cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ds2490.c (26651B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 *	ds2490.c  USB to one wire bridge
      4 *
      5 * Copyright (c) 2004 Evgeniy Polyakov <zbr@ioremap.net>
      6 */
      7
      8#include <linux/module.h>
      9#include <linux/kernel.h>
     10#include <linux/mod_devicetable.h>
     11#include <linux/usb.h>
     12#include <linux/slab.h>
     13
     14#include <linux/w1.h>
     15
     16/* USB Standard */
     17/* USB Control request vendor type */
     18#define VENDOR				0x40
     19
     20/* COMMAND TYPE CODES */
     21#define CONTROL_CMD			0x00
     22#define COMM_CMD			0x01
     23#define MODE_CMD			0x02
     24
     25/* CONTROL COMMAND CODES */
     26#define CTL_RESET_DEVICE		0x0000
     27#define CTL_START_EXE			0x0001
     28#define CTL_RESUME_EXE			0x0002
     29#define CTL_HALT_EXE_IDLE		0x0003
     30#define CTL_HALT_EXE_DONE		0x0004
     31#define CTL_FLUSH_COMM_CMDS		0x0007
     32#define CTL_FLUSH_RCV_BUFFER		0x0008
     33#define CTL_FLUSH_XMT_BUFFER		0x0009
     34#define CTL_GET_COMM_CMDS		0x000A
     35
     36/* MODE COMMAND CODES */
     37#define MOD_PULSE_EN			0x0000
     38#define MOD_SPEED_CHANGE_EN		0x0001
     39#define MOD_1WIRE_SPEED			0x0002
     40#define MOD_STRONG_PU_DURATION		0x0003
     41#define MOD_PULLDOWN_SLEWRATE		0x0004
     42#define MOD_PROG_PULSE_DURATION		0x0005
     43#define MOD_WRITE1_LOWTIME		0x0006
     44#define MOD_DSOW0_TREC			0x0007
     45
     46/* COMMUNICATION COMMAND CODES */
     47#define COMM_ERROR_ESCAPE		0x0601
     48#define COMM_SET_DURATION		0x0012
     49#define COMM_BIT_IO			0x0020
     50#define COMM_PULSE			0x0030
     51#define COMM_1_WIRE_RESET		0x0042
     52#define COMM_BYTE_IO			0x0052
     53#define COMM_MATCH_ACCESS		0x0064
     54#define COMM_BLOCK_IO			0x0074
     55#define COMM_READ_STRAIGHT		0x0080
     56#define COMM_DO_RELEASE			0x6092
     57#define COMM_SET_PATH			0x00A2
     58#define COMM_WRITE_SRAM_PAGE		0x00B2
     59#define COMM_WRITE_EPROM		0x00C4
     60#define COMM_READ_CRC_PROT_PAGE		0x00D4
     61#define COMM_READ_REDIRECT_PAGE_CRC	0x21E4
     62#define COMM_SEARCH_ACCESS		0x00F4
     63
     64/* Communication command bits */
     65#define COMM_TYPE			0x0008
     66#define COMM_SE				0x0008
     67#define COMM_D				0x0008
     68#define COMM_Z				0x0008
     69#define COMM_CH				0x0008
     70#define COMM_SM				0x0008
     71#define COMM_R				0x0008
     72#define COMM_IM				0x0001
     73
     74#define COMM_PS				0x4000
     75#define COMM_PST			0x4000
     76#define COMM_CIB			0x4000
     77#define COMM_RTS			0x4000
     78#define COMM_DT				0x2000
     79#define COMM_SPU			0x1000
     80#define COMM_F				0x0800
     81#define COMM_NTF			0x0400
     82#define COMM_ICP			0x0200
     83#define COMM_RST			0x0100
     84
     85#define PULSE_PROG			0x01
     86#define PULSE_SPUE			0x02
     87
     88#define BRANCH_MAIN			0xCC
     89#define BRANCH_AUX			0x33
     90
     91/* Status flags */
     92#define ST_SPUA				0x01  /* Strong Pull-up is active */
     93#define ST_PRGA				0x02  /* 12V programming pulse is being generated */
     94#define ST_12VP				0x04  /* external 12V programming voltage is present */
     95#define ST_PMOD				0x08  /* DS2490 powered from USB and external sources */
     96#define ST_HALT				0x10  /* DS2490 is currently halted */
     97#define ST_IDLE				0x20  /* DS2490 is currently idle */
     98#define ST_EPOF				0x80
     99/* Status transfer size, 16 bytes status, 16 byte result flags */
    100#define ST_SIZE				0x20
    101
    102/* Result Register flags */
    103#define RR_DETECT			0xA5 /* New device detected */
    104#define RR_NRS				0x01 /* Reset no presence or ... */
    105#define RR_SH				0x02 /* short on reset or set path */
