aspace, &cycle); 180 if (retval) 181 return 0; 182 183 return size; 184 case VME_DMA: 185 return 0; 186 default: 187 printk(KERN_ERR "Unknown resource type\n"); 188 return 0; 189 } 190} 191EXPORT_SYMBOL(vme_get_size); 192 193int vme_check_window(u32 aspace, unsigned long long vme_base, 194 unsigned long long size) 195{ 196 int retval = 0; 197 198 if (vme_base + size < size) 199 return -EINVAL; 200 201 switch (aspace) { 202 case VME_A16: 203 if (vme_base + size > VME_A16_MAX) 204 retval = -EFAULT; 205 break; 206 case VME_A24: 207 if (vme_base + size > VME_A24_MAX) 208 retval = -EFAULT; 209 break; 210 case VME_A32: 211 if (vme_base + size > VME_A32_MAX) 212 retval = -EFAULT; 213 break; 214 case VME_A64: 215 /* The VME_A64_MAX limit is actually U64_MAX + 1 */ 216 break; 217 case VME_CRCSR: 218 if (vme_base + size > VME_CRCSR_MAX) 219 retval = -EFAULT; 220 break; 221 case VME_USER1: 222 case VME_USER2: 223 case VME_USER3: 224 case VME_USER4: 225 /* User Defined */ 226 break; 227 default: 228 printk(KERN_ERR "Invalid address space\n"); 229 retval = -EINVAL; 230 break; 231 } 232 233 return retval; 234} 235EXPORT_SYMBOL(vme_check_window); 236 237static u32 vme_get_aspace(int am) 238{ 239 switch (am) { 240 case 0x29: 241 case 0x2D: 242 return VME_A16; 243 case 0x38: 244 case 0x39: 245 case 0x3A: 246 case 0x3B: 247 case 0x3C: 248 case 0x3D: 249 case 0x3E: 250 case 0x3F: 251 return VME_A24; 252 case 0x8: 253 case 0x9: 254 case 0xA: 255 case 0xB: 256 case 0xC: 257 case 0xD: 258 case 0xE: 259 case 0xF: 260 return VME_A32; 261 case 0x0: 262 case 0x1: 263 case 0x3: 264 return VME_A64; 265 } 266 267 return 0; 268} 269 270/** 271 * vme_slave_request - Request a VME slave window resource. 272 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance. 273 * @address: Required VME address space. 274 * @cycle: Required VME data transfer cycle type. 275 * 276 * Request use of a VME window resource capable of being set for the requested 277 * address space and data transfer cycle. 278 * 279 * Return: Pointer to VME resource on success, NULL on failure. 280 */ 281struct vme_resource *vme_slave_request(struct vme_dev *vdev, u32 address, 282 u32 cycle) 283{ 284 struct vme_bridge *bridge; 285 struct list_head *slave_pos = NULL; 286 struct vme_slave_resource *allocated_image = NULL; 287 struct vme_slave_resource *slave_image = NULL; 288 struct vme_resource *resource = NULL; 289 290 bridge = vdev->bridge; 291 if (!bridge) { 292 printk(KERN_ERR "Can't find VME bus\n"); 293 goto err_bus; 294 } 295 296 /* Loop through slave resources */ 297 list_for_each(slave_pos, &bridge->slave_resources) { 298 slave_image = list_entry(slave_pos, 299 struct vme_slave_resource, list); 300 301 if (!slave_image) { 302 printk(KERN_ERR "Registered NULL Slave resource\n"); 303 continue; 304 } 305 306 /* Find an unlocked and compatible image */ 307 mutex_lock(&slave_image->mtx); 308 if (((slave_image->address_attr & address) == address) && 309 ((slave_image->cycle_attr & cycle) == cycle) && 310 (slave_image->locked == 0)) { 311 312 slave_image->locked = 1; 313 mutex_unlock(&slave_image->mtx); 314 allocated_image = slave_image; 315 break; 316 } 317 mutex_unlock(&slave_image->mtx); 318 } 319 320 /* No free image */ 321 if (!allocated_image) 322 goto err_image; 323 324 resource = kmalloc(sizeof(*resource), GFP_KERNEL); 325 if (!resource) 326 goto err_alloc; 327 328 resource->type = VME_SLAVE; 329 resource->entry = &allocated_image->list; 330 331 return resource; 332 333err_alloc: 334 /* Unlock image */ 335 mutex_lock(&slave_image->mtx); 336 slave_image->locked = 0; 337 mutex_unlock(&slave_image->mtx); 338err_image: 339err_bus: 340 return NULL; 341} 342EXPORT_SYMBOL(vme_slave_request); 343 344/** 345 * vme_slave_set - Set VME slave window configuration. 346 * @resource: Pointer to VME slave resource. 347 * @enabled: State to which the window should be configured. 348 * @vme_base: Base address for the window. 349 * @size: Size of the VME window. 350 * @buf_base: Based address of buffer used to provide VME slave window storage. 351 * @aspace: VME address space for the VME window. 352 * @cycle: VME data transfer cycle type for the VME window. 353 * 354 * Set configuration for provided VME slave window. 355 * 356 * Return: Zero on success, -EINVAL if operation is not supported on this 357 * device, if an invalid resource has been provided or invalid 358 * attributes are provided. Hardware specific errors may also be 359 * returned. 360 */ 361int vme_slave_set(struct vme_resource *resource, int enabled, 362 unsigned long long vme_base, unsigned long long size, 363 dma_addr_t buf_base, u32 aspace, u32 cycle) 364{ 365 struct vme_bridge *bridge = find_bridge(resource); 366 struct vme_slave_resource *image; 367 int retval; 368 369 if (resource->type != VME_SLAVE) { 370 printk(KERN_ERR "Not a slave resource\n"); 371 return -EINVAL; 372 } 373 374 image = list_entry(resource->entry, struct vme_slave_resource, list); 375 376 if (!bridge->slave_set) { 377 printk(KERN_ERR "Function not supported\n"); 378 return -ENOSYS; 379 } 380 381 if (!(((image->address_attr & aspace) == aspace) && 382 ((image->cycle_attr & cycle) == cycle))) { 383 printk(KERN_ERR "Invalid attributes\n"); 384 return -EINVAL; 385 } 386 387 retval = vme_check_window(aspace, vme_base, size); 388 if (retval) 389 return retval; 390 391 return bridge->slave_set(image, enabled, vme_base, size, buf_base, 392 aspace, cycle); 393} 394EXPORT_SYMBOL(vme_slave_set); 395 396/** 397 * vme_slave_get - Retrieve VME slave window configuration. 398 * @resource: Pointer to VME slave resource. 399 * @enabled: Pointer to variable for storing state. 400 * @vme_base: Pointer to variable for storing window base address. 401 * @size: Pointer to variable for storing window size. 402 * @buf_base: Pointer to variable for storing slave buffer base address. 403 * @aspace: Pointer to variable for storing VME address space. 404 * @cycle: Pointer to variable for storing VME data transfer cycle type. 405 * 406 * Return configuration for provided VME slave window. 407 * 408 * Return: Zero on success, -EINVAL if operation is not supported on this 409 * device or if an invalid resource has been provided. 410 */ 411int vme_slave_get(struct vme_resource *resource, int *enabled, 412 unsigned long long *vme_base, unsigned long long *size, 413 dma_addr_t *buf_base, u32 *aspace, u32 *cycle) 414{ 415 struct vme_bridge *bridge = find_bridge(resource); 416 struct vme_slave_resource *image; 417 418 if (resource->type != VME_SLAVE) { 419 printk(KERN_ERR "Not a slave resource\n"); 420 return -EINVAL; 421 } 422 423 image = list_entry(resource->entry, struct vme_slave_resource, list); 424 425 if (!bridge->slave_get) { 426 printk(KERN_ERR "vme_slave_get not supported\n"); 427 return -EINVAL; 428 } 429 430 return bridge->slave_get(image, enabled, vme_base, size, buf_base, 431 aspace, cycle); 432} 433EXPORT_SYMBOL(vme_slave_get); 434 435/** 436 * vme_slave_free - Free VME slave window 437 * @resource: Pointer to VME slave resource. 