backref.c (85022B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6#include <linux/mm.h> 7#include <linux/rbtree.h> 8#include <trace/events/btrfs.h> 9#include "ctree.h" 10#include "disk-io.h" 11#include "backref.h" 12#include "ulist.h" 13#include "transaction.h" 14#include "delayed-ref.h" 15#include "locking.h" 16#include "misc.h" 17#include "tree-mod-log.h" 18 19/* Just an arbitrary number so we can be sure this happened */ 20#define BACKREF_FOUND_SHARED 6 21 22struct extent_inode_elem { 23 u64 inum; 24 u64 offset; 25 struct extent_inode_elem *next; 26}; 27 28static int check_extent_in_eb(const struct btrfs_key *key, 29 const struct extent_buffer *eb, 30 const struct btrfs_file_extent_item *fi, 31 u64 extent_item_pos, 32 struct extent_inode_elem **eie, 33 bool ignore_offset) 34{ 35 u64 offset = 0; 36 struct extent_inode_elem *e; 37 38 if (!ignore_offset && 39 !btrfs_file_extent_compression(eb, fi) && 40 !btrfs_file_extent_encryption(eb, fi) && 41 !btrfs_file_extent_other_encoding(eb, fi)) { 42 u64 data_offset; 43 u64 data_len; 44 45 data_offset = btrfs_file_extent_offset(eb, fi); 46 data_len = btrfs_file_extent_num_bytes(eb, fi); 47 48 if (extent_item_pos < data_offset || 49 extent_item_pos >= data_offset + data_len) 50 return 1; 51 offset = extent_item_pos - data_offset; 52 } 53 54 e = kmalloc(sizeof(*e), GFP_NOFS); 55 if (!e) 56 return -ENOMEM; 57 58 e->next = *eie; 59 e->inum = key->objectid; 60 e->offset = key->offset + offset; 61 *eie = e; 62 63 return 0; 64} 65 66static void free_inode_elem_list(struct extent_inode_elem *eie) 67{ 68 struct extent_inode_elem *eie_next; 69 70 for (; eie; eie = eie_next) { 71 eie_next = eie->next; 72 kfree(eie); 73 } 74} 75 76static int find_extent_in_eb(const struct extent_buffer *eb, 77 u64 wanted_disk_byte, u64 extent_item_pos, 78 struct extent_inode_elem **eie, 79 bool ignore_offset) 80{ 81 u64 disk_byte; 82 struct btrfs_key key; 83 struct btrfs_file_extent_item *fi; 84 int slot; 85 int nritems; 86 int extent_type; 87 int ret; 88 89 /* 90 * from the shared data ref, we only have the leaf but we need 91 * the key. thus, we must look into all items and see that we 92 * find one (some) with a reference to our extent item. 93 */ 94 nritems = btrfs_header_nritems(eb); 95 for (slot = 0; slot < nritems; ++slot) { 96 btrfs_item_key_to_cpu(eb, &key, slot); 97 if (key.type != BTRFS_EXTENT_DATA_KEY) 98 continue; 99 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 100 extent_type = btrfs_file_extent_type(eb, fi); 101 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 102 continue; 103 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 104 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 105 if (disk_byte != wanted_disk_byte) 106 continue; 107 108 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset); 109 if (ret < 0) 110 return ret; 111 } 112 113 return 0; 114} 115 116struct preftree { 117 struct rb_root_cached root; 118 unsigned int count; 119}; 120 121#define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 122 123struct preftrees { 124 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 125 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 126 struct preftree indirect_missing_keys; 127}; 128 129/* 130 * Checks for a shared extent during backref search. 131 * 132 * The share_count tracks prelim_refs (direct and indirect) having a 133 * ref->count >0: 134 * - incremented when a ref->count transitions to >0 135 * - decremented when a ref->count transitions to <1 136 */ 137struct share_check { 138 u64 root_objectid; 139 u64 inum; 140 int share_count; 141}; 142 143static inline int extent_is_shared(struct share_check *sc) 144{ 145 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 146} 147 148static struct kmem_cache *btrfs_prelim_ref_cache; 149 150int __init btrfs_prelim_ref_init(void) 151{ 152 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 153 sizeof(struct prelim_ref), 154 0, 155 SLAB_MEM_SPREAD, 156 NULL); 157 if (!btrfs_prelim_ref_cache) 158 return -ENOMEM; 159 return 0; 160} 161 162void __cold btrfs_prelim_ref_exit(void) 163{ 164 kmem_cache_destroy(btrfs_prelim_ref_cache); 165} 166 167static void free_pref(struct prelim_ref *ref) 168{ 169 kmem_cache_free(btrfs_prelim_ref_cache, ref); 170} 171 172/* 173 * Return 0 when both refs are for the same block (and can be merged). 174 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 175 * indicates a 'higher' block. 176 */ 177static int prelim_ref_compare(struct prelim_ref *ref1, 178 struct prelim_ref *ref2) 179{ 180 if (ref1->level < ref2->level) 181 return -1; 182 if (ref1->level > ref2->level) 183 return 1; 184 if (ref1->root_id < ref2->root_id) 185 return -1; 186 if (ref1->root_id > ref2->root_id) 187 return 1; 188 if (ref1->key_for_search.type < ref2->key_for_search.type) 189 return -1; 190 if (ref1->key_for_search.type > ref2->key_for_search.type) 191 return 1; 192 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 193 return -1; 194 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 195 return 1; 196 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 197 return -1; 198 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 199 return 1; 200 if (ref1->parent < ref2->parent) 201 return -1; 202 if (ref1->parent > ref2->parent) 203 return 1; 204 205 return 0; 206} 207 208static void update_share_count(struct share_check *sc, int oldcount, 209 int newcount) 210{ 211 if ((!sc) || (oldcount == 0 && newcount < 1)) 212 return; 213 214 if (oldcount > 0 && newcount < 1) 215 sc->share_count--; 216 else if (oldcount < 1 && newcount > 0) 217 sc->share_count++; 218} 219 220/* 221 * Add @newref to the @root rbtree, merging identical refs. 222 * 223 * Callers should assume that newref has been freed after calling. 224 */ 225static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 226 struct preftree *preftree, 227 struct prelim_ref *newref, 228 struct share_check *sc) 229{ 230 struct rb_root_cached *root; 231 struct rb_node **p; 232 struct rb_node *parent = NULL; 233 struct prelim_ref *ref; 234 int result; 235 bool leftmost = true; 236 237 root = &preftree->root; 238 p = &root->rb_root.rb_node; 239 240 while (*p) { 241 parent = *p; 242 ref = rb_entry(parent, struct prelim_ref, rbnode); 243 result = prelim_ref_compare(ref, newref); 244 if (result < 0) { 245 p = &(*p)->rb_left; 246 } else if (result > 0) { 247 p = &(*p)->rb_right; 248 leftmost = false; 249 } else { 250 /* Identical refs, merge them and free @newref */ 251 struct extent_inode_elem *eie = ref->inode_list; 252 253 while (eie && eie->next) 254 eie = eie->next; 255 256 if (!eie) 257 ref->inode_list = newref->inode_list; 258 else 259 eie->next = newref->inode_list; 260 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 261 preftree->count); 262 /* 263 * A delayed ref can have newref->count < 0. 264 * The ref->count is updated to follow any 265 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 266 */ 267 update_share_count(sc, ref->count, 268 ref->count + newref->count); 269 ref->count += newref->count; 270 free_pref(newref); 271 return; 272 } 273 } 274 275 update_share_count(sc, 0, newref->count); 276 preftree->count++; 277 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 278 rb_link_node(&newref->rbnode, parent, p); 279 rb_insert_color_cached(&newref->rbnode, root, leftmost); 280} 281 282/* 283 * Release the entire tree. We don't care about internal consistency so 284 * just free everything and then reset the tree root. 285 */ 286static void prelim_release(struct preftree *preftree) 287{ 288 struct prelim_ref *ref, *next_ref; 289 290 rbtree_postorder_for_each_entry_safe(ref, next_ref, 291 &preftree->root.rb_root, rbnode) 292 free_pref(ref); 293 294 preftree->root = RB_ROOT_CACHED; 295 preftree->count = 0; 296} 297 298/* 299 * the rules for all callers of this function are: 300 * - obtaining the parent is the goal 301 * - if you add a key, you must know that it is a correct key 302 * - if you cannot add the parent or a correct key, then we will look into the 303 * block later to set a correct key 304 * 305 * delayed refs 306 * ============ 307 * backref type | shared | indirect | shared | indirect 308 * information | tree | tree | data | data 309 * --------------------+--------+----------+--------+---------- 310 * parent logical | y | - | - | - 311 * key to resolve | - | y | y | y 312 * tree block logical | - | - | - | - 313 * root for resolving | y | y | y | y 314 * 315 * - column 1: we've the parent -> done 316 * - column 2, 3, 4: we use the key to find the parent 317 * 318 * on disk refs (inline or keyed) 319 * ============================== 320 * backref type | shared | indirect | shared | indirect 321 * information | tree | tree | data | data 322 * --------------------+--------+----------+--------+---------- 323 * parent logical | y | - | y | - 324 * key to resolve | - | - | - | y 325 * tree block logical | y | y | y | y 326 * root for resolving | - | y | y | y 327 * 328 * - column 1, 3: we've the parent -> done 329 * - column 2: we take the first key from the block to find the parent 330 * (see add_missing_keys) 331 * - column 4: we use the key to find the parent 332 * 333 * additional information that's available but not required to find the parent 334 * block might help in merging entries to gain some speed. 335 */ 336static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 337 struct preftree *preftree, u64 root_id, 338 const struct btrfs_key *key, int level, u64 parent, 339 u64 wanted_disk_byte, int count, 340 struct share_check *sc, gfp_t gfp_mask) 341{ 342 struct prelim_ref *ref; 343 344 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 345 return 0; 346 347 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 348 if (!ref) 349 return -ENOMEM; 350 351 ref->root_id = root_id; 352 if (key) 353 ref->key_for_search = *key; 354 else 355 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 356 357 ref->inode_list = NULL; 358 ref->level = level; 359 ref->count = count; 360 ref->parent = parent; 361 ref->wanted_disk_byte = wanted_disk_byte; 362 prelim_ref_insert(fs_info, preftree, ref, sc); 363 return extent_is_shared(sc); 364} 365 366/* direct refs use root == 0, key == NULL */ 367static int add_direct_ref(const struct btrfs_fs_info *fs_info, 368 struct preftrees *preftrees, int level, u64 parent, 369 u64 wanted_disk_byte, int count, 370 struct share_check *sc, gfp_t gfp_mask) 371{ 372 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 373 parent, wanted_disk_byte, count, sc, gfp_mask); 374} 375 376/* indirect refs use parent == 0 */ 377static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 378 struct preftrees *preftrees, u64 root_id, 379 const struct btrfs_key *key, int level, 380 u64 wanted_disk_byte, int count, 381 struct share_check *sc, gfp_t gfp_mask) 382{ 383 struct preftree *tree = &preftrees->indirect; 384 385 if (!key) 386 tree = &preftrees->indirect_missing_keys; 387 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 388 wanted_disk_byte, count, sc, gfp_mask); 389} 390 391static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) 392{ 393 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; 394 struct rb_node *parent = NULL; 395 struct prelim_ref *ref = NULL; 396 struct prelim_ref target = {}; 397 int result; 398 399 target.parent = bytenr; 400 401 while (*p) { 402 parent = *p; 403 ref = rb_entry(parent, struct prelim_ref, rbnode); 404 result = prelim_ref_compare(ref, &target); 405 406 if (result < 0) 407 p = &(*p)->rb_left; 408 else if (result > 0) 409 p = &(*p)->rb_right; 410 else 411 return 1; 412 } 413 return 0; 414} 415 416static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 417 struct ulist *parents, 418 struct preftrees *preftrees, struct prelim_ref *ref, 419 int level, u64 time_seq, const u64 *extent_item_pos, 420 bool ignore_offset) 421{ 422 int ret = 0; 423 int slot; 424 struct extent_buffer *eb; 425 struct btrfs_key key; 426 struct btrfs_key *key_for_search = &ref->key_for_search; 427 struct btrfs_file_extent_item *fi; 428 struct extent_inode_elem *eie = NULL, *old = NULL; 429 u64 disk_byte; 430 u64 wanted_disk_byte = ref->wanted_disk_byte; 431 u64 count = 0; 432 u64 data_offset; 433 434 if (level != 0) { 435 eb = path->nodes[level]; 436 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 437 if (ret < 0) 438 return ret; 439 return 0; 440 } 441 442 /* 443 * 1. We normally enter this function with the path already pointing to 444 * the first item to check. But sometimes, we may enter it with 445 * slot == nritems. 