    106#define RR_APP				0x04 /* alarming presence on reset */
    107#define RR_VPP				0x08 /* 12V expected not seen */
    108#define RR_CMP				0x10 /* compare error */
    109#define RR_CRC				0x20 /* CRC error detected */
    110#define RR_RDP				0x40 /* redirected page */
    111#define RR_EOS				0x80 /* end of search error */
    112
    113#define SPEED_NORMAL			0x00
    114#define SPEED_FLEXIBLE			0x01
    115#define SPEED_OVERDRIVE			0x02
    116
    117#define NUM_EP				4
    118#define EP_CONTROL			0
    119#define EP_STATUS			1
    120#define EP_DATA_OUT			2
    121#define EP_DATA_IN			3
    122
    123struct ds_device {
    124	struct list_head	ds_entry;
    125
    126	struct usb_device	*udev;
    127	struct usb_interface	*intf;
    128
    129	int			ep[NUM_EP];
    130
    131	/* Strong PullUp
    132	 * 0: pullup not active, else duration in milliseconds
    133	 */
    134	int			spu_sleep;
    135	/* spu_bit contains COMM_SPU or 0 depending on if the strong pullup
    136	 * should be active or not for writes.
    137	 */
    138	u16			spu_bit;
    139
    140	u8			st_buf[ST_SIZE];
    141	u8			byte_buf;
    142
    143	struct w1_bus_master	master;
    144};
    145
    146struct ds_status {
    147	u8			enable;
    148	u8			speed;
    149	u8			pullup_dur;
    150	u8			ppuls_dur;
    151	u8			pulldown_slew;
    152	u8			write1_time;
    153	u8			write0_time;
    154	u8			reserved0;
    155	u8			status;
    156	u8			command0;
    157	u8			command1;
    158	u8			command_buffer_status;
    159	u8			data_out_buffer_status;
    160	u8			data_in_buffer_status;
    161	u8			reserved1;
    162	u8			reserved2;
    163};
    164
    165static LIST_HEAD(ds_devices);
    166static DEFINE_MUTEX(ds_mutex);
    167
    168static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
    169{
    170	int err;
    171
    172	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
    173			CONTROL_CMD, VENDOR, value, index, NULL, 0, 1000);
    174	if (err < 0) {
    175		dev_err(&dev->udev->dev,
    176			"Failed to send command control message %x.%x: err=%d.\n",
    177			value, index, err);
    178		return err;
    179	}
    180
    181	return err;
    182}
    183
    184static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
    185{
    186	int err;
    187
    188	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
    189			MODE_CMD, VENDOR, value, index, NULL, 0, 1000);
    190	if (err < 0) {
    191		dev_err(&dev->udev->dev,
    192			"Failed to send mode control message %x.%x: err=%d.\n",
    193			value, index, err);
    194		return err;
    195	}
    196
    197	return err;
    198}
    199
    200static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
    201{
    202	int err;
    203
    204	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
    205			COMM_CMD, VENDOR, value, index, NULL, 0, 1000);
    206	if (err < 0) {
    207		dev_err(&dev->udev->dev,
    208			"Failed to send control message %x.%x: err=%d.\n",
    209			value, index, err);
    210		return err;
    211	}
    212
    213	return err;
    214}
    215
    216static void ds_dump_status(struct ds_device *ds_dev, unsigned char *buf, int count)
    217{
    218	struct device *dev = &ds_dev->udev->dev;
    219	int i;
    220
    221	dev_info(dev, "ep_status=0x%x, count=%d, status=%*phC",
    222		ds_dev->ep[EP_STATUS], count, count, buf);
    223
    224	if (count >= 16) {
    225		dev_dbg(dev, "enable flag: 0x%02x", buf[0]);
    226		dev_dbg(dev, "1-wire speed: 0x%02x", buf[1]);
    227		dev_dbg(dev, "strong pullup duration: 0x%02x", buf[2]);
    228		dev_dbg(dev, "programming pulse duration: 0x%02x", buf[3]);
    229		dev_dbg(dev, "pulldown slew rate control: 0x%02x", buf[4]);
    230		dev_dbg(dev, "write-1 low time: 0x%02x", buf[5]);
