cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

btree.c (22429B)


      1/*
      2 * linux/fs/befs/btree.c
      3 *
      4 * Copyright (C) 2001-2002 Will Dyson <will_dyson@pobox.com>
      5 *
      6 * Licensed under the GNU GPL. See the file COPYING for details.
      7 *
      8 * 2002-02-05: Sergey S. Kostyliov added binary search within
      9 * 		btree nodes.
     10 *
     11 * Many thanks to:
     12 *
     13 * Dominic Giampaolo, author of "Practical File System
     14 * Design with the Be File System", for such a helpful book.
     15 *
     16 * Marcus J. Ranum, author of the b+tree package in
     17 * comp.sources.misc volume 10. This code is not copied from that
     18 * work, but it is partially based on it.
     19 *
     20 * Makoto Kato, author of the original BeFS for linux filesystem
     21 * driver.
     22 */
     23
     24#include <linux/kernel.h>
     25#include <linux/string.h>
     26#include <linux/slab.h>
     27#include <linux/mm.h>
     28#include <linux/buffer_head.h>
     29
     30#include "befs.h"
     31#include "btree.h"
     32#include "datastream.h"
     33
     34/*
     35 * The btree functions in this file are built on top of the
     36 * datastream.c interface, which is in turn built on top of the
     37 * io.c interface.
     38 */
     39
     40/* Befs B+tree structure:
     41 *
     42 * The first thing in the tree is the tree superblock. It tells you
     43 * all kinds of useful things about the tree, like where the rootnode
     44 * is located, and the size of the nodes (always 1024 with current version
     45 * of BeOS).
     46 *
     47 * The rest of the tree consists of a series of nodes. Nodes contain a header
     48 * (struct befs_btree_nodehead), the packed key data, an array of shorts
     49 * containing the ending offsets for each of the keys, and an array of
     50 * befs_off_t values. In interior nodes, the keys are the ending keys for
     51 * the childnode they point to, and the values are offsets into the
     52 * datastream containing the tree.
     53 */
     54
     55/* Note:
     56 *
     57 * The book states 2 confusing things about befs b+trees. First,
     58 * it states that the overflow field of node headers is used by internal nodes
     59 * to point to another node that "effectively continues this one". Here is what
     60 * I believe that means. Each key in internal nodes points to another node that
     61 * contains key values less than itself. Inspection reveals that the last key
     62 * in the internal node is not the last key in the index. Keys that are
     63 * greater than the last key in the internal node go into the overflow node.
     64 * I imagine there is a performance reason for this.
     65 *
     66 * Second, it states that the header of a btree node is sufficient to
     67 * distinguish internal nodes from leaf nodes. Without saying exactly how.
     68 * After figuring out the first, it becomes obvious that internal nodes have
     69 * overflow nodes and leafnodes do not.
     70 */
     71
     72/*
     73 * Currently, this code is only good for directory B+trees.
     74 * In order to be used for other BFS indexes, it needs to be extended to handle
     75 * duplicate keys and non-string keytypes (int32, int64, float, double).
     76 */
     77
     78/*
     79 * In memory structure of each btree node
     80 */
     81struct befs_btree_node {
     82	befs_host_btree_nodehead head;	/* head of node converted to cpu byteorder */
     83	struct buffer_head *bh;
     84	befs_btree_nodehead *od_node;	/* on disk node */
     85};
     86
     87/* local constants */
     88static const befs_off_t BEFS_BT_INVAL = 0xffffffffffffffffULL;
     89
     90/* local functions */
     91static int befs_btree_seekleaf(struct super_block *sb, const befs_data_stream *ds,
     92			       befs_btree_super * bt_super,
     93			       struct befs_btree_node *this_node,
     94			       befs_off_t * node_off);
     95
     96static int befs_bt_read_super(struct super_block *sb, const befs_data_stream *ds,
     97			      befs_btree_super * sup);
     98
     99static int befs_bt_read_node(struct super_block *sb, const befs_data_stream *ds,
    100			     struct befs_btree_node *node,
    101			     befs_off_t node_off);
    102
    103static int befs_leafnode(struct befs_btree_node *node);
    104
    105static fs16 *befs_bt_keylen_index(struct befs_btree_node *node);
    106
    107static fs64 *befs_bt_valarray(struct befs_btree_node *node);
    108
    109static char *befs_bt_keydata(struct befs_btree_node *node);
    110
    111static int befs_find_key(struct super_block *sb,
    112			 struct befs_btree_node *node,
    113			 const char *findkey, befs_off_t * value);
    114
    115static char *befs_bt_get_key(struct super_block *sb,
    116			     struct befs_btree_node *node,
    117			     int index, u16 * keylen);
    118
    119static int befs_compare_strings(const void *key1, int keylen1,
    120				const void *key2, int keylen2);
    121
    122/**
    123 * befs_bt_read_super() - read in btree superblock convert to cpu byteorder
    124 * @sb:        Filesystem superblock
    125 * @ds:        Datastream to read from
    126 * @sup:       Buffer in which to place the btree superblock
    127 *
    128 * Calls befs_read_datastream to read in the btree superblock and
    129 * makes sure it is in cpu byteorder, byteswapping if necessary.