446 * 2. We are searching for normal backref but bytenr of this leaf 447 * matches shared data backref 448 * 3. The leaf owner is not equal to the root we are searching 449 * 450 * For these cases, go to the next leaf before we continue. 451 */ 452 eb = path->nodes[0]; 453 if (path->slots[0] >= btrfs_header_nritems(eb) || 454 is_shared_data_backref(preftrees, eb->start) || 455 ref->root_id != btrfs_header_owner(eb)) { 456 if (time_seq == BTRFS_SEQ_LAST) 457 ret = btrfs_next_leaf(root, path); 458 else 459 ret = btrfs_next_old_leaf(root, path, time_seq); 460 } 461 462 while (!ret && count < ref->count) { 463 eb = path->nodes[0]; 464 slot = path->slots[0]; 465 466 btrfs_item_key_to_cpu(eb, &key, slot); 467 468 if (key.objectid != key_for_search->objectid || 469 key.type != BTRFS_EXTENT_DATA_KEY) 470 break; 471 472 /* 473 * We are searching for normal backref but bytenr of this leaf 474 * matches shared data backref, OR 475 * the leaf owner is not equal to the root we are searching for 476 */ 477 if (slot == 0 && 478 (is_shared_data_backref(preftrees, eb->start) || 479 ref->root_id != btrfs_header_owner(eb))) { 480 if (time_seq == BTRFS_SEQ_LAST) 481 ret = btrfs_next_leaf(root, path); 482 else 483 ret = btrfs_next_old_leaf(root, path, time_seq); 484 continue; 485 } 486 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 487 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 488 data_offset = btrfs_file_extent_offset(eb, fi); 489 490 if (disk_byte == wanted_disk_byte) { 491 eie = NULL; 492 old = NULL; 493 if (ref->key_for_search.offset == key.offset - data_offset) 494 count++; 495 else 496 goto next; 497 if (extent_item_pos) { 498 ret = check_extent_in_eb(&key, eb, fi, 499 *extent_item_pos, 500 &eie, ignore_offset); 501 if (ret < 0) 502 break; 503 } 504 if (ret > 0) 505 goto next; 506 ret = ulist_add_merge_ptr(parents, eb->start, 507 eie, (void **)&old, GFP_NOFS); 508 if (ret < 0) 509 break; 510 if (!ret && extent_item_pos) { 511 while (old->next) 512 old = old->next; 513 old->next = eie; 514 } 515 eie = NULL; 516 } 517next: 518 if (time_seq == BTRFS_SEQ_LAST) 519 ret = btrfs_next_item(root, path); 520 else 521 ret = btrfs_next_old_item(root, path, time_seq); 522 } 523 524 if (ret > 0) 525 ret = 0; 526 else if (ret < 0) 527 free_inode_elem_list(eie); 528 return ret; 529} 530 531/* 532 * resolve an indirect backref in the form (root_id, key, level) 533 * to a logical address 534 */ 535static int resolve_indirect_ref(struct btrfs_fs_info *fs_info, 536 struct btrfs_path *path, u64 time_seq, 537 struct preftrees *preftrees, 538 struct prelim_ref *ref, struct ulist *parents, 539 const u64 *extent_item_pos, bool ignore_offset) 540{ 541 struct btrfs_root *root; 542 struct extent_buffer *eb; 543 int ret = 0; 544 int root_level; 545 int level = ref->level; 546 struct btrfs_key search_key = ref->key_for_search; 547 548 /* 549 * If we're search_commit_root we could possibly be holding locks on 550 * other tree nodes. This happens when qgroups does backref walks when 551 * adding new delayed refs. To deal with this we need to look in cache 552 * for the root, and if we don't find it then we need to search the 553 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage 554 * here. 555 */ 556 if (path->search_commit_root) 557 root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id); 558 else 559 root = btrfs_get_fs_root(fs_info, ref->root_id, false); 560 if (IS_ERR(root)) { 561 ret = PTR_ERR(root); 562 goto out_free; 563 } 564 565 if (!path->search_commit_root && 566 test_bit(BTRFS_ROOT_DELETING, &root->state)) { 567 ret = -ENOENT; 568 goto out; 569 } 570 571 if (btrfs_is_testing(fs_info)) { 572 ret = -ENOENT; 573 goto out; 574 } 575 576 if (path->search_commit_root) 577 root_level = btrfs_header_level(root->commit_root); 578 else if (time_seq == BTRFS_SEQ_LAST) 579 root_level = btrfs_header_level(root->node); 580 else 581 root_level = btrfs_old_root_level(root, time_seq); 582 583 if (root_level + 1 == level) 584 goto out; 585 586 /* 587 * We can often find data backrefs with an offset that is too large 588 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when 589 * subtracting a file's offset with the data offset of its 590 * corresponding extent data item. This can happen for example in the 591 * clone ioctl. 592 * 593 * So if we detect such case we set the search key's offset to zero to 594 * make sure we will find the matching file extent item at 595 * add_all_parents(), otherwise we will miss it because the offset 596 * taken form the backref is much larger then the offset of the file 597 * extent item. This can make us scan a very large number of file 598 * extent items, but at least it will not make us miss any. 599 * 600 * This is an ugly workaround for a behaviour that should have never 601 * existed, but it does and a fix for the clone ioctl would touch a lot 602 * of places, cause backwards incompatibility and would not fix the 603 * problem for extents cloned with older kernels. 604 */ 605 if (search_key.type == BTRFS_EXTENT_DATA_KEY && 606 search_key.offset >= LLONG_MAX) 607 search_key.offset = 0; 608 path->lowest_level = level; 609 if (time_seq == BTRFS_SEQ_LAST) 610 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 611 else 612 ret = btrfs_search_old_slot(root, &search_key, path, time_seq); 613 614 btrfs_debug(fs_info, 615 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 616 ref->root_id, level, ref->count, ret, 617 ref->key_for_search.objectid, ref->key_for_search.type, 618 ref->key_for_search.offset); 619 if (ret < 0) 620 goto out; 621 622 eb = path->nodes[level]; 623 while (!eb) { 624 if (WARN_ON(!level)) { 625 ret = 1; 626 goto out; 627 } 628 level--; 629 eb = path->nodes[level]; 630 } 631 632 ret = add_all_parents(root, path, parents, preftrees, ref, level, 633 time_seq, extent_item_pos, ignore_offset); 634out: 635 btrfs_put_root(root); 636out_free: 637 path->lowest_level = 0; 638 btrfs_release_path(path); 639 return ret; 640} 641 642static struct extent_inode_elem * 643unode_aux_to_inode_list(struct ulist_node *node) 644{ 645 if (!node) 646 return NULL; 647 return (struct extent_inode_elem *)(uintptr_t)node->aux; 648} 649 650/* 651 * We maintain three separate rbtrees: one for direct refs, one for 652 * indirect refs which have a key, and one for indirect refs which do not 653 * have a key. Each tree does merge on insertion. 654 * 655 * Once all of the references are located, we iterate over the tree of 656 * indirect refs with missing keys. An appropriate key is located and 657 * the ref is moved onto the tree for indirect refs. After all missing 658 * keys are thus located, we iterate over the indirect ref tree, resolve 659 * each reference, and then insert the resolved reference onto the 660 * direct tree (merging there too). 661 * 662 * New backrefs (i.e., for parent nodes) are added to the appropriate 663 * rbtree as they are encountered. The new backrefs are subsequently 664 * resolved as above. 665 */ 666static int resolve_indirect_refs(struct btrfs_fs_info *fs_info, 667 struct btrfs_path *path, u64 time_seq, 668 struct preftrees *preftrees, 669 const u64 *extent_item_pos, 670 struct share_check *sc, bool ignore_offset) 671{ 672 int err; 673 int ret = 0; 674 struct ulist *parents; 675 struct ulist_node *node; 676 struct ulist_iterator uiter; 677 struct rb_node *rnode; 678 679 parents = ulist_alloc(GFP_NOFS); 680 if (!parents) 681 return -ENOMEM; 682 683 /* 684 * We could trade memory usage for performance here by iterating 685 * the tree, allocating new refs for each insertion, and then 686 * freeing the entire indirect tree when we're done. In some test 687 * cases, the tree can grow quite large (~200k objects). 688 */ 689 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 690 struct prelim_ref *ref; 691 692 ref = rb_entry(rnode, struct prelim_ref, rbnode); 693 if (WARN(ref->parent, 694 "BUG: direct ref found in indirect tree")) { 695 ret = -EINVAL; 696 goto out; 697 } 698 699 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 700 preftrees->indirect.count--; 701 702 if (ref->count == 0) { 703 free_pref(ref); 704 continue; 705 } 706 707 if (sc && sc->root_objectid && 708 ref->root_id != sc->root_objectid) { 709 free_pref(ref); 710 ret = BACKREF_FOUND_SHARED; 711 goto out; 712 } 713 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees, 714 ref, parents, extent_item_pos, 715 ignore_offset); 716 /* 717 * we can only tolerate ENOENT,otherwise,we should catch error 718 * and return directly. 719 */ 720 if (err == -ENOENT) { 721 prelim_ref_insert(fs_info, &preftrees->direct, ref, 722 NULL); 723 continue; 724 } else if (err) { 725 free_pref(ref); 726 ret = err; 727 goto out; 728 } 729 730 /* we put the first parent into the ref at hand */ 731 ULIST_ITER_INIT(&uiter); 732 node = ulist_next(parents, &uiter); 733 ref->parent = node ? node->val : 0; 734 ref->inode_list = unode_aux_to_inode_list(node); 735 736 /* Add a prelim_ref(s) for any other parent(s). */ 737 while ((node = ulist_next(parents, &uiter))) { 738 struct prelim_ref *new_ref; 739 740 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 741 GFP_NOFS); 742 if (!new_ref) { 743 free_pref(ref); 744 ret = -ENOMEM; 745 goto out; 746 } 747 memcpy(new_ref, ref, sizeof(*ref)); 748 new_ref->parent = node->val; 749 new_ref->inode_list = unode_aux_to_inode_list(node); 750 prelim_ref_insert(fs_info, &preftrees->direct, 751 new_ref, NULL); 752 } 753 754 /* 755 * Now it's a direct ref, put it in the direct tree. We must 756 * do this last because the ref could be merged/freed here. 757 */ 758 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL); 759 760 ulist_reinit(parents); 761 cond_resched(); 762 } 763out: 764 ulist_free(parents); 765 return ret; 766} 767 768/* 769 * read tree blocks and add keys where required. 