cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rxrpc.c (23404B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/* Maintain an RxRPC server socket to do AFS communications through
      3 *
      4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
      5 * Written by David Howells (dhowells@redhat.com)
      6 */
      7
      8#include <linux/slab.h>
      9#include <linux/sched/signal.h>
     10
     11#include <net/sock.h>
     12#include <net/af_rxrpc.h>
     13#include "internal.h"
     14#include "afs_cm.h"
     15#include "protocol_yfs.h"
     16
     17struct workqueue_struct *afs_async_calls;
     18
     19static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
     20static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
     21static void afs_process_async_call(struct work_struct *);
     22static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
     23static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
     24static int afs_deliver_cm_op_id(struct afs_call *);
     25
     26/* asynchronous incoming call initial processing */
     27static const struct afs_call_type afs_RXCMxxxx = {
     28	.name		= "CB.xxxx",
     29	.deliver	= afs_deliver_cm_op_id,
     30};
     31
     32/*
     33 * open an RxRPC socket and bind it to be a server for callback notifications
     34 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
     35 */
     36int afs_open_socket(struct afs_net *net)
     37{
     38	struct sockaddr_rxrpc srx;
     39	struct socket *socket;
     40	int ret;
     41
     42	_enter("");
     43
     44	ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
     45	if (ret < 0)
     46		goto error_1;
     47
     48	socket->sk->sk_allocation = GFP_NOFS;
     49
     50	/* bind the callback manager's address to make this a server socket */
     51	memset(&srx, 0, sizeof(srx));
     52	srx.srx_family			= AF_RXRPC;
     53	srx.srx_service			= CM_SERVICE;
     54	srx.transport_type		= SOCK_DGRAM;
     55	srx.transport_len		= sizeof(srx.transport.sin6);
     56	srx.transport.sin6.sin6_family	= AF_INET6;
     57	srx.transport.sin6.sin6_port	= htons(AFS_CM_PORT);
     58
     59	ret = rxrpc_sock_set_min_security_level(socket->sk,
     60						RXRPC_SECURITY_ENCRYPT);
     61	if (ret < 0)
     62		goto error_2;
     63
     64	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
     65	if (ret == -EADDRINUSE) {
     66		srx.transport.sin6.sin6_port = 0;
     67		ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
     68	}
     69	if (ret < 0)
     70		goto error_2;
     71
     72	srx.srx_service = YFS_CM_SERVICE;
     73	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
     74	if (ret < 0)
     75		goto error_2;
     76
     77	/* Ideally, we'd turn on service upgrade here, but we can't because
     78	 * OpenAFS is buggy and leaks the userStatus field from packet to
     79	 * packet and between FS packets and CB packets - so if we try to do an
     80	 * upgrade on an FS packet, OpenAFS will leak that into the CB packet
     81	 * it sends back to us.
     82	 */
     83
     84	rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
     85					   afs_rx_discard_new_call);
     86
     87	ret = kernel_listen(socket, INT_MAX);
     88	if (ret < 0)
     89		goto error_2;
     90
     91	net->socket = socket;
     92	afs_charge_preallocation(&net->charge_preallocation_work);
     93	_leave(" = 0");
     94	return 0;
     95
     96error_2:
     97	sock_release(socket);
     98error_1:
     99	_leave(" = %d", ret);
    100	return ret;
    101}
    102
    103/*
    104 * close the RxRPC socket AFS was using
    105 */
    106void afs_close_socket(struct afs_net *net)
    107{
    108	_enter("");
    109
    110	kernel_listen(net->socket, 0);
    111	flush_workqueue(afs_async_calls);
    112
    113	if (net->spare_incoming_call) {
    114		afs_put_call(net->spare_incoming_call);
    115		net->spare_incoming_call = NULL;
    116	}
    117
    118	_debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
    119	wait_var_event(&net->nr_outstanding_calls,
    120		       !atomic_read(&net->nr_outstanding_calls));
    121	_debug("no outstanding calls");
    122
    123	kernel_sock_shutdown(net->socket, SHUT_RDWR);
    124	flush_workqueue(afs_async_calls);
    125	sock_release(net->socket);
    126
    127	_debug("dework");
    128	_leave("");
    129}
    130
    131/*
    132 * Allocate a call.