    130 * Return: BEFS_OK on success and if *@sup contains the btree superblock in cpu
    131 * byte order. Otherwise return BEFS_ERR on error.
    132 */
    133static int
    134befs_bt_read_super(struct super_block *sb, const befs_data_stream *ds,
    135		   befs_btree_super * sup)
    136{
    137	struct buffer_head *bh;
    138	befs_disk_btree_super *od_sup;
    139
    140	befs_debug(sb, "---> %s", __func__);
    141
    142	bh = befs_read_datastream(sb, ds, 0, NULL);
    143
    144	if (!bh) {
    145		befs_error(sb, "Couldn't read index header.");
    146		goto error;
    147	}
    148	od_sup = (befs_disk_btree_super *) bh->b_data;
    149	befs_dump_index_entry(sb, od_sup);
    150
    151	sup->magic = fs32_to_cpu(sb, od_sup->magic);
    152	sup->node_size = fs32_to_cpu(sb, od_sup->node_size);
    153	sup->max_depth = fs32_to_cpu(sb, od_sup->max_depth);
    154	sup->data_type = fs32_to_cpu(sb, od_sup->data_type);
    155	sup->root_node_ptr = fs64_to_cpu(sb, od_sup->root_node_ptr);
    156
    157	brelse(bh);
    158	if (sup->magic != BEFS_BTREE_MAGIC) {
    159		befs_error(sb, "Index header has bad magic.");
    160		goto error;
    161	}
    162
    163	befs_debug(sb, "<--- %s", __func__);
    164	return BEFS_OK;
    165
    166      error:
    167	befs_debug(sb, "<--- %s ERROR", __func__);
    168	return BEFS_ERR;
    169}
    170
    171/**
    172 * befs_bt_read_node - read in btree node and convert to cpu byteorder
    173 * @sb: Filesystem superblock
    174 * @ds: Datastream to read from
    175 * @node: Buffer in which to place the btree node
    176 * @node_off: Starting offset (in bytes) of the node in @ds
    177 *
    178 * Calls befs_read_datastream to read in the indicated btree node and
    179 * makes sure its header fields are in cpu byteorder, byteswapping if
    180 * necessary.
    181 * Note: node->bh must be NULL when this function is called the first time.
    182 * Don't forget brelse(node->bh) after last call.
    183 *
    184 * On success, returns BEFS_OK and *@node contains the btree node that
    185 * starts at @node_off, with the node->head fields in cpu byte order.
    186 *
    187 * On failure, BEFS_ERR is returned.
