cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

async-thread.c (9241B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (C) 2007 Oracle.  All rights reserved.
      4 * Copyright (C) 2014 Fujitsu.  All rights reserved.
      5 */
      6
      7#include <linux/kthread.h>
      8#include <linux/slab.h>
      9#include <linux/list.h>
     10#include <linux/spinlock.h>
     11#include <linux/freezer.h>
     12#include "async-thread.h"
     13#include "ctree.h"
     14
     15enum {
     16	WORK_DONE_BIT,
     17	WORK_ORDER_DONE_BIT,
     18};
     19
     20#define NO_THRESHOLD (-1)
     21#define DFT_THRESHOLD (32)
     22
     23struct btrfs_workqueue {
     24	struct workqueue_struct *normal_wq;
     25
     26	/* File system this workqueue services */
     27	struct btrfs_fs_info *fs_info;
     28
     29	/* List head pointing to ordered work list */
     30	struct list_head ordered_list;
     31
     32	/* Spinlock for ordered_list */
     33	spinlock_t list_lock;
     34
     35	/* Thresholding related variants */
     36	atomic_t pending;
     37
     38	/* Up limit of concurrency workers */
     39	int limit_active;
     40
     41	/* Current number of concurrency workers */
     42	int current_active;
     43
     44	/* Threshold to change current_active */
     45	int thresh;
     46	unsigned int count;
     47	spinlock_t thres_lock;
     48};
     49
     50struct btrfs_fs_info * __pure btrfs_workqueue_owner(const struct btrfs_workqueue *wq)
     51{
     52	return wq->fs_info;
     53}
     54
     55struct btrfs_fs_info * __pure btrfs_work_owner(const struct btrfs_work *work)
     56{
     57	return work->wq->fs_info;
     58}
     59
     60bool btrfs_workqueue_normal_congested(const struct btrfs_workqueue *wq)
     61{
     62	/*
     63	 * We could compare wq->pending with num_online_cpus()
     64	 * to support "thresh == NO_THRESHOLD" case, but it requires
     65	 * moving up atomic_inc/dec in thresh_queue/exec_hook. Let's
     66	 * postpone it until someone needs the support of that case.
     67	 */
     68	if (wq->thresh == NO_THRESHOLD)
     69		return false;
     70
     71	return atomic_read(&wq->pending) > wq->thresh * 2;
     72}
     73
     74struct btrfs_workqueue *btrfs_alloc_workqueue(struct btrfs_fs_info *fs_info,
     75					      const char *name, unsigned int flags,
     76					      int limit_active, int thresh)
     77{
     78	struct btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL);
     79
     80	if (!ret)
     81		return NULL;
     82
     83	ret->fs_info = fs_info;
     84	ret->limit_active = limit_active;
     85	atomic_set(&ret->pending, 0);
     86	if (thresh == 0)
     87		thresh = DFT_THRESHOLD;
     88	/* For low threshold, disabling threshold is a better choice */
     89	if (thresh < DFT_THRESHOLD) {
     90		ret->current_active = limit_active;
     91		ret->thresh = NO_THRESHOLD;
     92	} else {
     93		/*
     94		 * For threshold-able wq, let its concurrency grow on demand.
     95		 * Use minimal max_active at alloc time to reduce resource
     96		 * usage.
     97		 */
     98		ret->current_active = 1;
     99		ret->thresh = thresh;
    100	}
    101
    102	ret->normal_wq = alloc_workqueue("btrfs-%s", flags, ret->current_active,
    103					 name);
    104	if (!ret->normal_wq) {
    105		kfree(ret);
    106		return NULL;
    107	}
    108
    109	INIT_LIST_HEAD(&ret->ordered_list);
    110	spin_lock_init(&ret->list_lock);
    111	spin_lock_init(&ret->thres_lock);
    112	trace_btrfs_workqueue_alloc(ret, name);
    113	return ret;
    114}
    115
    116/*
    117 * Hook for threshold which will be called in btrfs_queue_work.