    133 */
    134static struct afs_call *afs_alloc_call(struct afs_net *net,
    135				       const struct afs_call_type *type,
    136				       gfp_t gfp)
    137{
    138	struct afs_call *call;
    139	int o;
    140
    141	call = kzalloc(sizeof(*call), gfp);
    142	if (!call)
    143		return NULL;
    144
    145	call->type = type;
    146	call->net = net;
    147	call->debug_id = atomic_inc_return(&rxrpc_debug_id);
    148	atomic_set(&call->usage, 1);
    149	INIT_WORK(&call->async_work, afs_process_async_call);
    150	init_waitqueue_head(&call->waitq);
    151	spin_lock_init(&call->state_lock);
    152	call->iter = &call->def_iter;
    153
    154	o = atomic_inc_return(&net->nr_outstanding_calls);
    155	trace_afs_call(call, afs_call_trace_alloc, 1, o,
    156		       __builtin_return_address(0));
    157	return call;
    158}
    159
    160/*
    161 * Dispose of a reference on a call.
    162 */
    163void afs_put_call(struct afs_call *call)
    164{
    165	struct afs_net *net = call->net;
    166	int n = atomic_dec_return(&call->usage);
    167	int o = atomic_read(&net->nr_outstanding_calls);
    168
    169	trace_afs_call(call, afs_call_trace_put, n, o,
    170		       __builtin_return_address(0));
    171
    172	ASSERTCMP(n, >=, 0);
    173	if (n == 0) {
    174		ASSERT(!work_pending(&call->async_work));
    175		ASSERT(call->type->name != NULL);
    176
    177		if (call->rxcall) {
    178			rxrpc_kernel_end_call(net->socket, call->rxcall);
    179			call->rxcall = NULL;
    180		}
    181		if (call->type->destructor)
    182			call->type->destructor(call);
    183
    184		afs_unuse_server_notime(call->net, call->server, afs_server_trace_put_call);
    185		afs_put_addrlist(call->alist);
    186		kfree(call->request);
    187
    188		trace_afs_call(call, afs_call_trace_free, 0, o,
    189			       __builtin_return_address(0));
    190		kfree(call);
    191
    192		o = atomic_dec_return(&net->nr_outstanding_calls);
    193		if (o == 0)
    194			wake_up_var(&net->nr_outstanding_calls);
    195	}
    196}
    197
    198static struct afs_call *afs_get_call(struct afs_call *call,
    199				     enum afs_call_trace why)
    200{
    201	int u = atomic_inc_return(&call->usage);
    202
    203	trace_afs_call(call, why, u,
    204		       atomic_read(&call->net->nr_outstanding_calls),
    205		       __builtin_return_address(0));
    206	return call;
    207}
    208
    209/*
    210 * Queue the call for actual work.
    211 */
    212static void afs_queue_call_work(struct afs_call *call)
    213{
    214	if (call->type->work) {
    215		INIT_WORK(&call->work, call->type->work);
    216
    217		afs_get_call(call, afs_call_trace_work);
    218		if (!queue_work(afs_wq, &call->work))
    219			afs_put_call(call);
    220	}
    221}
    222
    223/*
    224 * allocate a call with flat request and reply buffers
    225 */
    226struct afs_call *afs_alloc_flat_call(struct afs_net *net,
    227				     const struct afs_call_type *type,
    228				     size_t request_size, size_t reply_max)
    229{
    230	struct afs_call *call;
    231
    232	call = afs_alloc_call(net, type, GFP_NOFS);
    233	if (!call)
    234		goto nomem_call;
    235
    236	if (request_size) {
    237		call->request_size = request_size;
    238		call->request = kmalloc(request_size, GFP_NOFS);
    239		if (!call->request)
    240			goto nomem_free;
    241	}
    242
    243	if (reply_max) {
    244		call->reply_max = reply_max;
    245		call->buffer = kmalloc(reply_max, GFP_NOFS);
    246		if (!call->buffer)
    247			goto nomem_free;
    248	}
    249
    250	afs_extract_to_buf(call, call->reply_max);
    251	call->operation_ID = type->op;
    252	init_waitqueue_head(&call->waitq);
    253	return call;
    254
    255nomem_free:
    256	afs_put_call(call);
    257nomem_call:
    258	return NULL;
    259}
    260
    261/*
    262 * clean up a call with flat buffer
    263 */
    264void afs_flat_call_destructor(struct afs_call *call)
    265{
    266	_enter("");
    267
    268	kfree(call->request);
    269	call->request = NULL;
    270	kfree(call->buffer);
    271	call->buffer = NULL;
    272}
    273
    274/*
    275 * Advance the AFS call state when the RxRPC call ends the transmit phase.