    188 */
    189
    190static int
    191befs_bt_read_node(struct super_block *sb, const befs_data_stream *ds,
    192		  struct befs_btree_node *node, befs_off_t node_off)
    193{
    194	uint off = 0;
    195
    196	befs_debug(sb, "---> %s", __func__);
    197
    198	if (node->bh)
    199		brelse(node->bh);
    200
    201	node->bh = befs_read_datastream(sb, ds, node_off, &off);
    202	if (!node->bh) {
    203		befs_error(sb, "%s failed to read "
    204			   "node at %llu", __func__, node_off);
    205		befs_debug(sb, "<--- %s ERROR", __func__);
    206
    207		return BEFS_ERR;
    208	}
    209	node->od_node =
    210	    (befs_btree_nodehead *) ((void *) node->bh->b_data + off);
    211
    212	befs_dump_index_node(sb, node->od_node);
    213
    214	node->head.left = fs64_to_cpu(sb, node->od_node->left);
    215	node->head.right = fs64_to_cpu(sb, node->od_node->right);
    216	node->head.overflow = fs64_to_cpu(sb, node->od_node->overflow);
    217	node->head.all_key_count =
    218	    fs16_to_cpu(sb, node->od_node->all_key_count);
    219	node->head.all_key_length =
    220	    fs16_to_cpu(sb, node->od_node->all_key_length);
    221
    222	befs_debug(sb, "<--- %s", __func__);
    223	return BEFS_OK;
    224}
    225
    226/**
    227 * befs_btree_find - Find a key in a befs B+tree
    228 * @sb: Filesystem superblock
    229 * @ds: Datastream containing btree
    230 * @key: Key string to lookup in btree
    231 * @value: Value stored with @key
    232 *
    233 * On success, returns BEFS_OK and sets *@value to the value stored
    234 * with @key (usually the disk block number of an inode).
    235 *
    236 * On failure, returns BEFS_ERR or BEFS_BT_NOT_FOUND.
    237 *
    238 * Algorithm:
    239 *   Read the superblock and rootnode of the b+tree.
    240 *   Drill down through the interior nodes using befs_find_key().
    241 *   Once at the correct leaf node, use befs_find_key() again to get the
    242 *   actual value stored with the key.
    243 */
    244int
    245befs_btree_find(struct super_block *sb, const befs_data_stream *ds,
    246		const char *key, befs_off_t * value)
    247{
    248	struct befs_btree_node *this_node;
    249	befs_btree_super bt_super;
    250	befs_off_t node_off;
    251	int res;
    252
    253	befs_debug(sb, "---> %s Key: %s", __func__, key);
    254
    255	if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
    256		befs_error(sb,
    257			   "befs_btree_find() failed to read index superblock");
    258		goto error;
    259	}
    260
    261	this_node = kmalloc(sizeof(struct befs_btree_node),
    262						GFP_NOFS);
    263	if (!this_node) {
    264		befs_error(sb, "befs_btree_find() failed to allocate %zu "
    265			   "bytes of memory", sizeof(struct befs_btree_node));
    266		goto error;
    267	}
    268
    269	this_node->bh = NULL;
    270
    271	/* read in root node */
    272	node_off = bt_super.root_node_ptr;
    273	if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
    274		befs_error(sb, "befs_btree_find() failed to read "
    275			   "node at %llu", node_off);
    276		goto error_alloc;
    277	}
    278
    279	while (!befs_leafnode(this_node)) {
    280		res = befs_find_key(sb, this_node, key, &node_off);
    281		/* if no key set, try the overflow node */
    282		if (res == BEFS_BT_OVERFLOW)
    283			node_off = this_node->head.overflow;
    284		if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
    285			befs_error(sb, "befs_btree_find() failed to read "
    286				   "node at %llu", node_off);
    287			goto error_alloc;
    288		}
    289	}
    290
    291	/* at a leaf node now, check if it is correct */
    292	res = befs_find_key(sb, this_node, key, value);
    293
    294	brelse(this_node->bh);
    295	kfree(this_node);
    296
    297	if (res != BEFS_BT_MATCH) {
    298		befs_error(sb, "<--- %s Key %s not found", __func__, key);
    299		befs_debug(sb, "<--- %s ERROR", __func__);
    300		*value = 0;
    301		return BEFS_BT_NOT_FOUND;
    302	}
    303	befs_debug(sb, "<--- %s Found key %s, value %llu", __func__,
    304		   key, *value);
    305	return BEFS_OK;
    306
    307      error_alloc:
    308	kfree(this_node);
    309      error:
    310	*value = 0;
    311	befs_debug(sb, "<--- %s ERROR", __func__);
    312	return BEFS_ERR;
    313}
    314
    315/**
    316 * befs_find_key - Search for a key within a node
    317 * @sb: Filesystem superblock
    318 * @node: Node to find the key within
    319 * @findkey: Keystring to search for
    320 * @value: If key is found, the value stored with the key is put here
    321 *
    322 * Finds exact match if one exists, and returns BEFS_BT_MATCH.