    231		dev_dbg(dev, "data sample offset/write-0 recovery time: 0x%02x", buf[6]);
    232		dev_dbg(dev, "reserved (test register): 0x%02x", buf[7]);
    233		dev_dbg(dev, "device status flags: 0x%02x", buf[8]);
    234		dev_dbg(dev, "communication command byte 1: 0x%02x", buf[9]);
    235		dev_dbg(dev, "communication command byte 2: 0x%02x", buf[10]);
    236		dev_dbg(dev, "communication command buffer status: 0x%02x", buf[11]);
    237		dev_dbg(dev, "1-wire data output buffer status: 0x%02x", buf[12]);
    238		dev_dbg(dev, "1-wire data input buffer status: 0x%02x", buf[13]);
    239		dev_dbg(dev, "reserved: 0x%02x", buf[14]);
    240		dev_dbg(dev, "reserved: 0x%02x", buf[15]);
    241	}
    242
    243	for (i = 16; i < count; ++i) {
    244		if (buf[i] == RR_DETECT) {
    245			dev_dbg(dev, "New device detect.\n");
    246			continue;
    247		}
    248		dev_dbg(dev, "Result Register Value: 0x%02x", buf[i]);
    249		if (buf[i] & RR_NRS)
    250			dev_dbg(dev, "NRS: Reset no presence or ...\n");
    251		if (buf[i] & RR_SH)
    252			dev_dbg(dev, "SH: short on reset or set path\n");
    253		if (buf[i] & RR_APP)
    254			dev_dbg(dev, "APP: alarming presence on reset\n");
    255		if (buf[i] & RR_VPP)
    256			dev_dbg(dev, "VPP: 12V expected not seen\n");
    257		if (buf[i] & RR_CMP)
    258			dev_dbg(dev, "CMP: compare error\n");
    259		if (buf[i] & RR_CRC)
    260			dev_dbg(dev, "CRC: CRC error detected\n");
    261		if (buf[i] & RR_RDP)
    262			dev_dbg(dev, "RDP: redirected page\n");
    263		if (buf[i] & RR_EOS)
    264			dev_dbg(dev, "EOS: end of search error\n");
    265	}
    266}
    267
    268static int ds_recv_status(struct ds_device *dev, struct ds_status *st)
    269{
    270	int count, err;
    271
    272	if (st)
    273		memset(st, 0, sizeof(*st));
    274
    275	count = 0;
    276	err = usb_interrupt_msg(dev->udev,
    277				usb_rcvintpipe(dev->udev,
    278					       dev->ep[EP_STATUS]),
    279				dev->st_buf, sizeof(dev->st_buf),
    280				&count, 1000);
    281	if (err < 0) {
    282		dev_err(&dev->udev->dev,
    283			"Failed to read 1-wire data from 0x%x: err=%d.\n",
    284			dev->ep[EP_STATUS], err);
    285		return err;
    286	}
    287
    288	if (st && count >= sizeof(*st))
    289		memcpy(st, dev->st_buf, sizeof(*st));
    290
    291	return count;
    292}
    293
    294static void ds_reset_device(struct ds_device *dev)
    295{
    296	ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
    297	/* Always allow strong pullup which allow individual writes to use
    298	 * the strong pullup.
    299	 */
    300	if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE))
    301		dev_err(&dev->udev->dev,
    302			"%s: Error allowing strong pullup\n", __func__);
    303	/* Chip strong pullup time was cleared. */
    304	if (dev->spu_sleep) {
    305		/* lower 4 bits are 0, see ds_set_pullup */
    306		u8 del = dev->spu_sleep>>4;
    307		if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del))
    308			dev_err(&dev->udev->dev,
    309				"%s: Error setting duration\n", __func__);
    310	}
    311}
    312
    313static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
    314{
    315	int count, err;
    316
    317	/* Careful on size.  If size is less than what is available in
    318	 * the input buffer, the device fails the bulk transfer and
    319	 * clears the input buffer.  It could read the maximum size of
    320	 * the data buffer, but then do you return the first, last, or
    321	 * some set of the middle size bytes?  As long as the rest of
    322	 * the code is correct there will be size bytes waiting.  A
    323	 * call to ds_wait_status will wait until the device is idle
    324	 * and any data to be received would have been available.