    276 */
    277static void afs_notify_end_request_tx(struct sock *sock,
    278				      struct rxrpc_call *rxcall,
    279				      unsigned long call_user_ID)
    280{
    281	struct afs_call *call = (struct afs_call *)call_user_ID;
    282
    283	afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
    284}
    285
    286/*
    287 * Initiate a call and synchronously queue up the parameters for dispatch.  Any
    288 * error is stored into the call struct, which the caller must check for.
    289 */
    290void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp)
    291{
    292	struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index];
    293	struct rxrpc_call *rxcall;
    294	struct msghdr msg;
    295	struct kvec iov[1];
    296	size_t len;
    297	s64 tx_total_len;
    298	int ret;
    299
    300	_enter(",{%pISp},", &srx->transport);
    301
    302	ASSERT(call->type != NULL);
    303	ASSERT(call->type->name != NULL);
    304
    305	_debug("____MAKE %p{%s,%x} [%d]____",
    306	       call, call->type->name, key_serial(call->key),
    307	       atomic_read(&call->net->nr_outstanding_calls));
    308
    309	call->addr_ix = ac->index;
    310	call->alist = afs_get_addrlist(ac->alist);
    311
    312	/* Work out the length we're going to transmit.  This is awkward for
    313	 * calls such as FS.StoreData where there's an extra injection of data
    314	 * after the initial fixed part.
    315	 */
    316	tx_total_len = call->request_size;
    317	if (call->write_iter)
    318		tx_total_len += iov_iter_count(call->write_iter);
    319
    320	/* If the call is going to be asynchronous, we need an extra ref for
    321	 * the call to hold itself so the caller need not hang on to its ref.
    322	 */
    323	if (call->async) {
    324		afs_get_call(call, afs_call_trace_get);
    325		call->drop_ref = true;
    326	}
    327
    328	/* create a call */
    329	rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
    330					 (unsigned long)call,
    331					 tx_total_len, gfp,
    332					 (call->async ?
    333					  afs_wake_up_async_call :
    334					  afs_wake_up_call_waiter),
    335					 call->upgrade,
    336					 (call->intr ? RXRPC_PREINTERRUPTIBLE :
    337					  RXRPC_UNINTERRUPTIBLE),
    338					 call->debug_id);
    339	if (IS_ERR(rxcall)) {
    340		ret = PTR_ERR(rxcall);
    341		call->error = ret;
    342		goto error_kill_call;
    343	}
    344
    345	call->rxcall = rxcall;
    346
    347	if (call->max_lifespan)
    348		rxrpc_kernel_set_max_life(call->net->socket, rxcall,
    349					  call->max_lifespan);
    350
    351	/* send the request */
    352	iov[0].iov_base	= call->request;
    353	iov[0].iov_len	= call->request_size;
    354
    355	msg.msg_name		= NULL;
    356	msg.msg_namelen		= 0;
    357	iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size);
    358	msg.msg_control		= NULL;
    359	msg.msg_controllen	= 0;
    360	msg.msg_flags		= MSG_WAITALL | (call->write_iter ? MSG_MORE : 0);
    361
    362	ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
    363				     &msg, call->request_size,
    364				     afs_notify_end_request_tx);
    365	if (ret < 0)
    366		goto error_do_abort;
    367
    368	if (call->write_iter) {
    369		msg.msg_iter = *call->write_iter;
    370		msg.msg_flags &= ~MSG_MORE;
    371		trace_afs_send_data(call, &msg);
    372
    373		ret = rxrpc_kernel_send_data(call->net->socket,
    374					     call->rxcall, &msg,
    375					     iov_iter_count(&msg.msg_iter),
    376					     afs_notify_end_request_tx);
    377		*call->write_iter = msg.msg_iter;
    378
    379		trace_afs_sent_data(call, &msg, ret);
    380		if (ret < 0)
    381			goto error_do_abort;
    382	}
    383
    384	/* Note that at this point, we may have received the reply or an abort
    385	 * - and an asynchronous call may already have completed.
    386	 *
    387	 * afs_wait_for_call_to_complete(call, ac)
    388	 * must be called to synchronously clean up.