438 * 439 * Free the provided slave resource so that it may be reallocated. 440 */ 441void vme_slave_free(struct vme_resource *resource) 442{ 443 struct vme_slave_resource *slave_image; 444 445 if (resource->type != VME_SLAVE) { 446 printk(KERN_ERR "Not a slave resource\n"); 447 return; 448 } 449 450 slave_image = list_entry(resource->entry, struct vme_slave_resource, 451 list); 452 if (!slave_image) { 453 printk(KERN_ERR "Can't find slave resource\n"); 454 return; 455 } 456 457 /* Unlock image */ 458 mutex_lock(&slave_image->mtx); 459 if (slave_image->locked == 0) 460 printk(KERN_ERR "Image is already free\n"); 461 462 slave_image->locked = 0; 463 mutex_unlock(&slave_image->mtx); 464 465 /* Free up resource memory */ 466 kfree(resource); 467} 468EXPORT_SYMBOL(vme_slave_free); 469 470/** 471 * vme_master_request - Request a VME master window resource. 472 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance. 473 * @address: Required VME address space. 474 * @cycle: Required VME data transfer cycle type. 475 * @dwidth: Required VME data transfer width. 476 * 477 * Request use of a VME window resource capable of being set for the requested 478 * address space, data transfer cycle and width. 479 * 480 * Return: Pointer to VME resource on success, NULL on failure. 481 */ 482struct vme_resource *vme_master_request(struct vme_dev *vdev, u32 address, 483 u32 cycle, u32 dwidth) 484{ 485 struct vme_bridge *bridge; 486 struct list_head *master_pos = NULL; 487 struct vme_master_resource *allocated_image = NULL; 488 struct vme_master_resource *master_image = NULL; 489 struct vme_resource *resource = NULL; 490 491 bridge = vdev->bridge; 492 if (!bridge) { 493 printk(KERN_ERR "Can't find VME bus\n"); 494 goto err_bus; 495 } 496 497 /* Loop through master resources */ 498 list_for_each(master_pos, &bridge->master_resources) { 499 master_image = list_entry(master_pos, 500 struct vme_master_resource, list); 501 502 if (!master_image) { 503 printk(KERN_WARNING "Registered NULL master resource\n"); 504 continue; 505 } 506 507 /* Find an unlocked and compatible image */ 508 spin_lock(&master_image->lock); 509 if (((master_image->address_attr & address) == address) && 510 ((master_image->cycle_attr & cycle) == cycle) && 511 ((master_image->width_attr & dwidth) == dwidth) && 512 (master_image->locked == 0)) { 513 514 master_image->locked = 1; 515 spin_unlock(&master_image->lock); 516 allocated_image = master_image; 517 break; 518 } 519 spin_unlock(&master_image->lock); 520 } 521 522 /* Check to see if we found a resource */ 523 if (!allocated_image) { 524 printk(KERN_ERR "Can't find a suitable resource\n"); 525 goto err_image; 526 } 527 528 resource = kmalloc(sizeof(*resource), GFP_KERNEL); 529 if (!resource) 530 goto err_alloc; 531 532 resource->type = VME_MASTER; 533 resource->entry = &allocated_image->list; 534 535 return resource; 536 537err_alloc: 538 /* Unlock image */ 539 spin_lock(&master_image->lock); 540 master_image->locked = 0; 541 spin_unlock(&master_image->lock); 542err_image: 543err_bus: 544 return NULL; 545} 546EXPORT_SYMBOL(vme_master_request); 547 548/** 549 * vme_master_set - Set VME master window configuration. 550 * @resource: Pointer to VME master resource. 551 * @enabled: State to which the window should be configured. 552 * @vme_base: Base address for the window. 553 * @size: Size of the VME window. 554 * @aspace: VME address space for the VME window. 555 * @cycle: VME data transfer cycle type for the VME window. 556 * @dwidth: VME data transfer width for the VME window. 557 * 558 * Set configuration for provided VME master window. 559 * 560 * Return: Zero on success, -EINVAL if operation is not supported on this 561 * device, if an invalid resource has been provided or invalid 562 * attributes are provided. Hardware specific errors may also be 563 * returned. 564 */ 565int vme_master_set(struct vme_resource *resource, int enabled, 566 unsigned long long vme_base, unsigned long long size, u32 aspace, 567 u32 cycle, u32 dwidth) 568{ 569 struct vme_bridge *bridge = find_bridge(resource); 570 struct vme_master_resource *image; 571 int retval; 572 573 if (resource->type != VME_MASTER) { 574 printk(KERN_ERR "Not a master resource\n"); 575 return -EINVAL; 576 } 577 578 image = list_entry(resource->entry, struct vme_master_resource, list); 579 580 if (!bridge->master_set) { 581 printk(KERN_WARNING "vme_master_set not supported\n"); 582 return -EINVAL; 583 } 584 585 if (!(((image->address_attr & aspace) == aspace) && 586 ((image->cycle_attr & cycle) == cycle) && 587 ((image->width_attr & dwidth) == dwidth))) { 588 printk(KERN_WARNING "Invalid attributes\n"); 589 return -EINVAL; 590 } 591 592 retval = vme_check_window(aspace, vme_base, size); 593 if (retval) 594 return retval; 595 596 return bridge->master_set(image, enabled, vme_base, size, aspace, 597 cycle, dwidth); 598} 599EXPORT_SYMBOL(vme_master_set); 600 601/** 602 * vme_master_get - Retrieve VME master window configuration. 603 * @resource: Pointer to VME master resource. 604 * @enabled: Pointer to variable for storing state. 605 * @vme_base: Pointer to variable for storing window base address. 606 * @size: Pointer to variable for storing window size. 607 * @aspace: Pointer to variable for storing VME address space. 608 * @cycle: Pointer to variable for storing VME data transfer cycle type. 609 * @dwidth: Pointer to variable for storing VME data transfer width. 610 * 611 * Return configuration for provided VME master window. 612 * 613 * Return: Zero on success, -EINVAL if operation is not supported on this 614 * device or if an invalid resource has been provided. 615 */ 616int vme_master_get(struct vme_resource *resource, int *enabled, 617 unsigned long long *vme_base, unsigned long long *size, u32 *aspace, 618 u32 *cycle, u32 *dwidth) 619{ 620 struct vme_bridge *bridge = find_bridge(resource); 621 struct vme_master_resource *image; 622 623 if (resource->type != VME_MASTER) { 624 printk(KERN_ERR "Not a master resource\n"); 625 return -EINVAL; 626 } 627 628 image = list_entry(resource->entry, struct vme_master_resource, list); 629 630 if (!bridge->master_get) { 631 printk(KERN_WARNING "%s not supported\n", __func__); 632 return -EINVAL; 633 } 634 635 return bridge->master_get(image, enabled, vme_base, size, aspace, 636 cycle, dwidth); 637} 638EXPORT_SYMBOL(vme_master_get); 639 640/** 641 * vme_master_read - Read data from VME space into a buffer. 642 * @resource: Pointer to VME master resource. 643 * @buf: Pointer to buffer where data should be transferred. 644 * @count: Number of bytes to transfer. 