770 */ 771static int add_missing_keys(struct btrfs_fs_info *fs_info, 772 struct preftrees *preftrees, bool lock) 773{ 774 struct prelim_ref *ref; 775 struct extent_buffer *eb; 776 struct preftree *tree = &preftrees->indirect_missing_keys; 777 struct rb_node *node; 778 779 while ((node = rb_first_cached(&tree->root))) { 780 ref = rb_entry(node, struct prelim_ref, rbnode); 781 rb_erase_cached(node, &tree->root); 782 783 BUG_ON(ref->parent); /* should not be a direct ref */ 784 BUG_ON(ref->key_for_search.type); 785 BUG_ON(!ref->wanted_disk_byte); 786 787 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 788 ref->root_id, 0, ref->level - 1, NULL); 789 if (IS_ERR(eb)) { 790 free_pref(ref); 791 return PTR_ERR(eb); 792 } 793 if (!extent_buffer_uptodate(eb)) { 794 free_pref(ref); 795 free_extent_buffer(eb); 796 return -EIO; 797 } 798 799 if (lock) 800 btrfs_tree_read_lock(eb); 801 if (btrfs_header_level(eb) == 0) 802 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 803 else 804 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 805 if (lock) 806 btrfs_tree_read_unlock(eb); 807 free_extent_buffer(eb); 808 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 809 cond_resched(); 810 } 811 return 0; 812} 813 814/* 815 * add all currently queued delayed refs from this head whose seq nr is 816 * smaller or equal that seq to the list 817 */ 818static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 819 struct btrfs_delayed_ref_head *head, u64 seq, 820 struct preftrees *preftrees, struct share_check *sc) 821{ 822 struct btrfs_delayed_ref_node *node; 823 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 824 struct btrfs_key key; 825 struct btrfs_key tmp_op_key; 826 struct rb_node *n; 827 int count; 828 int ret = 0; 829 830 if (extent_op && extent_op->update_key) 831 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key); 832 833 spin_lock(&head->lock); 834 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 835 node = rb_entry(n, struct btrfs_delayed_ref_node, 836 ref_node); 837 if (node->seq > seq) 838 continue; 839 840 switch (node->action) { 841 case BTRFS_ADD_DELAYED_EXTENT: 842 case BTRFS_UPDATE_DELAYED_HEAD: 843 WARN_ON(1); 844 continue; 845 case BTRFS_ADD_DELAYED_REF: 846 count = node->ref_mod; 847 break; 848 case BTRFS_DROP_DELAYED_REF: 849 count = node->ref_mod * -1; 850 break; 851 default: 852 BUG(); 853 } 854 switch (node->type) { 855 case BTRFS_TREE_BLOCK_REF_KEY: { 856 /* NORMAL INDIRECT METADATA backref */ 857 struct btrfs_delayed_tree_ref *ref; 858 859 ref = btrfs_delayed_node_to_tree_ref(node); 860 ret = add_indirect_ref(fs_info, preftrees, ref->root, 861 &tmp_op_key, ref->level + 1, 862 node->bytenr, count, sc, 863 GFP_ATOMIC); 864 break; 865 } 866 case BTRFS_SHARED_BLOCK_REF_KEY: { 867 /* SHARED DIRECT METADATA backref */ 868 struct btrfs_delayed_tree_ref *ref; 869 870 ref = btrfs_delayed_node_to_tree_ref(node); 871 872 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 873 ref->parent, node->bytenr, count, 874 sc, GFP_ATOMIC); 875 break; 876 } 877 case BTRFS_EXTENT_DATA_REF_KEY: { 878 /* NORMAL INDIRECT DATA backref */ 879 struct btrfs_delayed_data_ref *ref; 880 ref = btrfs_delayed_node_to_data_ref(node); 881 882 key.objectid = ref->objectid; 883 key.type = BTRFS_EXTENT_DATA_KEY; 884 key.offset = ref->offset; 885 886 /* 887 * Found a inum that doesn't match our known inum, we 888 * know it's shared. 889 */ 890 if (sc && sc->inum && ref->objectid != sc->inum) { 891 ret = BACKREF_FOUND_SHARED; 892 goto out; 893 } 894 895 ret = add_indirect_ref(fs_info, preftrees, ref->root, 896 &key, 0, node->bytenr, count, sc, 897 GFP_ATOMIC); 898 break; 899 } 900 case BTRFS_SHARED_DATA_REF_KEY: { 901 /* SHARED DIRECT FULL backref */ 902 struct btrfs_delayed_data_ref *ref; 903 904 ref = btrfs_delayed_node_to_data_ref(node); 905 906 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 907 node->bytenr, count, sc, 908 GFP_ATOMIC); 909 break; 910 } 911 default: 912 WARN_ON(1); 913 } 914 /* 915 * We must ignore BACKREF_FOUND_SHARED until all delayed 916 * refs have been checked. 917 */ 918 if (ret && (ret != BACKREF_FOUND_SHARED)) 919 break; 920 } 921 if (!ret) 922 ret = extent_is_shared(sc); 923out: 924 spin_unlock(&head->lock); 925 return ret; 926} 927 928/* 929 * add all inline backrefs for bytenr to the list 930 * 931 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 932 */ 933static int add_inline_refs(const struct btrfs_fs_info *fs_info, 934 struct btrfs_path *path, u64 bytenr, 935 int *info_level, struct preftrees *preftrees, 936 struct share_check *sc) 937{ 938 int ret = 0; 939 int slot; 940 struct extent_buffer *leaf; 941 struct btrfs_key key; 942 struct btrfs_key found_key; 943 unsigned long ptr; 944 unsigned long end; 945 struct btrfs_extent_item *ei; 946 u64 flags; 947 u64 item_size; 948 949 /* 950 * enumerate all inline refs 951 */ 952 leaf = path->nodes[0]; 953 slot = path->slots[0]; 954 955 item_size = btrfs_item_size(leaf, slot); 956 BUG_ON(item_size < sizeof(*ei)); 957 958 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 959 flags = btrfs_extent_flags(leaf, ei); 960 btrfs_item_key_to_cpu(leaf, &found_key, slot); 961 962 ptr = (unsigned long)(ei + 1); 963 end = (unsigned long)ei + item_size; 964 965 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 966 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 967 struct btrfs_tree_block_info *info; 968 969 info = (struct btrfs_tree_block_info *)ptr; 970 *info_level = btrfs_tree_block_level(leaf, info); 971 ptr += sizeof(struct btrfs_tree_block_info); 972 BUG_ON(ptr > end); 973 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 974 *info_level = found_key.offset; 975 } else { 976 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 977 } 978 979 while (ptr < end) { 980 struct btrfs_extent_inline_ref *iref; 981 u64 offset; 982 int type; 983 984 iref = (struct btrfs_extent_inline_ref *)ptr; 985 type = btrfs_get_extent_inline_ref_type(leaf, iref, 986 BTRFS_REF_TYPE_ANY); 987 if (type == BTRFS_REF_TYPE_INVALID) 988 return -EUCLEAN; 989 990 offset = btrfs_extent_inline_ref_offset(leaf, iref); 991 992 switch (type) { 993 case BTRFS_SHARED_BLOCK_REF_KEY: 994 ret = add_direct_ref(fs_info, preftrees, 995 *info_level + 1, offset, 996 bytenr, 1, NULL, GFP_NOFS); 997 break; 998 case BTRFS_SHARED_DATA_REF_KEY: { 999 struct btrfs_shared_data_ref *sdref; 1000 int count; 1001 1002 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1003 count = btrfs_shared_data_ref_count(leaf, sdref); 1004 1005 ret = add_direct_ref(fs_info, preftrees, 0, offset, 1006 bytenr, count, sc, GFP_NOFS); 1007 break; 1008 } 1009 case BTRFS_TREE_BLOCK_REF_KEY: 1010 ret = add_indirect_ref(fs_info, preftrees, offset, 1011 NULL, *info_level + 1, 1012 bytenr, 1, NULL, GFP_NOFS); 1013 break; 1014 case BTRFS_EXTENT_DATA_REF_KEY: { 1015 struct btrfs_extent_data_ref *dref; 1016 int count; 1017 u64 root; 1018 1019 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1020 count = btrfs_extent_data_ref_count(leaf, dref); 1021 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1022 dref); 1023 key.type = BTRFS_EXTENT_DATA_KEY; 1024 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1025 1026 if (sc && sc->inum && key.objectid != sc->inum) { 1027 ret = BACKREF_FOUND_SHARED; 1028 break; 1029 } 1030 1031 root = btrfs_extent_data_ref_root(leaf, dref); 1032 1033 ret = add_indirect_ref(fs_info, preftrees, root, 1034 &key, 0, bytenr, count, 1035 sc, GFP_NOFS); 1036 break; 1037 } 1038 default: 1039 WARN_ON(1); 1040 } 1041 if (ret) 1042 return ret; 1043 ptr += btrfs_extent_inline_ref_size(type); 1044 } 1045 1046 return 0; 1047} 1048 1049/* 1050 * add all non-inline backrefs for bytenr to the list 1051 * 1052 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1053 */ 1054static int add_keyed_refs(struct btrfs_root *extent_root, 1055 struct btrfs_path *path, u64 bytenr, 1056 int info_level, struct preftrees *preftrees, 1057 struct share_check *sc) 1058{ 1059 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1060 int ret; 1061 int slot; 1062 struct extent_buffer *leaf; 1063 struct btrfs_key key; 1064 1065 while (1) { 1066 ret = btrfs_next_item(extent_root, path); 1067 if (ret < 0) 1068 break; 1069 if (ret) { 1070 ret = 0; 1071 break; 1072 } 1073 1074 slot = path->slots[0]; 1075 leaf = path->nodes[0]; 1076 btrfs_item_key_to_cpu(leaf, &key, slot); 1077 1078 if (key.objectid != bytenr) 1079 break; 1080 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1081 continue; 1082 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1083 break; 1084 1085 switch (key.type) { 1086 case BTRFS_SHARED_BLOCK_REF_KEY: 1087 /* SHARED DIRECT METADATA backref */ 1088 ret = add_direct_ref(fs_info, preftrees, 1089 info_level + 1, key.offset, 1090 bytenr, 1, NULL, GFP_NOFS); 1091 break; 1092 case BTRFS_SHARED_DATA_REF_KEY: { 1093 /* SHARED DIRECT FULL backref */ 1094 struct btrfs_shared_data_ref *sdref; 1095 int count; 1096 1097 sdref = btrfs_item_ptr(leaf, slot, 1098 struct btrfs_shared_data_ref); 1099 count = btrfs_shared_data_ref_count(leaf, sdref); 1100 ret = add_direct_ref(fs_info, preftrees, 0, 1101 key.offset, bytenr, count, 1102 sc, GFP_NOFS); 1103 break; 1104 } 1105 case BTRFS_TREE_BLOCK_REF_KEY: 1106 /* NORMAL INDIRECT METADATA backref */ 1107 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1108 NULL, info_level + 1, bytenr, 1109 1, NULL, GFP_NOFS); 1110 break; 1111 case BTRFS_EXTENT_DATA_REF_KEY: { 1112 /* NORMAL INDIRECT DATA backref */ 1113 struct btrfs_extent_data_ref *dref; 1114 int count; 1115 u64 root; 1116 1117 dref = btrfs_item_ptr(leaf, slot, 1118 struct btrfs_extent_data_ref); 1119 count = btrfs_extent_data_ref_count(leaf, dref); 1120 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1121 dref); 1122 key.type = BTRFS_EXTENT_DATA_KEY; 1123 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1124 1125 if (sc && sc->inum && key.objectid != sc->inum) { 1126 ret = BACKREF_FOUND_SHARED; 1127 break; 1128 } 1129 1130 root = btrfs_extent_data_ref_root(leaf, dref); 1131 ret = add_indirect_ref(fs_info, preftrees, root, 1132 &key, 0, bytenr, count, 1133 sc, GFP_NOFS); 1134 break; 1135 } 1136 default: 1137 WARN_ON(1); 1138 } 1139 if (ret) 1140 return ret; 1141 1142 } 1143 1144 return ret; 1145} 1146 1147/* 1148 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1149 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1150 * indirect refs to their parent bytenr. 1151 * When roots are found, they're added to the roots list 1152 * 1153 * If time_seq is set to BTRFS_SEQ_LAST, it will not search delayed_refs, and 1154 * behave much like trans == NULL case, the difference only lies in it will not 1155 * commit root. 1156 * The special case is for qgroup to search roots in commit_transaction(). 1157 * 1158 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a 1159 * shared extent is detected. 1160 * 1161 * Otherwise this returns 0 for success and <0 for an error. 1162 * 1163 * If ignore_offset is set to false, only extent refs whose offsets match 1164 * extent_item_pos are returned. If true, every extent ref is returned 1165 * and extent_item_pos is ignored. 