    389	 */
    390	return;
    391
    392error_do_abort:
    393	if (ret != -ECONNABORTED) {
    394		rxrpc_kernel_abort_call(call->net->socket, rxcall,
    395					RX_USER_ABORT, ret, "KSD");
    396	} else {
    397		len = 0;
    398		iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0);
    399		rxrpc_kernel_recv_data(call->net->socket, rxcall,
    400				       &msg.msg_iter, &len, false,
    401				       &call->abort_code, &call->service_id);
    402		ac->abort_code = call->abort_code;
    403		ac->responded = true;
    404	}
    405	call->error = ret;
    406	trace_afs_call_done(call);
    407error_kill_call:
    408	if (call->type->done)
    409		call->type->done(call);
    410
    411	/* We need to dispose of the extra ref we grabbed for an async call.
    412	 * The call, however, might be queued on afs_async_calls and we need to
    413	 * make sure we don't get any more notifications that might requeue it.
    414	 */
    415	if (call->rxcall) {
    416		rxrpc_kernel_end_call(call->net->socket, call->rxcall);
    417		call->rxcall = NULL;
    418	}
    419	if (call->async) {
    420		if (cancel_work_sync(&call->async_work))
    421			afs_put_call(call);
    422		afs_put_call(call);
    423	}
    424
    425	ac->error = ret;
    426	call->state = AFS_CALL_COMPLETE;
    427	_leave(" = %d", ret);
    428}
    429
    430/*
    431 * Log remote abort codes that indicate that we have a protocol disagreement
    432 * with the server.
    433 */
    434static void afs_log_error(struct afs_call *call, s32 remote_abort)
    435{
    436	static int max = 0;
    437	const char *msg;
    438	int m;
    439
    440	switch (remote_abort) {
    441	case RX_EOF:		 msg = "unexpected EOF";	break;
    442	case RXGEN_CC_MARSHAL:	 msg = "client marshalling";	break;
    443	case RXGEN_CC_UNMARSHAL: msg = "client unmarshalling";	break;
    444	case RXGEN_SS_MARSHAL:	 msg = "server marshalling";	break;
    445	case RXGEN_SS_UNMARSHAL: msg = "server unmarshalling";	break;
    446	case RXGEN_DECODE:	 msg = "opcode decode";		break;
    447	case RXGEN_SS_XDRFREE:	 msg = "server XDR cleanup";	break;
    448	case RXGEN_CC_XDRFREE:	 msg = "client XDR cleanup";	break;
    449	case -32:		 msg = "insufficient data";	break;
    450	default:
    451		return;
    452	}
    453
    454	m = max;
    455	if (m < 3) {
    456		max = m + 1;
    457		pr_notice("kAFS: Peer reported %s failure on %s [%pISp]\n",
    458			  msg, call->type->name,
    459			  &call->alist->addrs[call->addr_ix].transport);
    460	}
    461}
    462
    463/*
    464 * deliver messages to a call
    465 */
    466static void afs_deliver_to_call(struct afs_call *call)
    467{
    468	enum afs_call_state state;
    469	size_t len;
    470	u32 abort_code, remote_abort = 0;
    471	int ret;
    472
    473	_enter("%s", call->type->name);
    474
    475	while (state = READ_ONCE(call->state),
    476	       state == AFS_CALL_CL_AWAIT_REPLY ||
    477	       state == AFS_CALL_SV_AWAIT_OP_ID ||
    478	       state == AFS_CALL_SV_AWAIT_REQUEST ||
    479	       state == AFS_CALL_SV_AWAIT_ACK
    480	       ) {
    481		if (state == AFS_CALL_SV_AWAIT_ACK) {
    482			len = 0;
    483			iov_iter_kvec(&call->def_iter, READ, NULL, 0, 0);
    484			ret = rxrpc_kernel_recv_data(call->net->socket,
    485						     call->rxcall, &call->def_iter,
    486						     &len, false, &remote_abort,
    487						     &call->service_id);
    488			trace_afs_receive_data(call, &call->def_iter, false, ret);
    489
    490			if (ret == -EINPROGRESS || ret == -EAGAIN)
    491				return;
    492			if (ret < 0 || ret == 1) {
    493				if (ret == 1)
    494					ret = 0;
    495				goto call_complete;
    496			}
    497			return;
    498		}
    499
    500		if (!call->have_reply_time &&
    501		    rxrpc_kernel_get_reply_time(call->net->socket,
    502						call->rxcall,
    503						&call->reply_time))
    504			call->have_reply_time = true;
    505
    506		ret = call->type->deliver(call);
    507		state = READ_ONCE(call->state);
    508		if (ret == 0 && call->unmarshalling_error)
    509			ret = -EBADMSG;
    510		switch (ret) {
    511		case 0:
    512			afs_queue_call_work(call);
    513			if (state == AFS_CALL_CL_PROC_REPLY) {
    514				if (call->op)
    515					set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