645 * @offset: Offset into VME master window at which to start transfer. 646 * 647 * Perform read of count bytes of data from location on VME bus which maps into 648 * the VME master window at offset to buf. 649 * 650 * Return: Number of bytes read, -EINVAL if resource is not a VME master 651 * resource or read operation is not supported. -EFAULT returned if 652 * invalid offset is provided. Hardware specific errors may also be 653 * returned. 654 */ 655ssize_t vme_master_read(struct vme_resource *resource, void *buf, size_t count, 656 loff_t offset) 657{ 658 struct vme_bridge *bridge = find_bridge(resource); 659 struct vme_master_resource *image; 660 size_t length; 661 662 if (!bridge->master_read) { 663 printk(KERN_WARNING "Reading from resource not supported\n"); 664 return -EINVAL; 665 } 666 667 if (resource->type != VME_MASTER) { 668 printk(KERN_ERR "Not a master resource\n"); 669 return -EINVAL; 670 } 671 672 image = list_entry(resource->entry, struct vme_master_resource, list); 673 674 length = vme_get_size(resource); 675 676 if (offset > length) { 677 printk(KERN_WARNING "Invalid Offset\n"); 678 return -EFAULT; 679 } 680 681 if ((offset + count) > length) 682 count = length - offset; 683 684 return bridge->master_read(image, buf, count, offset); 685 686} 687EXPORT_SYMBOL(vme_master_read); 688 689/** 690 * vme_master_write - Write data out to VME space from a buffer. 691 * @resource: Pointer to VME master resource. 692 * @buf: Pointer to buffer holding data to transfer. 693 * @count: Number of bytes to transfer. 694 * @offset: Offset into VME master window at which to start transfer. 695 * 696 * Perform write of count bytes of data from buf to location on VME bus which 697 * maps into the VME master window at offset. 698 * 699 * Return: Number of bytes written, -EINVAL if resource is not a VME master 700 * resource or write operation is not supported. -EFAULT returned if 701 * invalid offset is provided. Hardware specific errors may also be 702 * returned. 703 */ 704ssize_t vme_master_write(struct vme_resource *resource, void *buf, 705 size_t count, loff_t offset) 706{ 707 struct vme_bridge *bridge = find_bridge(resource); 708 struct vme_master_resource *image; 709 size_t length; 710 711 if (!bridge->master_write) { 712 printk(KERN_WARNING "Writing to resource not supported\n"); 713 return -EINVAL; 714 } 715 716 if (resource->type != VME_MASTER) { 717 printk(KERN_ERR "Not a master resource\n"); 718 return -EINVAL; 719 } 720 721 image = list_entry(resource->entry, struct vme_master_resource, list); 722 723 length = vme_get_size(resource); 724 725 if (offset > length) { 726 printk(KERN_WARNING "Invalid Offset\n"); 727 return -EFAULT; 728 } 729 730 if ((offset + count) > length) 731 count = length - offset; 732 733 return bridge->master_write(image, buf, count, offset); 734} 735EXPORT_SYMBOL(vme_master_write); 736 737/** 738 * vme_master_rmw - Perform read-modify-write cycle. 739 * @resource: Pointer to VME master resource. 740 * @mask: Bits to be compared and swapped in operation. 741 * @compare: Bits to be compared with data read from offset. 742 * @swap: Bits to be swapped in data read from offset. 743 * @offset: Offset into VME master window at which to perform operation. 744 * 745 * Perform read-modify-write cycle on provided location: 746 * - Location on VME bus is read. 747 * - Bits selected by mask are compared with compare. 748 * - Where a selected bit matches that in compare and are selected in swap, 749 * the bit is swapped. 750 * - Result written back to location on VME bus. 751 * 752 * Return: Bytes written on success, -EINVAL if resource is not a VME master 753 * resource or RMW operation is not supported. Hardware specific 754 * errors may also be returned. 755 */ 756unsigned int vme_master_rmw(struct vme_resource *resource, unsigned int mask, 757 unsigned int compare, unsigned int swap, loff_t offset) 758{ 759 struct vme_bridge *bridge = find_bridge(resource); 760 struct vme_master_resource *image; 761 762 if (!bridge->master_rmw) { 763 printk(KERN_WARNING "Writing to resource not supported\n"); 764 return -EINVAL; 765 } 766 767 if (resource->type != VME_MASTER) { 768 printk(KERN_ERR "Not a master resource\n"); 769 return -EINVAL; 770 } 771 772 image = list_entry(resource->entry, struct vme_master_resource, list); 773 774 return bridge->master_rmw(image, mask, compare, swap, offset); 775} 776EXPORT_SYMBOL(vme_master_rmw); 777 778/** 779 * vme_master_mmap - Mmap region of VME master window. 780 * @resource: Pointer to VME master resource. 781 * @vma: Pointer to definition of user mapping. 782 * 783 * Memory map a region of the VME master window into user space. 784 * 785 * Return: Zero on success, -EINVAL if resource is not a VME master 786 * resource or -EFAULT if map exceeds window size. Other generic mmap 787 * errors may also be returned. 788 */ 789int vme_master_mmap(struct vme_resource *resource, struct vm_area_struct *vma) 790{ 791 struct vme_master_resource *image; 792 phys_addr_t phys_addr; 793 unsigned long vma_size; 794 795 if (resource->type != VME_MASTER) { 796 pr_err("Not a master resource\n"); 797 return -EINVAL; 798 } 799 800 image = list_entry(resource->entry, struct vme_master_resource, list); 801 phys_addr = image->bus_resource.start + (vma->vm_pgoff << PAGE_SHIFT); 802 vma_size = vma->vm_end - vma->vm_start; 803 804 if (phys_addr + vma_size > image->bus_resource.end + 1) { 805 pr_err("Map size cannot exceed the window size\n"); 806 return -EFAULT; 807 } 808 809 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 810 811 return vm_iomap_memory(vma, phys_addr, vma->vm_end - vma->vm_start); 812} 813EXPORT_SYMBOL(vme_master_mmap); 814 815/** 816 * vme_master_free - Free VME master window 817 * @resource: Pointer to VME master resource. 818 * 819 * Free the provided master resource so that it may be reallocated. 820 */ 821void vme_master_free(struct vme_resource *resource) 822{ 823 struct vme_master_resource *master_image; 824 825 if (resource->type != VME_MASTER) { 826 printk(KERN_ERR "Not a master resource\n"); 827 return; 828 } 829 830 master_image = list_entry(resource->entry, struct vme_master_resource, 831 list); 832 if (!master_image) { 833 printk(KERN_ERR "Can't find master resource\n"); 834 return; 835 } 836 837 /* Unlock image */ 838 spin_lock(&master_image->lock); 839 if (master_image->locked == 0) 840 printk(KERN_ERR "Image is already free\n"); 841 842 master_image->locked = 0; 843 spin_unlock(&master_image->lock); 844 845 /* Free up resource memory */ 846 kfree(resource); 847} 848EXPORT_SYMBOL(vme_master_free); 849 850/** 851 * vme_dma_request - Request a DMA controller. 852 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance. 853 * @route: Required src/destination combination. 854 * 855 * Request a VME DMA controller with capability to perform transfers bewteen 856 * requested source/destination combination. 