    118 * This hook WILL be called in IRQ handler context,
    119 * so workqueue_set_max_active MUST NOT be called in this hook
    120 */
    121static inline void thresh_queue_hook(struct btrfs_workqueue *wq)
    122{
    123	if (wq->thresh == NO_THRESHOLD)
    124		return;
    125	atomic_inc(&wq->pending);
    126}
    127
    128/*
    129 * Hook for threshold which will be called before executing the work,
    130 * This hook is called in kthread content.
    131 * So workqueue_set_max_active is called here.
    132 */
    133static inline void thresh_exec_hook(struct btrfs_workqueue *wq)
    134{
    135	int new_current_active;
    136	long pending;
    137	int need_change = 0;
    138
    139	if (wq->thresh == NO_THRESHOLD)
    140		return;
    141
    142	atomic_dec(&wq->pending);
    143	spin_lock(&wq->thres_lock);
    144	/*
    145	 * Use wq->count to limit the calling frequency of
    146	 * workqueue_set_max_active.
    147	 */
    148	wq->count++;
    149	wq->count %= (wq->thresh / 4);
    150	if (!wq->count)
    151		goto  out;
    152	new_current_active = wq->current_active;
    153
    154	/*
    155	 * pending may be changed later, but it's OK since we really
    156	 * don't need it so accurate to calculate new_max_active.
    157	 */
    158	pending = atomic_read(&wq->pending);
    159	if (pending > wq->thresh)
    160		new_current_active++;
    161	if (pending < wq->thresh / 2)
    162		new_current_active--;
    163	new_current_active = clamp_val(new_current_active, 1, wq->limit_active);
    164	if (new_current_active != wq->current_active)  {
    165		need_change = 1;
    166		wq->current_active = new_current_active;
    167	}
    168out:
    169	spin_unlock(&wq->thres_lock);
    170
    171	if (need_change) {
    172		workqueue_set_max_active(wq->normal_wq, wq->current_active);
    173	}
    174}
    175
    176static void run_ordered_work(struct btrfs_workqueue *wq,
    177			     struct btrfs_work *self)
    178{
    179	struct list_head *list = &wq->ordered_list;
    180	struct btrfs_work *work;
    181	spinlock_t *lock = &wq->list_lock;
    182	unsigned long flags;
    183	bool free_self = false;
    184
    185	while (1) {
    186		spin_lock_irqsave(lock, flags);
    187		if (list_empty(list))
    188			break;
    189		work = list_entry(list->next, struct btrfs_work,
    190				  ordered_list);
    191		if (!test_bit(WORK_DONE_BIT, &work->flags))
    192			break;
    193		/*
    194		 * Orders all subsequent loads after reading WORK_DONE_BIT,
    195		 * paired with the smp_mb__before_atomic in btrfs_work_helper
    196		 * this guarantees that the ordered function will see all
    197		 * updates from ordinary work function.
    198		 */
    199		smp_rmb();
    200
    201		/*
    202		 * we are going to call the ordered done function, but
    203		 * we leave the work item on the list as a barrier so
    204		 * that later work items that are done don't have their
    205		 * functions called before this one returns
    206		 */
    207		if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
    208			break;
    209		trace_btrfs_ordered_sched(work);
    210		spin_unlock_irqrestore(lock, flags);
    211		work->ordered_func(work);
    212
    213		/* now take the lock again and drop our item from the list */
    214		spin_lock_irqsave(lock, flags);
    215		list_del(&work->ordered_list);
    216		spin_unlock_irqrestore(lock, flags);
    217
    218		if (work == self) {
    219			/*
    220			 * This is the work item that the worker is currently
    221			 * executing.
    222			 *
    223			 * The kernel workqueue code guarantees non-reentrancy
    224			 * of work items. I.e., if a work item with the same
    225			 * address and work function is queued twice, the second
    226			 * execution is blocked until the first one finishes. A
    227			 * work item may be freed and recycled with the same
    228			 * work function; the workqueue code assumes that the
    229			 * original work item cannot depend on the recycled work
    230			 * item in that case (see find_worker_executing_work()).
    231			 *
    232			 * Note that different types of Btrfs work can depend on
    233			 * each other, and one type of work on one Btrfs
    234			 * filesystem may even depend on the same type of work
    235			 * on another Btrfs filesystem via, e.g., a loop device.