    516						&call->op->server->flags);
    517				goto call_complete;
    518			}
    519			ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
    520			goto done;
    521		case -EINPROGRESS:
    522		case -EAGAIN:
    523			goto out;
    524		case -ECONNABORTED:
    525			ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
    526			afs_log_error(call, call->abort_code);
    527			goto done;
    528		case -ENOTSUPP:
    529			abort_code = RXGEN_OPCODE;
    530			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
    531						abort_code, ret, "KIV");
    532			goto local_abort;
    533		case -EIO:
    534			pr_err("kAFS: Call %u in bad state %u\n",
    535			       call->debug_id, state);
    536			fallthrough;
    537		case -ENODATA:
    538		case -EBADMSG:
    539		case -EMSGSIZE:
    540		case -ENOMEM:
    541		case -EFAULT:
    542			abort_code = RXGEN_CC_UNMARSHAL;
    543			if (state != AFS_CALL_CL_AWAIT_REPLY)
    544				abort_code = RXGEN_SS_UNMARSHAL;
    545			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
    546						abort_code, ret, "KUM");
    547			goto local_abort;
    548		default:
    549			abort_code = RX_CALL_DEAD;
    550			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
    551						abort_code, ret, "KER");
    552			goto local_abort;
    553		}
    554	}
    555
    556done:
    557	if (call->type->done)
    558		call->type->done(call);
    559out:
    560	_leave("");
    561	return;
    562
    563local_abort:
    564	abort_code = 0;
    565call_complete:
    566	afs_set_call_complete(call, ret, remote_abort);
    567	state = AFS_CALL_COMPLETE;
    568	goto done;
    569}
    570
    571/*
    572 * Wait synchronously for a call to complete and clean up the call struct.
    573 */
    574long afs_wait_for_call_to_complete(struct afs_call *call,
    575				   struct afs_addr_cursor *ac)
    576{
    577	long ret;
    578	bool rxrpc_complete = false;
    579
    580	DECLARE_WAITQUEUE(myself, current);
    581
    582	_enter("");
    583
    584	ret = call->error;
    585	if (ret < 0)
    586		goto out;
    587
    588	add_wait_queue(&call->waitq, &myself);
    589	for (;;) {
    590		set_current_state(TASK_UNINTERRUPTIBLE);
    591
    592		/* deliver any messages that are in the queue */
    593		if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
    594		    call->need_attention) {
    595			call->need_attention = false;
    596			__set_current_state(TASK_RUNNING);
    597			afs_deliver_to_call(call);
    598			continue;
    599		}
    600
    601		if (afs_check_call_state(call, AFS_CALL_COMPLETE))
    602			break;
    603
    604		if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) {
    605			/* rxrpc terminated the call. */
    606			rxrpc_complete = true;
    607			break;
    608		}
    609
    610		schedule();
    611	}
    612
    613	remove_wait_queue(&call->waitq, &myself);
    614	__set_current_state(TASK_RUNNING);
    615
    616	if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
    617		if (rxrpc_complete) {
    618			afs_set_call_complete(call, call->error, call->abort_code);
    619		} else {
    620			/* Kill off the call if it's still live. */
    621			_debug("call interrupted");
    622			if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
    623						    RX_USER_ABORT, -EINTR, "KWI"))
    624				afs_set_call_complete(call, -EINTR, 0);
    625		}
    626	}
    627
    628	spin_lock_bh(&call->state_lock);
    629	ac->abort_code = call->abort_code;
    630	ac->error = call->error;
    631	spin_unlock_bh(&call->state_lock);
    632
    633	ret = ac->error;
    634	switch (ret) {
    635	case 0:
    636		ret = call->ret0;
    637		call->ret0 = 0;
    638
    639		fallthrough;
    640	case -ECONNABORTED:
    641		ac->responded = true;
    642		break;
    643	}
    644
    645out:
    646	_debug("call complete");
    647	afs_put_call(call);
    648	_leave(" = %p", (void *)ret);
    649	return ret;
    650}
    651
    652/*
    653 * wake up a waiting call
    654 */
    655static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
    656				    unsigned long call_user_ID)
    657{
    658	struct afs_call *call = (struct afs_call *)call_user_ID;
    659
    660	call->need_attention = true;
    661	wake_up(&call->waitq);
    662}
    663
    664/*
