ctree.h (138497B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6#ifndef BTRFS_CTREE_H 7#define BTRFS_CTREE_H 8 9#include <linux/mm.h> 10#include <linux/sched/signal.h> 11#include <linux/highmem.h> 12#include <linux/fs.h> 13#include <linux/rwsem.h> 14#include <linux/semaphore.h> 15#include <linux/completion.h> 16#include <linux/backing-dev.h> 17#include <linux/wait.h> 18#include <linux/slab.h> 19#include <trace/events/btrfs.h> 20#include <asm/unaligned.h> 21#include <linux/pagemap.h> 22#include <linux/btrfs.h> 23#include <linux/btrfs_tree.h> 24#include <linux/workqueue.h> 25#include <linux/security.h> 26#include <linux/sizes.h> 27#include <linux/dynamic_debug.h> 28#include <linux/refcount.h> 29#include <linux/crc32c.h> 30#include <linux/iomap.h> 31#include "extent-io-tree.h" 32#include "extent_io.h" 33#include "extent_map.h" 34#include "async-thread.h" 35#include "block-rsv.h" 36#include "locking.h" 37 38struct btrfs_trans_handle; 39struct btrfs_transaction; 40struct btrfs_pending_snapshot; 41struct btrfs_delayed_ref_root; 42struct btrfs_space_info; 43struct btrfs_block_group; 44extern struct kmem_cache *btrfs_trans_handle_cachep; 45extern struct kmem_cache *btrfs_bit_radix_cachep; 46extern struct kmem_cache *btrfs_path_cachep; 47extern struct kmem_cache *btrfs_free_space_cachep; 48extern struct kmem_cache *btrfs_free_space_bitmap_cachep; 49struct btrfs_ordered_sum; 50struct btrfs_ref; 51struct btrfs_bio; 52struct btrfs_ioctl_encoded_io_args; 53 54#define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */ 55 56/* 57 * Maximum number of mirrors that can be available for all profiles counting 58 * the target device of dev-replace as one. During an active device replace 59 * procedure, the target device of the copy operation is a mirror for the 60 * filesystem data as well that can be used to read data in order to repair 61 * read errors on other disks. 62 * 63 * Current value is derived from RAID1C4 with 4 copies. 64 */ 65#define BTRFS_MAX_MIRRORS (4 + 1) 66 67#define BTRFS_MAX_LEVEL 8 68 69#define BTRFS_OLDEST_GENERATION 0ULL 70 71/* 72 * we can actually store much bigger names, but lets not confuse the rest 73 * of linux 74 */ 75#define BTRFS_NAME_LEN 255 76 77/* 78 * Theoretical limit is larger, but we keep this down to a sane 79 * value. That should limit greatly the possibility of collisions on 80 * inode ref items. 81 */ 82#define BTRFS_LINK_MAX 65535U 83 84#define BTRFS_EMPTY_DIR_SIZE 0 85 86/* ioprio of readahead is set to idle */ 87#define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)) 88 89#define BTRFS_DIRTY_METADATA_THRESH SZ_32M 90 91/* 92 * Use large batch size to reduce overhead of metadata updates. On the reader 93 * side, we only read it when we are close to ENOSPC and the read overhead is 94 * mostly related to the number of CPUs, so it is OK to use arbitrary large 95 * value here. 96 */ 97#define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M 98 99#define BTRFS_MAX_EXTENT_SIZE SZ_128M 100 101/* 102 * Deltas are an effective way to populate global statistics. Give macro names 103 * to make it clear what we're doing. An example is discard_extents in 104 * btrfs_free_space_ctl. 105 */ 106#define BTRFS_STAT_NR_ENTRIES 2 107#define BTRFS_STAT_CURR 0 108#define BTRFS_STAT_PREV 1 109 110/* 111 * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size 112 */ 113static inline u32 count_max_extents(u64 size) 114{ 115 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE); 116} 117 118static inline unsigned long btrfs_chunk_item_size(int num_stripes) 119{ 120 BUG_ON(num_stripes == 0); 121 return sizeof(struct btrfs_chunk) + 122 sizeof(struct btrfs_stripe) * (num_stripes - 1); 123} 124 125/* 126 * Runtime (in-memory) states of filesystem 127 */ 128enum { 129 /* Global indicator of serious filesystem errors */ 130 BTRFS_FS_STATE_ERROR, 131 /* 132 * Filesystem is being remounted, allow to skip some operations, like 133 * defrag 134 */ 135 BTRFS_FS_STATE_REMOUNTING, 136 /* Filesystem in RO mode */ 137 BTRFS_FS_STATE_RO, 138 /* Track if a transaction abort has been reported on this filesystem */ 139 BTRFS_FS_STATE_TRANS_ABORTED, 140 /* 141 * Bio operations should be blocked on this filesystem because a source 142 * or target device is being destroyed as part of a device replace 143 */ 144 BTRFS_FS_STATE_DEV_REPLACING, 145 /* The btrfs_fs_info created for self-tests */ 146 BTRFS_FS_STATE_DUMMY_FS_INFO, 147 148 BTRFS_FS_STATE_NO_CSUMS, 149 150 /* Indicates there was an error cleaning up a log tree. */ 151 BTRFS_FS_STATE_LOG_CLEANUP_ERROR, 152 153 BTRFS_FS_STATE_COUNT 154}; 155 156#define BTRFS_BACKREF_REV_MAX 256 157#define BTRFS_BACKREF_REV_SHIFT 56 158#define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ 159 BTRFS_BACKREF_REV_SHIFT) 160 161#define BTRFS_OLD_BACKREF_REV 0 162#define BTRFS_MIXED_BACKREF_REV 1 163 164/* 165 * every tree block (leaf or node) starts with this header. 166 */ 167struct btrfs_header { 168 /* these first four must match the super block */ 169 u8 csum[BTRFS_CSUM_SIZE]; 170 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 171 __le64 bytenr; /* which block this node is supposed to live in */ 172 __le64 flags; 173 174 /* allowed to be different from the super from here on down */ 175 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 176 __le64 generation; 177 __le64 owner; 178 __le32 nritems; 179 u8 level; 180} __attribute__ ((__packed__)); 181 182/* 183 * this is a very generous portion of the super block, giving us 184 * room to translate 14 chunks with 3 stripes each. 185 */ 186#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 187 188/* 189 * just in case we somehow lose the roots and are not able to mount, 190 * we store an array of the roots from previous transactions 191 * in the super. 192 */ 193#define BTRFS_NUM_BACKUP_ROOTS 4 194struct btrfs_root_backup { 195 __le64 tree_root; 196 __le64 tree_root_gen; 197 198 __le64 chunk_root; 199 __le64 chunk_root_gen; 200 201 __le64 extent_root; 202 __le64 extent_root_gen; 203 204 __le64 fs_root; 205 __le64 fs_root_gen; 206 207 __le64 dev_root; 208 __le64 dev_root_gen; 209 210 __le64 csum_root; 211 __le64 csum_root_gen; 212 213 __le64 total_bytes; 214 __le64 bytes_used; 215 __le64 num_devices; 216 /* future */ 217 __le64 unused_64[4]; 218 219 u8 tree_root_level; 220 u8 chunk_root_level; 221 u8 extent_root_level; 222 u8 fs_root_level; 223 u8 dev_root_level; 224 u8 csum_root_level; 225 /* future and to align */ 226 u8 unused_8[10]; 227} __attribute__ ((__packed__)); 228 229#define BTRFS_SUPER_INFO_OFFSET SZ_64K 230#define BTRFS_SUPER_INFO_SIZE 4096 231 232/* 233 * the super block basically lists the main trees of the FS 234 * it currently lacks any block count etc etc 235 */ 236struct btrfs_super_block { 237 /* the first 4 fields must match struct btrfs_header */ 238 u8 csum[BTRFS_CSUM_SIZE]; 239 /* FS specific UUID, visible to user */ 240 u8 fsid[BTRFS_FSID_SIZE]; 241 __le64 bytenr; /* this block number */ 242 __le64 flags; 243 244 /* allowed to be different from the btrfs_header from here own down */ 245 __le64 magic; 246 __le64 generation; 247 __le64 root; 248 __le64 chunk_root; 249 __le64 log_root; 250 251 /* this will help find the new super based on the log root */ 252 __le64 log_root_transid; 253 __le64 total_bytes; 254 __le64 bytes_used; 255 __le64 root_dir_objectid; 256 __le64 num_devices; 257 __le32 sectorsize; 258 __le32 nodesize; 259 __le32 __unused_leafsize; 260 __le32 stripesize; 261 __le32 sys_chunk_array_size; 262 __le64 chunk_root_generation; 263 __le64 compat_flags; 264 __le64 compat_ro_flags; 265 __le64 incompat_flags; 266 __le16 csum_type; 267 u8 root_level; 268 u8 chunk_root_level; 269 u8 log_root_level; 270 struct btrfs_dev_item dev_item; 271 272 char label[BTRFS_LABEL_SIZE]; 273 274 __le64 cache_generation; 275 __le64 uuid_tree_generation; 276 277 /* the UUID written into btree blocks */ 278 u8 metadata_uuid[BTRFS_FSID_SIZE]; 279 280 /* Extent tree v2 */ 281 __le64 block_group_root; 282 __le64 block_group_root_generation; 283 u8 block_group_root_level; 284 285 /* future expansion */ 286 u8 reserved8[7]; 287 __le64 reserved[25]; 288 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; 289 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; 290 291 /* Padded to 4096 bytes */ 292 u8 padding[565]; 293} __attribute__ ((__packed__)); 294static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE); 295 296/* 297 * Compat flags that we support. If any incompat flags are set other than the 298 * ones specified below then we will fail to mount 299 */ 300#define BTRFS_FEATURE_COMPAT_SUPP 0ULL 301#define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL 302#define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL 303 304#define BTRFS_FEATURE_COMPAT_RO_SUPP \ 305 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \ 306 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \ 307 BTRFS_FEATURE_COMPAT_RO_VERITY) 308 309#define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL 310#define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL 311 312#ifdef CONFIG_BTRFS_DEBUG 313/* 314 * Extent tree v2 supported only with CONFIG_BTRFS_DEBUG 315 */ 316#define BTRFS_FEATURE_INCOMPAT_SUPP \ 317 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 318 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 319 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 320 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 321 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 322 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 323 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 324 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 325 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 326 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 327 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 328 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 329 BTRFS_FEATURE_INCOMPAT_ZONED | \ 330 BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2) 331#else 332#define BTRFS_FEATURE_INCOMPAT_SUPP \ 333 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 334 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 335 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 336 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 337 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 338 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 339 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 340 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 341 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 342 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 343 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 344 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 345 BTRFS_FEATURE_INCOMPAT_ZONED) 346#endif 347 348#define BTRFS_FEATURE_INCOMPAT_SAFE_SET \ 349 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF) 350#define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL 351 352/* 353 * A leaf is full of items. offset and size tell us where to find 354 * the item in the leaf (relative to the start of the data area) 355 */ 356struct btrfs_item { 357 struct btrfs_disk_key key; 358 __le32 offset; 359 __le32 size; 360} __attribute__ ((__packed__)); 361 362/* 363 * leaves have an item area and a data area: 364 * [item0, item1....itemN] [free space] [dataN...data1, data0] 365 * 366 * The data is separate from the items to get the keys closer together 367 * during searches. 368 */ 369struct btrfs_leaf { 370 struct btrfs_header header; 371 struct btrfs_item items[]; 372} __attribute__ ((__packed__)); 373 374/* 375 * all non-leaf blocks are nodes, they hold only keys and pointers to 376 * other blocks 377 */ 378struct btrfs_key_ptr { 379 struct btrfs_disk_key key; 380 __le64 blockptr; 381 __le64 generation; 382} __attribute__ ((__packed__)); 383 384struct btrfs_node { 385 struct btrfs_header header; 386 struct btrfs_key_ptr ptrs[]; 387} __attribute__ ((__packed__)); 388 389/* Read ahead values for struct btrfs_path.reada */ 390enum { 391 READA_NONE, 392 READA_BACK, 393 READA_FORWARD, 394 /* 395 * Similar to READA_FORWARD but unlike it: 396 * 397 * 1) It will trigger readahead even for leaves that are not close to 398 * each other on disk; 399 * 2) It also triggers readahead for nodes; 400 * 3) During a search, even when a node or leaf is already in memory, it 401 * will still trigger readahead for other nodes and leaves that follow 402 * it. 403 * 404 * This is meant to be used only when we know we are iterating over the 405 * entire tree or a very large part of it. 406 */ 407 READA_FORWARD_ALWAYS, 408}; 409 410/* 411 * btrfs_paths remember the path taken from the root down to the leaf. 412 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 413 * to any other levels that are present. 414 * 415 * The slots array records the index of the item or block pointer 416 * used while walking the tree. 417 */ 418struct btrfs_path { 419 struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; 420 int slots[BTRFS_MAX_LEVEL]; 421 /* if there is real range locking, this locks field will change */ 422 u8 locks[BTRFS_MAX_LEVEL]; 423 u8 reada; 424 /* keep some upper locks as we walk down */ 425 u8 lowest_level; 426 427 /* 428 * set by btrfs_split_item, tells search_slot to keep all locks 429 * and to force calls to keep space in the nodes 430 */ 431 unsigned int search_for_split:1; 432 unsigned int keep_locks:1; 433 unsigned int skip_locking:1; 434 unsigned int search_commit_root:1; 435 unsigned int need_commit_sem:1; 436 unsigned int skip_release_on_error:1; 437 /* 438 * Indicate that new item (btrfs_search_slot) is extending already 439 * existing item and ins_len contains only the data size and not item 440 * header (ie. sizeof(struct btrfs_item) is not included). 441 */ 442 unsigned int search_for_extension:1; 443}; 444#define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \ 445 sizeof(struct btrfs_item)) 446struct btrfs_dev_replace { 447 u64 replace_state; /* see #define above */ 448 time64_t time_started; /* seconds since 1-Jan-1970 */ 449 time64_t time_stopped; /* seconds since 1-Jan-1970 */ 450 atomic64_t num_write_errors; 451 atomic64_t num_uncorrectable_read_errors; 452 453 u64 cursor_left; 454 u64 committed_cursor_left; 455 u64 cursor_left_last_write_of_item; 456 u64 cursor_right; 457 458 u64 cont_reading_from_srcdev_mode; /* see #define above */ 459 460 int is_valid; 461 int item_needs_writeback; 462 struct btrfs_device *srcdev; 463 struct btrfs_device *tgtdev; 464 465 struct mutex lock_finishing_cancel_unmount; 466 struct rw_semaphore rwsem; 467 468 struct btrfs_scrub_progress scrub_progress; 469 470 struct percpu_counter bio_counter; 471 wait_queue_head_t replace_wait; 472}; 473 474/* 475 * free clusters are used to claim free space in relatively large chunks, 476 * allowing us to do less seeky writes. They are used for all metadata 477 * allocations. In ssd_spread mode they are also used for data allocations. 478 */ 479struct btrfs_free_cluster { 480 spinlock_t lock; 481 spinlock_t refill_lock; 482 struct rb_root root; 483 484 /* largest extent in this cluster */ 485 u64 max_size; 486 487 /* first extent starting offset */ 488 u64 window_start; 489 490 /* We did a full search and couldn't create a cluster */ 491 bool fragmented; 492 493 struct btrfs_block_group *block_group; 494 /* 495 * when a cluster is allocated from a block group, we put the 496 * cluster onto a list in the block group so that it can 497 * be freed before the block group is freed. 498 */ 499 struct list_head block_group_list; 500}; 501 502enum btrfs_caching_type { 503 BTRFS_CACHE_NO, 504 BTRFS_CACHE_STARTED, 505 BTRFS_CACHE_FAST, 506 BTRFS_CACHE_FINISHED, 507 BTRFS_CACHE_ERROR, 508}; 509 510/* 511 * Tree to record all locked full stripes of a RAID5/6 block group 512 */ 513struct btrfs_full_stripe_locks_tree { 514 struct rb_root root; 515 struct mutex lock; 516}; 517 518/* Discard control. */ 519/* 520 * Async discard uses multiple lists to differentiate the discard filter 521 * parameters. Index 0 is for completely free block groups where we need to 522 * ensure the entire block group is trimmed without being lossy. Indices 523 * afterwards represent monotonically decreasing discard filter sizes to 524 * prioritize what should be discarded next. 525 */ 526#define BTRFS_NR_DISCARD_LISTS 3 527#define BTRFS_DISCARD_INDEX_UNUSED 0 528#define BTRFS_DISCARD_INDEX_START 1 529 530struct btrfs_discard_ctl { 531 struct workqueue_struct *discard_workers; 532 struct delayed_work work; 533 spinlock_t lock; 534 struct btrfs_block_group *block_group; 535 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS]; 536 u64 prev_discard; 537 u64 prev_discard_time; 538 atomic_t discardable_extents; 539 atomic64_t discardable_bytes; 540 u64 max_discard_size; 541 u64 delay_ms; 542 u32 iops_limit; 543 u32 kbps_limit; 544 u64 discard_extent_bytes; 545 u64 discard_bitmap_bytes; 546 atomic64_t discard_bytes_saved; 547}; 548 549void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info); 550 551/* fs_info */ 552struct reloc_control; 553struct btrfs_device; 554struct btrfs_fs_devices; 555struct btrfs_balance_control; 556struct btrfs_delayed_root; 557 558/* 559 * Block group or device which contains an active swapfile. Used for preventing 560 * unsafe operations while a swapfile is active. 561 * 562 * These are sorted on (ptr, inode) (note that a block group or device can 563 * contain more than one swapfile). We compare the pointer values because we 564 * don't actually care what the object is, we just need a quick check whether 565 * the object exists in the rbtree. 566 */ 567struct btrfs_swapfile_pin { 568 struct rb_node node; 569 void *ptr; 570 struct inode *inode; 571 /* 572 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr 573 * points to a struct btrfs_device. 