    323 * If there is no match and node's value array is too small for key, return
    324 * BEFS_BT_OVERFLOW.
    325 * If no match and node should countain this key, return BEFS_BT_NOT_FOUND.
    326 *
    327 * Uses binary search instead of a linear.
    328 */
    329static int
    330befs_find_key(struct super_block *sb, struct befs_btree_node *node,
    331	      const char *findkey, befs_off_t * value)
    332{
    333	int first, last, mid;
    334	int eq;
    335	u16 keylen;
    336	int findkey_len;
    337	char *thiskey;
    338	fs64 *valarray;
    339
    340	befs_debug(sb, "---> %s %s", __func__, findkey);
    341
    342	findkey_len = strlen(findkey);
    343
    344	/* if node can not contain key, just skip this node */
    345	last = node->head.all_key_count - 1;
    346	thiskey = befs_bt_get_key(sb, node, last, &keylen);
    347
    348	eq = befs_compare_strings(thiskey, keylen, findkey, findkey_len);
    349	if (eq < 0) {
    350		befs_debug(sb, "<--- node can't contain %s", findkey);
    351		return BEFS_BT_OVERFLOW;
    352	}
    353
    354	valarray = befs_bt_valarray(node);
    355
    356	/* simple binary search */
    357	first = 0;
    358	mid = 0;
    359	while (last >= first) {
    360		mid = (last + first) / 2;
    361		befs_debug(sb, "first: %d, last: %d, mid: %d", first, last,
    362			   mid);
    363		thiskey = befs_bt_get_key(sb, node, mid, &keylen);
    364		eq = befs_compare_strings(thiskey, keylen, findkey,
    365					  findkey_len);
    366
    367		if (eq == 0) {
    368			befs_debug(sb, "<--- %s found %s at %d",
    369				   __func__, thiskey, mid);
    370
    371			*value = fs64_to_cpu(sb, valarray[mid]);
    372			return BEFS_BT_MATCH;
    373		}
    374		if (eq > 0)
    375			last = mid - 1;
    376		else
    377			first = mid + 1;
    378	}
    379
    380	/* return an existing value so caller can arrive to a leaf node */
    381	if (eq < 0)
    382		*value = fs64_to_cpu(sb, valarray[mid + 1]);
    383	else
    384		*value = fs64_to_cpu(sb, valarray[mid]);
    385	befs_error(sb, "<--- %s %s not found", __func__, findkey);
    386	befs_debug(sb, "<--- %s ERROR", __func__);
    387	return BEFS_BT_NOT_FOUND;
    388}
    389
    390/**
    391 * befs_btree_read - Traverse leafnodes of a btree
    392 * @sb: Filesystem superblock
    393 * @ds: Datastream containing btree
    394 * @key_no: Key number (alphabetical order) of key to read
    395 * @bufsize: Size of the buffer to return key in
    396 * @keybuf: Pointer to a buffer to put the key in
    397 * @keysize: Length of the returned key
    398 * @value: Value stored with the returned key
    399 *
    400 * Here's how it works: Key_no is the index of the key/value pair to
    401 * return in keybuf/value.
    402 * Bufsize is the size of keybuf (BEFS_NAME_LEN+1 is a good size). Keysize is
    403 * the number of characters in the key (just a convenience).
    404 *
    405 * Algorithm:
    406 *   Get the first leafnode of the tree. See if the requested key is in that
    407 *   node. If not, follow the node->right link to the next leafnode. Repeat
    408 *   until the (key_no)th key is found or the tree is out of keys.