    665 * wake up an asynchronous call
    666 */
    667static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
    668				   unsigned long call_user_ID)
    669{
    670	struct afs_call *call = (struct afs_call *)call_user_ID;
    671	int u;
    672
    673	trace_afs_notify_call(rxcall, call);
    674	call->need_attention = true;
    675
    676	u = atomic_fetch_add_unless(&call->usage, 1, 0);
    677	if (u != 0) {
    678		trace_afs_call(call, afs_call_trace_wake, u + 1,
    679			       atomic_read(&call->net->nr_outstanding_calls),
    680			       __builtin_return_address(0));
    681
    682		if (!queue_work(afs_async_calls, &call->async_work))
    683			afs_put_call(call);
    684	}
    685}
    686
    687/*
    688 * Perform I/O processing on an asynchronous call.  The work item carries a ref
    689 * to the call struct that we either need to release or to pass on.
    690 */
    691static void afs_process_async_call(struct work_struct *work)
    692{
    693	struct afs_call *call = container_of(work, struct afs_call, async_work);
    694
    695	_enter("");
    696
    697	if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
    698		call->need_attention = false;
    699		afs_deliver_to_call(call);
    700	}
    701
    702	afs_put_call(call);
    703	_leave("");
    704}
    705
    706static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
    707{
    708	struct afs_call *call = (struct afs_call *)user_call_ID;
    709
    710	call->rxcall = rxcall;
    711}
    712
    713/*
    714 * Charge the incoming call preallocation.
    715 */
    716void afs_charge_preallocation(struct work_struct *work)
    717{
    718	struct afs_net *net =
    719		container_of(work, struct afs_net, charge_preallocation_work);
    720	struct afs_call *call = net->spare_incoming_call;
    721
    722	for (;;) {
    723		if (!call) {
    724			call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
    725			if (!call)
    726				break;
    727
    728			call->drop_ref = true;
    729			call->async = true;
    730			call->state = AFS_CALL_SV_AWAIT_OP_ID;
    731			init_waitqueue_head(&call->waitq);
    732			afs_extract_to_tmp(call);
    733		}
    734
    735		if (rxrpc_kernel_charge_accept(net->socket,
    736					       afs_wake_up_async_call,
    737					       afs_rx_attach,
    738					       (unsigned long)call,
    739					       GFP_KERNEL,
    740					       call->debug_id) < 0)
    741			break;
    742		call = NULL;
    743	}
    744	net->spare_incoming_call = call;
    745}
    746
    747/*
    748 * Discard a preallocated call when a socket is shut down.
    749 */
    750static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
    751				    unsigned long user_call_ID)
    752{
    753	struct afs_call *call = (struct afs_call *)user_call_ID;
    754
    755	call->rxcall = NULL;
    756	afs_put_call(call);
    757}
    758
    759/*
    760 * Notification of an incoming call.
    761 */
    762static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
    763			    unsigned long user_call_ID)
    764{
    765	struct afs_net *net = afs_sock2net(sk);
    766
    767	queue_work(afs_wq, &net->charge_preallocation_work);
    768}
    769
    770/*
    771 * Grab the operation ID from an incoming cache manager call.  The socket
    772 * buffer is discarded on error or if we don't yet have sufficient data.
    773 */
    774static int afs_deliver_cm_op_id(struct afs_call *call)
    775{
    776	int ret;
    777
    778	_enter("{%zu}", iov_iter_count(call->iter));
    779
    780	/* the operation ID forms the first four bytes of the request data */
    781	ret = afs_extract_data(call, true);
    782	if (ret < 0)
    783		return ret;
    784
    785	call->operation_ID = ntohl(call->tmp);
    786	afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
    787
    788	/* ask the cache manager to route the call (it'll change the call type
    789	 * if successful) */
    790	if (!afs_cm_incoming_call(call))
    791		return -ENOTSUPP;
    792
    793	trace_afs_cb_call(call);
    794
    795	/* pass responsibility for the remainer of this message off to the
    796	 * cache manager op */
    797	return call->type->deliver(call);
    798}
    799
    800/*
    801 * Advance the AFS call state when an RxRPC service call ends the transmit
    802 * phase.