574 */ 575 bool is_block_group; 576 /* 577 * Only used when 'is_block_group' is true and it is the number of 578 * extents used by a swapfile for this block group ('ptr' field). 579 */ 580 int bg_extent_count; 581}; 582 583bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); 584 585enum { 586 BTRFS_FS_CLOSING_START, 587 BTRFS_FS_CLOSING_DONE, 588 BTRFS_FS_LOG_RECOVERING, 589 BTRFS_FS_OPEN, 590 BTRFS_FS_QUOTA_ENABLED, 591 BTRFS_FS_UPDATE_UUID_TREE_GEN, 592 BTRFS_FS_CREATING_FREE_SPACE_TREE, 593 BTRFS_FS_BTREE_ERR, 594 BTRFS_FS_LOG1_ERR, 595 BTRFS_FS_LOG2_ERR, 596 BTRFS_FS_QUOTA_OVERRIDE, 597 /* Used to record internally whether fs has been frozen */ 598 BTRFS_FS_FROZEN, 599 /* 600 * Indicate that balance has been set up from the ioctl and is in the 601 * main phase. The fs_info::balance_ctl is initialized. 602 */ 603 BTRFS_FS_BALANCE_RUNNING, 604 605 /* 606 * Indicate that relocation of a chunk has started, it's set per chunk 607 * and is toggled between chunks. 608 */ 609 BTRFS_FS_RELOC_RUNNING, 610 611 /* Indicate that the cleaner thread is awake and doing something. */ 612 BTRFS_FS_CLEANER_RUNNING, 613 614 /* 615 * The checksumming has an optimized version and is considered fast, 616 * so we don't need to offload checksums to workqueues. 617 */ 618 BTRFS_FS_CSUM_IMPL_FAST, 619 620 /* Indicate that the discard workqueue can service discards. */ 621 BTRFS_FS_DISCARD_RUNNING, 622 623 /* Indicate that we need to cleanup space cache v1 */ 624 BTRFS_FS_CLEANUP_SPACE_CACHE_V1, 625 626 /* Indicate that we can't trust the free space tree for caching yet */ 627 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, 628 629 /* Indicate whether there are any tree modification log users */ 630 BTRFS_FS_TREE_MOD_LOG_USERS, 631 632 /* Indicate that we want the transaction kthread to commit right now. */ 633 BTRFS_FS_COMMIT_TRANS, 634 635 /* Indicate we have half completed snapshot deletions pending. */ 636 BTRFS_FS_UNFINISHED_DROPS, 637 638#if BITS_PER_LONG == 32 639 /* Indicate if we have error/warn message printed on 32bit systems */ 640 BTRFS_FS_32BIT_ERROR, 641 BTRFS_FS_32BIT_WARN, 642#endif 643}; 644 645/* 646 * Exclusive operations (device replace, resize, device add/remove, balance) 647 */ 648enum btrfs_exclusive_operation { 649 BTRFS_EXCLOP_NONE, 650 BTRFS_EXCLOP_BALANCE_PAUSED, 651 BTRFS_EXCLOP_BALANCE, 652 BTRFS_EXCLOP_DEV_ADD, 653 BTRFS_EXCLOP_DEV_REMOVE, 654 BTRFS_EXCLOP_DEV_REPLACE, 655 BTRFS_EXCLOP_RESIZE, 656 BTRFS_EXCLOP_SWAP_ACTIVATE, 657}; 658 659struct btrfs_fs_info { 660 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 661 unsigned long flags; 662 struct btrfs_root *tree_root; 663 struct btrfs_root *chunk_root; 664 struct btrfs_root *dev_root; 665 struct btrfs_root *fs_root; 666 struct btrfs_root *quota_root; 667 struct btrfs_root *uuid_root; 668 struct btrfs_root *data_reloc_root; 669 struct btrfs_root *block_group_root; 670 671 /* the log root tree is a directory of all the other log roots */ 672 struct btrfs_root *log_root_tree; 673 674 /* The tree that holds the global roots (csum, extent, etc) */ 675 rwlock_t global_root_lock; 676 struct rb_root global_root_tree; 677 678 /* The xarray that holds all the FS roots */ 679 spinlock_t fs_roots_lock; 680 struct xarray fs_roots; 681 682 /* block group cache stuff */ 683 rwlock_t block_group_cache_lock; 684 struct rb_root_cached block_group_cache_tree; 685 686 /* keep track of unallocated space */ 687 atomic64_t free_chunk_space; 688 689 /* Track ranges which are used by log trees blocks/logged data extents */ 690 struct extent_io_tree excluded_extents; 691 692 /* logical->physical extent mapping */ 693 struct extent_map_tree mapping_tree; 694 695 /* 696 * block reservation for extent, checksum, root tree and 697 * delayed dir index item 698 */ 699 struct btrfs_block_rsv global_block_rsv; 700 /* block reservation for metadata operations */ 701 struct btrfs_block_rsv trans_block_rsv; 702 /* block reservation for chunk tree */ 703 struct btrfs_block_rsv chunk_block_rsv; 704 /* block reservation for delayed operations */ 705 struct btrfs_block_rsv delayed_block_rsv; 706 /* block reservation for delayed refs */ 707 struct btrfs_block_rsv delayed_refs_rsv; 708 709 struct btrfs_block_rsv empty_block_rsv; 710 711 u64 generation; 712 u64 last_trans_committed; 713 /* 714 * Generation of the last transaction used for block group relocation 715 * since the filesystem was last mounted (or 0 if none happened yet). 716 * Must be written and read while holding btrfs_fs_info::commit_root_sem. 717 */ 718 u64 last_reloc_trans; 719 u64 avg_delayed_ref_runtime; 720 721 /* 722 * this is updated to the current trans every time a full commit 723 * is required instead of the faster short fsync log commits 724 */ 725 u64 last_trans_log_full_commit; 726 unsigned long mount_opt; 727 /* 728 * Track requests for actions that need to be done during transaction 729 * commit (like for some mount options). 730 */ 731 unsigned long pending_changes; 732 unsigned long compress_type:4; 733 unsigned int compress_level; 734 u32 commit_interval; 735 /* 736 * It is a suggestive number, the read side is safe even it gets a 737 * wrong number because we will write out the data into a regular 738 * extent. The write side(mount/remount) is under ->s_umount lock, 739 * so it is also safe. 740 */ 741 u64 max_inline; 742 743 struct btrfs_transaction *running_transaction; 744 wait_queue_head_t transaction_throttle; 745 wait_queue_head_t transaction_wait; 746 wait_queue_head_t transaction_blocked_wait; 747 wait_queue_head_t async_submit_wait; 748 749 /* 750 * Used to protect the incompat_flags, compat_flags, compat_ro_flags 751 * when they are updated. 752 * 753 * Because we do not clear the flags for ever, so we needn't use 754 * the lock on the read side. 755 * 756 * We also needn't use the lock when we mount the fs, because 757 * there is no other task which will update the flag. 758 */ 759 spinlock_t super_lock; 760 struct btrfs_super_block *super_copy; 761 struct btrfs_super_block *super_for_commit; 762 struct super_block *sb; 763 struct inode *btree_inode; 764 struct mutex tree_log_mutex; 765 struct mutex transaction_kthread_mutex; 766 struct mutex cleaner_mutex; 767 struct mutex chunk_mutex; 768 769 /* 770 * this is taken to make sure we don't set block groups ro after 771 * the free space cache has been allocated on them 772 */ 773 struct mutex ro_block_group_mutex; 774 775 /* this is used during read/modify/write to make sure 776 * no two ios are trying to mod the same stripe at the same 777 * time 778 */ 779 struct btrfs_stripe_hash_table *stripe_hash_table; 780 781 /* 782 * this protects the ordered operations list only while we are 783 * processing all of the entries on it. This way we make 784 * sure the commit code doesn't find the list temporarily empty 785 * because another function happens to be doing non-waiting preflush 786 * before jumping into the main commit. 787 */ 788 struct mutex ordered_operations_mutex; 789 790 struct rw_semaphore commit_root_sem; 791 792 struct rw_semaphore cleanup_work_sem; 793 794 struct rw_semaphore subvol_sem; 795 796 spinlock_t trans_lock; 797 /* 798 * the reloc mutex goes with the trans lock, it is taken 799 * during commit to protect us from the relocation code 800 */ 801 struct mutex reloc_mutex; 802 803 struct list_head trans_list; 804 struct list_head dead_roots; 805 struct list_head caching_block_groups; 806 807 spinlock_t delayed_iput_lock; 808 struct list_head delayed_iputs; 809 atomic_t nr_delayed_iputs; 810 wait_queue_head_t delayed_iputs_wait; 811 812 atomic64_t tree_mod_seq; 813 814 /* this protects tree_mod_log and tree_mod_seq_list */ 815 rwlock_t tree_mod_log_lock; 816 struct rb_root tree_mod_log; 817 struct list_head tree_mod_seq_list; 818 819 atomic_t async_delalloc_pages; 820 821 /* 822 * this is used to protect the following list -- ordered_roots. 823 */ 824 spinlock_t ordered_root_lock; 825 826 /* 827 * all fs/file tree roots in which there are data=ordered extents 828 * pending writeback are added into this list. 829 * 830 * these can span multiple transactions and basically include 831 * every dirty data page that isn't from nodatacow 832 */ 833 struct list_head ordered_roots; 834 835 struct mutex delalloc_root_mutex; 836 spinlock_t delalloc_root_lock; 837 /* all fs/file tree roots that have delalloc inodes. */ 838 struct list_head delalloc_roots; 839 840 /* 841 * there is a pool of worker threads for checksumming during writes 842 * and a pool for checksumming after reads. This is because readers 843 * can run with FS locks held, and the writers may be waiting for 844 * those locks. We don't want ordering in the pending list to cause 845 * deadlocks, and so the two are serviced separately. 846 * 847 * A third pool does submit_bio to avoid deadlocking with the other 848 * two 849 */ 850 struct btrfs_workqueue *workers; 851 struct btrfs_workqueue *hipri_workers; 852 struct btrfs_workqueue *delalloc_workers; 853 struct btrfs_workqueue *flush_workers; 854 struct btrfs_workqueue *endio_workers; 855 struct btrfs_workqueue *endio_meta_workers; 856 struct btrfs_workqueue *endio_raid56_workers; 857 struct workqueue_struct *rmw_workers; 858 struct btrfs_workqueue *endio_meta_write_workers; 859 struct btrfs_workqueue *endio_write_workers; 860 struct btrfs_workqueue *endio_freespace_worker; 861 struct btrfs_workqueue *caching_workers; 862 863 /* 864 * fixup workers take dirty pages that didn't properly go through 865 * the cow mechanism and make them safe to write. It happens 866 * for the sys_munmap function call path 867 */ 868 struct btrfs_workqueue *fixup_workers; 869 struct btrfs_workqueue *delayed_workers; 870 871 struct task_struct *transaction_kthread; 872 struct task_struct *cleaner_kthread; 873 u32 thread_pool_size; 874 875 struct kobject *space_info_kobj; 876 struct kobject *qgroups_kobj; 877 878 /* used to keep from writing metadata until there is a nice batch */ 879 struct percpu_counter dirty_metadata_bytes; 880 struct percpu_counter delalloc_bytes; 881 struct percpu_counter ordered_bytes; 882 s32 dirty_metadata_batch; 883 s32 delalloc_batch; 884 885 struct list_head dirty_cowonly_roots; 886 887 struct btrfs_fs_devices *fs_devices; 888 889 /* 890 * The space_info list is effectively read only after initial 891 * setup. It is populated at mount time and cleaned up after 892 * all block groups are removed. RCU is used to protect it. 893 */ 894 struct list_head space_info; 895 896 struct btrfs_space_info *data_sinfo; 897 898 struct reloc_control *reloc_ctl; 899 900 /* data_alloc_cluster is only used in ssd_spread mode */ 901 struct btrfs_free_cluster data_alloc_cluster; 902 903 /* all metadata allocations go through this cluster */ 904 struct btrfs_free_cluster meta_alloc_cluster; 905 906 /* auto defrag inodes go here */ 907 spinlock_t defrag_inodes_lock; 908 struct rb_root defrag_inodes; 909 atomic_t defrag_running; 910 911 /* Used to protect avail_{data, metadata, system}_alloc_bits */ 912 seqlock_t profiles_lock; 913 /* 914 * these three are in extended format (availability of single 915 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other 916 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits) 917 */ 918 u64 avail_data_alloc_bits; 919 u64 avail_metadata_alloc_bits; 920 u64 avail_system_alloc_bits; 921 922 /* restriper state */ 923 spinlock_t balance_lock; 924 struct mutex balance_mutex; 925 atomic_t balance_pause_req; 926 atomic_t balance_cancel_req; 927 struct btrfs_balance_control *balance_ctl; 928 wait_queue_head_t balance_wait_q; 929 930 /* Cancellation requests for chunk relocation */ 931 atomic_t reloc_cancel_req; 932 933 u32 data_chunk_allocations; 934 u32 metadata_ratio; 935 936 void *bdev_holder; 937 938 /* private scrub information */ 939 struct mutex scrub_lock; 940 atomic_t scrubs_running; 941 atomic_t scrub_pause_req; 942 atomic_t scrubs_paused; 943 atomic_t scrub_cancel_req; 944 wait_queue_head_t scrub_pause_wait; 945 /* 946 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not 947 * running. 948 */ 949 refcount_t scrub_workers_refcnt; 950 struct workqueue_struct *scrub_workers; 951 struct workqueue_struct *scrub_wr_completion_workers; 952 struct workqueue_struct *scrub_parity_workers; 953 struct btrfs_subpage_info *subpage_info; 954 955 struct btrfs_discard_ctl discard_ctl; 956 957#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 958 u32 check_integrity_print_mask; 959#endif 960 /* is qgroup tracking in a consistent state? */ 961 u64 qgroup_flags; 962 963 /* holds configuration and tracking. Protected by qgroup_lock */ 964 struct rb_root qgroup_tree; 965 spinlock_t qgroup_lock; 966 967 /* 968 * used to avoid frequently calling ulist_alloc()/ulist_free() 969 * when doing qgroup accounting, it must be protected by qgroup_lock. 970 */ 971 struct ulist *qgroup_ulist; 972 973 /* 974 * Protect user change for quota operations. If a transaction is needed, 975 * it must be started before locking this lock. 976 */ 977 struct mutex qgroup_ioctl_lock; 978 979 /* list of dirty qgroups to be written at next commit */ 980 struct list_head dirty_qgroups; 981 982 /* used by qgroup for an efficient tree traversal */ 983 u64 qgroup_seq; 984 985 /* qgroup rescan items */ 986 struct mutex qgroup_rescan_lock; /* protects the progress item */ 987 struct btrfs_key qgroup_rescan_progress; 988 struct btrfs_workqueue *qgroup_rescan_workers; 989 struct completion qgroup_rescan_completion; 990 struct btrfs_work qgroup_rescan_work; 991 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */ 992 993 /* filesystem state */ 994 unsigned long fs_state; 995 996 struct btrfs_delayed_root *delayed_root; 997 998 /* Extent buffer xarray */ 999 spinlock_t buffer_lock; 1000 /* Entries are eb->start / sectorsize */ 1001 struct xarray extent_buffers; 1002 1003 /* next backup root to be overwritten */ 1004 int backup_root_index; 1005 1006 /* device replace state */ 1007 struct btrfs_dev_replace dev_replace; 1008 1009 struct semaphore uuid_tree_rescan_sem; 1010 1011 /* Used to reclaim the metadata space in the background. */ 1012 struct work_struct async_reclaim_work; 1013 struct work_struct async_data_reclaim_work; 1014 struct work_struct preempt_reclaim_work; 1015 1016 /* Reclaim partially filled block groups in the background */ 1017 struct work_struct reclaim_bgs_work; 1018 struct list_head reclaim_bgs; 1019 int bg_reclaim_threshold; 1020 1021 spinlock_t unused_bgs_lock; 1022 struct list_head unused_bgs; 1023 struct mutex unused_bg_unpin_mutex; 1024 /* Protect block groups that are going to be deleted */ 1025 struct mutex reclaim_bgs_lock; 1026 1027 /* Cached block sizes */ 1028 u32 nodesize; 1029 u32 sectorsize; 1030 /* ilog2 of sectorsize, use to avoid 64bit division */ 1031 u32 sectorsize_bits; 1032 u32 csum_size; 1033 u32 csums_per_leaf; 1034 u32 stripesize; 1035 1036 /* Block groups and devices containing active swapfiles. */ 1037 spinlock_t swapfile_pins_lock; 1038 struct rb_root swapfile_pins; 1039 1040 struct crypto_shash *csum_shash; 1041 1042 /* Type of exclusive operation running, protected by super_lock */ 1043 enum btrfs_exclusive_operation exclusive_operation; 1044 1045 /* 1046 * Zone size > 0 when in ZONED mode, otherwise it's used for a check 1047 * if the mode is enabled 1048 */ 1049 u64 zone_size; 1050 1051 struct mutex zoned_meta_io_lock; 1052 spinlock_t treelog_bg_lock; 1053 u64 treelog_bg; 1054 1055 /* 1056 * Start of the dedicated data relocation block group, protected by 1057 * relocation_bg_lock. 1058 */ 1059 spinlock_t relocation_bg_lock; 1060 u64 data_reloc_bg; 1061 struct mutex zoned_data_reloc_io_lock; 1062 1063 u64 nr_global_roots; 1064 1065 spinlock_t zone_active_bgs_lock; 1066 struct list_head zone_active_bgs; 1067 1068#ifdef CONFIG_BTRFS_FS_REF_VERIFY 1069 spinlock_t ref_verify_lock; 1070 struct rb_root block_tree; 1071#endif 1072 1073#ifdef CONFIG_BTRFS_DEBUG 1074 struct kobject *debug_kobj; 1075 struct kobject *discard_debug_kobj; 1076 struct list_head allocated_roots; 1077 1078 spinlock_t eb_leak_lock; 1079 struct list_head allocated_ebs; 1080#endif 1081}; 1082 1083static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb) 1084{ 1085 return sb->s_fs_info; 1086} 1087 1088/* 1089 * The state of btrfs root 1090 */ 1091enum { 1092 /* 1093 * btrfs_record_root_in_trans is a multi-step process, and it can race 1094 * with the balancing code. But the race is very small, and only the 1095 * first time the root is added to each transaction. So IN_TRANS_SETUP 1096 * is used to tell us when more checks are required 1097 */ 1098 BTRFS_ROOT_IN_TRANS_SETUP, 1099 1100 /* 1101 * Set if tree blocks of this root can be shared by other roots. 1102 * Only subvolume trees and their reloc trees have this bit set. 1103 * Conflicts with TRACK_DIRTY bit. 1104 * 1105 * This affects two things: 1106 * 1107 * - How balance works 1108 * For shareable roots, we need to use reloc tree and do path 1109 * replacement for balance, and need various pre/post hooks for 1110 * snapshot creation to handle them. 1111 * 1112 * While for non-shareable trees, we just simply do a tree search 1113 * with COW. 1114 * 1115 * - How dirty roots are tracked 1116 * For shareable roots, btrfs_record_root_in_trans() is needed to 1117 * track them, while non-subvolume roots have TRACK_DIRTY bit, they 1118 * don't need to set this manually. 