cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

block-group.h (11602B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2
      3#ifndef BTRFS_BLOCK_GROUP_H
      4#define BTRFS_BLOCK_GROUP_H
      5
      6#include "free-space-cache.h"
      7
      8enum btrfs_disk_cache_state {
      9	BTRFS_DC_WRITTEN,
     10	BTRFS_DC_ERROR,
     11	BTRFS_DC_CLEAR,
     12	BTRFS_DC_SETUP,
     13};
     14
     15/*
     16 * This describes the state of the block_group for async discard.  This is due
     17 * to the two pass nature of it where extent discarding is prioritized over
     18 * bitmap discarding.  BTRFS_DISCARD_RESET_CURSOR is set when we are resetting
     19 * between lists to prevent contention for discard state variables
     20 * (eg. discard_cursor).
     21 */
     22enum btrfs_discard_state {
     23	BTRFS_DISCARD_EXTENTS,
     24	BTRFS_DISCARD_BITMAPS,
     25	BTRFS_DISCARD_RESET_CURSOR,
     26};
     27
     28/*
     29 * Control flags for do_chunk_alloc's force field CHUNK_ALLOC_NO_FORCE means to
     30 * only allocate a chunk if we really need one.
     31 *
     32 * CHUNK_ALLOC_LIMITED means to only try and allocate one if we have very few
     33 * chunks already allocated.  This is used as part of the clustering code to
     34 * help make sure we have a good pool of storage to cluster in, without filling
     35 * the FS with empty chunks
     36 *
     37 * CHUNK_ALLOC_FORCE means it must try to allocate one
     38 *
     39 * CHUNK_ALLOC_FORCE_FOR_EXTENT like CHUNK_ALLOC_FORCE but called from
     40 * find_free_extent() that also activaes the zone
     41 */
     42enum btrfs_chunk_alloc_enum {
     43	CHUNK_ALLOC_NO_FORCE,
     44	CHUNK_ALLOC_LIMITED,
     45	CHUNK_ALLOC_FORCE,
     46	CHUNK_ALLOC_FORCE_FOR_EXTENT,
     47};
     48
     49struct btrfs_caching_control {
     50	struct list_head list;
     51	struct mutex mutex;
     52	wait_queue_head_t wait;
     53	struct btrfs_work work;
     54	struct btrfs_block_group *block_group;
     55	u64 progress;
     56	refcount_t count;
     57};
     58
     59/* Once caching_thread() finds this much free space, it will wake up waiters. */
     60#define CACHING_CTL_WAKE_UP SZ_2M
     61
     62struct btrfs_block_group {
     63	struct btrfs_fs_info *fs_info;
     64	struct inode *inode;
     65	spinlock_t lock;
     66	u64 start;
     67	u64 length;
     68	u64 pinned;
     69	u64 reserved;
     70	u64 used;
     71	u64 delalloc_bytes;
     72	u64 bytes_super;
     73	u64 flags;
     74	u64 cache_generation;
     75	u64 global_root_id;
     76
     77	/*
     78	 * If the free space extent count exceeds this number, convert the block
     79	 * group to bitmaps.
     80	 */
     81	u32 bitmap_high_thresh;
     82
     83	/*
     84	 * If the free space extent count drops below this number, convert the
     85	 * block group back to extents.
     86	 */
     87	u32 bitmap_low_thresh;
     88
     89	/*
     90	 * It is just used for the delayed data space allocation because
     91	 * only the data space allocation and the relative metadata update
     92	 * can be done cross the transaction.
     93	 */
     94	struct rw_semaphore data_rwsem;
     95
     96	/* For raid56, this is a full stripe, without parity */
     97	unsigned long full_stripe_len;
     98
     99	unsigned int ro;
    100	unsigned int iref:1;
    101	unsigned int has_caching_ctl:1;
    102	unsigned int removed:1;
    103	unsigned int to_copy:1;
    104	unsigned int relocating_repair:1;
    105	unsigned int chunk_item_inserted:1;
    106	unsigned int zone_is_active:1;
    107	unsigned int zoned_data_reloc_ongoing:1;
    108
    109	int disk_cache_state;
    110
    111	/* Cache tracking stuff */
    112	int cached;
    113	struct btrfs_caching_control *caching_ctl;
    114	u64 last_byte_to_unpin;
    115
    116	struct btrfs_space_info *space_info;
    117
    118	/* Free space cache stuff */
    119	struct btrfs_free_space_ctl *free_space_ctl;
    120
    121	/* Block group cache stuff */
    122	struct rb_node cache_node;
    123
    124	/* For block groups in the same raid type */
    125	struct list_head list;
    126
    127	refcount_t refs;
    128
    129	/*
    130	 * List of struct btrfs_free_clusters for this block group.