857 * 858 * Return: Pointer to VME DMA resource on success, NULL on failure. 859 */ 860struct vme_resource *vme_dma_request(struct vme_dev *vdev, u32 route) 861{ 862 struct vme_bridge *bridge; 863 struct list_head *dma_pos = NULL; 864 struct vme_dma_resource *allocated_ctrlr = NULL; 865 struct vme_dma_resource *dma_ctrlr = NULL; 866 struct vme_resource *resource = NULL; 867 868 /* XXX Not checking resource attributes */ 869 printk(KERN_ERR "No VME resource Attribute tests done\n"); 870 871 bridge = vdev->bridge; 872 if (!bridge) { 873 printk(KERN_ERR "Can't find VME bus\n"); 874 goto err_bus; 875 } 876 877 /* Loop through DMA resources */ 878 list_for_each(dma_pos, &bridge->dma_resources) { 879 dma_ctrlr = list_entry(dma_pos, 880 struct vme_dma_resource, list); 881 if (!dma_ctrlr) { 882 printk(KERN_ERR "Registered NULL DMA resource\n"); 883 continue; 884 } 885 886 /* Find an unlocked and compatible controller */ 887 mutex_lock(&dma_ctrlr->mtx); 888 if (((dma_ctrlr->route_attr & route) == route) && 889 (dma_ctrlr->locked == 0)) { 890 891 dma_ctrlr->locked = 1; 892 mutex_unlock(&dma_ctrlr->mtx); 893 allocated_ctrlr = dma_ctrlr; 894 break; 895 } 896 mutex_unlock(&dma_ctrlr->mtx); 897 } 898 899 /* Check to see if we found a resource */ 900 if (!allocated_ctrlr) 901 goto err_ctrlr; 902 903 resource = kmalloc(sizeof(*resource), GFP_KERNEL); 904 if (!resource) 905 goto err_alloc; 906 907 resource->type = VME_DMA; 908 resource->entry = &allocated_ctrlr->list; 909 910 return resource; 911 912err_alloc: 913 /* Unlock image */ 914 mutex_lock(&dma_ctrlr->mtx); 915 dma_ctrlr->locked = 0; 916 mutex_unlock(&dma_ctrlr->mtx); 917err_ctrlr: 918err_bus: 919 return NULL; 920} 921EXPORT_SYMBOL(vme_dma_request); 922 923/** 924 * vme_new_dma_list - Create new VME DMA list. 925 * @resource: Pointer to VME DMA resource. 926 * 927 * Create a new VME DMA list. It is the responsibility of the user to free 928 * the list once it is no longer required with vme_dma_list_free(). 929 * 930 * Return: Pointer to new VME DMA list, NULL on allocation failure or invalid 931 * VME DMA resource. 932 */ 933struct vme_dma_list *vme_new_dma_list(struct vme_resource *resource) 934{ 935 struct vme_dma_list *dma_list; 936 937 if (resource->type != VME_DMA) { 938 printk(KERN_ERR "Not a DMA resource\n"); 939 return NULL; 940 } 941 942 dma_list = kmalloc(sizeof(*dma_list), GFP_KERNEL); 943 if (!dma_list) 944 return NULL; 945 946 INIT_LIST_HEAD(&dma_list->entries); 947 dma_list->parent = list_entry(resource->entry, 948 struct vme_dma_resource, 949 list); 950 mutex_init(&dma_list->mtx); 951 952 return dma_list; 953} 954EXPORT_SYMBOL(vme_new_dma_list); 955 956/** 957 * vme_dma_pattern_attribute - Create "Pattern" type VME DMA list attribute. 958 * @pattern: Value to use used as pattern 959 * @type: Type of pattern to be written. 960 * 961 * Create VME DMA list attribute for pattern generation. It is the 962 * responsibility of the user to free used attributes using 963 * vme_dma_free_attribute(). 964 * 965 * Return: Pointer to VME DMA attribute, NULL on failure. 966 */ 967struct vme_dma_attr *vme_dma_pattern_attribute(u32 pattern, u32 type) 968{ 969 struct vme_dma_attr *attributes; 970 struct vme_dma_pattern *pattern_attr; 971 972 attributes = kmalloc(sizeof(*attributes), GFP_KERNEL); 973 if (!attributes) 974 goto err_attr; 975 976 pattern_attr = kmalloc(sizeof(*pattern_attr), GFP_KERNEL); 977 if (!pattern_attr) 978 goto err_pat; 979 980 attributes->type = VME_DMA_PATTERN; 981 attributes->private = (void *)pattern_attr; 982 983 pattern_attr->pattern = pattern; 984 pattern_attr->type = type; 985 986 return attributes; 987 988err_pat: 989 kfree(attributes); 990err_attr: 991 return NULL; 992} 993EXPORT_SYMBOL(vme_dma_pattern_attribute); 994 995/** 996 * vme_dma_pci_attribute - Create "PCI" type VME DMA list attribute. 997 * @address: PCI base address for DMA transfer. 998 * 999 * Create VME DMA list attribute pointing to a location on PCI for DMA 1000 * transfers. It is the responsibility of the user to free used attributes 1001 * using vme_dma_free_attribute(). 1002 * 1003 * Return: Pointer to VME DMA attribute, NULL on failure. 1004 */ 1005struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t address) 1006{ 1007 struct vme_dma_attr *attributes; 1008 struct vme_dma_pci *pci_attr; 1009 1010 /* XXX Run some sanity checks here */ 1011 1012 attributes = kmalloc(sizeof(*attributes), GFP_KERNEL); 1013 if (!attributes) 1014 goto err_attr; 1015 1016 pci_attr = kmalloc(sizeof(*pci_attr), GFP_KERNEL); 1017 if (!pci_attr) 1018 goto err_pci; 1019 1020 attributes->type = VME_DMA_PCI; 1021 attributes->private = (void *)pci_attr; 1022 1023 pci_attr->address = address; 1024 1025 return attributes; 1026 1027err_pci: 1028 kfree(attributes); 1029err_attr: 1030 return NULL; 1031} 1032EXPORT_SYMBOL(vme_dma_pci_attribute); 1033 1034/** 1035 * vme_dma_vme_attribute - Create "VME" type VME DMA list attribute. 1036 * @address: VME base address for DMA transfer. 1037 * @aspace: VME address space to use for DMA transfer. 1038 * @cycle: VME bus cycle to use for DMA transfer. 1039 * @dwidth: VME data width to use for DMA transfer. 1040 * 1041 * Create VME DMA list attribute pointing to a location on the VME bus for DMA 1042 * transfers. It is the responsibility of the user to free used attributes 1043 * using vme_dma_free_attribute(). 1044 * 1045 * Return: Pointer to VME DMA attribute, NULL on failure. 1046 */ 1047struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long address, 1048 u32 aspace, u32 cycle, u32 dwidth) 1049{ 1050 struct vme_dma_attr *attributes; 1051 struct vme_dma_vme *vme_attr; 1052 1053 attributes = kmalloc(sizeof(*attributes), GFP_KERNEL); 1054 if (!attributes) 1055 goto err_attr; 1056 1057 vme_attr = kmalloc(sizeof(*vme_attr), GFP_KERNEL); 1058 if (!vme_attr) 1059 goto err_vme; 1060 1061 attributes->type = VME_DMA_VME; 1062 attributes->private = (void *)vme_attr; 1063 1064 vme_attr->address = address; 1065 vme_attr->aspace = aspace; 1066 vme_attr->cycle = cycle; 1067 vme_attr->dwidth = dwidth; 1068 1069 return attributes; 1070 1071err_vme: 1072 kfree(attributes); 1073err_attr: 1074 return NULL; 1075} 1076EXPORT_SYMBOL(vme_dma_vme_attribute); 1077 1078/** 1079 * vme_dma_free_attribute - Free DMA list attribute. 1080 * @attributes: Pointer to DMA list attribute. 1081 * 1082 * Free VME DMA list attribute. VME DMA list attributes can be safely freed 1083 * once vme_dma_list_add() has returned. 1084 */ 1085void vme_dma_free_attribute(struct vme_dma_attr *attributes) 1086{ 1087 kfree(attributes->private); 1088 kfree(attributes); 1089} 1090EXPORT_SYMBOL(vme_dma_free_attribute); 1091 1092/** 1093 * vme_dma_list_add - Add enty to a VME DMA list. 1094 * @list: Pointer to VME list. 1095 * @src: Pointer to DMA list attribute to use as source. 