1166 * 1167 * FIXME some caching might speed things up 1168 */ 1169static int find_parent_nodes(struct btrfs_trans_handle *trans, 1170 struct btrfs_fs_info *fs_info, u64 bytenr, 1171 u64 time_seq, struct ulist *refs, 1172 struct ulist *roots, const u64 *extent_item_pos, 1173 struct share_check *sc, bool ignore_offset) 1174{ 1175 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); 1176 struct btrfs_key key; 1177 struct btrfs_path *path; 1178 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1179 struct btrfs_delayed_ref_head *head; 1180 int info_level = 0; 1181 int ret; 1182 struct prelim_ref *ref; 1183 struct rb_node *node; 1184 struct extent_inode_elem *eie = NULL; 1185 struct preftrees preftrees = { 1186 .direct = PREFTREE_INIT, 1187 .indirect = PREFTREE_INIT, 1188 .indirect_missing_keys = PREFTREE_INIT 1189 }; 1190 1191 key.objectid = bytenr; 1192 key.offset = (u64)-1; 1193 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1194 key.type = BTRFS_METADATA_ITEM_KEY; 1195 else 1196 key.type = BTRFS_EXTENT_ITEM_KEY; 1197 1198 path = btrfs_alloc_path(); 1199 if (!path) 1200 return -ENOMEM; 1201 if (!trans) { 1202 path->search_commit_root = 1; 1203 path->skip_locking = 1; 1204 } 1205 1206 if (time_seq == BTRFS_SEQ_LAST) 1207 path->skip_locking = 1; 1208 1209again: 1210 head = NULL; 1211 1212 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1213 if (ret < 0) 1214 goto out; 1215 if (ret == 0) { 1216 /* This shouldn't happen, indicates a bug or fs corruption. */ 1217 ASSERT(ret != 0); 1218 ret = -EUCLEAN; 1219 goto out; 1220 } 1221 1222 if (trans && likely(trans->type != __TRANS_DUMMY) && 1223 time_seq != BTRFS_SEQ_LAST) { 1224 /* 1225 * We have a specific time_seq we care about and trans which 1226 * means we have the path lock, we need to grab the ref head and 1227 * lock it so we have a consistent view of the refs at the given 1228 * time. 1229 */ 1230 delayed_refs = &trans->transaction->delayed_refs; 1231 spin_lock(&delayed_refs->lock); 1232 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 1233 if (head) { 1234 if (!mutex_trylock(&head->mutex)) { 1235 refcount_inc(&head->refs); 1236 spin_unlock(&delayed_refs->lock); 1237 1238 btrfs_release_path(path); 1239 1240 /* 1241 * Mutex was contended, block until it's 1242 * released and try again 1243 */ 1244 mutex_lock(&head->mutex); 1245 mutex_unlock(&head->mutex); 1246 btrfs_put_delayed_ref_head(head); 1247 goto again; 1248 } 1249 spin_unlock(&delayed_refs->lock); 1250 ret = add_delayed_refs(fs_info, head, time_seq, 1251 &preftrees, sc); 1252 mutex_unlock(&head->mutex); 1253 if (ret) 1254 goto out; 1255 } else { 1256 spin_unlock(&delayed_refs->lock); 1257 } 1258 } 1259 1260 if (path->slots[0]) { 1261 struct extent_buffer *leaf; 1262 int slot; 1263 1264 path->slots[0]--; 1265 leaf = path->nodes[0]; 1266 slot = path->slots[0]; 1267 btrfs_item_key_to_cpu(leaf, &key, slot); 1268 if (key.objectid == bytenr && 1269 (key.type == BTRFS_EXTENT_ITEM_KEY || 1270 key.type == BTRFS_METADATA_ITEM_KEY)) { 1271 ret = add_inline_refs(fs_info, path, bytenr, 1272 &info_level, &preftrees, sc); 1273 if (ret) 1274 goto out; 1275 ret = add_keyed_refs(root, path, bytenr, info_level, 1276 &preftrees, sc); 1277 if (ret) 1278 goto out; 1279 } 1280 } 1281 1282 btrfs_release_path(path); 1283 1284 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0); 1285 if (ret) 1286 goto out; 1287 1288 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1289 1290 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees, 1291 extent_item_pos, sc, ignore_offset); 1292 if (ret) 1293 goto out; 1294 1295 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1296 1297 /* 1298 * This walks the tree of merged and resolved refs. Tree blocks are 1299 * read in as needed. Unique entries are added to the ulist, and 1300 * the list of found roots is updated. 1301 * 1302 * We release the entire tree in one go before returning. 1303 */ 1304 node = rb_first_cached(&preftrees.direct.root); 1305 while (node) { 1306 ref = rb_entry(node, struct prelim_ref, rbnode); 1307 node = rb_next(&ref->rbnode); 1308 /* 1309 * ref->count < 0 can happen here if there are delayed 1310 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1311 * prelim_ref_insert() relies on this when merging 1312 * identical refs to keep the overall count correct. 1313 * prelim_ref_insert() will merge only those refs 1314 * which compare identically. Any refs having 1315 * e.g. different offsets would not be merged, 1316 * and would retain their original ref->count < 0. 1317 */ 1318 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1319 if (sc && sc->root_objectid && 1320 ref->root_id != sc->root_objectid) { 1321 ret = BACKREF_FOUND_SHARED; 1322 goto out; 1323 } 1324 1325 /* no parent == root of tree */ 1326 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1327 if (ret < 0) 1328 goto out; 1329 } 1330 if (ref->count && ref->parent) { 1331 if (extent_item_pos && !ref->inode_list && 1332 ref->level == 0) { 1333 struct extent_buffer *eb; 1334 1335 eb = read_tree_block(fs_info, ref->parent, 0, 1336 0, ref->level, NULL); 1337 if (IS_ERR(eb)) { 1338 ret = PTR_ERR(eb); 1339 goto out; 1340 } 1341 if (!extent_buffer_uptodate(eb)) { 1342 free_extent_buffer(eb); 1343 ret = -EIO; 1344 goto out; 1345 } 1346 1347 if (!path->skip_locking) 1348 btrfs_tree_read_lock(eb); 1349 ret = find_extent_in_eb(eb, bytenr, 1350 *extent_item_pos, &eie, ignore_offset); 1351 if (!path->skip_locking) 1352 btrfs_tree_read_unlock(eb); 1353 free_extent_buffer(eb); 1354 if (ret < 0) 1355 goto out; 1356 ref->inode_list = eie; 1357 } 1358 ret = ulist_add_merge_ptr(refs, ref->parent, 1359 ref->inode_list, 1360 (void **)&eie, GFP_NOFS); 1361 if (ret < 0) 1362 goto out; 1363 if (!ret && extent_item_pos) { 1364 /* 1365 * We've recorded that parent, so we must extend 1366 * its inode list here. 1367 * 1368 * However if there was corruption we may not 1369 * have found an eie, return an error in this 1370 * case. 1371 */ 1372 ASSERT(eie); 1373 if (!eie) { 1374 ret = -EUCLEAN; 1375 goto out; 1376 } 1377 while (eie->next) 1378 eie = eie->next; 1379 eie->next = ref->inode_list; 1380 } 1381 eie = NULL; 1382 } 1383 cond_resched(); 1384 } 1385 1386out: 1387 btrfs_free_path(path); 1388 1389 prelim_release(&preftrees.direct); 1390 prelim_release(&preftrees.indirect); 1391 prelim_release(&preftrees.indirect_missing_keys); 1392 1393 if (ret < 0) 1394 free_inode_elem_list(eie); 1395 return ret; 1396} 1397 1398static void free_leaf_list(struct ulist *blocks) 1399{ 1400 struct ulist_node *node = NULL; 1401 struct extent_inode_elem *eie; 1402 struct ulist_iterator uiter; 1403 1404 ULIST_ITER_INIT(&uiter); 1405 while ((node = ulist_next(blocks, &uiter))) { 1406 if (!node->aux) 1407 continue; 1408 eie = unode_aux_to_inode_list(node); 1409 free_inode_elem_list(eie); 1410 node->aux = 0; 1411 } 1412 1413 ulist_free(blocks); 1414} 1415 1416/* 1417 * Finds all leafs with a reference to the specified combination of bytenr and 1418 * offset. key_list_head will point to a list of corresponding keys (caller must 1419 * free each list element). The leafs will be stored in the leafs ulist, which 1420 * must be freed with ulist_free. 1421 * 1422 * returns 0 on success, <0 on error 1423 */ 1424int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1425 struct btrfs_fs_info *fs_info, u64 bytenr, 1426 u64 time_seq, struct ulist **leafs, 1427 const u64 *extent_item_pos, bool ignore_offset) 1428{ 1429 int ret; 1430 1431 *leafs = ulist_alloc(GFP_NOFS); 1432 if (!*leafs) 1433 return -ENOMEM; 1434 1435 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1436 *leafs, NULL, extent_item_pos, NULL, ignore_offset); 1437 if (ret < 0 && ret != -ENOENT) { 1438 free_leaf_list(*leafs); 1439 return ret; 1440 } 1441 1442 return 0; 1443} 1444 1445/* 1446 * walk all backrefs for a given extent to find all roots that reference this 1447 * extent. Walking a backref means finding all extents that reference this 1448 * extent and in turn walk the backrefs of those, too. Naturally this is a 1449 * recursive process, but here it is implemented in an iterative fashion: We 1450 * find all referencing extents for the extent in question and put them on a 1451 * list. In turn, we find all referencing extents for those, further appending 1452 * to the list. The way we iterate the list allows adding more elements after 1453 * the current while iterating. The process stops when we reach the end of the 1454 * list. Found roots are added to the roots list. 1455 * 1456 * returns 0 on success, < 0 on error. 1457 */ 1458static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans, 1459 struct btrfs_fs_info *fs_info, u64 bytenr, 1460 u64 time_seq, struct ulist **roots, 1461 bool ignore_offset) 1462{ 1463 struct ulist *tmp; 1464 struct ulist_node *node = NULL; 1465 struct ulist_iterator uiter; 1466 int ret; 1467 1468 tmp = ulist_alloc(GFP_NOFS); 1469 if (!tmp) 1470 return -ENOMEM; 1471 *roots = ulist_alloc(GFP_NOFS); 1472 if (!*roots) { 1473 ulist_free(tmp); 1474 return -ENOMEM; 1475 } 1476 1477 ULIST_ITER_INIT(&uiter); 1478 while (1) { 1479 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1480 tmp, *roots, NULL, NULL, ignore_offset); 1481 if (ret < 0 && ret != -ENOENT) { 1482 ulist_free(tmp); 1483 ulist_free(*roots); 1484 *roots = NULL; 1485 return ret; 1486 } 1487 node = ulist_next(tmp, &uiter); 1488 if (!node) 1489 break; 1490 bytenr = node->val; 1491 cond_resched(); 1492 } 1493 1494 ulist_free(tmp); 1495 return 0; 1496} 1497 1498int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1499 struct btrfs_fs_info *fs_info, u64 bytenr, 1500 u64 time_seq, struct ulist **roots, 1501 bool skip_commit_root_sem) 1502{ 1503 int ret; 1504 1505 if (!trans && !skip_commit_root_sem) 1506 down_read(&fs_info->commit_root_sem); 1507 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr, 1508 time_seq, roots, false); 1509 if (!trans && !skip_commit_root_sem) 1510 up_read(&fs_info->commit_root_sem); 1511 return ret; 1512} 1513 1514/** 1515 * Check if an extent is shared or not 1516 * 1517 * @root: root inode belongs to 1518 * @inum: inode number of the inode whose extent we are checking 1519 * @bytenr: logical bytenr of the extent we are checking 1520 * @roots: list of roots this extent is shared among 1521 * @tmp: temporary list used for iteration 1522 * 1523 * btrfs_check_shared uses the backref walking code but will short 1524 * circuit as soon as it finds a root or inode that doesn't match the 1525 * one passed in. This provides a significant performance benefit for 1526 * callers (such as fiemap) which want to know whether the extent is 1527 * shared but do not need a ref count. 1528 * 1529 * This attempts to attach to the running transaction in order to account for 1530 * delayed refs, but continues on even when no running transaction exists. 