1119 */ 1120 BTRFS_ROOT_SHAREABLE, 1121 BTRFS_ROOT_TRACK_DIRTY, 1122 /* The root is tracked in fs_info::fs_roots */ 1123 BTRFS_ROOT_REGISTERED, 1124 BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 1125 BTRFS_ROOT_DEFRAG_RUNNING, 1126 BTRFS_ROOT_FORCE_COW, 1127 BTRFS_ROOT_MULTI_LOG_TASKS, 1128 BTRFS_ROOT_DIRTY, 1129 BTRFS_ROOT_DELETING, 1130 1131 /* 1132 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan 1133 * 1134 * Set for the subvolume tree owning the reloc tree. 1135 */ 1136 BTRFS_ROOT_DEAD_RELOC_TREE, 1137 /* Mark dead root stored on device whose cleanup needs to be resumed */ 1138 BTRFS_ROOT_DEAD_TREE, 1139 /* The root has a log tree. Used for subvolume roots and the tree root. */ 1140 BTRFS_ROOT_HAS_LOG_TREE, 1141 /* Qgroup flushing is in progress */ 1142 BTRFS_ROOT_QGROUP_FLUSHING, 1143 /* We started the orphan cleanup for this root. */ 1144 BTRFS_ROOT_ORPHAN_CLEANUP, 1145 /* This root has a drop operation that was started previously. */ 1146 BTRFS_ROOT_UNFINISHED_DROP, 1147}; 1148 1149static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info) 1150{ 1151 clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags); 1152} 1153 1154/* 1155 * Record swapped tree blocks of a subvolume tree for delayed subtree trace 1156 * code. For detail check comment in fs/btrfs/qgroup.c. 1157 */ 1158struct btrfs_qgroup_swapped_blocks { 1159 spinlock_t lock; 1160 /* RM_EMPTY_ROOT() of above blocks[] */ 1161 bool swapped; 1162 struct rb_root blocks[BTRFS_MAX_LEVEL]; 1163}; 1164 1165/* 1166 * in ram representation of the tree. extent_root is used for all allocations 1167 * and for the extent tree extent_root root. 1168 */ 1169struct btrfs_root { 1170 struct rb_node rb_node; 1171 1172 struct extent_buffer *node; 1173 1174 struct extent_buffer *commit_root; 1175 struct btrfs_root *log_root; 1176 struct btrfs_root *reloc_root; 1177 1178 unsigned long state; 1179 struct btrfs_root_item root_item; 1180 struct btrfs_key root_key; 1181 struct btrfs_fs_info *fs_info; 1182 struct extent_io_tree dirty_log_pages; 1183 1184 struct mutex objectid_mutex; 1185 1186 spinlock_t accounting_lock; 1187 struct btrfs_block_rsv *block_rsv; 1188 1189 struct mutex log_mutex; 1190 wait_queue_head_t log_writer_wait; 1191 wait_queue_head_t log_commit_wait[2]; 1192 struct list_head log_ctxs[2]; 1193 /* Used only for log trees of subvolumes, not for the log root tree */ 1194 atomic_t log_writers; 1195 atomic_t log_commit[2]; 1196 /* Used only for log trees of subvolumes, not for the log root tree */ 1197 atomic_t log_batch; 1198 int log_transid; 1199 /* No matter the commit succeeds or not*/ 1200 int log_transid_committed; 1201 /* Just be updated when the commit succeeds. */ 1202 int last_log_commit; 1203 pid_t log_start_pid; 1204 1205 u64 last_trans; 1206 1207 u32 type; 1208 1209 u64 free_objectid; 1210 1211 struct btrfs_key defrag_progress; 1212 struct btrfs_key defrag_max; 1213 1214 /* The dirty list is only used by non-shareable roots */ 1215 struct list_head dirty_list; 1216 1217 struct list_head root_list; 1218 1219 spinlock_t log_extents_lock[2]; 1220 struct list_head logged_list[2]; 1221 1222 spinlock_t inode_lock; 1223 /* red-black tree that keeps track of in-memory inodes */ 1224 struct rb_root inode_tree; 1225 1226 /* 1227 * Xarray that keeps track of delayed nodes of every inode, protected 1228 * by inode_lock 1229 */ 1230 struct xarray delayed_nodes; 1231 /* 1232 * right now this just gets used so that a root has its own devid 1233 * for stat. It may be used for more later 1234 */ 1235 dev_t anon_dev; 1236 1237 spinlock_t root_item_lock; 1238 refcount_t refs; 1239 1240 struct mutex delalloc_mutex; 1241 spinlock_t delalloc_lock; 1242 /* 1243 * all of the inodes that have delalloc bytes. It is possible for 1244 * this list to be empty even when there is still dirty data=ordered 1245 * extents waiting to finish IO. 1246 */ 1247 struct list_head delalloc_inodes; 1248 struct list_head delalloc_root; 1249 u64 nr_delalloc_inodes; 1250 1251 struct mutex ordered_extent_mutex; 1252 /* 1253 * this is used by the balancing code to wait for all the pending 1254 * ordered extents 1255 */ 1256 spinlock_t ordered_extent_lock; 1257 1258 /* 1259 * all of the data=ordered extents pending writeback 1260 * these can span multiple transactions and basically include 1261 * every dirty data page that isn't from nodatacow 1262 */ 1263 struct list_head ordered_extents; 1264 struct list_head ordered_root; 1265 u64 nr_ordered_extents; 1266 1267 /* 1268 * Not empty if this subvolume root has gone through tree block swap 1269 * (relocation) 1270 * 1271 * Will be used by reloc_control::dirty_subvol_roots. 1272 */ 1273 struct list_head reloc_dirty_list; 1274 1275 /* 1276 * Number of currently running SEND ioctls to prevent 1277 * manipulation with the read-only status via SUBVOL_SETFLAGS 1278 */ 1279 int send_in_progress; 1280 /* 1281 * Number of currently running deduplication operations that have a 1282 * destination inode belonging to this root. Protected by the lock 1283 * root_item_lock. 1284 */ 1285 int dedupe_in_progress; 1286 /* For exclusion of snapshot creation and nocow writes */ 1287 struct btrfs_drew_lock snapshot_lock; 1288 1289 atomic_t snapshot_force_cow; 1290 1291 /* For qgroup metadata reserved space */ 1292 spinlock_t qgroup_meta_rsv_lock; 1293 u64 qgroup_meta_rsv_pertrans; 1294 u64 qgroup_meta_rsv_prealloc; 1295 wait_queue_head_t qgroup_flush_wait; 1296 1297 /* Number of active swapfiles */ 1298 atomic_t nr_swapfiles; 1299 1300 /* Record pairs of swapped blocks for qgroup */ 1301 struct btrfs_qgroup_swapped_blocks swapped_blocks; 1302 1303 /* Used only by log trees, when logging csum items */ 1304 struct extent_io_tree log_csum_range; 1305 1306#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1307 u64 alloc_bytenr; 1308#endif 1309 1310#ifdef CONFIG_BTRFS_DEBUG 1311 struct list_head leak_list; 1312#endif 1313}; 1314 1315/* 1316 * Structure that conveys information about an extent that is going to replace 1317 * all the extents in a file range. 1318 */ 1319struct btrfs_replace_extent_info { 1320 u64 disk_offset; 1321 u64 disk_len; 1322 u64 data_offset; 1323 u64 data_len; 1324 u64 file_offset; 1325 /* Pointer to a file extent item of type regular or prealloc. */ 1326 char *extent_buf; 1327 /* 1328 * Set to true when attempting to replace a file range with a new extent 1329 * described by this structure, set to false when attempting to clone an 1330 * existing extent into a file range. 1331 */ 1332 bool is_new_extent; 1333 /* Indicate if we should update the inode's mtime and ctime. */ 1334 bool update_times; 1335 /* Meaningful only if is_new_extent is true. */ 1336 int qgroup_reserved; 1337 /* 1338 * Meaningful only if is_new_extent is true. 1339 * Used to track how many extent items we have already inserted in a 1340 * subvolume tree that refer to the extent described by this structure, 1341 * so that we know when to create a new delayed ref or update an existing 1342 * one. 1343 */ 1344 int insertions; 1345}; 1346 1347/* Arguments for btrfs_drop_extents() */ 1348struct btrfs_drop_extents_args { 1349 /* Input parameters */ 1350 1351 /* 1352 * If NULL, btrfs_drop_extents() will allocate and free its own path. 1353 * If 'replace_extent' is true, this must not be NULL. Also the path 1354 * is always released except if 'replace_extent' is true and 1355 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case 1356 * the path is kept locked. 1357 */ 1358 struct btrfs_path *path; 1359 /* Start offset of the range to drop extents from */ 1360 u64 start; 1361 /* End (exclusive, last byte + 1) of the range to drop extents from */ 1362 u64 end; 1363 /* If true drop all the extent maps in the range */ 1364 bool drop_cache; 1365 /* 1366 * If true it means we want to insert a new extent after dropping all 1367 * the extents in the range. If this is true, the 'extent_item_size' 1368 * parameter must be set as well and the 'extent_inserted' field will 1369 * be set to true by btrfs_drop_extents() if it could insert the new 1370 * extent. 1371 * Note: when this is set to true the path must not be NULL. 1372 */ 1373 bool replace_extent; 1374 /* 1375 * Used if 'replace_extent' is true. Size of the file extent item to 1376 * insert after dropping all existing extents in the range 1377 */ 1378 u32 extent_item_size; 1379 1380 /* Output parameters */ 1381 1382 /* 1383 * Set to the minimum between the input parameter 'end' and the end 1384 * (exclusive, last byte + 1) of the last dropped extent. This is always 1385 * set even if btrfs_drop_extents() returns an error. 1386 */ 1387 u64 drop_end; 1388 /* 1389 * The number of allocated bytes found in the range. This can be smaller 1390 * than the range's length when there are holes in the range. 1391 */ 1392 u64 bytes_found; 1393 /* 1394 * Only set if 'replace_extent' is true. Set to true if we were able 1395 * to insert a replacement extent after dropping all extents in the 1396 * range, otherwise set to false by btrfs_drop_extents(). 1397 * Also, if btrfs_drop_extents() has set this to true it means it 1398 * returned with the path locked, otherwise if it has set this to 1399 * false it has returned with the path released. 1400 */ 1401 bool extent_inserted; 1402}; 1403 1404struct btrfs_file_private { 1405 void *filldir_buf; 1406}; 1407 1408 1409static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) 1410{ 1411 1412 return info->nodesize - sizeof(struct btrfs_header); 1413} 1414 1415#define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items) 1416 1417static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) 1418{ 1419 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); 1420} 1421 1422static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) 1423{ 1424 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); 1425} 1426 1427#define BTRFS_FILE_EXTENT_INLINE_DATA_START \ 1428 (offsetof(struct btrfs_file_extent_item, disk_bytenr)) 1429static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info) 1430{ 1431 return BTRFS_MAX_ITEM_SIZE(info) - 1432 BTRFS_FILE_EXTENT_INLINE_DATA_START; 1433} 1434 1435static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) 1436{ 1437 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); 1438} 1439 1440/* 1441 * Flags for mount options. 1442 * 1443 * Note: don't forget to add new options to btrfs_show_options() 1444 */ 1445enum { 1446 BTRFS_MOUNT_NODATASUM = (1UL << 0), 1447 BTRFS_MOUNT_NODATACOW = (1UL << 1), 1448 BTRFS_MOUNT_NOBARRIER = (1UL << 2), 1449 BTRFS_MOUNT_SSD = (1UL << 3), 1450 BTRFS_MOUNT_DEGRADED = (1UL << 4), 1451 BTRFS_MOUNT_COMPRESS = (1UL << 5), 1452 BTRFS_MOUNT_NOTREELOG = (1UL << 6), 1453 BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7), 1454 BTRFS_MOUNT_SSD_SPREAD = (1UL << 8), 1455 BTRFS_MOUNT_NOSSD = (1UL << 9), 1456 BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10), 1457 BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11), 1458 BTRFS_MOUNT_SPACE_CACHE = (1UL << 12), 1459 BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13), 1460 BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14), 1461 BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15), 1462 BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16), 1463 BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17), 1464 BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18), 1465 BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19), 1466 BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20), 1467 BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21), 1468 BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22), 1469 BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23), 1470 BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24), 1471 BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25), 1472 BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26), 1473 BTRFS_MOUNT_REF_VERIFY = (1UL << 27), 1474 BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28), 1475 BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29), 1476 BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30), 1477}; 1478 1479#define BTRFS_DEFAULT_COMMIT_INTERVAL (30) 1480#define BTRFS_DEFAULT_MAX_INLINE (2048) 1481 1482#define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) 1483#define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) 1484#define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt) 1485#define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \ 1486 BTRFS_MOUNT_##opt) 1487 1488#define btrfs_set_and_info(fs_info, opt, fmt, args...) \ 1489do { \ 1490 if (!btrfs_test_opt(fs_info, opt)) \ 1491 btrfs_info(fs_info, fmt, ##args); \ 1492 btrfs_set_opt(fs_info->mount_opt, opt); \ 1493} while (0) 1494 1495#define btrfs_clear_and_info(fs_info, opt, fmt, args...) \ 1496do { \ 1497 if (btrfs_test_opt(fs_info, opt)) \ 1498 btrfs_info(fs_info, fmt, ##args); \ 1499 btrfs_clear_opt(fs_info->mount_opt, opt); \ 1500} while (0) 1501 1502/* 1503 * Requests for changes that need to be done during transaction commit. 1504 * 1505 * Internal mount options that are used for special handling of the real 1506 * mount options (eg. cannot be set during remount and have to be set during 1507 * transaction commit) 1508 */ 1509 1510#define BTRFS_PENDING_COMMIT (0) 1511 1512#define btrfs_test_pending(info, opt) \ 1513 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1514#define btrfs_set_pending(info, opt) \ 1515 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1516#define btrfs_clear_pending(info, opt) \ 1517 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1518 1519/* 1520 * Helpers for setting pending mount option changes. 1521 * 1522 * Expects corresponding macros 1523 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name 1524 */ 1525#define btrfs_set_pending_and_info(info, opt, fmt, args...) \ 1526do { \ 1527 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1528 btrfs_info((info), fmt, ##args); \ 1529 btrfs_set_pending((info), SET_##opt); \ 1530 btrfs_clear_pending((info), CLEAR_##opt); \ 1531 } \ 1532} while(0) 1533 1534#define btrfs_clear_pending_and_info(info, opt, fmt, args...) \ 1535do { \ 1536 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1537 btrfs_info((info), fmt, ##args); \ 1538 btrfs_set_pending((info), CLEAR_##opt); \ 1539 btrfs_clear_pending((info), SET_##opt); \ 1540 } \ 1541} while(0) 1542 1543/* 1544 * Inode flags 1545 */ 1546#define BTRFS_INODE_NODATASUM (1U << 0) 1547#define BTRFS_INODE_NODATACOW (1U << 1) 1548#define BTRFS_INODE_READONLY (1U << 2) 1549#define BTRFS_INODE_NOCOMPRESS (1U << 3) 1550#define BTRFS_INODE_PREALLOC (1U << 4) 1551#define BTRFS_INODE_SYNC (1U << 5) 1552#define BTRFS_INODE_IMMUTABLE (1U << 6) 1553#define BTRFS_INODE_APPEND (1U << 7) 1554#define BTRFS_INODE_NODUMP (1U << 8) 1555#define BTRFS_INODE_NOATIME (1U << 9) 1556#define BTRFS_INODE_DIRSYNC (1U << 10) 1557#define BTRFS_INODE_COMPRESS (1U << 11) 1558 1559#define BTRFS_INODE_ROOT_ITEM_INIT (1U << 31) 1560 1561#define BTRFS_INODE_FLAG_MASK \ 1562 (BTRFS_INODE_NODATASUM | \ 1563 BTRFS_INODE_NODATACOW | \ 1564 BTRFS_INODE_READONLY | \ 1565 BTRFS_INODE_NOCOMPRESS | \ 1566 BTRFS_INODE_PREALLOC | \ 1567 BTRFS_INODE_SYNC | \ 1568 BTRFS_INODE_IMMUTABLE | \ 1569 BTRFS_INODE_APPEND | \ 1570 BTRFS_INODE_NODUMP | \ 1571 BTRFS_INODE_NOATIME | \ 1572 BTRFS_INODE_DIRSYNC | \ 1573 BTRFS_INODE_COMPRESS | \ 1574 BTRFS_INODE_ROOT_ITEM_INIT) 1575 1576#define BTRFS_INODE_RO_VERITY (1U << 0) 1577 1578#define BTRFS_INODE_RO_FLAG_MASK (BTRFS_INODE_RO_VERITY) 1579 1580struct btrfs_map_token { 1581 struct extent_buffer *eb; 1582 char *kaddr; 1583 unsigned long offset; 1584}; 1585 1586#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \ 1587 ((bytes) >> (fs_info)->sectorsize_bits) 1588 1589static inline void btrfs_init_map_token(struct btrfs_map_token *token, 1590 struct extent_buffer *eb) 1591{ 1592 token->eb = eb; 1593 token->kaddr = page_address(eb->pages[0]); 1594 token->offset = 0; 1595} 1596 1597/* some macros to generate set/get functions for the struct fields. This 1598 * assumes there is a lefoo_to_cpu for every type, so lets make a simple 1599 * one for u8: 1600 */ 1601#define le8_to_cpu(v) (v) 1602#define cpu_to_le8(v) (v) 1603#define __le8 u8 1604 1605static inline u8 get_unaligned_le8(const void *p) 1606{ 1607 return *(u8 *)p; 1608} 1609 1610static inline void put_unaligned_le8(u8 val, void *p) 1611{ 1612 *(u8 *)p = val; 1613} 1614 1615#define read_eb_member(eb, ptr, type, member, result) (\ 1616 read_extent_buffer(eb, (char *)(result), \ 1617 ((unsigned long)(ptr)) + \ 1618 offsetof(type, member), \ 1619 sizeof(((type *)0)->member))) 1620 1621#define write_eb_member(eb, ptr, type, member, result) (\ 1622 write_extent_buffer(eb, (char *)(result), \ 1623 ((unsigned long)(ptr)) + \ 1624 offsetof(type, member), \ 1625 sizeof(((type *)0)->member))) 1626 1627#define DECLARE_BTRFS_SETGET_BITS(bits) \ 1628u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \ 1629 const void *ptr, unsigned long off); \ 1630void btrfs_set_token_##bits(struct btrfs_map_token *token, \ 1631 const void *ptr, unsigned long off, \ 1632 u##bits val); \ 1633u##bits btrfs_get_##bits(const struct extent_buffer *eb, \ 1634 const void *ptr, unsigned long off); \ 1635void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \ 1636 unsigned long off, u##bits val); 1637 1638DECLARE_BTRFS_SETGET_BITS(8) 1639DECLARE_BTRFS_SETGET_BITS(16) 1640DECLARE_BTRFS_SETGET_BITS(32) 1641DECLARE_BTRFS_SETGET_BITS(64) 1642 1643#define BTRFS_SETGET_FUNCS(name, type, member, bits) \ 1644static inline u##bits btrfs_##name(const struct extent_buffer *eb, \ 1645 const type *s) \ 1646{ \ 1647 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1648 return btrfs_get_##bits(eb, s, offsetof(type, member)); \ 1649} \ 1650static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \ 1651 u##bits val) \ 1652{ \ 1653 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1654 btrfs_set_##bits(eb, s, offsetof(type, member), val); \ 1655} \ 1656static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \ 1657 const type *s) \ 1658{ \ 1659 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1660 return btrfs_get_token_##bits(token, s, offsetof(type, member));\ 1661} \ 1662static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\ 1663 type *s, u##bits val) \ 1664{ \ 1665 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1666 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \ 1667} 1668 1669#define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \ 1670static inline u##bits btrfs_##name(const struct extent_buffer *eb) \ 1671{ \ 1672 const type *p = page_address(eb->pages[0]) + \ 1673 offset_in_page(eb->start); \ 1674 return get_unaligned_le##bits(&p->member); \ 1675} \ 1676static inline void btrfs_set_##name(const struct extent_buffer *eb, \ 1677 u##bits val) \ 1678{ \ 1679 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \ 1680 put_unaligned_le##bits(val, &p->member); \ 1681} 1682 1683#define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ 1684static inline u##bits btrfs_##name(const type *s) \ 1685{ \ 1686 return get_unaligned_le##bits(&s->member); \ 1687} \ 1688static inline void btrfs_set_##name(type *s, u##bits val) \ 1689{ \ 1690 put_unaligned_le##bits(val, &s->member); \ 1691} 1692 1693static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb, 1694 struct btrfs_dev_item *s) 1695{ 1696 static_assert(sizeof(u64) == 1697 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1698 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item, 1699 total_bytes)); 1700} 1701static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb, 1702 struct btrfs_dev_item *s, 1703 u64 val) 1704{ 1705 static_assert(sizeof(u64) == 1706 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1707 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize)); 1708 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val); 1709} 1710 1711 1712BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64); 1713BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64); 1714BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32); 1715BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32); 1716BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item, 1717 start_offset, 64); 1718BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32); 1719BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64); 1720BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32); 1721BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8); 1722BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8); 1723BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64); 1724 1725BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64); 1726BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item, 1727 total_bytes, 64); 1728BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item, 1729 bytes_used, 64); 1730BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item, 1731 io_align, 32); 1732BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item, 1733 io_width, 32); 1734BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item, 1735 sector_size, 32); 1736BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64); 1737BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item, 1738 dev_group, 32); 1739BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item, 1740 seek_speed, 8); 1741BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item, 1742 bandwidth, 8); 1743BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item, 1744 generation, 64); 1745 1746static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d) 1747{ 1748 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid); 1749} 1750 1751static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d) 1752{ 1753 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid); 1754} 1755 1756BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64); 1757BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64); 1758BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); 1759BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32); 1760BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32); 1761BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32); 1762BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64); 1763BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); 1764BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); 1765BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64); 1766BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64); 1767 1768static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s) 1769{ 1770 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid); 1771} 1772 1773BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64); 1774BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64); 1775BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk, 1776 stripe_len, 64); 1777BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk, 1778 io_align, 32); 1779BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk, 1780 io_width, 32); 1781BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk, 1782 sector_size, 32); 1783BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64); 1784BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk, 1785 num_stripes, 16); 1786BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk, 1787 sub_stripes, 16); 1788BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64); 1789BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64); 1790 1791static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c, 1792 int nr) 1793{ 1794 unsigned long offset = (unsigned long)c; 1795 offset += offsetof(struct btrfs_chunk, stripe); 1796 offset += nr * sizeof(struct btrfs_stripe); 1797 return (struct btrfs_stripe *)offset; 1798} 1799 1800static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr) 1801{ 1802 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr)); 1803} 1804 1805static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb, 1806 struct btrfs_chunk *c, int nr) 1807{ 1808 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr)); 1809} 1810 1811static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb, 1812 struct btrfs_chunk *c, int nr) 1813{ 1814 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr)); 1815} 1816 1817/* struct btrfs_block_group_item */ 1818BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item, 1819 used, 64); 1820BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item, 1821 used, 64); 1822BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid, 1823 struct btrfs_block_group_item, chunk_objectid, 64); 1824 1825BTRFS_SETGET_FUNCS(block_group_chunk_objectid, 1826 struct btrfs_block_group_item, chunk_objectid, 64); 1827BTRFS_SETGET_FUNCS(block_group_flags, 1828 struct btrfs_block_group_item, flags, 64); 1829BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags, 1830 struct btrfs_block_group_item, flags, 64); 1831 1832/* struct btrfs_free_space_info */ 1833BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info, 1834 extent_count, 32); 1835BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32); 1836 1837/* struct btrfs_inode_ref */ 1838BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); 1839BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64); 1840 1841/* struct btrfs_inode_extref */ 1842BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref, 1843 parent_objectid, 64); 1844BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref, 1845 name_len, 16); 1846BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64); 1847 1848/* struct btrfs_inode_item */ 1849BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); 1850BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64); 1851BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64); 1852BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64); 1853BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64); 1854BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); 1855BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); 1856BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); 1857BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); 1858BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); 1859BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64); 1860BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64); 1861BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 1862 generation, 64); 1863BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 1864 sequence, 64); 1865BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 1866 transid, 64); 1867BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 1868BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 1869 nbytes, 64); 1870BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 1871 block_group, 64); 1872BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 1873BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 1874BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 1875BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 1876BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 1877BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 1878BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64); 1879BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32); 1880BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 1881BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 1882 1883/* struct btrfs_dev_extent */ 1884BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent, 1885 chunk_tree, 64); 1886BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent, 1887 chunk_objectid, 64); 1888BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent, 1889 chunk_offset, 64); 1890BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64); 1891BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64); 1892BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item, 1893 generation, 64); 1894BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64); 1895 1896BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8); 1897 1898static inline void btrfs_tree_block_key(const struct extent_buffer *eb, 1899 struct btrfs_tree_block_info *item, 1900 struct btrfs_disk_key *key) 1901{ 1902 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1903} 1904 1905static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb, 1906 struct btrfs_tree_block_info *item, 1907 struct btrfs_disk_key *key) 1908{ 1909 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1910} 1911 1912BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref, 1913 root, 64); 1914BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref, 1915 objectid, 64); 1916BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref, 1917 offset, 64); 1918BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref, 1919 count, 32); 1920 1921BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref, 1922 count, 32); 1923 1924BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref, 1925 type, 8); 1926BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref, 1927 offset, 64); 1928 1929static inline u32 btrfs_extent_inline_ref_size(int type) 1930{ 1931 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1932 type == BTRFS_SHARED_BLOCK_REF_KEY) 1933 return sizeof(struct btrfs_extent_inline_ref); 1934 if (type == BTRFS_SHARED_DATA_REF_KEY) 1935 return sizeof(struct btrfs_shared_data_ref) + 1936 sizeof(struct btrfs_extent_inline_ref); 1937 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1938 return sizeof(struct btrfs_extent_data_ref) + 1939 offsetof(struct btrfs_extent_inline_ref, offset); 1940 return 0; 1941} 1942 1943/* struct btrfs_node */ 1944BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); 1945BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); 1946BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr, 1947 blockptr, 64); 1948BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr, 1949 generation, 64); 1950 1951static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr) 1952{ 1953 unsigned long ptr; 1954 ptr = offsetof(struct btrfs_node, ptrs) + 1955 sizeof(struct btrfs_key_ptr) * nr; 1956 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr); 1957} 1958 1959static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb, 1960 int nr, u64 val) 1961{ 1962 unsigned long ptr; 1963 ptr = offsetof(struct btrfs_node, ptrs) + 1964 sizeof(struct btrfs_key_ptr) * nr; 1965 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val); 1966} 1967 1968static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr) 1969{ 1970 unsigned long ptr; 1971 ptr = offsetof(struct btrfs_node, ptrs) + 1972 sizeof(struct btrfs_key_ptr) * nr; 1973 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr); 1974} 1975 1976static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb, 1977 int nr, u64 val) 1978{ 1979 unsigned long ptr; 1980 ptr = offsetof(struct btrfs_node, ptrs) + 1981 sizeof(struct btrfs_key_ptr) * nr; 1982 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val); 1983} 1984 1985static inline unsigned long btrfs_node_key_ptr_offset(int nr) 1986{ 1987 return offsetof(struct btrfs_node, ptrs) + 1988 sizeof(struct btrfs_key_ptr) * nr; 1989} 1990 1991void btrfs_node_key(const struct extent_buffer *eb, 1992 struct btrfs_disk_key *disk_key, int nr); 1993 1994static inline void btrfs_set_node_key(const struct extent_buffer *eb, 1995 struct btrfs_disk_key *disk_key, int nr) 1996{ 1997 unsigned long ptr; 1998 ptr = btrfs_node_key_ptr_offset(nr); 1999 write_eb_member(eb, (struct btrfs_key_ptr *)ptr, 2000 struct btrfs_key_ptr, key, disk_key); 2001} 2002 2003/* struct btrfs_item */ 2004BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32); 2005BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32); 2006BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32); 2007BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32); 2008 2009static inline unsigned long btrfs_item_nr_offset(int nr) 2010{ 2011 return offsetof(struct btrfs_leaf, items) + 2012 sizeof(struct btrfs_item) * nr; 2013} 2014 2015static inline struct btrfs_item *btrfs_item_nr(int nr) 2016{ 2017 return (struct btrfs_item *)btrfs_item_nr_offset(nr); 2018} 2019 2020#define BTRFS_ITEM_SETGET_FUNCS(member) \ 2021static inline u32 btrfs_item_##member(const struct extent_buffer *eb, \ 2022 int slot) \ 2023{ \ 2024 return btrfs_raw_item_##member(eb, btrfs_item_nr(slot)); \ 2025} \ 2026static inline void btrfs_set_item_##member(const struct extent_buffer *eb, \ 2027 int slot, u32 val) \ 2028{ \ 2029 btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val); \ 2030} \ 2031static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token, \ 2032 int slot) \ 2033{ \ 2034 struct btrfs_item *item = btrfs_item_nr(slot); \ 2035 return btrfs_token_raw_item_##member(token, item); \ 2036} \ 2037static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token, \ 2038 int slot, u32 val) \ 2039{ \ 2040 struct btrfs_item *item = btrfs_item_nr(slot); \ 2041 btrfs_set_token_raw_item_##member(token, item, val); \ 2042} 2043 2044BTRFS_ITEM_SETGET_FUNCS(offset) 2045BTRFS_ITEM_SETGET_FUNCS(size); 2046 2047static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr) 2048{ 2049 return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr); 2050} 2051 2052static inline void btrfs_item_key(const struct extent_buffer *eb, 2053 struct btrfs_disk_key *disk_key, int nr) 2054{ 2055 struct btrfs_item *item = btrfs_item_nr(nr); 2056 read_eb_member(eb, item, struct btrfs_item, key, disk_key); 2057} 2058 2059static inline void btrfs_set_item_key(struct extent_buffer *eb, 2060 struct btrfs_disk_key *disk_key, int nr) 2061{ 2062 struct btrfs_item *item = btrfs_item_nr(nr); 2063 write_eb_member(eb, item, struct btrfs_item, key, disk_key); 2064} 2065 2066BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64); 2067 2068/* 2069 * struct btrfs_root_ref 2070 */ 2071BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64); 2072BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64); 2073BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16); 2074 2075/* struct btrfs_dir_item */ 2076BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); 2077BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8); 2078BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); 2079BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64); 2080BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8); 2081BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item, 2082 data_len, 16); 2083BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item, 2084 name_len, 16); 2085BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item, 2086 transid, 64); 2087 2088static inline void btrfs_dir_item_key(const struct extent_buffer *eb, 2089 const struct btrfs_dir_item *item, 2090 struct btrfs_disk_key *key) 2091{ 2092 read_eb_member(eb, item, struct btrfs_dir_item, location, key); 2093} 2094 2095static inline void btrfs_set_dir_item_key(struct extent_buffer *eb, 2096 struct btrfs_dir_item *item, 2097 const struct btrfs_disk_key *key) 2098{ 2099 write_eb_member(eb, item, struct btrfs_dir_item, location, key); 2100} 2101 2102BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header, 2103 num_entries, 64); 2104BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header, 2105 num_bitmaps, 64); 2106BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header, 2107 generation, 64); 2108 2109static inline void btrfs_free_space_key(const struct extent_buffer *eb, 2110 const struct btrfs_free_space_header *h, 2111 struct btrfs_disk_key *key) 2112{ 2113 read_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2114} 2115 2116static inline void btrfs_set_free_space_key(struct extent_buffer *eb, 2117 struct btrfs_free_space_header *h, 2118 const struct btrfs_disk_key *key) 2119{ 2120 write_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2121} 2122 2123/* struct btrfs_disk_key */ 2124BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, 2125 objectid, 64); 2126BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); 2127BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); 2128 2129#ifdef __LITTLE_ENDIAN 2130 2131/* 2132 * Optimized helpers for little-endian architectures where CPU and on-disk 2133 * structures have the same endianness and we can skip conversions. 