1096 * @dest: Pointer to DMA list attribute to use as destination. 1097 * @count: Number of bytes to transfer. 1098 * 1099 * Add an entry to the provided VME DMA list. Entry requires pointers to source 1100 * and destination DMA attributes and a count. 1101 * 1102 * Please note, the attributes supported as source and destinations for 1103 * transfers are hardware dependent. 1104 * 1105 * Return: Zero on success, -EINVAL if operation is not supported on this 1106 * device or if the link list has already been submitted for execution. 1107 * Hardware specific errors also possible. 1108 */ 1109int vme_dma_list_add(struct vme_dma_list *list, struct vme_dma_attr *src, 1110 struct vme_dma_attr *dest, size_t count) 1111{ 1112 struct vme_bridge *bridge = list->parent->parent; 1113 int retval; 1114 1115 if (!bridge->dma_list_add) { 1116 printk(KERN_WARNING "Link List DMA generation not supported\n"); 1117 return -EINVAL; 1118 } 1119 1120 if (!mutex_trylock(&list->mtx)) { 1121 printk(KERN_ERR "Link List already submitted\n"); 1122 return -EINVAL; 1123 } 1124 1125 retval = bridge->dma_list_add(list, src, dest, count); 1126 1127 mutex_unlock(&list->mtx); 1128 1129 return retval; 1130} 1131EXPORT_SYMBOL(vme_dma_list_add); 1132 1133/** 1134 * vme_dma_list_exec - Queue a VME DMA list for execution. 1135 * @list: Pointer to VME list. 1136 * 1137 * Queue the provided VME DMA list for execution. The call will return once the 1138 * list has been executed. 1139 * 1140 * Return: Zero on success, -EINVAL if operation is not supported on this 1141 * device. Hardware specific errors also possible. 1142 */ 1143int vme_dma_list_exec(struct vme_dma_list *list) 1144{ 1145 struct vme_bridge *bridge = list->parent->parent; 1146 int retval; 1147 1148 if (!bridge->dma_list_exec) { 1149 printk(KERN_ERR "Link List DMA execution not supported\n"); 1150 return -EINVAL; 1151 } 1152 1153 mutex_lock(&list->mtx); 1154 1155 retval = bridge->dma_list_exec(list); 1156 1157 mutex_unlock(&list->mtx); 1158 1159 return retval; 1160} 1161EXPORT_SYMBOL(vme_dma_list_exec); 1162 1163/** 1164 * vme_dma_list_free - Free a VME DMA list. 1165 * @list: Pointer to VME list. 1166 * 1167 * Free the provided DMA list and all its entries. 1168 * 1169 * Return: Zero on success, -EINVAL on invalid VME resource, -EBUSY if resource 1170 * is still in use. Hardware specific errors also possible. 1171 */ 1172int vme_dma_list_free(struct vme_dma_list *list) 1173{ 1174 struct vme_bridge *bridge = list->parent->parent; 1175 int retval; 1176 1177 if (!bridge->dma_list_empty) { 1178 printk(KERN_WARNING "Emptying of Link Lists not supported\n"); 1179 return -EINVAL; 1180 } 1181 1182 if (!mutex_trylock(&list->mtx)) { 1183 printk(KERN_ERR "Link List in use\n"); 1184 return -EBUSY; 1185 } 1186 1187 /* 1188 * Empty out all of the entries from the DMA list. We need to go to the 1189 * low level driver as DMA entries are driver specific. 1190 */ 1191 retval = bridge->dma_list_empty(list); 1192 if (retval) { 1193 printk(KERN_ERR "Unable to empty link-list entries\n"); 1194 mutex_unlock(&list->mtx); 1195 return retval; 1196 } 1197 mutex_unlock(&list->mtx); 1198 kfree(list); 1199 1200 return retval; 1201} 1202EXPORT_SYMBOL(vme_dma_list_free); 1203 1204/** 1205 * vme_dma_free - Free a VME DMA resource. 1206 * @resource: Pointer to VME DMA resource. 1207 * 1208 * Free the provided DMA resource so that it may be reallocated. 1209 * 1210 * Return: Zero on success, -EINVAL on invalid VME resource, -EBUSY if resource 1211 * is still active. 1212 */ 1213int vme_dma_free(struct vme_resource *resource) 1214{ 1215 struct vme_dma_resource *ctrlr; 1216 1217 if (resource->type != VME_DMA) { 1218 printk(KERN_ERR "Not a DMA resource\n"); 1219 return -EINVAL; 1220 } 1221 1222 ctrlr = list_entry(resource->entry, struct vme_dma_resource, list); 1223 1224 if (!mutex_trylock(&ctrlr->mtx)) { 1225 printk(KERN_ERR "Resource busy, can't free\n"); 1226 return -EBUSY; 1227 } 1228 1229 if (!(list_empty(&ctrlr->pending) && list_empty(&ctrlr->running))) { 1230 printk(KERN_WARNING "Resource still processing transfers\n"); 1231 mutex_unlock(&ctrlr->mtx); 1232 return -EBUSY; 1233 } 1234 1235 ctrlr->locked = 0; 1236 1237 mutex_unlock(&ctrlr->mtx); 1238 1239 kfree(resource); 1240 1241 return 0; 1242} 1243EXPORT_SYMBOL(vme_dma_free); 1244 1245void vme_bus_error_handler(struct vme_bridge *bridge, 1246 unsigned long long address, int am) 1247{ 1248 struct list_head *handler_pos = NULL; 1249 struct vme_error_handler *handler; 1250 int handler_triggered = 0; 1251 u32 aspace = vme_get_aspace(am); 1252 1253 list_for_each(handler_pos, &bridge->vme_error_handlers) { 1254 handler = list_entry(handler_pos, struct vme_error_handler, 1255 list); 1256 if ((aspace == handler->aspace) && 1257 (address >= handler->start) && 1258 (address < handler->end)) { 1259 if (!handler->num_errors) 1260 handler->first_error = address; 1261 if (handler->num_errors != UINT_MAX) 1262 handler->num_errors++; 1263 handler_triggered = 1; 1264 } 1265 } 1266 1267 if (!handler_triggered) 1268 dev_err(bridge->parent, 1269 "Unhandled VME access error at address 0x%llx\n", 1270 address); 1271} 1272EXPORT_SYMBOL(vme_bus_error_handler); 1273 1274struct vme_error_handler *vme_register_error_handler( 1275 struct vme_bridge *bridge, u32 aspace, 1276 unsigned long long address, size_t len) 1277{ 1278 struct vme_error_handler *handler; 1279 1280 handler = kmalloc(sizeof(*handler), GFP_ATOMIC); 1281 if (!handler) 1282 return NULL; 1283 1284 handler->aspace = aspace; 1285 handler->start = address; 1286 handler->end = address + len; 1287 handler->num_errors = 0; 1288 handler->first_error = 0; 1289 list_add_tail(&handler->list, &bridge->vme_error_handlers); 1290 1291 return handler; 1292} 1293EXPORT_SYMBOL(vme_register_error_handler); 1294 1295void vme_unregister_error_handler(struct vme_error_handler *handler) 1296{ 1297 list_del(&handler->list); 1298 kfree(handler); 1299} 1300EXPORT_SYMBOL(vme_unregister_error_handler); 1301 1302void vme_irq_handler(struct vme_bridge *bridge, int level, int statid) 1303{ 1304 void (*call)(int, int, void *); 1305 void *priv_data; 1306 1307 call = bridge->irq[level - 1].callback[statid].func; 1308 priv_data = bridge->irq[level - 1].callback[statid].priv_data; 1309 if (call) 1310 call(level, statid, priv_data); 1311 else 1312 printk(KERN_WARNING "Spurious VME interrupt, level:%x, vector:%x\n", 1313 level, statid); 1314} 1315EXPORT_SYMBOL(vme_irq_handler); 1316 1317/** 1318 * vme_irq_request - Request a specific VME interrupt. 1319 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance. 1320 * @level: Interrupt priority being requested. 1321 * @statid: Interrupt vector being requested. 1322 * @callback: Pointer to callback function called when VME interrupt/vector 1323 * received. 