1531 * 1532 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1533 */ 1534int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr, 1535 struct ulist *roots, struct ulist *tmp) 1536{ 1537 struct btrfs_fs_info *fs_info = root->fs_info; 1538 struct btrfs_trans_handle *trans; 1539 struct ulist_iterator uiter; 1540 struct ulist_node *node; 1541 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem); 1542 int ret = 0; 1543 struct share_check shared = { 1544 .root_objectid = root->root_key.objectid, 1545 .inum = inum, 1546 .share_count = 0, 1547 }; 1548 1549 ulist_init(roots); 1550 ulist_init(tmp); 1551 1552 trans = btrfs_join_transaction_nostart(root); 1553 if (IS_ERR(trans)) { 1554 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { 1555 ret = PTR_ERR(trans); 1556 goto out; 1557 } 1558 trans = NULL; 1559 down_read(&fs_info->commit_root_sem); 1560 } else { 1561 btrfs_get_tree_mod_seq(fs_info, &elem); 1562 } 1563 1564 ULIST_ITER_INIT(&uiter); 1565 while (1) { 1566 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1567 roots, NULL, &shared, false); 1568 if (ret == BACKREF_FOUND_SHARED) { 1569 /* this is the only condition under which we return 1 */ 1570 ret = 1; 1571 break; 1572 } 1573 if (ret < 0 && ret != -ENOENT) 1574 break; 1575 ret = 0; 1576 node = ulist_next(tmp, &uiter); 1577 if (!node) 1578 break; 1579 bytenr = node->val; 1580 shared.share_count = 0; 1581 cond_resched(); 1582 } 1583 1584 if (trans) { 1585 btrfs_put_tree_mod_seq(fs_info, &elem); 1586 btrfs_end_transaction(trans); 1587 } else { 1588 up_read(&fs_info->commit_root_sem); 1589 } 1590out: 1591 ulist_release(roots); 1592 ulist_release(tmp); 1593 return ret; 1594} 1595 1596int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1597 u64 start_off, struct btrfs_path *path, 1598 struct btrfs_inode_extref **ret_extref, 1599 u64 *found_off) 1600{ 1601 int ret, slot; 1602 struct btrfs_key key; 1603 struct btrfs_key found_key; 1604 struct btrfs_inode_extref *extref; 1605 const struct extent_buffer *leaf; 1606 unsigned long ptr; 1607 1608 key.objectid = inode_objectid; 1609 key.type = BTRFS_INODE_EXTREF_KEY; 1610 key.offset = start_off; 1611 1612 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1613 if (ret < 0) 1614 return ret; 1615 1616 while (1) { 1617 leaf = path->nodes[0]; 1618 slot = path->slots[0]; 1619 if (slot >= btrfs_header_nritems(leaf)) { 1620 /* 1621 * If the item at offset is not found, 1622 * btrfs_search_slot will point us to the slot 1623 * where it should be inserted. In our case 1624 * that will be the slot directly before the 1625 * next INODE_REF_KEY_V2 item. In the case 1626 * that we're pointing to the last slot in a 1627 * leaf, we must move one leaf over. 1628 */ 1629 ret = btrfs_next_leaf(root, path); 1630 if (ret) { 1631 if (ret >= 1) 1632 ret = -ENOENT; 1633 break; 1634 } 1635 continue; 1636 } 1637 1638 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1639 1640 /* 1641 * Check that we're still looking at an extended ref key for 1642 * this particular objectid. If we have different 1643 * objectid or type then there are no more to be found 1644 * in the tree and we can exit. 1645 */ 1646 ret = -ENOENT; 1647 if (found_key.objectid != inode_objectid) 1648 break; 1649 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1650 break; 1651 1652 ret = 0; 1653 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1654 extref = (struct btrfs_inode_extref *)ptr; 1655 *ret_extref = extref; 1656 if (found_off) 1657 *found_off = found_key.offset; 1658 break; 1659 } 1660 1661 return ret; 1662} 1663 1664/* 1665 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1666 * Elements of the path are separated by '/' and the path is guaranteed to be 1667 * 0-terminated. the path is only given within the current file system. 1668 * Therefore, it never starts with a '/'. the caller is responsible to provide 1669 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1670 * the start point of the resulting string is returned. this pointer is within 1671 * dest, normally. 1672 * in case the path buffer would overflow, the pointer is decremented further 1673 * as if output was written to the buffer, though no more output is actually 1674 * generated. that way, the caller can determine how much space would be 1675 * required for the path to fit into the buffer. in that case, the returned 1676 * value will be smaller than dest. callers must check this! 1677 */ 1678char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1679 u32 name_len, unsigned long name_off, 1680 struct extent_buffer *eb_in, u64 parent, 1681 char *dest, u32 size) 1682{ 1683 int slot; 1684 u64 next_inum; 1685 int ret; 1686 s64 bytes_left = ((s64)size) - 1; 1687 struct extent_buffer *eb = eb_in; 1688 struct btrfs_key found_key; 1689 struct btrfs_inode_ref *iref; 1690 1691 if (bytes_left >= 0) 1692 dest[bytes_left] = '\0'; 1693 1694 while (1) { 1695 bytes_left -= name_len; 1696 if (bytes_left >= 0) 1697 read_extent_buffer(eb, dest + bytes_left, 1698 name_off, name_len); 1699 if (eb != eb_in) { 1700 if (!path->skip_locking) 1701 btrfs_tree_read_unlock(eb); 1702 free_extent_buffer(eb); 1703 } 1704 ret = btrfs_find_item(fs_root, path, parent, 0, 1705 BTRFS_INODE_REF_KEY, &found_key); 1706 if (ret > 0) 1707 ret = -ENOENT; 1708 if (ret) 1709 break; 1710 1711 next_inum = found_key.offset; 1712 1713 /* regular exit ahead */ 1714 if (parent == next_inum) 1715 break; 1716 1717 slot = path->slots[0]; 1718 eb = path->nodes[0]; 1719 /* make sure we can use eb after releasing the path */ 1720 if (eb != eb_in) { 1721 path->nodes[0] = NULL; 1722 path->locks[0] = 0; 1723 } 1724 btrfs_release_path(path); 1725 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1726 1727 name_len = btrfs_inode_ref_name_len(eb, iref); 1728 name_off = (unsigned long)(iref + 1); 1729 1730 parent = next_inum; 1731 --bytes_left; 1732 if (bytes_left >= 0) 1733 dest[bytes_left] = '/'; 1734 } 1735 1736 btrfs_release_path(path); 1737 1738 if (ret) 1739 return ERR_PTR(ret); 1740 1741 return dest + bytes_left; 1742} 1743 1744/* 1745 * this makes the path point to (logical EXTENT_ITEM *) 1746 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1747 * tree blocks and <0 on error. 1748 */ 1749int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1750 struct btrfs_path *path, struct btrfs_key *found_key, 1751 u64 *flags_ret) 1752{ 1753 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical); 1754 int ret; 1755 u64 flags; 1756 u64 size = 0; 1757 u32 item_size; 1758 const struct extent_buffer *eb; 1759 struct btrfs_extent_item *ei; 1760 struct btrfs_key key; 1761 1762 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1763 key.type = BTRFS_METADATA_ITEM_KEY; 1764 else 1765 key.type = BTRFS_EXTENT_ITEM_KEY; 1766 key.objectid = logical; 1767 key.offset = (u64)-1; 1768 1769 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 1770 if (ret < 0) 1771 return ret; 1772 1773 ret = btrfs_previous_extent_item(extent_root, path, 0); 1774 if (ret) { 1775 if (ret > 0) 1776 ret = -ENOENT; 1777 return ret; 1778 } 1779 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1780 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1781 size = fs_info->nodesize; 1782 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1783 size = found_key->offset; 1784 1785 if (found_key->objectid > logical || 1786 found_key->objectid + size <= logical) { 1787 btrfs_debug(fs_info, 1788 "logical %llu is not within any extent", logical); 1789 return -ENOENT; 1790 } 1791 1792 eb = path->nodes[0]; 1793 item_size = btrfs_item_size(eb, path->slots[0]); 1794 BUG_ON(item_size < sizeof(*ei)); 1795 1796 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1797 flags = btrfs_extent_flags(eb, ei); 1798 1799 btrfs_debug(fs_info, 1800 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 1801 logical, logical - found_key->objectid, found_key->objectid, 1802 found_key->offset, flags, item_size); 1803 1804 WARN_ON(!flags_ret); 1805 if (flags_ret) { 1806 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1807 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1808 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1809 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1810 else 1811 BUG(); 1812 return 0; 1813 } 1814 1815 return -EIO; 1816} 1817 1818/* 1819 * helper function to iterate extent inline refs. ptr must point to a 0 value 1820 * for the first call and may be modified. it is used to track state. 1821 * if more refs exist, 0 is returned and the next call to 1822 * get_extent_inline_ref must pass the modified ptr parameter to get the 1823 * next ref. after the last ref was processed, 1 is returned. 1824 * returns <0 on error 1825 */ 1826static int get_extent_inline_ref(unsigned long *ptr, 1827 const struct extent_buffer *eb, 1828 const struct btrfs_key *key, 1829 const struct btrfs_extent_item *ei, 1830 u32 item_size, 1831 struct btrfs_extent_inline_ref **out_eiref, 1832 int *out_type) 1833{ 1834 unsigned long end; 1835 u64 flags; 1836 struct btrfs_tree_block_info *info; 1837 1838 if (!*ptr) { 1839 /* first call */ 1840 flags = btrfs_extent_flags(eb, ei); 1841 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1842 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1843 /* a skinny metadata extent */ 1844 *out_eiref = 1845 (struct btrfs_extent_inline_ref *)(ei + 1); 1846 } else { 1847 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1848 info = (struct btrfs_tree_block_info *)(ei + 1); 1849 *out_eiref = 1850 (struct btrfs_extent_inline_ref *)(info + 1); 1851 } 1852 } else { 1853 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1854 } 1855 *ptr = (unsigned long)*out_eiref; 1856 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1857 return -ENOENT; 1858 } 1859 1860 end = (unsigned long)ei + item_size; 1861 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1862 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 1863 BTRFS_REF_TYPE_ANY); 1864 if (*out_type == BTRFS_REF_TYPE_INVALID) 1865 return -EUCLEAN; 1866 1867 *ptr += btrfs_extent_inline_ref_size(*out_type); 1868 WARN_ON(*ptr > end); 1869 if (*ptr == end) 1870 return 1; /* last */ 1871 1872 return 0; 1873} 1874 1875/* 1876 * reads the tree block backref for an extent. tree level and root are returned 1877 * through out_level and out_root. ptr must point to a 0 value for the first 1878 * call and may be modified (see get_extent_inline_ref comment). 1879 * returns 0 if data was provided, 1 if there was no more data to provide or 1880 * <0 on error. 1881 */ 1882int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1883 struct btrfs_key *key, struct btrfs_extent_item *ei, 1884 u32 item_size, u64 *out_root, u8 *out_level) 1885{ 1886 int ret; 1887 int type; 1888 struct btrfs_extent_inline_ref *eiref; 1889 1890 if (*ptr == (unsigned long)-1) 1891 return 1; 1892 1893 while (1) { 1894 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 1895 &eiref, &type); 1896 if (ret < 0) 1897 return ret; 1898 1899 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1900 type == BTRFS_SHARED_BLOCK_REF_KEY) 1901 break; 1902 1903 if (ret == 1) 1904 return 1; 1905 } 1906 1907 /* we can treat both ref types equally here */ 1908 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1909 1910 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1911 struct btrfs_tree_block_info *info; 1912 1913 info = (struct btrfs_tree_block_info *)(ei + 1); 1914 *out_level = btrfs_tree_block_level(eb, info); 1915 } else { 1916 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1917 *out_level = (u8)key->offset; 1918 } 1919 1920 if (ret == 1) 1921 *ptr = (unsigned long)-1; 1922 1923 return 0; 1924} 1925 1926static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 1927 struct extent_inode_elem *inode_list, 1928 u64 root, u64 extent_item_objectid, 1929 iterate_extent_inodes_t *iterate, void *ctx) 1930{ 1931 struct extent_inode_elem *eie; 1932 int ret = 0; 1933 1934 for (eie = inode_list; eie; eie = eie->next) { 1935 btrfs_debug(fs_info, 1936 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 1937 extent_item_objectid, eie->inum, 1938 eie->offset, root); 1939 ret = iterate(eie->inum, eie->offset, root, ctx); 1940 if (ret) { 1941 btrfs_debug(fs_info, 1942 "stopping iteration for %llu due to ret=%d", 1943 extent_item_objectid, ret); 1944 break; 1945 } 1946 } 1947 1948 return ret; 1949} 1950 1951/* 1952 * calls iterate() for every inode that references the extent identified by 1953 * the given parameters. 1954 * when the iterator function returns a non-zero value, iteration stops. 