2134 */ 2135 2136static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key, 2137 const struct btrfs_disk_key *disk_key) 2138{ 2139 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key)); 2140} 2141 2142static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key, 2143 const struct btrfs_key *cpu_key) 2144{ 2145 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key)); 2146} 2147 2148static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2149 struct btrfs_key *cpu_key, int nr) 2150{ 2151 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2152 2153 btrfs_node_key(eb, disk_key, nr); 2154} 2155 2156static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2157 struct btrfs_key *cpu_key, int nr) 2158{ 2159 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2160 2161 btrfs_item_key(eb, disk_key, nr); 2162} 2163 2164static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2165 const struct btrfs_dir_item *item, 2166 struct btrfs_key *cpu_key) 2167{ 2168 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2169 2170 btrfs_dir_item_key(eb, item, disk_key); 2171} 2172 2173#else 2174 2175static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, 2176 const struct btrfs_disk_key *disk) 2177{ 2178 cpu->offset = le64_to_cpu(disk->offset); 2179 cpu->type = disk->type; 2180 cpu->objectid = le64_to_cpu(disk->objectid); 2181} 2182 2183static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, 2184 const struct btrfs_key *cpu) 2185{ 2186 disk->offset = cpu_to_le64(cpu->offset); 2187 disk->type = cpu->type; 2188 disk->objectid = cpu_to_le64(cpu->objectid); 2189} 2190 2191static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2192 struct btrfs_key *key, int nr) 2193{ 2194 struct btrfs_disk_key disk_key; 2195 btrfs_node_key(eb, &disk_key, nr); 2196 btrfs_disk_key_to_cpu(key, &disk_key); 2197} 2198 2199static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2200 struct btrfs_key *key, int nr) 2201{ 2202 struct btrfs_disk_key disk_key; 2203 btrfs_item_key(eb, &disk_key, nr); 2204 btrfs_disk_key_to_cpu(key, &disk_key); 2205} 2206 2207static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2208 const struct btrfs_dir_item *item, 2209 struct btrfs_key *key) 2210{ 2211 struct btrfs_disk_key disk_key; 2212 btrfs_dir_item_key(eb, item, &disk_key); 2213 btrfs_disk_key_to_cpu(key, &disk_key); 2214} 2215 2216#endif 2217 2218/* struct btrfs_header */ 2219BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); 2220BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header, 2221 generation, 64); 2222BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64); 2223BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32); 2224BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64); 2225BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8); 2226BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header, 2227 generation, 64); 2228BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64); 2229BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header, 2230 nritems, 32); 2231BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64); 2232 2233static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag) 2234{ 2235 return (btrfs_header_flags(eb) & flag) == flag; 2236} 2237 2238static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag) 2239{ 2240 u64 flags = btrfs_header_flags(eb); 2241 btrfs_set_header_flags(eb, flags | flag); 2242} 2243 2244static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag) 2245{ 2246 u64 flags = btrfs_header_flags(eb); 2247 btrfs_set_header_flags(eb, flags & ~flag); 2248} 2249 2250static inline int btrfs_header_backref_rev(const struct extent_buffer *eb) 2251{ 2252 u64 flags = btrfs_header_flags(eb); 2253 return flags >> BTRFS_BACKREF_REV_SHIFT; 2254} 2255 2256static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb, 2257 int rev) 2258{ 2259 u64 flags = btrfs_header_flags(eb); 2260 flags &= ~BTRFS_BACKREF_REV_MASK; 2261 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT; 2262 btrfs_set_header_flags(eb, flags); 2263} 2264 2265static inline int btrfs_is_leaf(const struct extent_buffer *eb) 2266{ 2267 return btrfs_header_level(eb) == 0; 2268} 2269 2270/* struct btrfs_root_item */ 2271BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item, 2272 generation, 64); 2273BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32); 2274BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64); 2275BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8); 2276 2277BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item, 2278 generation, 64); 2279BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); 2280BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8); 2281BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); 2282BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); 2283BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); 2284BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64); 2285BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64); 2286BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64); 2287BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item, 2288 last_snapshot, 64); 2289BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item, 2290 generation_v2, 64); 2291BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item, 2292 ctransid, 64); 2293BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item, 2294 otransid, 64); 2295BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item, 2296 stransid, 64); 2297BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item, 2298 rtransid, 64); 2299 2300static inline bool btrfs_root_readonly(const struct btrfs_root *root) 2301{ 2302 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2303 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; 2304} 2305 2306static inline bool btrfs_root_dead(const struct btrfs_root *root) 2307{ 2308 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2309 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; 2310} 2311 2312static inline u64 btrfs_root_id(const struct btrfs_root *root) 2313{ 2314 return root->root_key.objectid; 2315} 2316 2317/* struct btrfs_root_backup */ 2318BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup, 2319 tree_root, 64); 2320BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup, 2321 tree_root_gen, 64); 2322BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup, 2323 tree_root_level, 8); 2324 2325BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup, 2326 chunk_root, 64); 2327BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup, 2328 chunk_root_gen, 64); 2329BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup, 2330 chunk_root_level, 8); 2331 2332BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup, 2333 extent_root, 64); 2334BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup, 2335 extent_root_gen, 64); 2336BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup, 2337 extent_root_level, 8); 2338 2339BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup, 2340 fs_root, 64); 2341BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup, 2342 fs_root_gen, 64); 2343BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup, 2344 fs_root_level, 8); 2345 2346BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup, 2347 dev_root, 64); 2348BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup, 2349 dev_root_gen, 64); 2350BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup, 2351 dev_root_level, 8); 2352 2353BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup, 2354 csum_root, 64); 2355BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup, 2356 csum_root_gen, 64); 2357BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup, 2358 csum_root_level, 8); 2359BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup, 2360 total_bytes, 64); 2361BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup, 2362 bytes_used, 64); 2363BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup, 2364 num_devices, 64); 2365 2366/* 2367 * For extent tree v2 we overload the extent root with the block group root, as 2368 * we will have multiple extent roots. 2369 */ 2370BTRFS_SETGET_STACK_FUNCS(backup_block_group_root, struct btrfs_root_backup, 2371 extent_root, 64); 2372BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_gen, struct btrfs_root_backup, 2373 extent_root_gen, 64); 2374BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_level, 2375 struct btrfs_root_backup, extent_root_level, 8); 2376 2377/* struct btrfs_balance_item */ 2378BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64); 2379 2380static inline void btrfs_balance_data(const struct extent_buffer *eb, 2381 const struct btrfs_balance_item *bi, 2382 struct btrfs_disk_balance_args *ba) 2383{ 2384 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2385} 2386 2387static inline void btrfs_set_balance_data(struct extent_buffer *eb, 2388 struct btrfs_balance_item *bi, 2389 const struct btrfs_disk_balance_args *ba) 2390{ 2391 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2392} 2393 2394static inline void btrfs_balance_meta(const struct extent_buffer *eb, 2395 const struct btrfs_balance_item *bi, 2396 struct btrfs_disk_balance_args *ba) 2397{ 2398 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2399} 2400 2401static inline void btrfs_set_balance_meta(struct extent_buffer *eb, 2402 struct btrfs_balance_item *bi, 2403 const struct btrfs_disk_balance_args *ba) 2404{ 2405 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2406} 2407 2408static inline void btrfs_balance_sys(const struct extent_buffer *eb, 2409 const struct btrfs_balance_item *bi, 2410 struct btrfs_disk_balance_args *ba) 2411{ 2412 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2413} 2414 2415static inline void btrfs_set_balance_sys(struct extent_buffer *eb, 2416 struct btrfs_balance_item *bi, 2417 const struct btrfs_disk_balance_args *ba) 2418{ 2419 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2420} 2421 2422static inline void 2423btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 2424 const struct btrfs_disk_balance_args *disk) 2425{ 2426 memset(cpu, 0, sizeof(*cpu)); 2427 2428 cpu->profiles = le64_to_cpu(disk->profiles); 2429 cpu->usage = le64_to_cpu(disk->usage); 2430 cpu->devid = le64_to_cpu(disk->devid); 2431 cpu->pstart = le64_to_cpu(disk->pstart); 2432 cpu->pend = le64_to_cpu(disk->pend); 2433 cpu->vstart = le64_to_cpu(disk->vstart); 2434 cpu->vend = le64_to_cpu(disk->vend); 2435 cpu->target = le64_to_cpu(disk->target); 2436 cpu->flags = le64_to_cpu(disk->flags); 2437 cpu->limit = le64_to_cpu(disk->limit); 2438 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 2439 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 2440} 2441 2442static inline void 2443btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 2444 const struct btrfs_balance_args *cpu) 2445{ 2446 memset(disk, 0, sizeof(*disk)); 2447 2448 disk->profiles = cpu_to_le64(cpu->profiles); 2449 disk->usage = cpu_to_le64(cpu->usage); 2450 disk->devid = cpu_to_le64(cpu->devid); 2451 disk->pstart = cpu_to_le64(cpu->pstart); 2452 disk->pend = cpu_to_le64(cpu->pend); 2453 disk->vstart = cpu_to_le64(cpu->vstart); 2454 disk->vend = cpu_to_le64(cpu->vend); 2455 disk->target = cpu_to_le64(cpu->target); 2456 disk->flags = cpu_to_le64(cpu->flags); 2457 disk->limit = cpu_to_le64(cpu->limit); 2458 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 2459 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 2460} 2461 2462/* struct btrfs_super_block */ 2463BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); 2464BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64); 2465BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, 2466 generation, 64); 2467BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); 2468BTRFS_SETGET_STACK_FUNCS(super_sys_array_size, 2469 struct btrfs_super_block, sys_chunk_array_size, 32); 2470BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation, 2471 struct btrfs_super_block, chunk_root_generation, 64); 2472BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, 2473 root_level, 8); 2474BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block, 2475 chunk_root, 64); 2476BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block, 2477 chunk_root_level, 8); 2478BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block, 2479 log_root, 64); 2480BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block, 2481 log_root_transid, 64); 2482BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block, 2483 log_root_level, 8); 2484BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, 2485 total_bytes, 64); 2486BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, 2487 bytes_used, 64); 2488BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, 2489 sectorsize, 32); 2490BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, 2491 nodesize, 32); 2492BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, 2493 stripesize, 32); 2494BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, 2495 root_dir_objectid, 64); 2496BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block, 2497 num_devices, 64); 2498BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block, 2499 compat_flags, 64); 2500BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block, 2501 compat_ro_flags, 64); 2502BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block, 2503 incompat_flags, 64); 2504BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block, 2505 csum_type, 16); 2506BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block, 2507 cache_generation, 64); 2508BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64); 2509BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block, 2510 uuid_tree_generation, 64); 2511BTRFS_SETGET_STACK_FUNCS(super_block_group_root, struct btrfs_super_block, 2512 block_group_root, 64); 2513BTRFS_SETGET_STACK_FUNCS(super_block_group_root_generation, 2514 struct btrfs_super_block, 2515 block_group_root_generation, 64); 2516BTRFS_SETGET_STACK_FUNCS(super_block_group_root_level, struct btrfs_super_block, 2517 block_group_root_level, 8); 2518 2519int btrfs_super_csum_size(const struct btrfs_super_block *s); 2520const char *btrfs_super_csum_name(u16 csum_type); 2521const char *btrfs_super_csum_driver(u16 csum_type); 2522size_t __attribute_const__ btrfs_get_num_csums(void); 2523 2524 2525/* 2526 * The leaf data grows from end-to-front in the node. 2527 * this returns the address of the start of the last item, 2528 * which is the stop of the leaf data stack 2529 */ 2530static inline unsigned int leaf_data_end(const struct extent_buffer *leaf) 2531{ 2532 u32 nr = btrfs_header_nritems(leaf); 2533 2534 if (nr == 0) 2535 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); 2536 return btrfs_item_offset(leaf, nr - 1); 2537} 2538 2539/* struct btrfs_file_extent_item */ 2540BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item, 2541 type, 8); 2542BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr, 2543 struct btrfs_file_extent_item, disk_bytenr, 64); 2544BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset, 2545 struct btrfs_file_extent_item, offset, 64); 2546BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation, 2547 struct btrfs_file_extent_item, generation, 64); 2548BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes, 2549 struct btrfs_file_extent_item, num_bytes, 64); 2550BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes, 2551 struct btrfs_file_extent_item, ram_bytes, 64); 2552BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes, 2553 struct btrfs_file_extent_item, disk_num_bytes, 64); 2554BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression, 2555 struct btrfs_file_extent_item, compression, 8); 2556 2557static inline unsigned long 2558btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e) 2559{ 2560 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START; 2561} 2562 2563static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) 2564{ 2565 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize; 2566} 2567 2568BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); 2569BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, 2570 disk_bytenr, 64); 2571BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item, 2572 generation, 64); 2573BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, 2574 disk_num_bytes, 64); 2575BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item, 2576 offset, 64); 2577BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, 2578 num_bytes, 64); 2579BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item, 2580 ram_bytes, 64); 2581BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item, 2582 compression, 8); 2583BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item, 2584 encryption, 8); 2585BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item, 2586 other_encoding, 16); 2587 2588/* 2589 * this returns the number of bytes used by the item on disk, minus the 2590 * size of any extent headers. If a file is compressed on disk, this is 2591 * the compressed size 2592 */ 2593static inline u32 btrfs_file_extent_inline_item_len( 2594 const struct extent_buffer *eb, 2595 int nr) 2596{ 2597 return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START; 2598} 2599 2600/* btrfs_qgroup_status_item */ 2601BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item, 2602 generation, 64); 2603BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item, 2604 version, 64); 2605BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item, 2606 flags, 64); 2607BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item, 2608 rescan, 64); 2609 2610/* btrfs_qgroup_info_item */ 2611BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item, 2612 generation, 64); 2613BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64); 2614BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item, 2615 rfer_cmpr, 64); 2616BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64); 2617BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item, 2618 excl_cmpr, 64); 2619 2620BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation, 2621 struct btrfs_qgroup_info_item, generation, 