    409 */
    410int
    411befs_btree_read(struct super_block *sb, const befs_data_stream *ds,
    412		loff_t key_no, size_t bufsize, char *keybuf, size_t * keysize,
    413		befs_off_t * value)
    414{
    415	struct befs_btree_node *this_node;
    416	befs_btree_super bt_super;
    417	befs_off_t node_off;
    418	int cur_key;
    419	fs64 *valarray;
    420	char *keystart;
    421	u16 keylen;
    422	int res;
    423
    424	uint key_sum = 0;
    425
    426	befs_debug(sb, "---> %s", __func__);
    427
    428	if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
    429		befs_error(sb,
    430			   "befs_btree_read() failed to read index superblock");
    431		goto error;
    432	}
    433
    434	this_node = kmalloc(sizeof(struct befs_btree_node), GFP_NOFS);
    435	if (this_node == NULL) {
    436		befs_error(sb, "befs_btree_read() failed to allocate %zu "
    437			   "bytes of memory", sizeof(struct befs_btree_node));
    438		goto error;
    439	}
    440
    441	node_off = bt_super.root_node_ptr;
    442	this_node->bh = NULL;
    443
    444	/* seeks down to first leafnode, reads it into this_node */
    445	res = befs_btree_seekleaf(sb, ds, &bt_super, this_node, &node_off);
    446	if (res == BEFS_BT_EMPTY) {
    447		brelse(this_node->bh);
    448		kfree(this_node);
    449		*value = 0;
    450		*keysize = 0;
    451		befs_debug(sb, "<--- %s Tree is EMPTY", __func__);
    452		return BEFS_BT_EMPTY;
    453	} else if (res == BEFS_ERR) {
    454		goto error_alloc;
    455	}
    456
    457	/* find the leaf node containing the key_no key */
    458
    459	while (key_sum + this_node->head.all_key_count <= key_no) {
    460
    461		/* no more nodes to look in: key_no is too large */
    462		if (this_node->head.right == BEFS_BT_INVAL) {
    463			*keysize = 0;
    464			*value = 0;
    465			befs_debug(sb,
    466				   "<--- %s END of keys at %llu", __func__,
    467				   (unsigned long long)
    468				   key_sum + this_node->head.all_key_count);
    469			brelse(this_node->bh);
    470			kfree(this_node);
    471			return BEFS_BT_END;
    472		}
    473
    474		key_sum += this_node->head.all_key_count;
    475		node_off = this_node->head.right;
    476
    477		if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
    478			befs_error(sb, "%s failed to read node at %llu",
    479				  __func__, (unsigned long long)node_off);
    480			goto error_alloc;
    481		}
    482	}
    483
    484	/* how many keys into this_node is key_no */
    485	cur_key = key_no - key_sum;
    486
    487	/* get pointers to datastructures within the node body */
    488	valarray = befs_bt_valarray(this_node);
    489
    490	keystart = befs_bt_get_key(sb, this_node, cur_key, &keylen);
    491
    492	befs_debug(sb, "Read [%llu,%d]: keysize %d",
    493		   (long long unsigned int)node_off, (int)cur_key,
    494		   (int)keylen);
    495
    496	if (bufsize < keylen + 1) {
    497		befs_error(sb, "%s keybuf too small (%zu) "
    498			   "for key of size %d", __func__, bufsize, keylen);
    499		brelse(this_node->bh);
    500		goto error_alloc;
    501	}
    502
    503	strlcpy(keybuf, keystart, keylen + 1);
    504	*value = fs64_to_cpu(sb, valarray[cur_key]);
    505	*keysize = keylen;
    506
    507	befs_debug(sb, "Read [%llu,%d]: Key \"%.*s\", Value %llu", node_off,
    508		   cur_key, keylen, keybuf, *value);
    509
    510	brelse(this_node->bh);
    511	kfree(this_node);
    512
    513	befs_debug(sb, "<--- %s", __func__);
    514
    515	return BEFS_OK;
    516
    517      error_alloc:
    518	kfree(this_node);
    519
    520      error:
    521	*keysize = 0;
    522	*value = 0;
    523	befs_debug(sb, "<--- %s ERROR", __func__);
    524	return BEFS_ERR;
    525}
    526
    527/**
    528 * befs_btree_seekleaf - Find the first leafnode in the btree
    529 * @sb: Filesystem superblock
    530 * @ds: Datastream containing btree
    531 * @bt_super: Pointer to the superblock of the btree
    532 * @this_node: Buffer to return the leafnode in
    533 * @node_off: Pointer to offset of current node within datastream. Modified
    534 * 		by the function.
    535 *
    536 * Helper function for btree traverse. Moves the current position to the
    537 * start of the first leaf node.
    538 *
    539 * Also checks for an empty tree. If there are no keys, returns BEFS_BT_EMPTY.