1955 */ 1956int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1957 u64 extent_item_objectid, u64 extent_item_pos, 1958 int search_commit_root, 1959 iterate_extent_inodes_t *iterate, void *ctx, 1960 bool ignore_offset) 1961{ 1962 int ret; 1963 struct btrfs_trans_handle *trans = NULL; 1964 struct ulist *refs = NULL; 1965 struct ulist *roots = NULL; 1966 struct ulist_node *ref_node = NULL; 1967 struct ulist_node *root_node = NULL; 1968 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem); 1969 struct ulist_iterator ref_uiter; 1970 struct ulist_iterator root_uiter; 1971 1972 btrfs_debug(fs_info, "resolving all inodes for extent %llu", 1973 extent_item_objectid); 1974 1975 if (!search_commit_root) { 1976 trans = btrfs_attach_transaction(fs_info->tree_root); 1977 if (IS_ERR(trans)) { 1978 if (PTR_ERR(trans) != -ENOENT && 1979 PTR_ERR(trans) != -EROFS) 1980 return PTR_ERR(trans); 1981 trans = NULL; 1982 } 1983 } 1984 1985 if (trans) 1986 btrfs_get_tree_mod_seq(fs_info, &seq_elem); 1987 else 1988 down_read(&fs_info->commit_root_sem); 1989 1990 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1991 seq_elem.seq, &refs, 1992 &extent_item_pos, ignore_offset); 1993 if (ret) 1994 goto out; 1995 1996 ULIST_ITER_INIT(&ref_uiter); 1997 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1998 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val, 1999 seq_elem.seq, &roots, 2000 ignore_offset); 2001 if (ret) 2002 break; 2003 ULIST_ITER_INIT(&root_uiter); 2004 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 2005 btrfs_debug(fs_info, 2006 "root %llu references leaf %llu, data list %#llx", 2007 root_node->val, ref_node->val, 2008 ref_node->aux); 2009 ret = iterate_leaf_refs(fs_info, 2010 (struct extent_inode_elem *) 2011 (uintptr_t)ref_node->aux, 2012 root_node->val, 2013 extent_item_objectid, 2014 iterate, ctx); 2015 } 2016 ulist_free(roots); 2017 } 2018 2019 free_leaf_list(refs); 2020out: 2021 if (trans) { 2022 btrfs_put_tree_mod_seq(fs_info, &seq_elem); 2023 btrfs_end_transaction(trans); 2024 } else { 2025 up_read(&fs_info->commit_root_sem); 2026 } 2027 2028 return ret; 2029} 2030 2031int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2032 struct btrfs_path *path, 2033 iterate_extent_inodes_t *iterate, void *ctx, 2034 bool ignore_offset) 2035{ 2036 int ret; 2037 u64 extent_item_pos; 2038 u64 flags = 0; 2039 struct btrfs_key found_key; 2040 int search_commit_root = path->search_commit_root; 2041 2042 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2043 btrfs_release_path(path); 2044 if (ret < 0) 2045 return ret; 2046 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2047 return -EINVAL; 2048 2049 extent_item_pos = logical - found_key.objectid; 2050 ret = iterate_extent_inodes(fs_info, found_key.objectid, 2051 extent_item_pos, search_commit_root, 2052 iterate, ctx, ignore_offset); 2053 2054 return ret; 2055} 2056 2057typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 2058 struct extent_buffer *eb, void *ctx); 2059 2060static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 2061 struct btrfs_path *path, 2062 iterate_irefs_t *iterate, void *ctx) 2063{ 2064 int ret = 0; 2065 int slot; 2066 u32 cur; 2067 u32 len; 2068 u32 name_len; 2069 u64 parent = 0; 2070 int found = 0; 2071 struct extent_buffer *eb; 2072 struct btrfs_inode_ref *iref; 2073 struct btrfs_key found_key; 2074 2075 while (!ret) { 2076 ret = btrfs_find_item(fs_root, path, inum, 2077 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2078 &found_key); 2079 2080 if (ret < 0) 2081 break; 2082 if (ret) { 2083 ret = found ? 0 : -ENOENT; 2084 break; 2085 } 2086 ++found; 2087 2088 parent = found_key.offset; 2089 slot = path->slots[0]; 2090 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2091 if (!eb) { 2092 ret = -ENOMEM; 2093 break; 2094 } 2095 btrfs_release_path(path); 2096 2097 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2098 2099 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) { 2100 name_len = btrfs_inode_ref_name_len(eb, iref); 2101 /* path must be released before calling iterate()! */ 2102 btrfs_debug(fs_root->fs_info, 2103 "following ref at offset %u for inode %llu in tree %llu", 2104 cur, found_key.objectid, 2105 fs_root->root_key.objectid); 2106 ret = iterate(parent, name_len, 2107 (unsigned long)(iref + 1), eb, ctx); 2108 if (ret) 2109 break; 2110 len = sizeof(*iref) + name_len; 2111 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2112 } 2113 free_extent_buffer(eb); 2114 } 2115 2116 btrfs_release_path(path); 2117 2118 return ret; 2119} 2120 2121static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 2122 struct btrfs_path *path, 2123 iterate_irefs_t *iterate, void *ctx) 2124{ 2125 int ret; 2126 int slot; 2127 u64 offset = 0; 2128 u64 parent; 2129 int found = 0; 2130 struct extent_buffer *eb; 2131 struct btrfs_inode_extref *extref; 2132 u32 item_size; 2133 u32 cur_offset; 2134 unsigned long ptr; 2135 2136 while (1) { 2137 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2138 &offset); 2139 if (ret < 0) 2140 break; 2141 if (ret) { 2142 ret = found ? 0 : -ENOENT; 2143 break; 2144 } 2145 ++found; 2146 2147 slot = path->slots[0]; 2148 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2149 if (!eb) { 2150 ret = -ENOMEM; 2151 break; 2152 } 2153 btrfs_release_path(path); 2154 2155 item_size = btrfs_item_size(eb, slot); 2156 ptr = btrfs_item_ptr_offset(eb, slot); 2157 cur_offset = 0; 2158 2159 while (cur_offset < item_size) { 2160 u32 name_len; 2161 2162 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2163 parent = btrfs_inode_extref_parent(eb, extref); 2164 name_len = btrfs_inode_extref_name_len(eb, extref); 2165 ret = iterate(parent, name_len, 2166 (unsigned long)&extref->name, eb, ctx); 2167 if (ret) 2168 break; 2169 2170 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2171 cur_offset += sizeof(*extref); 2172 } 2173 free_extent_buffer(eb); 2174 2175 offset++; 2176 } 2177 2178 btrfs_release_path(path); 2179 2180 return ret; 2181} 2182 2183static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 2184 struct btrfs_path *path, iterate_irefs_t *iterate, 2185 void *ctx) 2186{ 2187 int ret; 2188 int found_refs = 0; 2189 2190 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 2191 if (!ret) 2192 ++found_refs; 2193 else if (ret != -ENOENT) 2194 return ret; 2195 2196 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 2197 if (ret == -ENOENT && found_refs) 2198 return 0; 2199 2200 return ret; 2201} 2202 2203/* 2204 * returns 0 if the path could be dumped (probably truncated) 2205 * returns <0 in case of an error 2206 */ 2207static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2208 struct extent_buffer *eb, void *ctx) 2209{ 2210 struct inode_fs_paths *ipath = ctx; 2211 char *fspath; 2212 char *fspath_min; 2213 int i = ipath->fspath->elem_cnt; 2214 const int s_ptr = sizeof(char *); 2215 u32 bytes_left; 2216 2217 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2218 ipath->fspath->bytes_left - s_ptr : 0; 2219 2220 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2221 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2222 name_off, eb, inum, fspath_min, bytes_left); 2223 if (IS_ERR(fspath)) 2224 return PTR_ERR(fspath); 2225 2226 if (fspath > fspath_min) { 2227 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2228 ++ipath->fspath->elem_cnt; 2229 ipath->fspath->bytes_left = fspath - fspath_min; 2230 } else { 2231 ++ipath->fspath->elem_missed; 2232 ipath->fspath->bytes_missing += fspath_min - fspath; 2233 ipath->fspath->bytes_left = 0; 2234 } 2235 2236 return 0; 2237} 2238 2239/* 2240 * this dumps all file system paths to the inode into the ipath struct, provided 2241 * is has been created large enough. each path is zero-terminated and accessed 2242 * from ipath->fspath->val[i]. 2243 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2244 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2245 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2246 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2247 * have been needed to return all paths. 2248 */ 2249int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2250{ 2251 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 2252 inode_to_path, ipath); 2253} 2254 2255struct btrfs_data_container *init_data_container(u32 total_bytes) 2256{ 2257 struct btrfs_data_container *data; 2258 size_t alloc_bytes; 2259 2260 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2261 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2262 if (!data) 2263 return ERR_PTR(-ENOMEM); 2264 2265 if (total_bytes >= sizeof(*data)) { 2266 data->bytes_left = total_bytes - sizeof(*data); 2267 data->bytes_missing = 0; 2268 } else { 2269 data->bytes_missing = sizeof(*data) - total_bytes; 2270 data->bytes_left = 0; 2271 } 2272 2273 data->elem_cnt = 0; 2274 data->elem_missed = 0; 2275 2276 return data; 2277} 2278 2279/* 2280 * allocates space to return multiple file system paths for an inode. 2281 * total_bytes to allocate are passed, note that space usable for actual path 2282 * information will be total_bytes - sizeof(struct inode_fs_paths). 2283 * the returned pointer must be freed with free_ipath() in the end. 2284 */ 2285struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2286 struct btrfs_path *path) 2287{ 2288 struct inode_fs_paths *ifp; 2289 struct btrfs_data_container *fspath; 2290 2291 fspath = init_data_container(total_bytes); 2292 if (IS_ERR(fspath)) 2293 return ERR_CAST(fspath); 2294 2295 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2296 if (!ifp) { 2297 kvfree(fspath); 2298 return ERR_PTR(-ENOMEM); 2299 } 2300 2301 ifp->btrfs_path = path; 2302 ifp->fspath = fspath; 2303 ifp->fs_root = fs_root; 2304 2305 return ifp; 2306} 2307 2308void free_ipath(struct inode_fs_paths *ipath) 2309{ 2310 if (!ipath) 2311 return; 2312 kvfree(ipath->fspath); 2313 kfree(ipath); 2314} 2315 2316struct btrfs_backref_iter *btrfs_backref_iter_alloc( 2317 struct btrfs_fs_info *fs_info, gfp_t gfp_flag) 2318{ 2319 struct btrfs_backref_iter *ret; 2320 2321 ret = kzalloc(sizeof(*ret), gfp_flag); 2322 if (!ret) 2323 return NULL; 2324 2325 ret->path = btrfs_alloc_path(); 2326 if (!ret->path) { 2327 kfree(ret); 2328 return NULL; 2329 } 2330 2331 /* Current backref iterator only supports iteration in commit root */ 2332 ret->path->search_commit_root = 1; 2333 ret->path->skip_locking = 1; 2334 ret->fs_info = fs_info; 2335 2336 return ret; 2337} 2338 2339int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) 2340{ 2341 struct btrfs_fs_info *fs_info = iter->fs_info; 2342 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2343 struct btrfs_path *path = iter->path; 2344 struct btrfs_extent_item *ei; 2345 struct btrfs_key key; 2346 int ret; 2347 2348 key.objectid = bytenr; 2349 key.type = BTRFS_METADATA_ITEM_KEY; 2350 key.offset = (u64)-1; 2351 iter->bytenr = bytenr; 2352 2353 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2354 if (ret < 0) 2355 return ret; 2356 if (ret == 0) { 2357 ret = -EUCLEAN; 2358 goto release; 2359 } 2360 if (path->slots[0] == 0) { 2361 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2362 ret = -EUCLEAN; 2363 goto release; 2364 } 2365 path->slots[0]--; 2366 2367 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2368 if ((key.type != BTRFS_EXTENT_ITEM_KEY && 2369 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { 2370 ret = -ENOENT; 2371 goto release; 2372 } 2373 memcpy(&iter->cur_key, &key, sizeof(key)); 2374 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2375 path->slots[0]); 2376 iter->end_ptr = (u32)(iter->item_ptr + 2377 btrfs_item_size(path->nodes[0], path->slots[0])); 2378 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 2379 struct btrfs_extent_item); 2380 2381 /* 2382 * Only support iteration on tree backref yet. 2383 * 2384 * This is an extra precaution for non skinny-metadata, where 2385 * EXTENT_ITEM is also used for tree blocks, that we can only use 2386 * extent flags to determine if it's a tree block. 