64); 2622BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item, 2623 rfer, 64); 2624BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr, 2625 struct btrfs_qgroup_info_item, rfer_cmpr, 64); 2626BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item, 2627 excl, 64); 2628BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr, 2629 struct btrfs_qgroup_info_item, excl_cmpr, 64); 2630 2631/* btrfs_qgroup_limit_item */ 2632BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item, 2633 flags, 64); 2634BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item, 2635 max_rfer, 64); 2636BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item, 2637 max_excl, 64); 2638BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item, 2639 rsv_rfer, 64); 2640BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item, 2641 rsv_excl, 64); 2642 2643/* btrfs_dev_replace_item */ 2644BTRFS_SETGET_FUNCS(dev_replace_src_devid, 2645 struct btrfs_dev_replace_item, src_devid, 64); 2646BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode, 2647 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode, 2648 64); 2649BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item, 2650 replace_state, 64); 2651BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item, 2652 time_started, 64); 2653BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item, 2654 time_stopped, 64); 2655BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item, 2656 num_write_errors, 64); 2657BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors, 2658 struct btrfs_dev_replace_item, num_uncorrectable_read_errors, 2659 64); 2660BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item, 2661 cursor_left, 64); 2662BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item, 2663 cursor_right, 64); 2664 2665BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid, 2666 struct btrfs_dev_replace_item, src_devid, 64); 2667BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode, 2668 struct btrfs_dev_replace_item, 2669 cont_reading_from_srcdev_mode, 64); 2670BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state, 2671 struct btrfs_dev_replace_item, replace_state, 64); 2672BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started, 2673 struct btrfs_dev_replace_item, time_started, 64); 2674BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped, 2675 struct btrfs_dev_replace_item, time_stopped, 64); 2676BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors, 2677 struct btrfs_dev_replace_item, num_write_errors, 64); 2678BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors, 2679 struct btrfs_dev_replace_item, 2680 num_uncorrectable_read_errors, 64); 2681BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left, 2682 struct btrfs_dev_replace_item, cursor_left, 64); 2683BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right, 2684 struct btrfs_dev_replace_item, cursor_right, 64); 2685 2686/* helper function to cast into the data area of the leaf. */ 2687#define btrfs_item_ptr(leaf, slot, type) \ 2688 ((type *)(BTRFS_LEAF_DATA_OFFSET + \ 2689 btrfs_item_offset(leaf, slot))) 2690 2691#define btrfs_item_ptr_offset(leaf, slot) \ 2692 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \ 2693 btrfs_item_offset(leaf, slot))) 2694 2695static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length) 2696{ 2697 return crc32c(crc, address, length); 2698} 2699 2700static inline void btrfs_crc32c_final(u32 crc, u8 *result) 2701{ 2702 put_unaligned_le32(~crc, result); 2703} 2704 2705static inline u64 btrfs_name_hash(const char *name, int len) 2706{ 2707 return crc32c((u32)~1, name, len); 2708} 2709 2710/* 2711 * Figure the key offset of an extended inode ref 2712 */ 2713static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name, 2714 int len) 2715{ 2716 return (u64) crc32c(parent_objectid, name, len); 2717} 2718 2719static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping) 2720{ 2721 return mapping_gfp_constraint(mapping, ~__GFP_FS); 2722} 2723 2724/* extent-tree.c */ 2725 2726enum btrfs_inline_ref_type { 2727 BTRFS_REF_TYPE_INVALID, 2728 BTRFS_REF_TYPE_BLOCK, 2729 BTRFS_REF_TYPE_DATA, 2730 BTRFS_REF_TYPE_ANY, 2731}; 2732 2733int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 2734 struct btrfs_extent_inline_ref *iref, 2735 enum btrfs_inline_ref_type is_data); 2736u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset); 2737 2738/* 2739 * Take the number of bytes to be checksummmed and figure out how many leaves 2740 * it would require to store the csums for that many bytes. 2741 */ 2742static inline u64 btrfs_csum_bytes_to_leaves( 2743 const struct btrfs_fs_info *fs_info, u64 csum_bytes) 2744{ 2745 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits; 2746 2747 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf); 2748} 2749 2750/* 2751 * Use this if we would be adding new items, as we could split nodes as we cow 2752 * down the tree. 2753 */ 2754static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info, 2755 unsigned num_items) 2756{ 2757 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items; 2758} 2759 2760/* 2761 * Doing a truncate or a modification won't result in new nodes or leaves, just 2762 * what we need for COW. 2763 */ 2764static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info, 2765 unsigned num_items) 2766{ 2767 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items; 2768} 2769 2770int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 2771 u64 start, u64 num_bytes); 2772void btrfs_free_excluded_extents(struct btrfs_block_group *cache); 2773int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2774 unsigned long count); 2775void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 2776 struct btrfs_delayed_ref_root *delayed_refs, 2777 struct btrfs_delayed_ref_head *head); 2778int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len); 2779int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 2780 struct btrfs_fs_info *fs_info, u64 bytenr, 2781 u64 offset, int metadata, u64 *refs, u64 *flags); 2782int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num, 2783 int reserved); 2784int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2785 u64 bytenr, u64 num_bytes); 2786int btrfs_exclude_logged_extents(struct extent_buffer *eb); 2787int btrfs_cross_ref_exist(struct btrfs_root *root, 2788 u64 objectid, u64 offset, u64 bytenr, bool strict, 2789 struct btrfs_path *path); 2790struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 2791 struct btrfs_root *root, 2792 u64 parent, u64 root_objectid, 2793 const struct btrfs_disk_key *key, 2794 int level, u64 hint, 2795 u64 empty_size, 2796 enum btrfs_lock_nesting nest); 2797void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 2798 u64 root_id, 2799 struct extent_buffer *buf, 2800 u64 parent, int last_ref); 2801int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 2802 struct btrfs_root *root, u64 owner, 2803 u64 offset, u64 ram_bytes, 2804 struct btrfs_key *ins); 2805int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 2806 u64 root_objectid, u64 owner, u64 offset, 2807 struct btrfs_key *ins); 2808int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes, 2809 u64 min_alloc_size, u64 empty_size, u64 hint_byte, 2810 struct btrfs_key *ins, int is_data, int delalloc); 2811int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2812 struct extent_buffer *buf, int full_backref); 2813int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2814 struct extent_buffer *buf, int full_backref); 2815int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2816 struct extent_buffer *eb, u64 flags, int level); 2817int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref); 2818 2819int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 2820 u64 start, u64 len, int delalloc); 2821int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 2822 u64 len); 2823int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans); 2824int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2825 struct btrfs_ref *generic_ref); 2826 2827void btrfs_clear_space_info_full(struct btrfs_fs_info *info); 2828 2829/* 2830 * Different levels for to flush space when doing space reservations. 2831 * 2832 * The higher the level, the more methods we try to reclaim space. 2833 */ 2834enum btrfs_reserve_flush_enum { 2835 /* If we are in the transaction, we can't flush anything.*/ 2836 BTRFS_RESERVE_NO_FLUSH, 2837 2838 /* 2839 * Flush space by: 2840 * - Running delayed inode items 2841 * - Allocating a new chunk 2842 */ 2843 BTRFS_RESERVE_FLUSH_LIMIT, 2844 2845 /* 2846 * Flush space by: 2847 * - Running delayed inode items 2848 * - Running delayed refs 2849 * - Running delalloc and waiting for ordered extents 2850 * - Allocating a new chunk 2851 */ 2852 BTRFS_RESERVE_FLUSH_EVICT, 2853 2854 /* 2855 * Flush space by above mentioned methods and by: 2856 * - Running delayed iputs 2857 * - Committing transaction 2858 * 2859 * Can be interrupted by a fatal signal. 2860 */ 2861 BTRFS_RESERVE_FLUSH_DATA, 2862 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE, 2863 BTRFS_RESERVE_FLUSH_ALL, 2864 2865 /* 2866 * Pretty much the same as FLUSH_ALL, but can also steal space from 2867 * global rsv. 2868 * 2869 * Can be interrupted by a fatal signal. 2870 */ 2871 BTRFS_RESERVE_FLUSH_ALL_STEAL, 2872}; 2873 2874enum btrfs_flush_state { 2875 FLUSH_DELAYED_ITEMS_NR = 1, 2876 FLUSH_DELAYED_ITEMS = 2, 2877 FLUSH_DELAYED_REFS_NR = 3, 2878 FLUSH_DELAYED_REFS = 4, 2879 FLUSH_DELALLOC = 5, 2880 FLUSH_DELALLOC_WAIT = 6, 2881 FLUSH_DELALLOC_FULL = 7, 2882 ALLOC_CHUNK = 8, 2883 ALLOC_CHUNK_FORCE = 9, 2884 RUN_DELAYED_IPUTS = 10, 2885 COMMIT_TRANS = 11, 2886}; 2887 2888int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 2889 struct btrfs_block_rsv *rsv, 2890 int nitems, bool use_global_rsv); 2891void btrfs_subvolume_release_metadata(struct btrfs_root *root, 2892 struct btrfs_block_rsv *rsv); 2893void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes); 2894 2895int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes, 2896 u64 disk_num_bytes, bool noflush); 2897u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo); 2898int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 2899 u64 start, u64 end); 2900int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2901 u64 num_bytes, u64 *actual_bytes); 2902int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range); 2903 2904int btrfs_init_space_info(struct btrfs_fs_info *fs_info); 2905int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2906 struct btrfs_fs_info *fs_info); 2907int btrfs_start_write_no_snapshotting(struct btrfs_root *root); 2908void btrfs_end_write_no_snapshotting(struct btrfs_root *root); 2909void btrfs_wait_for_snapshot_creation(struct btrfs_root *root); 2910 2911/* ctree.c */ 2912int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 2913 int *slot); 2914int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); 2915int btrfs_previous_item(struct btrfs_root *root, 2916 struct btrfs_path *path, u64 min_objectid, 2917 int type); 2918int btrfs_previous_extent_item(struct btrfs_root *root, 2919 struct btrfs_path *path, u64 min_objectid); 2920void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 2921 struct btrfs_path *path, 2922 const struct btrfs_key *new_key); 2923struct extent_buffer *btrfs_root_node(struct btrfs_root *root); 2924int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 2925 struct btrfs_key *key, int lowest_level, 2926 u64 min_trans); 2927int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 2928 struct btrfs_path *path, 2929 u64 min_trans); 2930struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 2931 int slot); 2932 2933int btrfs_cow_block(struct btrfs_trans_handle *trans, 2934 struct btrfs_root *root, struct extent_buffer *buf, 2935 struct extent_buffer *parent, int parent_slot, 2936 struct extent_buffer **cow_ret, 2937 enum btrfs_lock_nesting nest); 2938int btrfs_copy_root(struct btrfs_trans_handle *trans, 2939 struct btrfs_root *root, 2940 struct extent_buffer *buf, 2941 struct extent_buffer **cow_ret, u64 new_root_objectid); 2942int btrfs_block_can_be_shared(struct btrfs_root *root, 2943 struct extent_buffer *buf); 2944void btrfs_extend_item(struct btrfs_path *path, u32 data_size); 2945void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end); 2946int btrfs_split_item(struct btrfs_trans_handle *trans, 2947 struct btrfs_root *root, 2948 struct btrfs_path *path, 2949 const struct btrfs_key *new_key, 2950 unsigned long split_offset); 2951int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 2952 struct btrfs_root *root, 2953 struct btrfs_path *path, 2954 const struct btrfs_key *new_key); 2955int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2956 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); 2957int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2958 const struct btrfs_key *key, struct btrfs_path *p, 2959 int ins_len, int cow); 2960int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2961 struct btrfs_path *p, u64 time_seq); 2962int btrfs_search_slot_for_read(struct btrfs_root *root, 2963 const struct btrfs_key *key, 2964 struct btrfs_path *p, int find_higher, 2965 int return_any); 2966int btrfs_realloc_node(struct btrfs_trans_handle *trans, 2967 struct btrfs_root *root, struct extent_buffer *parent, 2968 int start_slot, u64 *last_ret, 2969 struct btrfs_key *progress); 2970void btrfs_release_path(struct btrfs_path *p); 2971struct btrfs_path *btrfs_alloc_path(void); 2972void btrfs_free_path(struct btrfs_path *p); 2973 2974int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2975 struct btrfs_path *path, int slot, int nr); 2976static inline int btrfs_del_item(struct btrfs_trans_handle *trans, 2977 struct btrfs_root *root, 2978 struct btrfs_path *path) 2979{ 2980 return btrfs_del_items(trans, root, path, path->slots[0], 1); 2981} 2982 2983/* 2984 * Describes a batch of items to insert in a btree. This is used by 2985 * btrfs_insert_empty_items(). 2986 */ 2987struct btrfs_item_batch { 2988 /* 2989 * Pointer to an array containing the keys of the items to insert (in 2990 * sorted order). 2991 */ 2992 const struct btrfs_key *keys; 2993 /* Pointer to an array containing the data size for each item to insert. */ 2994 const u32 *data_sizes; 2995 /* 2996 * The sum of data sizes for all items. The caller can compute this while 2997 * setting up the data_sizes array, so it ends up being more efficient 2998 * than having btrfs_insert_empty_items() or setup_item_for_insert() 2999 * doing it, as it would avoid an extra loop over a potentially large 3000 * array, and in the case of setup_item_for_insert(), we would be doing 3001 * it while holding a write lock on a leaf and often on upper level nodes 3002 * too, unnecessarily increasing the size of a critical section. 3003 */ 3004 u32 total_data_size; 3005 /* Size of the keys and data_sizes arrays (number of items in the batch). */ 3006 int nr; 3007}; 3008 3009void btrfs_setup_item_for_insert(struct btrfs_root *root, 3010 struct btrfs_path *path, 3011 const struct btrfs_key *key, 3012 u32 data_size); 3013int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3014 const struct btrfs_key *key, void *data, u32 data_size); 3015int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3016 struct btrfs_root *root, 3017 struct btrfs_path *path, 3018 const struct btrfs_item_batch *batch); 3019 3020static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, 3021 struct btrfs_root *root, 3022 struct btrfs_path *path, 3023 const struct btrfs_key *key, 3024 u32 data_size) 3025{ 3026 struct btrfs_item_batch batch; 3027 3028 batch.keys = key; 3029 batch.data_sizes = &data_size; 3030 batch.total_data_size = data_size; 3031 batch.nr = 1; 3032 3033 return btrfs_insert_empty_items(trans, root, path, &batch); 3034} 3035 3036int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 3037int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 3038 u64 time_seq); 3039 3040int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 3041 struct btrfs_path *path); 3042 3043int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key, 3044 struct btrfs_path *path); 3045 3046/* 3047 * Search in @root for a given @key, and store the slot found in @found_key. 3048 * 3049 * @root: The root node of the tree. 3050 * @key: The key we are looking for. 3051 * @found_key: Will hold the found item. 3052 * @path: Holds the current slot/leaf. 3053 * @iter_ret: Contains the value returned from btrfs_search_slot or 3054 * btrfs_get_next_valid_item, whichever was executed last. 3055 * 3056 * The @iter_ret is an output variable that will contain the return value of 3057 * btrfs_search_slot, if it encountered an error, or the value returned from 3058 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid 3059 * slot was found, 1 if there were no more leaves, and <0 if there was an error. 3060 * 3061 * It's recommended to use a separate variable for iter_ret and then use it to 3062 * set the function return value so there's no confusion of the 0/1/errno 3063 * values stemming from btrfs_search_slot. 3064 */ 3065#define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \ 3066 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \ 3067 (iter_ret) >= 0 && \ 3068 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \ 3069 (path)->slots[0]++ \ 3070 ) 3071 3072static inline int btrfs_next_old_item(struct btrfs_root *root, 3073 struct btrfs_path *p, u64 time_seq) 3074{ 3075 ++p->slots[0]; 3076 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0])) 3077 return btrfs_next_old_leaf(root, p, time_seq); 3078 return 0; 3079} 3080 3081/* 3082 * Search the tree again to find a leaf with greater keys. 3083 * 3084 * Returns 0 if it found something or 1 if there are no greater leaves. 3085 * Returns < 0 on error. 