    325	 */
    326	count = 0;
    327	err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
    328				buf, size, &count, 1000);
    329	if (err < 0) {
    330		int recv_len;
    331
    332		dev_info(&dev->udev->dev, "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
    333		usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
    334
    335		/* status might tell us why endpoint is stuck? */
    336		recv_len = ds_recv_status(dev, NULL);
    337		if (recv_len >= 0)
    338			ds_dump_status(dev, dev->st_buf, recv_len);
    339
    340		return err;
    341	}
    342
    343#if 0
    344	{
    345		int i;
    346
    347		printk("%s: count=%d: ", __func__, count);
    348		for (i = 0; i < count; ++i)
    349			printk("%02x ", buf[i]);
    350		printk("\n");
    351	}
    352#endif
    353	return count;
    354}
    355
    356static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
    357{
    358	int count, err;
    359
    360	count = 0;
    361	err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
    362	if (err < 0) {
    363		dev_err(&dev->udev->dev, "Failed to write 1-wire data to ep0x%x: "
    364			"err=%d.\n", dev->ep[EP_DATA_OUT], err);
    365		return err;
    366	}
    367
    368	return err;
    369}
    370
    371#if 0
    372
    373int ds_stop_pulse(struct ds_device *dev, int limit)
    374{
    375	struct ds_status st;
    376	int count = 0, err = 0;
    377
    378	do {
    379		err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
    380		if (err)
    381			break;
    382		err = ds_send_control(dev, CTL_RESUME_EXE, 0);
    383		if (err)
    384			break;
    385		err = ds_recv_status(dev, &st);
    386		if (err)
    387			break;
    388
    389		if ((st.status & ST_SPUA) == 0) {
    390			err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
    391			if (err)
    392				break;
    393		}
    394	} while (++count < limit);
    395
    396	return err;
    397}
    398
    399int ds_detect(struct ds_device *dev, struct ds_status *st)
    400{
    401	int err;
    402
    403	err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
    404	if (err)
    405		return err;
    406
    407	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
    408	if (err)
    409		return err;
    410
    411	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
    412	if (err)
    413		return err;
    414
    415	err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
    416	if (err)
    417		return err;
    418
    419	err = ds_dump_status(dev, st);
    420
    421	return err;
    422}
    423
    424#endif  /*  0  */
    425
    426static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
    427{
    428	int err, count = 0;
    429
    430	do {
    431		st->status = 0;
    432		err = ds_recv_status(dev, st);
    433#if 0
    434		if (err >= 0) {
    435			int i;
    436			printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
    437			for (i = 0; i < err; ++i)
    438				printk("%02x ", dev->st_buf[i]);
    439			printk("\n");
    440		}
    441#endif
    442	} while (!(st->status & ST_IDLE) && !(err < 0) && ++count < 100);
    443
    444	if (err >= 16 && st->status & ST_EPOF) {
    445		dev_info(&dev->udev->dev, "Resetting device after ST_EPOF.\n");
    446		ds_reset_device(dev);
    447		/* Always dump the device status. */
    448		count = 101;
    449	}
    450
    451	/* Dump the status for errors or if there is extended return data.
    452	 * The extended status includes new device detection (maybe someone
    453	 * can do something with it).
    454	 */
    455	if (err > 16 || count >= 100 || err < 0)
    456		ds_dump_status(dev, dev->st_buf, err);
    457
    458	/* Extended data isn't an error.  Well, a short is, but the dump
    459	 * would have already told the user that and we can't do anything
    460	 * about it in software anyway.
    461	 */
    462	if (count >= 100 || err < 0)
    463		return -1;
    464	else
    465		return 0;
    466}
    467
    468static int ds_reset(struct ds_device *dev)
    469{
    470	int err;
    471
    472	/* Other potentionally interesting flags for reset.
    473	 *
    474	 * COMM_NTF: Return result register feedback.  This could be used to
    475	 * detect some conditions such as short, alarming presence, or
    476	 * detect if a new device was detected.
    477	 *
    478	 * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE:
    479	 * Select the data transfer rate.
    480	 */
    481	err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL);
    482	if (err)
    483		return err;
    484
    485	return 0;
    486}
    487
    488#if 0
    489static int ds_set_speed(struct ds_device *dev, int speed)
    490{
    491	int err;
    492
    493	if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
    494		return -EINVAL;
    495
    496	if (speed != SPEED_OVERDRIVE)
    497		speed = SPEED_FLEXIBLE;
    498
    499	speed &= 0xff;
    500
    501	err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
    502	if (err)
    503		return err;
    504
    505	return err;
    506}
    507#endif  /*  0  */
    508
    509static int ds_set_pullup(struct ds_device *dev, int delay)
    510{
    511	int err = 0;
    512	u8 del = 1 + (u8)(delay >> 4);
    513	/* Just storing delay would not get the trunication and roundup. */
    514	int ms = del<<4;
    515
    516	/* Enable spu_bit if a delay is set. */
    517	dev->spu_bit = delay ? COMM_SPU : 0;
    518	/* If delay is zero, it has already been disabled, if the time is
    519	 * the same as the hardware was last programmed to, there is also
    520	 * nothing more to do.  Compare with the recalculated value ms
    521	 * rather than del or delay which can have a different value.