    540 */
    541static int
    542befs_btree_seekleaf(struct super_block *sb, const befs_data_stream *ds,
    543		    befs_btree_super *bt_super,
    544		    struct befs_btree_node *this_node,
    545		    befs_off_t * node_off)
    546{
    547
    548	befs_debug(sb, "---> %s", __func__);
    549
    550	if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
    551		befs_error(sb, "%s failed to read "
    552			   "node at %llu", __func__, *node_off);
    553		goto error;
    554	}
    555	befs_debug(sb, "Seekleaf to root node %llu", *node_off);
    556
    557	if (this_node->head.all_key_count == 0 && befs_leafnode(this_node)) {
    558		befs_debug(sb, "<--- %s Tree is EMPTY", __func__);
    559		return BEFS_BT_EMPTY;
    560	}
    561
    562	while (!befs_leafnode(this_node)) {
    563
    564		if (this_node->head.all_key_count == 0) {
    565			befs_debug(sb, "%s encountered "
    566				   "an empty interior node: %llu. Using Overflow "
    567				   "node: %llu", __func__, *node_off,
    568				   this_node->head.overflow);
    569			*node_off = this_node->head.overflow;
    570		} else {
    571			fs64 *valarray = befs_bt_valarray(this_node);
    572			*node_off = fs64_to_cpu(sb, valarray[0]);
    573		}
    574		if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
    575			befs_error(sb, "%s failed to read "
    576				   "node at %llu", __func__, *node_off);
    577			goto error;
    578		}
    579
    580		befs_debug(sb, "Seekleaf to child node %llu", *node_off);
    581	}
    582	befs_debug(sb, "Node %llu is a leaf node", *node_off);
    583
    584	return BEFS_OK;
    585
    586      error:
    587	befs_debug(sb, "<--- %s ERROR", __func__);
    588	return BEFS_ERR;
    589}
    590
    591/**
    592 * befs_leafnode - Determine if the btree node is a leaf node or an
    593 * interior node
    594 * @node: Pointer to node structure to test
    595 *
    596 * Return 1 if leaf, 0 if interior
    597 */
    598static int
    599befs_leafnode(struct befs_btree_node *node)
    600{
    601	/* all interior nodes (and only interior nodes) have an overflow node */
    602	if (node->head.overflow == BEFS_BT_INVAL)
    603		return 1;
    604	else
    605		return 0;
    606}
    607
    608/**
    609 * befs_bt_keylen_index - Finds start of keylen index in a node
    610 * @node: Pointer to the node structure to find the keylen index within
    611 *
    612 * Returns a pointer to the start of the key length index array
    613 * of the B+tree node *@node
    614 *
    615 * "The length of all the keys in the node is added to the size of the
    616 * header and then rounded up to a multiple of four to get the beginning
    617 * of the key length index" (p.88, practical filesystem design).
    618 *
    619 * Except that rounding up to 8 works, and rounding up to 4 doesn't.
    620 */
    621static fs16 *
    622befs_bt_keylen_index(struct befs_btree_node *node)
    623{
    624	const int keylen_align = 8;
    625	unsigned long int off =
    626	    (sizeof (befs_btree_nodehead) + node->head.all_key_length);
    627	ulong tmp = off % keylen_align;
    628
    629	if (tmp)
    630		off += keylen_align - tmp;
    631
    632	return (fs16 *) ((void *) node->od_node + off);
    633}
    634
    635/**
    636 * befs_bt_valarray - Finds the start of value array in a node
    637 * @node: Pointer to the node structure to find the value array within
    638 *
    639 * Returns a pointer to the start of the value array
    640 * of the node pointed to by the node header
    641 */
    642static fs64 *
    643befs_bt_valarray(struct befs_btree_node *node)
    644{
    645	void *keylen_index_start = (void *) befs_bt_keylen_index(node);
    646	size_t keylen_index_size = node->head.all_key_count * sizeof (fs16);
    647
    648	return (fs64 *) (keylen_index_start + keylen_index_size);
    649}
    650
    651/**
    652 * befs_bt_keydata - Finds start of keydata array in a node
    653 * @node: Pointer to the node structure to find the keydata array within
    654 *
    655 * Returns a pointer to the start of the keydata array
    656 * of the node pointed to by the node header
    657 */
    658static char *
    659befs_bt_keydata(struct befs_btree_node *node)
    660{
    661	return (char *) ((void *) node->od_node + sizeof (befs_btree_nodehead));
    662}
    663
    664/**
    665 * befs_bt_get_key - returns a pointer to the start of a key
    666 * @sb: filesystem superblock
    667 * @node: node in which to look for the key
    668 * @index: the index of the key to get
    669 * @keylen: modified to be the length of the key at @index
    670 *
    671 * Returns a valid pointer into @node on success.