3086 */ 3087static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 3088{ 3089 return btrfs_next_old_leaf(root, path, 0); 3090} 3091 3092static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) 3093{ 3094 return btrfs_next_old_item(root, p, 0); 3095} 3096int btrfs_leaf_free_space(struct extent_buffer *leaf); 3097int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, 3098 int for_reloc); 3099int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 3100 struct btrfs_root *root, 3101 struct extent_buffer *node, 3102 struct extent_buffer *parent); 3103static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info) 3104{ 3105 /* 3106 * Do it this way so we only ever do one test_bit in the normal case. 3107 */ 3108 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) { 3109 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)) 3110 return 2; 3111 return 1; 3112 } 3113 return 0; 3114} 3115 3116/* 3117 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do 3118 * anything except sleeping. This function is used to check the status of 3119 * the fs. 3120 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount, 3121 * since setting and checking for SB_RDONLY in the superblock's flags is not 3122 * atomic. 3123 */ 3124static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info) 3125{ 3126 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) || 3127 btrfs_fs_closing(fs_info); 3128} 3129 3130static inline void btrfs_set_sb_rdonly(struct super_block *sb) 3131{ 3132 sb->s_flags |= SB_RDONLY; 3133 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3134} 3135 3136static inline void btrfs_clear_sb_rdonly(struct super_block *sb) 3137{ 3138 sb->s_flags &= ~SB_RDONLY; 3139 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3140} 3141 3142/* root-item.c */ 3143int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3144 u64 ref_id, u64 dirid, u64 sequence, const char *name, 3145 int name_len); 3146int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3147 u64 ref_id, u64 dirid, u64 *sequence, const char *name, 3148 int name_len); 3149int btrfs_del_root(struct btrfs_trans_handle *trans, 3150 const struct btrfs_key *key); 3151int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3152 const struct btrfs_key *key, 3153 struct btrfs_root_item *item); 3154int __must_check btrfs_update_root(struct btrfs_trans_handle *trans, 3155 struct btrfs_root *root, 3156 struct btrfs_key *key, 3157 struct btrfs_root_item *item); 3158int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 3159 struct btrfs_path *path, struct btrfs_root_item *root_item, 3160 struct btrfs_key *root_key); 3161int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info); 3162void btrfs_set_root_node(struct btrfs_root_item *item, 3163 struct extent_buffer *node); 3164void btrfs_check_and_init_root_item(struct btrfs_root_item *item); 3165void btrfs_update_root_times(struct btrfs_trans_handle *trans, 3166 struct btrfs_root *root); 3167 3168/* uuid-tree.c */ 3169int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3170 u64 subid); 3171int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3172 u64 subid); 3173int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info); 3174 3175/* dir-item.c */ 3176int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir, 3177 const char *name, int name_len); 3178int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name, 3179 int name_len, struct btrfs_inode *dir, 3180 struct btrfs_key *location, u8 type, u64 index); 3181struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, 3182 struct btrfs_root *root, 3183 struct btrfs_path *path, u64 dir, 3184 const char *name, int name_len, 3185 int mod); 3186struct btrfs_dir_item * 3187btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, 3188 struct btrfs_root *root, 3189 struct btrfs_path *path, u64 dir, 3190 u64 index, const char *name, int name_len, 3191 int mod); 3192struct btrfs_dir_item * 3193btrfs_search_dir_index_item(struct btrfs_root *root, 3194 struct btrfs_path *path, u64 dirid, 3195 const char *name, int name_len); 3196int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, 3197 struct btrfs_root *root, 3198 struct btrfs_path *path, 3199 struct btrfs_dir_item *di); 3200int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, 3201 struct btrfs_root *root, 3202 struct btrfs_path *path, u64 objectid, 3203 const char *name, u16 name_len, 3204 const void *data, u16 data_len); 3205struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, 3206 struct btrfs_root *root, 3207 struct btrfs_path *path, u64 dir, 3208 const char *name, u16 name_len, 3209 int mod); 3210struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info, 3211 struct btrfs_path *path, 3212 const char *name, 3213 int name_len); 3214 3215/* orphan.c */ 3216int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, 3217 struct btrfs_root *root, u64 offset); 3218int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, 3219 struct btrfs_root *root, u64 offset); 3220int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset); 3221 3222/* file-item.c */ 3223int btrfs_del_csums(struct btrfs_trans_handle *trans, 3224 struct btrfs_root *root, u64 bytenr, u64 len); 3225blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst); 3226int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 3227 struct btrfs_root *root, 3228 u64 objectid, u64 pos, 3229 u64 disk_offset, u64 disk_num_bytes, 3230 u64 num_bytes, u64 offset, u64 ram_bytes, 3231 u8 compression, u8 encryption, u16 other_encoding); 3232int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 3233 struct btrfs_root *root, 3234 struct btrfs_path *path, u64 objectid, 3235 u64 bytenr, int mod); 3236int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 3237 struct btrfs_root *root, 3238 struct btrfs_ordered_sum *sums); 3239blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, 3240 u64 offset, bool one_ordered); 3241int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 3242 struct list_head *list, int search_commit); 3243void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 3244 const struct btrfs_path *path, 3245 struct btrfs_file_extent_item *fi, 3246 const bool new_inline, 3247 struct extent_map *em); 3248int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 3249 u64 len); 3250int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 3251 u64 len); 3252void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size); 3253u64 btrfs_file_extent_end(const struct btrfs_path *path); 3254 3255/* inode.c */ 3256void btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 3257 int mirror_num, enum btrfs_compression_type compress_type); 3258unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio, 3259 u32 bio_offset, struct page *page, 3260 u64 start, u64 end); 3261struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 3262 u64 start, u64 len); 3263noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 3264 u64 *orig_start, u64 *orig_block_len, 3265 u64 *ram_bytes, bool strict); 3266 3267void __btrfs_del_delalloc_inode(struct btrfs_root *root, 3268 struct btrfs_inode *inode); 3269struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 3270int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); 3271int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3272 struct btrfs_inode *dir, struct btrfs_inode *inode, 3273 const char *name, int name_len); 3274int btrfs_add_link(struct btrfs_trans_handle *trans, 3275 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 3276 const char *name, int name_len, int add_backref, u64 index); 3277int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry); 3278int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 3279 int front); 3280 3281int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context); 3282int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 3283 bool in_reclaim_context); 3284int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 3285 unsigned int extra_bits, 3286 struct extent_state **cached_state); 3287struct btrfs_new_inode_args { 3288 /* Input */ 3289 struct inode *dir; 3290 struct dentry *dentry; 3291 struct inode *inode; 3292 bool orphan; 3293 bool subvol; 3294 3295 /* 3296 * Output from btrfs_new_inode_prepare(), input to 3297 * btrfs_create_new_inode(). 3298 */ 3299 struct posix_acl *default_acl; 3300 struct posix_acl *acl; 3301}; 3302int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 3303 unsigned int *trans_num_items); 3304int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 3305 struct btrfs_new_inode_args *args); 3306void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args); 3307struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns, 3308 struct inode *dir); 3309 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 3310 unsigned *bits); 3311void btrfs_clear_delalloc_extent(struct inode *inode, 3312 struct extent_state *state, unsigned *bits); 3313void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 3314 struct extent_state *other); 3315void btrfs_split_delalloc_extent(struct inode *inode, 3316 struct extent_state *orig, u64 split); 3317void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end); 3318vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf); 3319void btrfs_evict_inode(struct inode *inode); 3320int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc); 3321struct inode *btrfs_alloc_inode(struct super_block *sb); 3322void btrfs_destroy_inode(struct inode *inode); 3323void btrfs_free_inode(struct inode *inode); 3324int btrfs_drop_inode(struct inode *inode); 3325int __init btrfs_init_cachep(void); 3326void __cold btrfs_destroy_cachep(void); 3327struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 3328 struct btrfs_root *root, struct btrfs_path *path); 3329struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root); 3330struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 3331 struct page *page, size_t pg_offset, 3332 u64 start, u64 end); 3333int btrfs_update_inode(struct btrfs_trans_handle *trans, 3334 struct btrfs_root *root, struct btrfs_inode *inode); 3335int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3336 struct btrfs_root *root, struct btrfs_inode *inode); 3337int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3338 struct btrfs_inode *inode); 3339int btrfs_orphan_cleanup(struct btrfs_root *root); 3340int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); 3341void btrfs_add_delayed_iput(struct inode *inode); 3342void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); 3343int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); 3344int btrfs_prealloc_file_range(struct inode *inode, int mode, 3345 u64 start, u64 num_bytes, u64 min_size, 3346 loff_t actual_len, u64 *alloc_hint); 3347int btrfs_prealloc_file_range_trans(struct inode *inode, 3348 struct btrfs_trans_handle *trans, int mode, 3349 u64 start, u64 num_bytes, u64 min_size, 3350 loff_t actual_len, u64 *alloc_hint); 3351int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 3352 u64 start, u64 end, int *page_started, unsigned long *nr_written, 3353 struct writeback_control *wbc); 3354int btrfs_writepage_cow_fixup(struct page *page); 3355void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3356 struct page *page, u64 start, 3357 u64 end, bool uptodate); 3358ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 3359 struct btrfs_ioctl_encoded_io_args *encoded); 3360ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 3361 const struct btrfs_ioctl_encoded_io_args *encoded); 3362 3363ssize_t btrfs_dio_rw(struct kiocb *iocb, struct iov_iter *iter, size_t done_before); 3364 3365extern const struct dentry_operations btrfs_dentry_operations; 3366 3367/* Inode locking type flags, by default the exclusive lock is taken */ 3368#define BTRFS_ILOCK_SHARED (1U << 0) 3369#define BTRFS_ILOCK_TRY (1U << 1) 3370#define BTRFS_ILOCK_MMAP (1U << 2) 3371 3372int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags); 3373void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags); 3374void btrfs_update_inode_bytes(struct btrfs_inode *inode, 3375 const u64 add_bytes, 3376 const u64 del_bytes); 3377void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end); 3378 3379/* ioctl.c */ 3380long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3381long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3382int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3383int btrfs_fileattr_set(struct user_namespace *mnt_userns, 3384 struct dentry *dentry, struct fileattr *fa); 3385int btrfs_ioctl_get_supported_features(void __user *arg); 3386void btrfs_sync_inode_flags_to_i_flags(struct inode *inode); 3387int __pure btrfs_is_empty_uuid(u8 *uuid); 3388int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 3389 struct btrfs_ioctl_defrag_range_args *range, 3390 u64 newer_than, unsigned long max_to_defrag); 3391void btrfs_get_block_group_info(struct list_head *groups_list, 3392 struct btrfs_ioctl_space_info *space); 3393void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3394 struct btrfs_ioctl_balance_args *bargs); 3395bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 3396 enum btrfs_exclusive_operation type); 3397bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 3398 enum btrfs_exclusive_operation type); 3399void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info); 3400void btrfs_exclop_finish(struct btrfs_fs_info *fs_info); 3401void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 3402 enum btrfs_exclusive_operation op); 3403 3404 3405/* file.c */ 3406int __init btrfs_auto_defrag_init(void); 3407void __cold btrfs_auto_defrag_exit(void); 3408int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 3409 struct btrfs_inode *inode, u32 extent_thresh); 3410int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info); 3411void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info); 3412int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3413void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 3414 int skip_pinned); 3415extern const struct file_operations btrfs_file_operations; 3416int btrfs_drop_extents(struct btrfs_trans_handle *trans, 3417 struct btrfs_root *root, struct btrfs_inode *inode, 3418 struct btrfs_drop_extents_args *args); 3419int btrfs_replace_file_extents(struct btrfs_inode *inode, 3420 struct btrfs_path *path, const u64 start, 3421 const u64 end, 3422 struct btrfs_replace_extent_info *extent_info, 3423 struct btrfs_trans_handle **trans_out); 3424int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 3425 struct btrfs_inode *inode, u64 start, u64 end); 3426ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 3427 const struct btrfs_ioctl_encoded_io_args *encoded); 3428int btrfs_release_file(struct inode *inode, struct file *file); 3429int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 3430 size_t num_pages, loff_t pos, size_t write_bytes, 3431 struct extent_state **cached, bool noreserve); 3432int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end); 3433int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 3434 size_t *write_bytes); 3435void btrfs_check_nocow_unlock(struct btrfs_inode *inode); 3436 3437/* tree-defrag.c */ 3438int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, 3439 struct btrfs_root *root); 3440 3441/* super.c */ 3442int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 3443 unsigned long new_flags); 3444int btrfs_sync_fs(struct super_block *sb, int wait); 3445char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 3446 u64 subvol_objectid); 3447 3448static inline __printf(2, 3) __cold 3449void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 3450{ 3451} 3452 3453#ifdef CONFIG_PRINTK_INDEX 3454 3455#define btrfs_printk(fs_info, fmt, args...) \ 3456do { \ 3457 printk_index_subsys_emit("%sBTRFS %s (device %s): ", NULL, fmt); \ 3458 _btrfs_printk(fs_info, fmt, ##args); \ 3459} while (0) 3460 3461__printf(2, 3) 3462__cold 3463void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3464 3465#elif defined(CONFIG_PRINTK) 3466 3467#define btrfs_printk(fs_info, fmt, args...) \ 3468 _btrfs_printk(fs_info, fmt, ##args) 3469 3470__printf(2, 3) 3471__cold 3472void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3473 3474#else 3475 3476#define btrfs_printk(fs_info, fmt, args...) \ 3477 btrfs_no_printk(fs_info, fmt, ##args) 3478#endif 3479 3480#define btrfs_emerg(fs_info, fmt, args...) \ 3481 btrfs_printk(fs_info, KERN_EMERG fmt, ##args) 3482#define btrfs_alert(fs_info, fmt, args...) \ 3483 btrfs_printk(fs_info, KERN_ALERT fmt, ##args) 3484#define btrfs_crit(fs_info, fmt, args...) \ 3485 btrfs_printk(fs_info, KERN_CRIT fmt, ##args) 3486#define btrfs_err(fs_info, fmt, args...) \ 3487 btrfs_printk(fs_info, KERN_ERR fmt, ##args) 3488#define btrfs_warn(fs_info, fmt, args...) \ 3489 btrfs_printk(fs_info, KERN_WARNING fmt, ##args) 3490#define btrfs_notice(fs_info, fmt, args...) \ 3491 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args) 3492#define btrfs_info(fs_info, fmt, args...) \ 3493 btrfs_printk(fs_info, KERN_INFO fmt, ##args) 3494 3495/* 3496 * Wrappers that use printk_in_rcu 3497 */ 3498#define btrfs_emerg_in_rcu(fs_info, fmt, args...) \ 3499 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3500#define btrfs_alert_in_rcu(fs_info, fmt, args...) \ 3501 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3502#define btrfs_crit_in_rcu(fs_info, fmt, args...) \ 3503 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3504#define btrfs_err_in_rcu(fs_info, fmt, args...) \ 3505 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args) 3506#define btrfs_warn_in_rcu(fs_info, fmt, args...) \ 3507 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3508#define btrfs_notice_in_rcu(fs_info, fmt, args...) \ 3509 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3510#define btrfs_info_in_rcu(fs_info, fmt, args...) \ 3511 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args) 3512 3513/* 3514 * Wrappers that use a ratelimited printk_in_rcu 3515 */ 3516#define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \ 3517 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3518#define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \ 3519 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3520#define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \ 3521 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3522#define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \ 3523 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args) 3524#define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \ 3525 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3526#define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \ 3527 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3528#define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \ 3529 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args) 3530 3531/* 3532 * Wrappers that use a ratelimited printk 3533 */ 3534#define btrfs_emerg_rl(fs_info, fmt, args...) \ 3535 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args) 3536#define btrfs_alert_rl(fs_info, fmt, args...) \ 3537 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args) 3538#define btrfs_crit_rl(fs_info, fmt, args...) \ 3539 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args) 3540#define btrfs_err_rl(fs_info, fmt, args...) \ 3541 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args) 3542#define btrfs_warn_rl(fs_info, fmt, args...) \ 3543 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args) 3544#define btrfs_notice_rl(fs_info, fmt, args...) \ 3545 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args) 3546#define btrfs_info_rl(fs_info, fmt, args...) \ 3547 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args) 3548 3549#if defined(CONFIG_DYNAMIC_DEBUG) 3550#define btrfs_debug(fs_info, fmt, args...) \ 3551 _dynamic_func_call_no_desc(fmt, btrfs_printk, \ 3552 fs_info, KERN_DEBUG fmt, ##args) 3553#define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3554 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \ 3555 fs_info, KERN_DEBUG fmt, ##args) 3556#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3557 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \ 3558 fs_info, KERN_DEBUG fmt, ##args) 3559#define btrfs_debug_rl(fs_info, fmt, args...) \ 3560 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \ 3561 fs_info, KERN_DEBUG fmt, ##args) 3562#elif defined(DEBUG) 3563#define btrfs_debug(fs_info, fmt, args...) \ 3564 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args) 3565#define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3566 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3567#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3568 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3569#define btrfs_debug_rl(fs_info, fmt, args...) \ 3570 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args) 3571#else 3572#define btrfs_debug(fs_info, fmt, args...) \ 3573 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3574#define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3575 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3576#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3577 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3578#define btrfs_debug_rl(fs_info, fmt, args...) \ 3579 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3580#endif 3581 3582#define btrfs_printk_in_rcu(fs_info, fmt, args...) \ 3583do { \ 3584 rcu_read_lock(); \ 3585 btrfs_printk(fs_info, fmt, ##args); \ 3586 rcu_read_unlock(); \ 3587} while (0) 3588 3589#define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \ 3590do { \ 3591 rcu_read_lock(); \ 3592 btrfs_no_printk(fs_info, fmt, ##args); \ 3593 rcu_read_unlock(); \ 3594} while (0) 3595 3596#define btrfs_printk_ratelimited(fs_info, fmt, args...) \ 3597do { \ 3598 static DEFINE_RATELIMIT_STATE(_rs, \ 3599 DEFAULT_RATELIMIT_INTERVAL, \ 3600 DEFAULT_RATELIMIT_BURST); \ 3601 if (__ratelimit(&_rs)) \ 3602 btrfs_printk(fs_info, fmt, ##args); \ 3603} while (0) 3604 3605#define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \ 3606do { \ 3607 rcu_read_lock(); \ 3608 btrfs_printk_ratelimited(fs_info, fmt, ##args); \ 3609 rcu_read_unlock(); \ 3610} while (0) 3611 3612#ifdef CONFIG_BTRFS_ASSERT 3613__cold __noreturn 3614static inline void assertfail(const char *expr, const char *file, int line) 3615{ 3616 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line); 3617 BUG(); 3618} 3619 3620#define ASSERT(expr) \ 3621 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__)) 3622 3623#else 3624static inline void assertfail(const char *expr, const char* file, int line) { } 3625#define ASSERT(expr) (void)(expr) 3626#endif 3627 3628#if BITS_PER_LONG == 32 3629#define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT) 3630/* 3631 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical 3632 * addresses of extents. 3633 * 3634 * For 4K page size it's about 10T, for 64K it's 160T. 3635 */ 3636#define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8) 3637void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info); 3638void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info); 3639#endif 3640 3641/* 3642 * Get the correct offset inside the page of extent buffer. 3643 * 3644 * @eb: target extent buffer 3645 * @start: offset inside the extent buffer 3646 * 3647 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases. 3648 */ 3649static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb, 3650 unsigned long offset) 3651{ 3652 /* 3653 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned 3654 * to PAGE_SIZE, thus adding it won't cause any difference. 3655 * 3656 * For sectorsize < PAGE_SIZE, we must only read the data that belongs 3657 * to the eb, thus we have to take the eb->start into consideration. 3658 */ 3659 return offset_in_page(offset + eb->start); 3660} 3661 3662static inline unsigned long get_eb_page_index(unsigned long offset) 3663{ 3664 /* 3665 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough. 3666 * 3667 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE, 3668 * and have ensured that all tree blocks are contained in one page, 3669 * thus we always get index == 0. 3670 */ 3671 return offset >> PAGE_SHIFT; 3672} 3673 3674/* 3675 * Use that for functions that are conditionally exported for sanity tests but 3676 * otherwise static 3677 */ 3678#ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3679#define EXPORT_FOR_TESTS static 3680#else 3681#define EXPORT_FOR_TESTS 3682#endif 3683 3684__cold 3685static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info) 3686{ 3687 btrfs_err(fs_info, 3688"Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel"); 3689} 3690 3691__printf(5, 6) 3692__cold 3693void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 3694 unsigned int line, int errno, const char *fmt, ...); 3695 3696const char * __attribute_const__ btrfs_decode_error(int errno); 3697 3698__cold 3699void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 3700 const char *function, 3701 unsigned int line, int errno); 3702 3703/* 3704 * Call btrfs_abort_transaction as early as possible when an error condition is 3705 * detected, that way the exact line number is reported. 3706 */ 3707#define btrfs_abort_transaction(trans, errno) \ 3708do { \ 3709 /* Report first abort since mount */ \ 3710 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \ 3711 &((trans)->fs_info->fs_state))) { \ 3712 if ((errno) != -EIO && (errno) != -EROFS) { \ 3713 WARN(1, KERN_DEBUG \ 3714 "BTRFS: Transaction aborted (error %d)\n", \ 3715 (errno)); \ 3716 } else { \ 3717 btrfs_debug((trans)->fs_info, \ 3718 "Transaction aborted (error %d)", \ 3719 (errno)); \ 3720 } \ 3721 } \ 3722 __btrfs_abort_transaction((trans), __func__, \ 3723 __LINE__, (errno)); \ 3724} while (0) 3725 3726#ifdef CONFIG_PRINTK_INDEX 3727 3728#define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ 3729do { \ 3730 printk_index_subsys_emit( \ 3731 "BTRFS: error (device %s%s) in %s:%d: errno=%d %s", \ 3732 KERN_CRIT, fmt); \ 3733 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ 3734 (errno), fmt, ##args); \ 3735} while (0) 3736 3737#else 3738 3739#define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ 3740 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ 3741 (errno), fmt, ##args) 3742 3743#endif 3744 3745#define BTRFS_FS_ERROR(fs_info) (unlikely(test_bit(BTRFS_FS_STATE_ERROR, \ 3746 &(fs_info)->fs_state))) 3747#define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info) \ 3748 (unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, \ 3749 &(fs_info)->fs_state))) 3750 3751__printf(5, 6) 3752__cold 3753void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 3754 unsigned int line, int errno, const char *fmt, ...); 3755/* 3756 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic 3757 * will panic(). Otherwise we BUG() here. 3758 */ 3759#define btrfs_panic(fs_info, errno, fmt, args...) \ 3760do { \ 3761 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \ 3762 BUG(); \ 3763} while (0) 3764 3765 3766/* compatibility and incompatibility defines */ 3767 3768#define btrfs_set_fs_incompat(__fs_info, opt) \ 3769 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3770 #opt) 3771 3772static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, 3773 u64 flag, const char* name) 3774{ 3775 struct btrfs_super_block *disk_super; 3776 u64 features; 3777 3778 disk_super = fs_info->super_copy; 3779 features = btrfs_super_incompat_flags(disk_super); 3780 if (!(features & flag)) { 3781 spin_lock(&fs_info->super_lock); 3782 features = btrfs_super_incompat_flags(disk_super); 3783 if (!(features & flag)) { 3784 features |= flag; 3785 btrfs_set_super_incompat_flags(disk_super, features); 3786 btrfs_info(fs_info, 3787 "setting incompat feature flag for %s (0x%llx)", 3788 name, flag); 3789 } 3790 spin_unlock(&fs_info->super_lock); 3791 } 3792} 3793 3794#define btrfs_clear_fs_incompat(__fs_info, opt) \ 3795 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3796 #opt) 3797 3798static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info, 3799 u64 flag, const char* name) 3800{ 3801 struct btrfs_super_block *disk_super; 3802 u64 features; 3803 3804 disk_super = fs_info->super_copy; 3805 features = btrfs_super_incompat_flags(disk_super); 3806 if (features & flag) { 3807 spin_lock(&fs_info->super_lock); 3808 features = btrfs_super_incompat_flags(disk_super); 3809 if (features & flag) { 3810 features &= ~flag; 3811 btrfs_set_super_incompat_flags(disk_super, features); 3812 btrfs_info(fs_info, 3813 "clearing incompat feature flag for %s (0x%llx)", 3814 name, flag); 3815 } 3816 spin_unlock(&fs_info->super_lock); 3817 } 3818} 3819 3820#define btrfs_fs_incompat(fs_info, opt) \ 3821 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt) 3822 3823static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag) 3824{ 3825 struct btrfs_super_block *disk_super; 3826 disk_super = fs_info->super_copy; 3827 return !!(btrfs_super_incompat_flags(disk_super) & flag); 3828} 3829 3830#define btrfs_set_fs_compat_ro(__fs_info, opt) \ 3831 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3832 #opt) 3833 3834static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info, 3835 u64 flag, const char *name) 3836{ 3837 struct btrfs_super_block *disk_super; 3838 u64 features; 3839 3840 disk_super = fs_info->super_copy; 3841 features = btrfs_super_compat_ro_flags(disk_super); 3842 if (!(features & flag)) { 3843 spin_lock(&fs_info->super_lock); 3844 features = btrfs_super_compat_ro_flags(disk_super); 3845 if (!(features & flag)) { 3846 features |= flag; 3847 btrfs_set_super_compat_ro_flags(disk_super, features); 3848 btrfs_info(fs_info, 3849 "setting compat-ro feature flag for %s (0x%llx)", 3850 name, flag); 3851 } 3852 spin_unlock(&fs_info->super_lock); 3853 } 3854} 3855 3856#define btrfs_clear_fs_compat_ro(__fs_info, opt) \ 3857 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3858 #opt) 3859 3860static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info, 3861 u64 flag, const char *name) 3862{ 3863 struct btrfs_super_block *disk_super; 3864 u64 features; 3865 3866 disk_super = fs_info->super_copy; 3867 features = btrfs_super_compat_ro_flags(disk_super); 3868 if (features & flag) { 3869 spin_lock(&fs_info->super_lock); 3870 features = btrfs_super_compat_ro_flags(disk_super); 3871 if (features & flag) { 3872 features &= ~flag; 3873 btrfs_set_super_compat_ro_flags(disk_super, features); 3874 btrfs_info(fs_info, 3875 "clearing compat-ro feature flag for %s (0x%llx)", 3876 name, flag); 3877 } 3878 spin_unlock(&fs_info->super_lock); 3879 } 3880} 3881 3882#define btrfs_fs_compat_ro(fs_info, opt) \ 3883 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt) 3884 3885static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag) 3886{ 3887 struct btrfs_super_block *disk_super; 3888 disk_super = fs_info->super_copy; 3889 return !!(btrfs_super_compat_ro_flags(disk_super) & flag); 3890} 3891 3892/* acl.c */ 3893#ifdef CONFIG_BTRFS_FS_POSIX_ACL 3894struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu); 3895int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode, 3896 struct posix_acl *acl, int type); 3897int __btrfs_set_acl(struct btrfs_trans_handle *trans, struct inode *inode, 3898 struct posix_acl *acl, int type); 3899#else 3900#define btrfs_get_acl NULL 3901#define btrfs_set_acl NULL 3902static inline int __btrfs_set_acl(struct btrfs_trans_handle *trans, 3903 struct inode *inode, struct posix_acl *acl, 3904 int type) 3905{ 3906 return -EOPNOTSUPP; 3907} 3908#endif 3909 3910/* relocation.c */ 3911int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start); 3912int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 3913 struct btrfs_root *root); 3914int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 3915 struct btrfs_root *root); 3916int btrfs_recover_relocation(struct btrfs_fs_info *fs_info); 3917int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len); 3918int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 3919 struct btrfs_root *root, struct extent_buffer *buf, 3920 struct extent_buffer *cow); 3921void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 3922 u64 *bytes_to_reserve); 3923int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 3924 struct btrfs_pending_snapshot *pending); 3925int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info); 3926struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, 3927 u64 bytenr); 3928int btrfs_should_ignore_reloc_root(struct btrfs_root *root); 3929 3930/* scrub.c */ 3931int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3932 u64 end, struct btrfs_scrub_progress *progress, 3933 int readonly, int is_dev_replace); 3934void btrfs_scrub_pause(struct btrfs_fs_info *fs_info); 3935void btrfs_scrub_continue(struct btrfs_fs_info *fs_info); 3936int btrfs_scrub_cancel(struct btrfs_fs_info *info); 3937int btrfs_scrub_cancel_dev(struct btrfs_device *dev); 3938int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3939 struct btrfs_scrub_progress *progress); 3940static inline void btrfs_init_full_stripe_locks_tree( 3941 struct btrfs_full_stripe_locks_tree *locks_root) 3942{ 3943 locks_root->root = RB_ROOT; 3944 mutex_init(&locks_root->lock); 3945} 3946 3947/* dev-replace.c */ 3948void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info); 3949void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info); 3950void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount); 3951 3952static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info) 3953{ 3954 btrfs_bio_counter_sub(fs_info, 1); 3955} 3956 3957static inline int is_fstree(u64 rootid) 3958{ 3959 if (rootid == BTRFS_FS_TREE_OBJECTID || 3960 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID && 3961 !btrfs_qgroup_level(rootid))) 3962 return 1; 3963 return 0; 3964} 3965 3966static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info) 3967{ 3968 return signal_pending(current); 3969} 3970 3971/* verity.c */ 3972#ifdef CONFIG_FS_VERITY 3973 3974extern const struct fsverity_operations btrfs_verityops; 3975int btrfs_drop_verity_items(struct btrfs_inode *inode); 3976 3977BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item, 3978 encryption, 8); 3979BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item, 3980 size, 64); 3981BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption, 3982 struct btrfs_verity_descriptor_item, encryption, 8); 3983BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size, 3984 struct btrfs_verity_descriptor_item, size, 64); 3985 3986#else 3987 3988static inline int btrfs_drop_verity_items(struct btrfs_inode *inode) 3989{ 3990 return 0; 3991} 3992 3993#endif 3994 3995/* Sanity test specific functions */ 3996#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3997void btrfs_test_destroy_inode(struct inode *inode); 3998static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 3999{ 4000 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 4001} 4002#else 4003static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 4004{ 4005 return 0; 4006} 4007#endif 4008 4009static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info) 4010{ 4011 return fs_info->zone_size > 0; 4012} 4013 4014static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root) 4015{ 4016 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID; 4017} 4018 4019/* 4020 * We use page status Private2 to indicate there is an ordered extent with 4021 * unfinished IO. 4022 * 4023 * Rename the Private2 accessors to Ordered, to improve readability. 4024 */ 4025#define PageOrdered(page) PagePrivate2(page) 4026#define SetPageOrdered(page) SetPagePrivate2(page) 4027#define ClearPageOrdered(page) ClearPagePrivate2(page) 4028#define folio_test_ordered(folio) folio_test_private_2(folio) 4029#define folio_set_ordered(folio) folio_set_private_2(folio) 4030#define folio_clear_ordered(folio) folio_clear_private_2(folio) 4031 4032#endif