1324 * @priv_data: Generic pointer that will be passed to the callback function. 1325 * 1326 * Request callback to be attached as a handler for VME interrupts with provided 1327 * level and statid. 1328 * 1329 * Return: Zero on success, -EINVAL on invalid vme device, level or if the 1330 * function is not supported, -EBUSY if the level/statid combination is 1331 * already in use. Hardware specific errors also possible. 1332 */ 1333int vme_irq_request(struct vme_dev *vdev, int level, int statid, 1334 void (*callback)(int, int, void *), 1335 void *priv_data) 1336{ 1337 struct vme_bridge *bridge; 1338 1339 bridge = vdev->bridge; 1340 if (!bridge) { 1341 printk(KERN_ERR "Can't find VME bus\n"); 1342 return -EINVAL; 1343 } 1344 1345 if ((level < 1) || (level > 7)) { 1346 printk(KERN_ERR "Invalid interrupt level\n"); 1347 return -EINVAL; 1348 } 1349 1350 if (!bridge->irq_set) { 1351 printk(KERN_ERR "Configuring interrupts not supported\n"); 1352 return -EINVAL; 1353 } 1354 1355 mutex_lock(&bridge->irq_mtx); 1356 1357 if (bridge->irq[level - 1].callback[statid].func) { 1358 mutex_unlock(&bridge->irq_mtx); 1359 printk(KERN_WARNING "VME Interrupt already taken\n"); 1360 return -EBUSY; 1361 } 1362 1363 bridge->irq[level - 1].count++; 1364 bridge->irq[level - 1].callback[statid].priv_data = priv_data; 1365 bridge->irq[level - 1].callback[statid].func = callback; 1366 1367 /* Enable IRQ level */ 1368 bridge->irq_set(bridge, level, 1, 1); 1369 1370 mutex_unlock(&bridge->irq_mtx); 1371 1372 return 0; 1373} 1374EXPORT_SYMBOL(vme_irq_request); 1375 1376/** 1377 * vme_irq_free - Free a VME interrupt. 1378 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance. 1379 * @level: Interrupt priority of interrupt being freed. 1380 * @statid: Interrupt vector of interrupt being freed. 1381 * 1382 * Remove previously attached callback from VME interrupt priority/vector. 1383 */ 1384void vme_irq_free(struct vme_dev *vdev, int level, int statid) 1385{ 1386 struct vme_bridge *bridge; 1387 1388 bridge = vdev->bridge; 1389 if (!bridge) { 1390 printk(KERN_ERR "Can't find VME bus\n"); 1391 return; 1392 } 1393 1394 if ((level < 1) || (level > 7)) { 1395 printk(KERN_ERR "Invalid interrupt level\n"); 1396 return; 1397 } 1398 1399 if (!bridge->irq_set) { 1400 printk(KERN_ERR "Configuring interrupts not supported\n"); 1401 return; 1402 } 1403 1404 mutex_lock(&bridge->irq_mtx); 1405 1406 bridge->irq[level - 1].count--; 1407 1408 /* Disable IRQ level if no more interrupts attached at this level*/ 1409 if (bridge->irq[level - 1].count == 0) 1410 bridge->irq_set(bridge, level, 0, 1); 1411 1412 bridge->irq[level - 1].callback[statid].func = NULL; 1413 bridge->irq[level - 1].callback[statid].priv_data = NULL; 1414 1415 mutex_unlock(&bridge->irq_mtx); 1416} 1417EXPORT_SYMBOL(vme_irq_free); 1418 1419/** 1420 * vme_irq_generate - Generate VME interrupt. 1421 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance. 1422 * @level: Interrupt priority at which to assert the interrupt. 1423 * @statid: Interrupt vector to associate with the interrupt. 1424 * 1425 * Generate a VME interrupt of the provided level and with the provided 1426 * statid. 1427 * 1428 * Return: Zero on success, -EINVAL on invalid vme device, level or if the 1429 * function is not supported. Hardware specific errors also possible. 1430 */ 1431int vme_irq_generate(struct vme_dev *vdev, int level, int statid) 1432{ 1433 struct vme_bridge *bridge; 1434 1435 bridge = vdev->bridge; 1436 if (!bridge) { 1437 printk(KERN_ERR "Can't find VME bus\n"); 1438 return -EINVAL; 1439 } 1440 1441 if ((level < 1) || (level > 7)) { 1442 printk(KERN_WARNING "Invalid interrupt level\n"); 1443 return -EINVAL; 1444 } 1445 1446 if (!bridge->irq_generate) { 1447 printk(KERN_WARNING "Interrupt generation not supported\n"); 1448 return -EINVAL; 1449 } 1450 1451 return bridge->irq_generate(bridge, level, statid); 1452} 1453EXPORT_SYMBOL(vme_irq_generate); 1454 1455/** 1456 * vme_lm_request - Request a VME location monitor 1457 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance. 1458 * 1459 * Allocate a location monitor resource to the driver. A location monitor 1460 * allows the driver to monitor accesses to a contiguous number of 1461 * addresses on the VME bus. 1462 * 1463 * Return: Pointer to a VME resource on success or NULL on failure. 1464 */ 1465struct vme_resource *vme_lm_request(struct vme_dev *vdev) 1466{ 1467 struct vme_bridge *bridge; 1468 struct list_head *lm_pos = NULL; 1469 struct vme_lm_resource *allocated_lm = NULL; 1470 struct vme_lm_resource *lm = NULL; 1471 struct vme_resource *resource = NULL; 1472 1473 bridge = vdev->bridge; 1474 if (!bridge) { 1475 printk(KERN_ERR "Can't find VME bus\n"); 1476 goto err_bus; 1477 } 1478 1479 /* Loop through LM resources */ 1480 list_for_each(lm_pos, &bridge->lm_resources) { 1481 lm = list_entry(lm_pos, 1482 struct vme_lm_resource, list); 1483 if (!lm) { 1484 printk(KERN_ERR "Registered NULL Location Monitor resource\n"); 1485 continue; 1486 } 1487 1488 /* Find an unlocked controller */ 1489 mutex_lock(&lm->mtx); 1490 if (lm->locked == 0) { 1491 lm->locked = 1; 1492 mutex_unlock(&lm->mtx); 1493 allocated_lm = lm; 1494 break; 1495 } 1496 mutex_unlock(&lm->mtx); 1497 } 1498 1499 /* Check to see if we found a resource */ 1500 if (!allocated_lm) 1501 goto err_lm; 1502 1503 resource = kmalloc(sizeof(*resource), GFP_KERNEL); 1504 if (!resource) 1505 goto err_alloc; 1506 1507 resource->type = VME_LM; 1508 resource->entry = &allocated_lm->list; 1509 1510 return resource; 1511 1512err_alloc: 1513 /* Unlock image */ 1514 mutex_lock(&lm->mtx); 1515 lm->locked = 0; 1516 mutex_unlock(&lm->mtx); 1517err_lm: 1518err_bus: 1519 return NULL; 1520} 1521EXPORT_SYMBOL(vme_lm_request); 1522 1523/** 1524 * vme_lm_count - Determine number of VME Addresses monitored 1525 * @resource: Pointer to VME location monitor resource. 1526 * 1527 * The number of contiguous addresses monitored is hardware dependent. 1528 * Return the number of contiguous addresses monitored by the 1529 * location monitor. 1530 * 1531 * Return: Count of addresses monitored or -EINVAL when provided with an 1532 * invalid location monitor resource. 1533 */ 1534int vme_lm_count(struct vme_resource *resource) 1535{ 1536 struct vme_lm_resource *lm; 1537 1538 if (resource->type != VME_LM) { 1539 printk(KERN_ERR "Not a Location Monitor resource\n"); 1540 return -EINVAL; 1541 } 1542 1543 lm = list_entry(resource->entry, struct vme_lm_resource, list); 1544 1545 return lm->monitors; 1546} 1547EXPORT_SYMBOL(vme_lm_count); 1548 1549/** 1550 * vme_lm_set - Configure location monitor 1551 * @resource: Pointer to VME location monitor resource. 1552 * @lm_base: Base address to monitor. 1553 * @aspace: VME address space to monitor. 1554 * @cycle: VME bus cycle type to monitor. 