    672 * Returns NULL on failure (bad input) and sets *@keylen = 0
    673 */
    674static char *
    675befs_bt_get_key(struct super_block *sb, struct befs_btree_node *node,
    676		int index, u16 * keylen)
    677{
    678	int prev_key_end;
    679	char *keystart;
    680	fs16 *keylen_index;
    681
    682	if (index < 0 || index > node->head.all_key_count) {
    683		*keylen = 0;
    684		return NULL;
    685	}
    686
    687	keystart = befs_bt_keydata(node);
    688	keylen_index = befs_bt_keylen_index(node);
    689
    690	if (index == 0)
    691		prev_key_end = 0;
    692	else
    693		prev_key_end = fs16_to_cpu(sb, keylen_index[index - 1]);
    694
    695	*keylen = fs16_to_cpu(sb, keylen_index[index]) - prev_key_end;
    696
    697	return keystart + prev_key_end;
    698}
    699
    700/**
    701 * befs_compare_strings - compare two strings
    702 * @key1: pointer to the first key to be compared
    703 * @keylen1: length in bytes of key1
    704 * @key2: pointer to the second key to be compared
    705 * @keylen2: length in bytes of key2
    706 *
    707 * Returns 0 if @key1 and @key2 are equal.
    708 * Returns >0 if @key1 is greater.
    709 * Returns <0 if @key2 is greater.
    710 */
    711static int
    712befs_compare_strings(const void *key1, int keylen1,
    713		     const void *key2, int keylen2)
    714{
    715	int len = min_t(int, keylen1, keylen2);
    716	int result = strncmp(key1, key2, len);
    717	if (result == 0)
    718		result = keylen1 - keylen2;
    719	return result;
    720}
    721
    722/* These will be used for non-string keyed btrees */
    723#if 0
    724static int
    725btree_compare_int32(cont void *key1, int keylen1, const void *key2, int keylen2)
    726{
    727	return *(int32_t *) key1 - *(int32_t *) key2;
    728}
    729
    730static int
    731btree_compare_uint32(cont void *key1, int keylen1,
    732		     const void *key2, int keylen2)
    733{
    734	if (*(u_int32_t *) key1 == *(u_int32_t *) key2)
    735		return 0;
    736	else if (*(u_int32_t *) key1 > *(u_int32_t *) key2)
    737		return 1;
    738
    739	return -1;
    740}
    741static int
    742btree_compare_int64(cont void *key1, int keylen1, const void *key2, int keylen2)
    743{
    744	if (*(int64_t *) key1 == *(int64_t *) key2)
    745		return 0;
    746	else if (*(int64_t *) key1 > *(int64_t *) key2)
    747		return 1;
    748
    749	return -1;
    750}
    751
    752static int
    753btree_compare_uint64(cont void *key1, int keylen1,
    754		     const void *key2, int keylen2)
    755{
    756	if (*(u_int64_t *) key1 == *(u_int64_t *) key2)
    757		return 0;
    758	else if (*(u_int64_t *) key1 > *(u_int64_t *) key2)
    759		return 1;
    760
    761	return -1;
    762}
    763
    764static int
    765btree_compare_float(cont void *key1, int keylen1, const void *key2, int keylen2)
    766{
    767	float result = *(float *) key1 - *(float *) key2;
    768	if (result == 0.0f)
    769		return 0;
    770
    771	return (result < 0.0f) ? -1 : 1;
    772}
    773
    774static int
    775btree_compare_double(cont void *key1, int keylen1,
    776		     const void *key2, int keylen2)
    777{
    778	double result = *(double *) key1 - *(double *) key2;
    779	if (result == 0.0)
    780		return 0;
    781
    782	return (result < 0.0) ? -1 : 1;
    783}
    784#endif				//0