    131	 * Today it will only have one thing on it, but that may change
    132	 */
    133	struct list_head cluster_list;
    134
    135	/* For delayed block group creation or deletion of empty block groups */
    136	struct list_head bg_list;
    137
    138	/* For read-only block groups */
    139	struct list_head ro_list;
    140
    141	/*
    142	 * When non-zero it means the block group's logical address and its
    143	 * device extents can not be reused for future block group allocations
    144	 * until the counter goes down to 0. This is to prevent them from being
    145	 * reused while some task is still using the block group after it was
    146	 * deleted - we want to make sure they can only be reused for new block
    147	 * groups after that task is done with the deleted block group.
    148	 */
    149	atomic_t frozen;
    150
    151	/* For discard operations */
    152	struct list_head discard_list;
    153	int discard_index;
    154	u64 discard_eligible_time;
    155	u64 discard_cursor;
    156	enum btrfs_discard_state discard_state;
    157
    158	/* For dirty block groups */
    159	struct list_head dirty_list;
    160	struct list_head io_list;
    161
    162	struct btrfs_io_ctl io_ctl;
    163
    164	/*
    165	 * Incremented when doing extent allocations and holding a read lock
    166	 * on the space_info's groups_sem semaphore.
    167	 * Decremented when an ordered extent that represents an IO against this
    168	 * block group's range is created (after it's added to its inode's
    169	 * root's list of ordered extents) or immediately after the allocation
    170	 * if it's a metadata extent or fallocate extent (for these cases we
    171	 * don't create ordered extents).
    172	 */
    173	atomic_t reservations;
    174
    175	/*
    176	 * Incremented while holding the spinlock *lock* by a task checking if
    177	 * it can perform a nocow write (incremented if the value for the *ro*
    178	 * field is 0). Decremented by such tasks once they create an ordered
    179	 * extent or before that if some error happens before reaching that step.
    180	 * This is to prevent races between block group relocation and nocow
    181	 * writes through direct IO.
    182	 */
    183	atomic_t nocow_writers;
    184
    185	/* Lock for free space tree operations. */
    186	struct mutex free_space_lock;
    187
    188	/*
    189	 * Does the block group need to be added to the free space tree?
    190	 * Protected by free_space_lock.
    191	 */
    192	int needs_free_space;
    193
    194	/* Flag indicating this block group is placed on a sequential zone */
    195	bool seq_zone;
    196
    197	/*
    198	 * Number of extents in this block group used for swap files.
    199	 * All accesses protected by the spinlock 'lock'.
    200	 */
    201	int swap_extents;
    202
    203	/* Record locked full stripes for RAID5/6 block group */
    204	struct btrfs_full_stripe_locks_tree full_stripe_locks_root;
    205
    206	/*
    207	 * Allocation offset for the block group to implement sequential
    208	 * allocation. This is used only on a zoned filesystem.
    209	 */
    210	u64 alloc_offset;
    211	u64 zone_unusable;
    212	u64 zone_capacity;
    213	u64 meta_write_pointer;
    214	struct map_lookup *physical_map;
    215	struct list_head active_bg_list;
    216	struct work_struct zone_finish_work;
    217	struct extent_buffer *last_eb;
    218};
    219
    220static inline u64 btrfs_block_group_end(struct btrfs_block_group *block_group)
    221{
    222	return (block_group->start + block_group->length);
    223}
    224
    225static inline bool btrfs_is_block_group_data_only(
    226					struct btrfs_block_group *block_group)
    227{
    228	/*
    229	 * In mixed mode the fragmentation is expected to be high, lowering the
    230	 * efficiency, so only proper data block groups are considered.