    522	 */
    523	if (delay == 0 || ms == dev->spu_sleep)
    524		return err;
    525
    526	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
    527	if (err)
    528		return err;
    529
    530	dev->spu_sleep = ms;
    531
    532	return err;
    533}
    534
    535static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
    536{
    537	int err;
    538	struct ds_status st;
    539
    540	err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
    541		0);
    542	if (err)
    543		return err;
    544
    545	ds_wait_status(dev, &st);
    546
    547	err = ds_recv_data(dev, tbit, sizeof(*tbit));
    548	if (err < 0)
    549		return err;
    550
    551	return 0;
    552}
    553
    554#if 0
    555static int ds_write_bit(struct ds_device *dev, u8 bit)
    556{
    557	int err;
    558	struct ds_status st;
    559
    560	/* Set COMM_ICP to write without a readback.  Note, this will
    561	 * produce one time slot, a down followed by an up with COMM_D
    562	 * only determing the timing.
    563	 */
    564	err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
    565		(bit ? COMM_D : 0), 0);
    566	if (err)
    567		return err;
    568
    569	ds_wait_status(dev, &st);
    570
    571	return 0;
    572}
    573#endif
    574
    575static int ds_write_byte(struct ds_device *dev, u8 byte)
    576{
    577	int err;
    578	struct ds_status st;
    579
    580	err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte);
    581	if (err)
    582		return err;
    583
    584	if (dev->spu_bit)
    585		msleep(dev->spu_sleep);
    586
    587	err = ds_wait_status(dev, &st);
    588	if (err)
    589		return err;
    590
    591	err = ds_recv_data(dev, &dev->byte_buf, 1);
    592	if (err < 0)
    593		return err;
    594
    595	return !(byte == dev->byte_buf);
    596}
    597
    598static int ds_read_byte(struct ds_device *dev, u8 *byte)
    599{
    600	int err;
    601	struct ds_status st;
    602
    603	err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM, 0xff);
    604	if (err)
    605		return err;
    606
    607	ds_wait_status(dev, &st);
    608
    609	err = ds_recv_data(dev, byte, sizeof(*byte));
    610	if (err < 0)
    611		return err;
    612
    613	return 0;
    614}
    615
    616static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
    617{
    618	struct ds_status st;
    619	int err;
    620
    621	if (len > 64*1024)
    622		return -E2BIG;
    623
    624	memset(buf, 0xFF, len);
    625
    626	err = ds_send_data(dev, buf, len);
    627	if (err < 0)
    628		return err;
    629
    630	err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
    631	if (err)
    632		return err;
    633
    634	ds_wait_status(dev, &st);
    635
    636	memset(buf, 0x00, len);
    637	err = ds_recv_data(dev, buf, len);
    638
    639	return err;
    640}
    641
    642static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
    643{
    644	int err;
    645	struct ds_status st;
    646
    647	err = ds_send_data(dev, buf, len);
    648	if (err < 0)
    649		return err;
    650
    651	err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len);
    652	if (err)
    653		return err;
    654
    655	if (dev->spu_bit)
    656		msleep(dev->spu_sleep);
    657
    658	ds_wait_status(dev, &st);
    659
    660	err = ds_recv_data(dev, buf, len);
    661	if (err < 0)
    662		return err;
    663
    664	return !(err == len);
    665}
    666
    667static void ds9490r_search(void *data, struct w1_master *master,
    668	u8 search_type, w1_slave_found_callback callback)
    669{
    670	/* When starting with an existing id, the first id returned will
    671	 * be that device (if it is still on the bus most likely).
    672	 *
    673	 * If the number of devices found is less than or equal to the
    674	 * search_limit, that number of IDs will be returned.  If there are
    675	 * more, search_limit IDs will be returned followed by a non-zero
    676	 * discrepency value.
    677	 */
    678	struct ds_device *dev = data;
    679	int err;
    680	u16 value, index;
    681	struct ds_status st;
    682	int search_limit;
    683	int found = 0;
    684	int i;
    685
    686	/* DS18b20 spec, 13.16 ms per device, 75 per second, sleep for
    687	 * discovering 8 devices (1 bulk transfer and 1/2 FIFO size) at a time.
    688	 */
    689	const unsigned long jtime = msecs_to_jiffies(1000*8/75);
    690	/* FIFO 128 bytes, bulk packet size 64, read a multiple of the
    691	 * packet size.