2387 */ 2388 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { 2389 ret = -ENOTSUPP; 2390 goto release; 2391 } 2392 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); 2393 2394 /* If there is no inline backref, go search for keyed backref */ 2395 if (iter->cur_ptr >= iter->end_ptr) { 2396 ret = btrfs_next_item(extent_root, path); 2397 2398 /* No inline nor keyed ref */ 2399 if (ret > 0) { 2400 ret = -ENOENT; 2401 goto release; 2402 } 2403 if (ret < 0) 2404 goto release; 2405 2406 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, 2407 path->slots[0]); 2408 if (iter->cur_key.objectid != bytenr || 2409 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && 2410 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { 2411 ret = -ENOENT; 2412 goto release; 2413 } 2414 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2415 path->slots[0]); 2416 iter->item_ptr = iter->cur_ptr; 2417 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size( 2418 path->nodes[0], path->slots[0])); 2419 } 2420 2421 return 0; 2422release: 2423 btrfs_backref_iter_release(iter); 2424 return ret; 2425} 2426 2427/* 2428 * Go to the next backref item of current bytenr, can be either inlined or 2429 * keyed. 2430 * 2431 * Caller needs to check whether it's inline ref or not by iter->cur_key. 2432 * 2433 * Return 0 if we get next backref without problem. 2434 * Return >0 if there is no extra backref for this bytenr. 2435 * Return <0 if there is something wrong happened. 2436 */ 2437int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) 2438{ 2439 struct extent_buffer *eb = btrfs_backref_get_eb(iter); 2440 struct btrfs_root *extent_root; 2441 struct btrfs_path *path = iter->path; 2442 struct btrfs_extent_inline_ref *iref; 2443 int ret; 2444 u32 size; 2445 2446 if (btrfs_backref_iter_is_inline_ref(iter)) { 2447 /* We're still inside the inline refs */ 2448 ASSERT(iter->cur_ptr < iter->end_ptr); 2449 2450 if (btrfs_backref_has_tree_block_info(iter)) { 2451 /* First tree block info */ 2452 size = sizeof(struct btrfs_tree_block_info); 2453 } else { 2454 /* Use inline ref type to determine the size */ 2455 int type; 2456 2457 iref = (struct btrfs_extent_inline_ref *) 2458 ((unsigned long)iter->cur_ptr); 2459 type = btrfs_extent_inline_ref_type(eb, iref); 2460 2461 size = btrfs_extent_inline_ref_size(type); 2462 } 2463 iter->cur_ptr += size; 2464 if (iter->cur_ptr < iter->end_ptr) 2465 return 0; 2466 2467 /* All inline items iterated, fall through */ 2468 } 2469 2470 /* We're at keyed items, there is no inline item, go to the next one */ 2471 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr); 2472 ret = btrfs_next_item(extent_root, iter->path); 2473 if (ret) 2474 return ret; 2475 2476 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); 2477 if (iter->cur_key.objectid != iter->bytenr || 2478 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && 2479 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) 2480 return 1; 2481 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2482 path->slots[0]); 2483 iter->cur_ptr = iter->item_ptr; 2484 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0], 2485 path->slots[0]); 2486 return 0; 2487} 2488 2489void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, 2490 struct btrfs_backref_cache *cache, int is_reloc) 2491{ 2492 int i; 2493 2494 cache->rb_root = RB_ROOT; 2495 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2496 INIT_LIST_HEAD(&cache->pending[i]); 2497 INIT_LIST_HEAD(&cache->changed); 2498 INIT_LIST_HEAD(&cache->detached); 2499 INIT_LIST_HEAD(&cache->leaves); 2500 INIT_LIST_HEAD(&cache->pending_edge); 2501 INIT_LIST_HEAD(&cache->useless_node); 2502 cache->fs_info = fs_info; 2503 cache->is_reloc = is_reloc; 2504} 2505 2506struct btrfs_backref_node *btrfs_backref_alloc_node( 2507 struct btrfs_backref_cache *cache, u64 bytenr, int level) 2508{ 2509 struct btrfs_backref_node *node; 2510 2511 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); 2512 node = kzalloc(sizeof(*node), GFP_NOFS); 2513 if (!node) 2514 return node; 2515 2516 INIT_LIST_HEAD(&node->list); 2517 INIT_LIST_HEAD(&node->upper); 2518 INIT_LIST_HEAD(&node->lower); 2519 RB_CLEAR_NODE(&node->rb_node); 2520 cache->nr_nodes++; 2521 node->level = level; 2522 node->bytenr = bytenr; 2523 2524 return node; 2525} 2526 2527struct btrfs_backref_edge *btrfs_backref_alloc_edge( 2528 struct btrfs_backref_cache *cache) 2529{ 2530 struct btrfs_backref_edge *edge; 2531 2532 edge = kzalloc(sizeof(*edge), GFP_NOFS); 2533 if (edge) 2534 cache->nr_edges++; 2535 return edge; 2536} 2537 2538/* 2539 * Drop the backref node from cache, also cleaning up all its 2540 * upper edges and any uncached nodes in the path. 2541 * 2542 * This cleanup happens bottom up, thus the node should either 2543 * be the lowest node in the cache or a detached node. 2544 */ 2545void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, 2546 struct btrfs_backref_node *node) 2547{ 2548 struct btrfs_backref_node *upper; 2549 struct btrfs_backref_edge *edge; 2550 2551 if (!node) 2552 return; 2553 2554 BUG_ON(!node->lowest && !node->detached); 2555 while (!list_empty(&node->upper)) { 2556 edge = list_entry(node->upper.next, struct btrfs_backref_edge, 2557 list[LOWER]); 2558 upper = edge->node[UPPER]; 2559 list_del(&edge->list[LOWER]); 2560 list_del(&edge->list[UPPER]); 2561 btrfs_backref_free_edge(cache, edge); 2562 2563 /* 2564 * Add the node to leaf node list if no other child block 2565 * cached. 2566 */ 2567 if (list_empty(&upper->lower)) { 2568 list_add_tail(&upper->lower, &cache->leaves); 2569 upper->lowest = 1; 2570 } 2571 } 2572 2573 btrfs_backref_drop_node(cache, node); 2574} 2575 2576/* 2577 * Release all nodes/edges from current cache 2578 */ 2579void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) 2580{ 2581 struct btrfs_backref_node *node; 2582 int i; 2583 2584 while (!list_empty(&cache->detached)) { 2585 node = list_entry(cache->detached.next, 2586 struct btrfs_backref_node, list); 2587 btrfs_backref_cleanup_node(cache, node); 2588 } 2589 2590 while (!list_empty(&cache->leaves)) { 2591 node = list_entry(cache->leaves.next, 2592 struct btrfs_backref_node, lower); 2593 btrfs_backref_cleanup_node(cache, node); 2594 } 2595 2596 cache->last_trans = 0; 2597 2598 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2599 ASSERT(list_empty(&cache->pending[i])); 2600 ASSERT(list_empty(&cache->pending_edge)); 2601 ASSERT(list_empty(&cache->useless_node)); 2602 ASSERT(list_empty(&cache->changed)); 2603 ASSERT(list_empty(&cache->detached)); 2604 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 2605 ASSERT(!cache->nr_nodes); 2606 ASSERT(!cache->nr_edges); 2607} 2608 2609/* 2610 * Handle direct tree backref 2611 * 2612 * Direct tree backref means, the backref item shows its parent bytenr 2613 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). 2614 * 2615 * @ref_key: The converted backref key. 2616 * For keyed backref, it's the item key. 2617 * For inlined backref, objectid is the bytenr, 2618 * type is btrfs_inline_ref_type, offset is 2619 * btrfs_inline_ref_offset. 2620 */ 2621static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, 2622 struct btrfs_key *ref_key, 2623 struct btrfs_backref_node *cur) 2624{ 2625 struct btrfs_backref_edge *edge; 2626 struct btrfs_backref_node *upper; 2627 struct rb_node *rb_node; 2628 2629 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); 2630 2631 /* Only reloc root uses backref pointing to itself */ 2632 if (ref_key->objectid == ref_key->offset) { 2633 struct btrfs_root *root; 2634 2635 cur->is_reloc_root = 1; 2636 /* Only reloc backref cache cares about a specific root */ 2637 if (cache->is_reloc) { 2638 root = find_reloc_root(cache->fs_info, cur->bytenr); 2639 if (!root) 2640 return -ENOENT; 2641 cur->root = root; 2642 } else { 2643 /* 2644 * For generic purpose backref cache, reloc root node 2645 * is useless. 2646 */ 2647 list_add(&cur->list, &cache->useless_node); 2648 } 2649 return 0; 2650 } 2651 2652 edge = btrfs_backref_alloc_edge(cache); 2653 if (!edge) 2654 return -ENOMEM; 2655 2656 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); 2657 if (!rb_node) { 2658 /* Parent node not yet cached */ 2659 upper = btrfs_backref_alloc_node(cache, ref_key->offset, 2660 cur->level + 1); 2661 if (!upper) { 2662 btrfs_backref_free_edge(cache, edge); 2663 return -ENOMEM; 2664 } 2665 2666 /* 2667 * Backrefs for the upper level block isn't cached, add the 2668 * block to pending list 2669 */ 2670 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 2671 } else { 2672 /* Parent node already cached */ 2673 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 2674 ASSERT(upper->checked); 2675 INIT_LIST_HEAD(&edge->list[UPPER]); 2676 } 2677 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); 2678 return 0; 2679} 2680 2681/* 2682 * Handle indirect tree backref 2683 * 2684 * Indirect tree backref means, we only know which tree the node belongs to. 2685 * We still need to do a tree search to find out the parents. This is for 2686 * TREE_BLOCK_REF backref (keyed or inlined). 2687 * 2688 * @ref_key: The same as @ref_key in handle_direct_tree_backref() 2689 * @tree_key: The first key of this tree block. 2690 * @path: A clean (released) path, to avoid allocating path every time 2691 * the function get called. 2692 */ 2693static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache, 2694 struct btrfs_path *path, 2695 struct btrfs_key *ref_key, 2696 struct btrfs_key *tree_key, 2697 struct btrfs_backref_node *cur) 2698{ 2699 struct btrfs_fs_info *fs_info = cache->fs_info; 2700 struct btrfs_backref_node *upper; 2701 struct btrfs_backref_node *lower; 2702 struct btrfs_backref_edge *edge; 2703 struct extent_buffer *eb; 2704 struct btrfs_root *root; 2705 struct rb_node *rb_node; 2706 int level; 2707 bool need_check = true; 2708 int ret; 2709 2710 root = btrfs_get_fs_root(fs_info, ref_key->offset, false); 2711 if (IS_ERR(root)) 2712 return PTR_ERR(root); 2713 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2714 cur->cowonly = 1; 2715 2716 if (btrfs_root_level(&root->root_item) == cur->level) { 2717 /* Tree root */ 2718 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); 2719 /* 2720 * For reloc backref cache, we may ignore reloc root. But for 2721 * general purpose backref cache, we can't rely on 2722 * btrfs_should_ignore_reloc_root() as it may conflict with 2723 * current running relocation and lead to missing root. 2724 * 2725 * For general purpose backref cache, reloc root detection is 2726 * completely relying on direct backref (key->offset is parent 2727 * bytenr), thus only do such check for reloc cache. 