1555 * 1556 * Set the base address, address space and cycle type of accesses to be 1557 * monitored by the location monitor. 1558 * 1559 * Return: Zero on success, -EINVAL when provided with an invalid location 1560 * monitor resource or function is not supported. Hardware specific 1561 * errors may also be returned. 1562 */ 1563int vme_lm_set(struct vme_resource *resource, unsigned long long lm_base, 1564 u32 aspace, u32 cycle) 1565{ 1566 struct vme_bridge *bridge = find_bridge(resource); 1567 struct vme_lm_resource *lm; 1568 1569 if (resource->type != VME_LM) { 1570 printk(KERN_ERR "Not a Location Monitor resource\n"); 1571 return -EINVAL; 1572 } 1573 1574 lm = list_entry(resource->entry, struct vme_lm_resource, list); 1575 1576 if (!bridge->lm_set) { 1577 printk(KERN_ERR "vme_lm_set not supported\n"); 1578 return -EINVAL; 1579 } 1580 1581 return bridge->lm_set(lm, lm_base, aspace, cycle); 1582} 1583EXPORT_SYMBOL(vme_lm_set); 1584 1585/** 1586 * vme_lm_get - Retrieve location monitor settings 1587 * @resource: Pointer to VME location monitor resource. 1588 * @lm_base: Pointer used to output the base address monitored. 1589 * @aspace: Pointer used to output the address space monitored. 1590 * @cycle: Pointer used to output the VME bus cycle type monitored. 1591 * 1592 * Retrieve the base address, address space and cycle type of accesses to 1593 * be monitored by the location monitor. 1594 * 1595 * Return: Zero on success, -EINVAL when provided with an invalid location 1596 * monitor resource or function is not supported. Hardware specific 1597 * errors may also be returned. 1598 */ 1599int vme_lm_get(struct vme_resource *resource, unsigned long long *lm_base, 1600 u32 *aspace, u32 *cycle) 1601{ 1602 struct vme_bridge *bridge = find_bridge(resource); 1603 struct vme_lm_resource *lm; 1604 1605 if (resource->type != VME_LM) { 1606 printk(KERN_ERR "Not a Location Monitor resource\n"); 1607 return -EINVAL; 1608 } 1609 1610 lm = list_entry(resource->entry, struct vme_lm_resource, list); 1611 1612 if (!bridge->lm_get) { 1613 printk(KERN_ERR "vme_lm_get not supported\n"); 1614 return -EINVAL; 1615 } 1616 1617 return bridge->lm_get(lm, lm_base, aspace, cycle); 1618} 1619EXPORT_SYMBOL(vme_lm_get); 1620 1621/** 1622 * vme_lm_attach - Provide callback for location monitor address 1623 * @resource: Pointer to VME location monitor resource. 1624 * @monitor: Offset to which callback should be attached. 1625 * @callback: Pointer to callback function called when triggered. 1626 * @data: Generic pointer that will be passed to the callback function. 1627 * 1628 * Attach a callback to the specificed offset into the location monitors 1629 * monitored addresses. A generic pointer is provided to allow data to be 1630 * passed to the callback when called. 1631 * 1632 * Return: Zero on success, -EINVAL when provided with an invalid location 1633 * monitor resource or function is not supported. Hardware specific 1634 * errors may also be returned. 1635 */ 1636int vme_lm_attach(struct vme_resource *resource, int monitor, 1637 void (*callback)(void *), void *data) 1638{ 1639 struct vme_bridge *bridge = find_bridge(resource); 1640 struct vme_lm_resource *lm; 1641 1642 if (resource->type != VME_LM) { 1643 printk(KERN_ERR "Not a Location Monitor resource\n"); 1644 return -EINVAL; 1645 } 1646 1647 lm = list_entry(resource->entry, struct vme_lm_resource, list); 1648 1649 if (!bridge->lm_attach) { 1650 printk(KERN_ERR "vme_lm_attach not supported\n"); 1651 return -EINVAL; 1652 } 1653 1654 return bridge->lm_attach(lm, monitor, callback, data); 1655} 1656EXPORT_SYMBOL(vme_lm_attach); 1657 1658/** 1659 * vme_lm_detach - Remove callback for location monitor address 1660 * @resource: Pointer to VME location monitor resource. 1661 * @monitor: Offset to which callback should be removed. 1662 * 1663 * Remove the callback associated with the specificed offset into the 1664 * location monitors monitored addresses. 1665 * 1666 * Return: Zero on success, -EINVAL when provided with an invalid location 1667 * monitor resource or function is not supported. Hardware specific 1668 * errors may also be returned. 1669 */ 1670int vme_lm_detach(struct vme_resource *resource, int monitor) 1671{ 1672 struct vme_bridge *bridge = find_bridge(resource); 1673 struct vme_lm_resource *lm; 1674 1675 if (resource->type != VME_LM) { 1676 printk(KERN_ERR "Not a Location Monitor resource\n"); 1677 return -EINVAL; 1678 } 1679 1680 lm = list_entry(resource->entry, struct vme_lm_resource, list); 1681 1682 if (!bridge->lm_detach) { 1683 printk(KERN_ERR "vme_lm_detach not supported\n"); 1684 return -EINVAL; 1685 } 1686 1687 return bridge->lm_detach(lm, monitor); 1688} 1689EXPORT_SYMBOL(vme_lm_detach); 1690 1691/** 1692 * vme_lm_free - Free allocated VME location monitor 1693 * @resource: Pointer to VME location monitor resource. 1694 * 1695 * Free allocation of a VME location monitor. 1696 * 1697 * WARNING: This function currently expects that any callbacks that have 1698 * been attached to the location monitor have been removed. 1699 * 1700 * Return: Zero on success, -EINVAL when provided with an invalid location 1701 * monitor resource. 1702 */ 1703void vme_lm_free(struct vme_resource *resource) 1704{ 1705 struct vme_lm_resource *lm; 1706 1707 if (resource->type != VME_LM) { 1708 printk(KERN_ERR "Not a Location Monitor resource\n"); 1709 return; 1710 } 1711 1712 lm = list_entry(resource->entry, struct vme_lm_resource, list); 1713 1714 mutex_lock(&lm->mtx); 1715 1716 /* XXX 1717 * Check to see that there aren't any callbacks still attached, if 1718 * there are we should probably be detaching them! 1719 */ 1720 1721 lm->locked = 0; 1722 1723 mutex_unlock(&lm->mtx); 1724 1725 kfree(resource); 1726} 1727EXPORT_SYMBOL(vme_lm_free); 1728 1729/** 1730 * vme_slot_num - Retrieve slot ID 1731 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance. 1732 * 1733 * Retrieve the slot ID associated with the provided VME device. 1734 * 1735 * Return: The slot ID on success, -EINVAL if VME bridge cannot be determined 1736 * or the function is not supported. Hardware specific errors may also 1737 * be returned. 1738 */ 1739int vme_slot_num(struct vme_dev *vdev) 1740{ 1741 struct vme_bridge *bridge; 1742 1743 bridge = vdev->bridge; 1744 if (!bridge) { 1745 printk(KERN_ERR "Can't find VME bus\n"); 1746 return -EINVAL; 1747 } 1748 1749 if (!bridge->slot_get) { 1750 printk(KERN_WARNING "vme_slot_num not supported\n"); 1751 return -EINVAL; 1752 } 1753 1754 return bridge->slot_get(bridge); 1755} 1756EXPORT_SYMBOL(vme_slot_num); 1757 1758/** 1759 * vme_bus_num - Retrieve bus number 1760 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance. 1761 * 1762 * Retrieve the bus enumeration associated with the provided VME device. 