    803 */
    804static void afs_notify_end_reply_tx(struct sock *sock,
    805				    struct rxrpc_call *rxcall,
    806				    unsigned long call_user_ID)
    807{
    808	struct afs_call *call = (struct afs_call *)call_user_ID;
    809
    810	afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
    811}
    812
    813/*
    814 * send an empty reply
    815 */
    816void afs_send_empty_reply(struct afs_call *call)
    817{
    818	struct afs_net *net = call->net;
    819	struct msghdr msg;
    820
    821	_enter("");
    822
    823	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
    824
    825	msg.msg_name		= NULL;
    826	msg.msg_namelen		= 0;
    827	iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0);
    828	msg.msg_control		= NULL;
    829	msg.msg_controllen	= 0;
    830	msg.msg_flags		= 0;
    831
    832	switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
    833				       afs_notify_end_reply_tx)) {
    834	case 0:
    835		_leave(" [replied]");
    836		return;
    837
    838	case -ENOMEM:
    839		_debug("oom");
    840		rxrpc_kernel_abort_call(net->socket, call->rxcall,
    841					RXGEN_SS_MARSHAL, -ENOMEM, "KOO");
    842		fallthrough;
    843	default:
    844		_leave(" [error]");
    845		return;
    846	}
    847}
    848
    849/*
    850 * send a simple reply
    851 */
    852void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
    853{
    854	struct afs_net *net = call->net;
    855	struct msghdr msg;
    856	struct kvec iov[1];
    857	int n;
    858
    859	_enter("");
    860
    861	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
    862
    863	iov[0].iov_base		= (void *) buf;
    864	iov[0].iov_len		= len;
    865	msg.msg_name		= NULL;
    866	msg.msg_namelen		= 0;
    867	iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len);
    868	msg.msg_control		= NULL;
    869	msg.msg_controllen	= 0;
    870	msg.msg_flags		= 0;
    871
    872	n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
    873				   afs_notify_end_reply_tx);
    874	if (n >= 0) {
    875		/* Success */
    876		_leave(" [replied]");
    877		return;
    878	}
    879
    880	if (n == -ENOMEM) {
    881		_debug("oom");
    882		rxrpc_kernel_abort_call(net->socket, call->rxcall,
    883					RXGEN_SS_MARSHAL, -ENOMEM, "KOO");
    884	}
    885	_leave(" [error]");
    886}
    887
    888/*
    889 * Extract a piece of data from the received data socket buffers.
    890 */
    891int afs_extract_data(struct afs_call *call, bool want_more)
    892{
    893	struct afs_net *net = call->net;
    894	struct iov_iter *iter = call->iter;
    895	enum afs_call_state state;
    896	u32 remote_abort = 0;
    897	int ret;
    898
    899	_enter("{%s,%zu,%zu},%d",
    900	       call->type->name, call->iov_len, iov_iter_count(iter), want_more);
    901
    902	ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
    903				     &call->iov_len, want_more, &remote_abort,
    904				     &call->service_id);
    905	if (ret == 0 || ret == -EAGAIN)
    906		return ret;
    907
    908	state = READ_ONCE(call->state);
    909	if (ret == 1) {
    910		switch (state) {
    911		case AFS_CALL_CL_AWAIT_REPLY:
    912			afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
    913			break;
    914		case AFS_CALL_SV_AWAIT_REQUEST:
    915			afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
    916			break;
    917		case AFS_CALL_COMPLETE:
    918			kdebug("prem complete %d", call->error);
    919			return afs_io_error(call, afs_io_error_extract);
    920		default:
    921			break;
    922		}
    923		return 0;
    924	}
    925
    926	afs_set_call_complete(call, ret, remote_abort);
    927	return ret;
    928}
    929
    930/*
    931 * Log protocol error production.
    932 */
    933noinline int afs_protocol_error(struct afs_call *call,
    934				enum afs_eproto_cause cause)
    935{
    936	trace_afs_protocol_error(call, cause);
    937	if (call)
    938		call->unmarshalling_error = true;
    939	return -EBADMSG;
    940}