    231	 */
    232	return (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
    233	       !(block_group->flags & BTRFS_BLOCK_GROUP_METADATA);
    234}
    235
    236#ifdef CONFIG_BTRFS_DEBUG
    237static inline int btrfs_should_fragment_free_space(
    238		struct btrfs_block_group *block_group)
    239{
    240	struct btrfs_fs_info *fs_info = block_group->fs_info;
    241
    242	return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
    243		block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
    244	       (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
    245		block_group->flags &  BTRFS_BLOCK_GROUP_DATA);
    246}
    247#endif
    248
    249struct btrfs_block_group *btrfs_lookup_first_block_group(
    250		struct btrfs_fs_info *info, u64 bytenr);
    251struct btrfs_block_group *btrfs_lookup_block_group(
    252		struct btrfs_fs_info *info, u64 bytenr);
    253struct btrfs_block_group *btrfs_next_block_group(
    254		struct btrfs_block_group *cache);
    255void btrfs_get_block_group(struct btrfs_block_group *cache);
    256void btrfs_put_block_group(struct btrfs_block_group *cache);
    257void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
    258					const u64 start);
    259void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg);
    260struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
    261						  u64 bytenr);
    262void btrfs_dec_nocow_writers(struct btrfs_block_group *bg);
    263void btrfs_wait_nocow_writers(struct btrfs_block_group *bg);
    264void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
    265				           u64 num_bytes);
    266int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache);
    267int btrfs_cache_block_group(struct btrfs_block_group *cache,
    268			    int load_cache_only);
    269void btrfs_put_caching_control(struct btrfs_caching_control *ctl);
    270struct btrfs_caching_control *btrfs_get_caching_control(
    271		struct btrfs_block_group *cache);
    272u64 add_new_free_space(struct btrfs_block_group *block_group,
    273		       u64 start, u64 end);
    274struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
    275				struct btrfs_fs_info *fs_info,
    276				const u64 chunk_offset);
    277int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
    278			     u64 group_start, struct extent_map *em);
    279void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info);
    280void btrfs_mark_bg_unused(struct btrfs_block_group *bg);
    281void btrfs_reclaim_bgs_work(struct work_struct *work);
    282void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info);
    283void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg);
    284int btrfs_read_block_groups(struct btrfs_fs_info *info);
    285struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
    286						 u64 bytes_used, u64 type,
    287						 u64 chunk_offset, u64 size);
    288void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans);
    289int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
    290			     bool do_chunk_alloc);
    291void btrfs_dec_block_group_ro(struct btrfs_block_group *cache);
    292int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans);
    293int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans);
    294int btrfs_setup_space_cache(struct btrfs_trans_handle *trans);
    295int btrfs_update_block_group(struct btrfs_trans_handle *trans,
    296			     u64 bytenr, u64 num_bytes, bool alloc);
    297int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
    298			     u64 ram_bytes, u64 num_bytes, int delalloc);
    299void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
    300			       u64 num_bytes, int delalloc);
    301int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
    302		      enum btrfs_chunk_alloc_enum force);
    303int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type);
    304void check_system_chunk(struct btrfs_trans_handle *trans, const u64 type);
    305void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
    306				  bool is_item_insertion);
    307u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags);
    308void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
    309int btrfs_free_block_groups(struct btrfs_fs_info *info);
    310void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
    311				struct btrfs_caching_control *caching_ctl);
    312int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
    313		       struct block_device *bdev, u64 physical, u64 **logical,
    314		       int *naddrs, int *stripe_len);
    315
    316static inline u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
    317{
    318	return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
    319}
    320
    321static inline u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
    322{
    323	return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
    324}
    325
    326static inline u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
    327{
    328	return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
    329}
    330
    331static inline int btrfs_block_group_done(struct btrfs_block_group *cache)
    332{
    333	smp_mb();
    334	return cache->cached == BTRFS_CACHE_FINISHED ||
    335		cache->cached == BTRFS_CACHE_ERROR;
    336}
    337
    338void btrfs_freeze_block_group(struct btrfs_block_group *cache);
    339void btrfs_unfreeze_block_group(struct btrfs_block_group *cache);
    340
    341bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg);
    342void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount);
    343
    344#endif /* BTRFS_BLOCK_GROUP_H */