1763 * 1764 * Return: The bus number on success, -EINVAL if VME bridge cannot be 1765 * determined. 1766 */ 1767int vme_bus_num(struct vme_dev *vdev) 1768{ 1769 struct vme_bridge *bridge; 1770 1771 bridge = vdev->bridge; 1772 if (!bridge) { 1773 pr_err("Can't find VME bus\n"); 1774 return -EINVAL; 1775 } 1776 1777 return bridge->num; 1778} 1779EXPORT_SYMBOL(vme_bus_num); 1780 1781/* - Bridge Registration --------------------------------------------------- */ 1782 1783static void vme_dev_release(struct device *dev) 1784{ 1785 kfree(dev_to_vme_dev(dev)); 1786} 1787 1788/* Common bridge initialization */ 1789struct vme_bridge *vme_init_bridge(struct vme_bridge *bridge) 1790{ 1791 INIT_LIST_HEAD(&bridge->vme_error_handlers); 1792 INIT_LIST_HEAD(&bridge->master_resources); 1793 INIT_LIST_HEAD(&bridge->slave_resources); 1794 INIT_LIST_HEAD(&bridge->dma_resources); 1795 INIT_LIST_HEAD(&bridge->lm_resources); 1796 mutex_init(&bridge->irq_mtx); 1797 1798 return bridge; 1799} 1800EXPORT_SYMBOL(vme_init_bridge); 1801 1802int vme_register_bridge(struct vme_bridge *bridge) 1803{ 1804 int i; 1805 int ret = -1; 1806 1807 mutex_lock(&vme_buses_lock); 1808 for (i = 0; i < sizeof(vme_bus_numbers) * 8; i++) { 1809 if ((vme_bus_numbers & (1 << i)) == 0) { 1810 vme_bus_numbers |= (1 << i); 1811 bridge->num = i; 1812 INIT_LIST_HEAD(&bridge->devices); 1813 list_add_tail(&bridge->bus_list, &vme_bus_list); 1814 ret = 0; 1815 break; 1816 } 1817 } 1818 mutex_unlock(&vme_buses_lock); 1819 1820 return ret; 1821} 1822EXPORT_SYMBOL(vme_register_bridge); 1823 1824void vme_unregister_bridge(struct vme_bridge *bridge) 1825{ 1826 struct vme_dev *vdev; 1827 struct vme_dev *tmp; 1828 1829 mutex_lock(&vme_buses_lock); 1830 vme_bus_numbers &= ~(1 << bridge->num); 1831 list_for_each_entry_safe(vdev, tmp, &bridge->devices, bridge_list) { 1832 list_del(&vdev->drv_list); 1833 list_del(&vdev->bridge_list); 1834 device_unregister(&vdev->dev); 1835 } 1836 list_del(&bridge->bus_list); 1837 mutex_unlock(&vme_buses_lock); 1838} 1839EXPORT_SYMBOL(vme_unregister_bridge); 1840 1841/* - Driver Registration --------------------------------------------------- */ 1842 1843static int __vme_register_driver_bus(struct vme_driver *drv, 1844 struct vme_bridge *bridge, unsigned int ndevs) 1845{ 1846 int err; 1847 unsigned int i; 1848 struct vme_dev *vdev; 1849 struct vme_dev *tmp; 1850 1851 for (i = 0; i < ndevs; i++) { 1852 vdev = kzalloc(sizeof(*vdev), GFP_KERNEL); 1853 if (!vdev) { 1854 err = -ENOMEM; 1855 goto err_devalloc; 1856 } 1857 vdev->num = i; 1858 vdev->bridge = bridge; 1859 vdev->dev.platform_data = drv; 1860 vdev->dev.release = vme_dev_release; 1861 vdev->dev.parent = bridge->parent; 1862 vdev->dev.bus = &vme_bus_type; 1863 dev_set_name(&vdev->dev, "%s.%u-%u", drv->name, bridge->num, 1864 vdev->num); 1865 1866 err = device_register(&vdev->dev); 1867 if (err) 1868 goto err_reg; 1869 1870 if (vdev->dev.platform_data) { 1871 list_add_tail(&vdev->drv_list, &drv->devices); 1872 list_add_tail(&vdev->bridge_list, &bridge->devices); 1873 } else 1874 device_unregister(&vdev->dev); 1875 } 1876 return 0; 1877 1878err_reg: 1879 put_device(&vdev->dev); 1880err_devalloc: 1881 list_for_each_entry_safe(vdev, tmp, &drv->devices, drv_list) { 1882 list_del(&vdev->drv_list); 1883 list_del(&vdev->bridge_list); 1884 device_unregister(&vdev->dev); 1885 } 1886 return err; 1887} 1888 1889static int __vme_register_driver(struct vme_driver *drv, unsigned int ndevs) 1890{ 1891 struct vme_bridge *bridge; 1892 int err = 0; 1893 1894 mutex_lock(&vme_buses_lock); 1895 list_for_each_entry(bridge, &vme_bus_list, bus_list) { 1896 /* 1897 * This cannot cause trouble as we already have vme_buses_lock 1898 * and if the bridge is removed, it will have to go through 1899 * vme_unregister_bridge() to do it (which calls remove() on 1900 * the bridge which in turn tries to acquire vme_buses_lock and 1901 * will have to wait). 1902 */ 1903 err = __vme_register_driver_bus(drv, bridge, ndevs); 1904 if (err) 1905 break; 1906 } 1907 mutex_unlock(&vme_buses_lock); 1908 return err; 1909} 1910 1911/** 1912 * vme_register_driver - Register a VME driver 1913 * @drv: Pointer to VME driver structure to register. 1914 * @ndevs: Maximum number of devices to allow to be enumerated. 1915 * 1916 * Register a VME device driver with the VME subsystem. 1917 * 1918 * Return: Zero on success, error value on registration failure. 1919 */ 1920int vme_register_driver(struct vme_driver *drv, unsigned int ndevs) 1921{ 1922 int err; 1923 1924 drv->driver.name = drv->name; 1925 drv->driver.bus = &vme_bus_type; 1926 INIT_LIST_HEAD(&drv->devices); 1927 1928 err = driver_register(&drv->driver); 1929 if (err) 1930 return err; 1931 1932 err = __vme_register_driver(drv, ndevs); 1933 if (err) 1934 driver_unregister(&drv->driver); 1935 1936 return err; 1937} 1938EXPORT_SYMBOL(vme_register_driver); 1939 1940/** 1941 * vme_unregister_driver - Unregister a VME driver 1942 * @drv: Pointer to VME driver structure to unregister. 1943 * 1944 * Unregister a VME device driver from the VME subsystem. 1945 */ 1946void vme_unregister_driver(struct vme_driver *drv) 1947{ 1948 struct vme_dev *dev, *dev_tmp; 1949 1950 mutex_lock(&vme_buses_lock); 1951 list_for_each_entry_safe(dev, dev_tmp, &drv->devices, drv_list) { 1952 list_del(&dev->drv_list); 1953 list_del(&dev->bridge_list); 1954 device_unregister(&dev->dev); 1955 } 1956 mutex_unlock(&vme_buses_lock); 1957 1958 driver_unregister(&drv->driver); 1959} 1960EXPORT_SYMBOL(vme_unregister_driver); 1961 1962/* - Bus Registration ------------------------------------------------------ */ 1963 1964static int vme_bus_match(struct device *dev, struct device_driver *drv) 1965{ 1966 struct vme_driver *vme_drv; 1967 1968 vme_drv = container_of(drv, struct vme_driver, driver); 1969 1970 if (dev->platform_data == vme_drv) { 1971 struct vme_dev *vdev = dev_to_vme_dev(dev); 1972 1973 if (vme_drv->match && vme_drv->match(vdev)) 1974 return 1; 1975 1976 dev->platform_data = NULL; 1977 } 1978 return 0; 1979} 1980 1981static int vme_bus_probe(struct device *dev) 1982{ 1983 struct vme_driver *driver; 1984 struct vme_dev *vdev = dev_to_vme_dev(dev); 1985 1986 driver = dev->platform_data; 1987 if (driver->probe) 1988 return driver->probe(vdev); 1989 1990 return -ENODEV; 1991} 1992 1993static void vme_bus_remove(struct device *dev) 1994{ 1995 struct vme_driver *driver; 1996 struct vme_dev *vdev = dev_to_vme_dev(dev); 1997 1998 driver = dev->platform_data; 1999 if (driver->remove) 2000 driver->remove(vdev); 2001} 2002 2003struct bus_type vme_bus_type = { 2004 .name = "vme", 2005 .match = vme_bus_match, 2006 .probe = vme_bus_probe, 2007 .remove = vme_bus_remove, 2008}; 2009EXPORT_SYMBOL(vme_bus_type); 2010 2011static int __init vme_init(void) 2012{ 2013 return bus_register(&vme_bus_type); 2014} 2015subsys_initcall(vme_init);