    692	 */
    693	const size_t bufsize = 2 * 64;
    694	u64 *buf, *found_ids;
    695
    696	buf = kmalloc(bufsize, GFP_KERNEL);
    697	if (!buf)
    698		return;
    699
    700	/*
    701	 * We are holding the bus mutex during the scan, but adding devices via the
    702	 * callback needs the bus to be unlocked. So we queue up found ids here.
    703	 */
    704	found_ids = kmalloc_array(master->max_slave_count, sizeof(u64), GFP_KERNEL);
    705	if (!found_ids) {
    706		kfree(buf);
    707		return;
    708	}
    709
    710	mutex_lock(&master->bus_mutex);
    711
    712	/* address to start searching at */
    713	if (ds_send_data(dev, (u8 *)&master->search_id, 8) < 0)
    714		goto search_out;
    715	master->search_id = 0;
    716
    717	value = COMM_SEARCH_ACCESS | COMM_IM | COMM_RST | COMM_SM | COMM_F |
    718		COMM_RTS;
    719	search_limit = master->max_slave_count;
    720	if (search_limit > 255)
    721		search_limit = 0;
    722	index = search_type | (search_limit << 8);
    723	if (ds_send_control(dev, value, index) < 0)
    724		goto search_out;
    725
    726	do {
    727		schedule_timeout(jtime);
    728
    729		err = ds_recv_status(dev, &st);
    730		if (err < 0 || err < sizeof(st))
    731			break;
    732
    733		if (st.data_in_buffer_status) {
    734			/* Bulk in can receive partial ids, but when it does
    735			 * they fail crc and will be discarded anyway.
    736			 * That has only been seen when status in buffer
    737			 * is 0 and bulk is read anyway, so don't read
    738			 * bulk without first checking if status says there
    739			 * is data to read.
    740			 */
    741			err = ds_recv_data(dev, (u8 *)buf, bufsize);
    742			if (err < 0)
    743				break;
    744			for (i = 0; i < err/8; ++i) {
    745				found_ids[found++] = buf[i];
    746				/* can't know if there will be a discrepancy
    747				 * value after until the next id */
    748				if (found == search_limit) {
    749					master->search_id = buf[i];
    750					break;
    751				}
    752			}
    753		}
    754
    755		if (test_bit(W1_ABORT_SEARCH, &master->flags))
    756			break;
    757	} while (!(st.status & (ST_IDLE | ST_HALT)));
    758
    759	/* only continue the search if some weren't found */
    760	if (found <= search_limit) {
    761		master->search_id = 0;
    762	} else if (!test_bit(W1_WARN_MAX_COUNT, &master->flags)) {
    763		/* Only max_slave_count will be scanned in a search,
    764		 * but it will start where it left off next search
    765		 * until all ids are identified and then it will start
    766		 * over.  A continued search will report the previous
    767		 * last id as the first id (provided it is still on the
    768		 * bus).
    769		 */
    770		dev_info(&dev->udev->dev, "%s: max_slave_count %d reached, "
    771			"will continue next search.\n", __func__,
    772			master->max_slave_count);
    773		set_bit(W1_WARN_MAX_COUNT, &master->flags);
    774	}
    775
    776search_out:
    777	mutex_unlock(&master->bus_mutex);
    778	kfree(buf);
    779
    780	for (i = 0; i < found; i++) /* run callback for all queued up IDs */
    781		callback(master, found_ids[i]);
    782	kfree(found_ids);
    783}
    784
    785#if 0
    786/*
    787 * FIXME: if this disabled code is ever used in the future all ds_send_data()
    788 * calls must be changed to use a DMAable buffer.