    236			 * Therefore, we must not allow the current work item to
    237			 * be recycled until we are really done, otherwise we
    238			 * break the above assumption and can deadlock.
    239			 */
    240			free_self = true;
    241		} else {
    242			/*
    243			 * We don't want to call the ordered free functions with
    244			 * the lock held.
    245			 */
    246			work->ordered_free(work);
    247			/* NB: work must not be dereferenced past this point. */
    248			trace_btrfs_all_work_done(wq->fs_info, work);
    249		}
    250	}
    251	spin_unlock_irqrestore(lock, flags);
    252
    253	if (free_self) {
    254		self->ordered_free(self);
    255		/* NB: self must not be dereferenced past this point. */
    256		trace_btrfs_all_work_done(wq->fs_info, self);
    257	}
    258}
    259
    260static void btrfs_work_helper(struct work_struct *normal_work)
    261{
    262	struct btrfs_work *work = container_of(normal_work, struct btrfs_work,
    263					       normal_work);
    264	struct btrfs_workqueue *wq = work->wq;
    265	int need_order = 0;
    266
    267	/*
    268	 * We should not touch things inside work in the following cases:
    269	 * 1) after work->func() if it has no ordered_free
    270	 *    Since the struct is freed in work->func().
    271	 * 2) after setting WORK_DONE_BIT
    272	 *    The work may be freed in other threads almost instantly.
    273	 * So we save the needed things here.
    274	 */
    275	if (work->ordered_func)
    276		need_order = 1;
    277
    278	trace_btrfs_work_sched(work);
    279	thresh_exec_hook(wq);
    280	work->func(work);
    281	if (need_order) {
    282		/*
    283		 * Ensures all memory accesses done in the work function are
    284		 * ordered before setting the WORK_DONE_BIT. Ensuring the thread
    285		 * which is going to executed the ordered work sees them.
    286		 * Pairs with the smp_rmb in run_ordered_work.
    287		 */
    288		smp_mb__before_atomic();
    289		set_bit(WORK_DONE_BIT, &work->flags);
    290		run_ordered_work(wq, work);
    291	} else {
    292		/* NB: work must not be dereferenced past this point. */
    293		trace_btrfs_all_work_done(wq->fs_info, work);
    294	}
    295}
    296
    297void btrfs_init_work(struct btrfs_work *work, btrfs_func_t func,
    298		     btrfs_func_t ordered_func, btrfs_func_t ordered_free)
    299{
    300	work->func = func;
    301	work->ordered_func = ordered_func;
    302	work->ordered_free = ordered_free;
    303	INIT_WORK(&work->normal_work, btrfs_work_helper);
    304	INIT_LIST_HEAD(&work->ordered_list);
    305	work->flags = 0;
    306}
    307
    308void btrfs_queue_work(struct btrfs_workqueue *wq, struct btrfs_work *work)
    309{
    310	unsigned long flags;
    311
    312	work->wq = wq;
    313	thresh_queue_hook(wq);
    314	if (work->ordered_func) {
    315		spin_lock_irqsave(&wq->list_lock, flags);
    316		list_add_tail(&work->ordered_list, &wq->ordered_list);
    317		spin_unlock_irqrestore(&wq->list_lock, flags);
    318	}
    319	trace_btrfs_work_queued(work);
    320	queue_work(wq->normal_wq, &work->normal_work);
    321}
    322
    323void btrfs_destroy_workqueue(struct btrfs_workqueue *wq)
    324{
    325	if (!wq)
    326		return;
    327	destroy_workqueue(wq->normal_wq);
    328	trace_btrfs_workqueue_destroy(wq);
    329	kfree(wq);
    330}
    331
    332void btrfs_workqueue_set_max(struct btrfs_workqueue *wq, int limit_active)
    333{
    334	if (wq)
    335		wq->limit_active = limit_active;
    336}
    337
    338void btrfs_flush_workqueue(struct btrfs_workqueue *wq)
    339{
    340	flush_workqueue(wq->normal_wq);
    341}