2728 */ 2729 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { 2730 btrfs_put_root(root); 2731 list_add(&cur->list, &cache->useless_node); 2732 } else { 2733 cur->root = root; 2734 } 2735 return 0; 2736 } 2737 2738 level = cur->level + 1; 2739 2740 /* Search the tree to find parent blocks referring to the block */ 2741 path->search_commit_root = 1; 2742 path->skip_locking = 1; 2743 path->lowest_level = level; 2744 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); 2745 path->lowest_level = 0; 2746 if (ret < 0) { 2747 btrfs_put_root(root); 2748 return ret; 2749 } 2750 if (ret > 0 && path->slots[level] > 0) 2751 path->slots[level]--; 2752 2753 eb = path->nodes[level]; 2754 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { 2755 btrfs_err(fs_info, 2756"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 2757 cur->bytenr, level - 1, root->root_key.objectid, 2758 tree_key->objectid, tree_key->type, tree_key->offset); 2759 btrfs_put_root(root); 2760 ret = -ENOENT; 2761 goto out; 2762 } 2763 lower = cur; 2764 2765 /* Add all nodes and edges in the path */ 2766 for (; level < BTRFS_MAX_LEVEL; level++) { 2767 if (!path->nodes[level]) { 2768 ASSERT(btrfs_root_bytenr(&root->root_item) == 2769 lower->bytenr); 2770 /* Same as previous should_ignore_reloc_root() call */ 2771 if (btrfs_should_ignore_reloc_root(root) && 2772 cache->is_reloc) { 2773 btrfs_put_root(root); 2774 list_add(&lower->list, &cache->useless_node); 2775 } else { 2776 lower->root = root; 2777 } 2778 break; 2779 } 2780 2781 edge = btrfs_backref_alloc_edge(cache); 2782 if (!edge) { 2783 btrfs_put_root(root); 2784 ret = -ENOMEM; 2785 goto out; 2786 } 2787 2788 eb = path->nodes[level]; 2789 rb_node = rb_simple_search(&cache->rb_root, eb->start); 2790 if (!rb_node) { 2791 upper = btrfs_backref_alloc_node(cache, eb->start, 2792 lower->level + 1); 2793 if (!upper) { 2794 btrfs_put_root(root); 2795 btrfs_backref_free_edge(cache, edge); 2796 ret = -ENOMEM; 2797 goto out; 2798 } 2799 upper->owner = btrfs_header_owner(eb); 2800 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2801 upper->cowonly = 1; 2802 2803 /* 2804 * If we know the block isn't shared we can avoid 2805 * checking its backrefs. 2806 */ 2807 if (btrfs_block_can_be_shared(root, eb)) 2808 upper->checked = 0; 2809 else 2810 upper->checked = 1; 2811 2812 /* 2813 * Add the block to pending list if we need to check its 2814 * backrefs, we only do this once while walking up a 2815 * tree as we will catch anything else later on. 2816 */ 2817 if (!upper->checked && need_check) { 2818 need_check = false; 2819 list_add_tail(&edge->list[UPPER], 2820 &cache->pending_edge); 2821 } else { 2822 if (upper->checked) 2823 need_check = true; 2824 INIT_LIST_HEAD(&edge->list[UPPER]); 2825 } 2826 } else { 2827 upper = rb_entry(rb_node, struct btrfs_backref_node, 2828 rb_node); 2829 ASSERT(upper->checked); 2830 INIT_LIST_HEAD(&edge->list[UPPER]); 2831 if (!upper->owner) 2832 upper->owner = btrfs_header_owner(eb); 2833 } 2834 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); 2835 2836 if (rb_node) { 2837 btrfs_put_root(root); 2838 break; 2839 } 2840 lower = upper; 2841 upper = NULL; 2842 } 2843out: 2844 btrfs_release_path(path); 2845 return ret; 2846} 2847 2848/* 2849 * Add backref node @cur into @cache. 2850 * 2851 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper 2852 * links aren't yet bi-directional. Needs to finish such links. 2853 * Use btrfs_backref_finish_upper_links() to finish such linkage. 2854 * 2855 * @path: Released path for indirect tree backref lookup 2856 * @iter: Released backref iter for extent tree search 2857 * @node_key: The first key of the tree block 2858 */ 2859int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache, 2860 struct btrfs_path *path, 2861 struct btrfs_backref_iter *iter, 2862 struct btrfs_key *node_key, 2863 struct btrfs_backref_node *cur) 2864{ 2865 struct btrfs_fs_info *fs_info = cache->fs_info; 2866 struct btrfs_backref_edge *edge; 2867 struct btrfs_backref_node *exist; 2868 int ret; 2869 2870 ret = btrfs_backref_iter_start(iter, cur->bytenr); 2871 if (ret < 0) 2872 return ret; 2873 /* 2874 * We skip the first btrfs_tree_block_info, as we don't use the key 2875 * stored in it, but fetch it from the tree block 2876 */ 2877 if (btrfs_backref_has_tree_block_info(iter)) { 2878 ret = btrfs_backref_iter_next(iter); 2879 if (ret < 0) 2880 goto out; 2881 /* No extra backref? This means the tree block is corrupted */ 2882 if (ret > 0) { 2883 ret = -EUCLEAN; 2884 goto out; 2885 } 2886 } 2887 WARN_ON(cur->checked); 2888 if (!list_empty(&cur->upper)) { 2889 /* 2890 * The backref was added previously when processing backref of 2891 * type BTRFS_TREE_BLOCK_REF_KEY 2892 */ 2893 ASSERT(list_is_singular(&cur->upper)); 2894 edge = list_entry(cur->upper.next, struct btrfs_backref_edge, 2895 list[LOWER]); 2896 ASSERT(list_empty(&edge->list[UPPER])); 2897 exist = edge->node[UPPER]; 2898 /* 2899 * Add the upper level block to pending list if we need check 2900 * its backrefs 2901 */ 2902 if (!exist->checked) 2903 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 2904 } else { 2905 exist = NULL; 2906 } 2907 2908 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { 2909 struct extent_buffer *eb; 2910 struct btrfs_key key; 2911 int type; 2912 2913 cond_resched(); 2914 eb = btrfs_backref_get_eb(iter); 2915 2916 key.objectid = iter->bytenr; 2917 if (btrfs_backref_iter_is_inline_ref(iter)) { 2918 struct btrfs_extent_inline_ref *iref; 2919 2920 /* Update key for inline backref */ 2921 iref = (struct btrfs_extent_inline_ref *) 2922 ((unsigned long)iter->cur_ptr); 2923 type = btrfs_get_extent_inline_ref_type(eb, iref, 2924 BTRFS_REF_TYPE_BLOCK); 2925 if (type == BTRFS_REF_TYPE_INVALID) { 2926 ret = -EUCLEAN; 2927 goto out; 2928 } 2929 key.type = type; 2930 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 2931 } else { 2932 key.type = iter->cur_key.type; 2933 key.offset = iter->cur_key.offset; 2934 } 2935 2936 /* 2937 * Parent node found and matches current inline ref, no need to 2938 * rebuild this node for this inline ref 2939 */ 2940 if (exist && 2941 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 2942 exist->owner == key.offset) || 2943 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 2944 exist->bytenr == key.offset))) { 2945 exist = NULL; 2946 continue; 2947 } 2948 2949 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 2950 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 2951 ret = handle_direct_tree_backref(cache, &key, cur); 2952 if (ret < 0) 2953 goto out; 2954 continue; 2955 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 2956 ret = -EINVAL; 2957 btrfs_print_v0_err(fs_info); 2958 btrfs_handle_fs_error(fs_info, ret, NULL); 2959 goto out; 2960 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 2961 continue; 2962 } 2963 2964 /* 2965 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset 2966 * means the root objectid. We need to search the tree to get 2967 * its parent bytenr. 2968 */ 2969 ret = handle_indirect_tree_backref(cache, path, &key, node_key, 2970 cur); 2971 if (ret < 0) 2972 goto out; 2973 } 2974 ret = 0; 2975 cur->checked = 1; 2976 WARN_ON(exist); 2977out: 2978 btrfs_backref_iter_release(iter); 2979 return ret; 2980} 2981 2982/* 2983 * Finish the upwards linkage created by btrfs_backref_add_tree_node() 2984 */ 2985int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, 2986 struct btrfs_backref_node *start) 2987{ 2988 struct list_head *useless_node = &cache->useless_node; 2989 struct btrfs_backref_edge *edge; 2990 struct rb_node *rb_node; 2991 LIST_HEAD(pending_edge); 2992 2993 ASSERT(start->checked); 2994 2995 /* Insert this node to cache if it's not COW-only */ 2996 if (!start->cowonly) { 2997 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, 2998 &start->rb_node); 2999 if (rb_node) 3000 btrfs_backref_panic(cache->fs_info, start->bytenr, 3001 -EEXIST); 3002 list_add_tail(&start->lower, &cache->leaves); 3003 } 3004 3005 /* 3006 * Use breadth first search to iterate all related edges. 3007 * 3008 * The starting points are all the edges of this node 3009 */ 3010 list_for_each_entry(edge, &start->upper, list[LOWER]) 3011 list_add_tail(&edge->list[UPPER], &pending_edge); 3012 3013 while (!list_empty(&pending_edge)) { 3014 struct btrfs_backref_node *upper; 3015 struct btrfs_backref_node *lower; 3016 3017 edge = list_first_entry(&pending_edge, 3018 struct btrfs_backref_edge, list[UPPER]); 3019 list_del_init(&edge->list[UPPER]); 3020 upper = edge->node[UPPER]; 3021 lower = edge->node[LOWER]; 3022 3023 /* Parent is detached, no need to keep any edges */ 3024 if (upper->detached) { 3025 list_del(&edge->list[LOWER]); 3026 btrfs_backref_free_edge(cache, edge); 3027 3028 /* Lower node is orphan, queue for cleanup */ 3029 if (list_empty(&lower->upper)) 3030 list_add(&lower->list, useless_node); 3031 continue; 3032 } 3033 3034 /* 3035 * All new nodes added in current build_backref_tree() haven't 3036 * been linked to the cache rb tree. 3037 * So if we have upper->rb_node populated, this means a cache 3038 * hit. We only need to link the edge, as @upper and all its 3039 * parents have already been linked. 3040 */ 3041 if (!RB_EMPTY_NODE(&upper->rb_node)) { 3042 if (upper->lowest) { 3043 list_del_init(&upper->lower); 3044 upper->lowest = 0; 3045 } 3046 3047 list_add_tail(&edge->list[UPPER], &upper->lower); 3048 continue; 3049 } 3050 3051 /* Sanity check, we shouldn't have any unchecked nodes */ 3052 if (!upper->checked) { 3053 ASSERT(0); 3054 return -EUCLEAN; 3055 } 3056 3057 /* Sanity check, COW-only node has non-COW-only parent */ 3058 if (start->cowonly != upper->cowonly) { 3059 ASSERT(0); 3060 return -EUCLEAN; 3061 } 3062 3063 /* Only cache non-COW-only (subvolume trees) tree blocks */ 3064 if (!upper->cowonly) { 3065 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr, 3066 &upper->rb_node); 3067 if (rb_node) { 3068 btrfs_backref_panic(cache->fs_info, 3069 upper->bytenr, -EEXIST); 3070 return -EUCLEAN; 3071 } 3072 } 3073 3074 list_add_tail(&edge->list[UPPER], &upper->lower); 3075 3076 /* 3077 * Also queue all the parent edges of this uncached node 3078 * to finish the upper linkage 3079 */ 3080 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3081 list_add_tail(&edge->list[UPPER], &pending_edge); 3082 } 3083 return 0; 3084} 3085 3086void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, 3087 struct btrfs_backref_node *node) 3088{ 3089 struct btrfs_backref_node *lower; 3090 struct btrfs_backref_node *upper; 3091 struct btrfs_backref_edge *edge; 3092 3093 while (!list_empty(&cache->useless_node)) { 3094 lower = list_first_entry(&cache->useless_node, 3095 struct btrfs_backref_node, list); 3096 list_del_init(&lower->list); 3097 } 3098 while (!list_empty(&cache->pending_edge)) { 3099 edge = list_first_entry(&cache->pending_edge, 3100 struct btrfs_backref_edge, list[UPPER]); 3101 list_del(&edge->list[UPPER]); 3102 list_del(&edge->list[LOWER]); 3103 lower = edge->node[LOWER]; 3104 upper = edge->node[UPPER]; 3105 btrfs_backref_free_edge(cache, edge); 3106 3107 /* 3108 * Lower is no longer linked to any upper backref nodes and 3109 * isn't in the cache, we can free it ourselves. 3110 */ 3111 if (list_empty(&lower->upper) && 3112 RB_EMPTY_NODE(&lower->rb_node)) 3113 list_add(&lower->list, &cache->useless_node); 3114 3115 if (!RB_EMPTY_NODE(&upper->rb_node)) 3116 continue; 3117 3118 /* Add this guy's upper edges to the list to process */ 3119 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3120 list_add_tail(&edge->list[UPPER], 3121 &cache->pending_edge); 3122 if (list_empty(&upper->upper)) 3123 list_add(&upper->list, &cache->useless_node); 3124 } 3125 3126 while (!list_empty(&cache->useless_node)) { 3127 lower = list_first_entry(&cache->useless_node, 3128 struct btrfs_backref_node, list); 3129 list_del_init(&lower->list); 3130 if (lower == node) 3131 node = NULL; 3132 btrfs_backref_drop_node(cache, lower); 3133 } 3134 3135 btrfs_backref_cleanup_node(cache, node); 3136 ASSERT(list_empty(&cache->useless_node) && 3137 list_empty(&cache->pending_edge)); 3138}