    789 */
    790static int ds_match_access(struct ds_device *dev, u64 init)
    791{
    792	int err;
    793	struct ds_status st;
    794
    795	err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
    796	if (err)
    797		return err;
    798
    799	ds_wait_status(dev, &st);
    800
    801	err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
    802	if (err)
    803		return err;
    804
    805	ds_wait_status(dev, &st);
    806
    807	return 0;
    808}
    809
    810static int ds_set_path(struct ds_device *dev, u64 init)
    811{
    812	int err;
    813	struct ds_status st;
    814	u8 buf[9];
    815
    816	memcpy(buf, &init, 8);
    817	buf[8] = BRANCH_MAIN;
    818
    819	err = ds_send_data(dev, buf, sizeof(buf));
    820	if (err)
    821		return err;
    822
    823	ds_wait_status(dev, &st);
    824
    825	err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
    826	if (err)
    827		return err;
    828
    829	ds_wait_status(dev, &st);
    830
    831	return 0;
    832}
    833
    834#endif  /*  0  */
    835
    836static u8 ds9490r_touch_bit(void *data, u8 bit)
    837{
    838	struct ds_device *dev = data;
    839
    840	if (ds_touch_bit(dev, bit, &dev->byte_buf))
    841		return 0;
    842
    843	return dev->byte_buf;
    844}
    845
    846#if 0
    847static void ds9490r_write_bit(void *data, u8 bit)
    848{
    849	struct ds_device *dev = data;
    850
    851	ds_write_bit(dev, bit);
    852}
    853
    854static u8 ds9490r_read_bit(void *data)
    855{
    856	struct ds_device *dev = data;
    857	int err;
    858
    859	err = ds_touch_bit(dev, 1, &dev->byte_buf);
    860	if (err)
    861		return 0;
    862
    863	return dev->byte_buf & 1;
    864}
    865#endif
    866
    867static void ds9490r_write_byte(void *data, u8 byte)
    868{
    869	struct ds_device *dev = data;
    870
    871	ds_write_byte(dev, byte);
    872}
    873
    874static u8 ds9490r_read_byte(void *data)
    875{
    876	struct ds_device *dev = data;
    877	int err;
    878
    879	err = ds_read_byte(dev, &dev->byte_buf);
    880	if (err)
    881		return 0;
    882
    883	return dev->byte_buf;
    884}
    885
    886static void ds9490r_write_block(void *data, const u8 *buf, int len)
    887{
    888	struct ds_device *dev = data;
    889	u8 *tbuf;
    890
    891	if (len <= 0)
    892		return;
    893
    894	tbuf = kmemdup(buf, len, GFP_KERNEL);
    895	if (!tbuf)
    896		return;
    897
    898	ds_write_block(dev, tbuf, len);
    899
    900	kfree(tbuf);
    901}
    902
    903static u8 ds9490r_read_block(void *data, u8 *buf, int len)
    904{
    905	struct ds_device *dev = data;
    906	int err;
    907	u8 *tbuf;
    908
    909	if (len <= 0)
    910		return 0;
    911
    912	tbuf = kmalloc(len, GFP_KERNEL);
    913	if (!tbuf)
    914		return 0;
    915
    916	err = ds_read_block(dev, tbuf, len);
    917	if (err >= 0)
    918		memcpy(buf, tbuf, len);
    919
    920	kfree(tbuf);
    921
    922	return err >= 0 ? len : 0;
    923}
    924
    925static u8 ds9490r_reset(void *data)
    926{
    927	struct ds_device *dev = data;
    928	int err;
    929
    930	err = ds_reset(dev);
    931	if (err)
    932		return 1;
    933
    934	return 0;
    935}
    936
    937static u8 ds9490r_set_pullup(void *data, int delay)
    938{
    939	struct ds_device *dev = data;
    940
    941	if (ds_set_pullup(dev, delay))
    942		return 1;
    943
    944	return 0;
    945}
    946
    947static int ds_w1_init(struct ds_device *dev)
    948{
    949	memset(&dev->master, 0, sizeof(struct w1_bus_master));
    950
    951	/* Reset the device as it can be in a bad state.
    952	 * This is necessary because a block write will wait for data
    953	 * to be placed in the output buffer and block any later
    954	 * commands which will keep accumulating and the device will
    955	 * not be idle.  Another case is removing the ds2490 module
    956	 * while a bus search is in progress, somehow a few commands
    957	 * get through, but the input transfers fail leaving data in
    958	 * the input buffer.  This will cause the next read to fail
    959	 * see the note in ds_recv_data.
    960	 */
    961	ds_reset_device(dev);
    962
    963	dev->master.data	= dev;
    964	dev->master.touch_bit	= &ds9490r_touch_bit;
    965	/* read_bit and write_bit in w1_bus_master are expected to set and
    966	 * sample the line level.  For write_bit that means it is expected to
    967	 * set it to that value and leave it there.  ds2490 only supports an
    968	 * individual time slot at the lowest level.  The requirement from
    969	 * pulling the bus state down to reading the state is 15us, something
    970	 * that isn't realistic on the USB bus anyway.
    971	dev->master.read_bit	= &ds9490r_read_bit;
    972	dev->master.write_bit	= &ds9490r_write_bit;
    973	*/
    974	dev->master.read_byte	= &ds9490r_read_byte;
    975	dev->master.write_byte	= &ds9490r_write_byte;
    976	dev->master.read_block	= &ds9490r_read_block;
    977	dev->master.write_block	= &ds9490r_write_block;
    978	dev->master.reset_bus	= &ds9490r_reset;
    979	dev->master.set_pullup	= &ds9490r_set_pullup;
    980	dev->master.search	= &ds9490r_search;
    981
    982	return w1_add_master_device(&dev->master);
    983}
    984
    985static void ds_w1_fini(struct ds_device *dev)
    986{
    987	w1_remove_master_device(&dev->master);
    988}
    989
    990static int ds_probe(struct usb_interface *intf,
    991		    const struct usb_device_id *udev_id)
    992{
    993	struct usb_device *udev = interface_to_usbdev(intf);
    994	struct usb_endpoint_descriptor *endpoint;
    995	struct usb_host_interface *iface_desc;
    996	struct ds_device *dev;
    997	int i, err, alt;
    998
    999	dev = kzalloc(sizeof(struct ds_device), GFP_KERNEL);
   1000	if (!dev)
   1001		return -ENOMEM;
   1002
   1003	dev->udev = usb_get_dev(udev);
   1004	if (!dev->udev) {
   1005		err = -ENOMEM;
   1006		goto err_out_free;
   1007	}
   1008	memset(dev->ep, 0, sizeof(dev->ep));
   1009
   1010	usb_set_intfdata(intf, dev);
   1011
   1012	err = usb_reset_configuration(dev->udev);
   1013	if (err) {
   1014		dev_err(&dev->udev->dev,
   1015			"Failed to reset configuration: err=%d.\n", err);
   1016		goto err_out_clear;
   1017	}
   1018
   1019	/* alternative 3, 1ms interrupt (greatly speeds search), 64 byte bulk */
   1020	alt = 3;
   1021	err = usb_set_interface(dev->udev,
   1022		intf->cur_altsetting->desc.bInterfaceNumber, alt);
   1023	if (err) {
   1024		dev_err(&dev->udev->dev, "Failed to set alternative setting %d "
   1025			"for %d interface: err=%d.\n", alt,
   1026			intf->cur_altsetting->desc.bInterfaceNumber, err);
   1027		goto err_out_clear;
   1028	}
   1029
   1030	iface_desc = intf->cur_altsetting;
   1031	if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
   1032		dev_err(&dev->udev->dev, "Num endpoints=%d. It is not DS9490R.\n",
   1033			iface_desc->desc.bNumEndpoints);
   1034		err = -EINVAL;
   1035		goto err_out_clear;
   1036	}
   1037
   1038	/*
   1039	 * This loop doesn'd show control 0 endpoint,
   1040	 * so we will fill only 1-3 endpoints entry.
   1041	 */
   1042	for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
   1043		endpoint = &iface_desc->endpoint[i].desc;
   1044
   1045		dev->ep[i+1] = endpoint->bEndpointAddress;
   1046#if 0
   1047		printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
   1048			i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
   1049			(endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
   1050			endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
   1051#endif
   1052	}
   1053
   1054	err = ds_w1_init(dev);
   1055	if (err)
   1056		goto err_out_clear;
   1057
   1058	mutex_lock(&ds_mutex);
   1059	list_add_tail(&dev->ds_entry, &ds_devices);
   1060	mutex_unlock(&ds_mutex);
   1061
   1062	return 0;
   1063
   1064err_out_clear:
   1065	usb_set_intfdata(intf, NULL);
   1066	usb_put_dev(dev->udev);
   1067err_out_free:
   1068	kfree(dev);
   1069	return err;
   1070}
   1071
   1072static void ds_disconnect(struct usb_interface *intf)
   1073{
   1074	struct ds_device *dev;
   1075
   1076	dev = usb_get_intfdata(intf);
   1077	if (!dev)
   1078		return;
   1079
   1080	mutex_lock(&ds_mutex);
   1081	list_del(&dev->ds_entry);
   1082	mutex_unlock(&ds_mutex);
   1083
   1084	ds_w1_fini(dev);
   1085
   1086	usb_set_intfdata(intf, NULL);
   1087
   1088	usb_put_dev(dev->udev);
   1089	kfree(dev);
   1090}
   1091
   1092static const struct usb_device_id ds_id_table[] = {
   1093	{ USB_DEVICE(0x04fa, 0x2490) },
   1094	{ },
   1095};
   1096MODULE_DEVICE_TABLE(usb, ds_id_table);
   1097
   1098static struct usb_driver ds_driver = {
   1099	.name =		"DS9490R",
   1100	.probe =	ds_probe,
   1101	.disconnect =	ds_disconnect,
   1102	.id_table =	ds_id_table,
   1103};
   1104module_usb_driver(ds_driver);
   1105
   1106MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>");
   1107MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");
   1108MODULE_LICENSE("GPL");