cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

discard.c (23499B)


      1// SPDX-License-Identifier: GPL-2.0
      2
      3#include <linux/jiffies.h>
      4#include <linux/kernel.h>
      5#include <linux/ktime.h>
      6#include <linux/list.h>
      7#include <linux/math64.h>
      8#include <linux/sizes.h>
      9#include <linux/workqueue.h>
     10#include "ctree.h"
     11#include "block-group.h"
     12#include "discard.h"
     13#include "free-space-cache.h"
     14
     15/*
     16 * This contains the logic to handle async discard.
     17 *
     18 * Async discard manages trimming of free space outside of transaction commit.
     19 * Discarding is done by managing the block_groups on a LRU list based on free
     20 * space recency.  Two passes are used to first prioritize discarding extents
     21 * and then allow for trimming in the bitmap the best opportunity to coalesce.
     22 * The block_groups are maintained on multiple lists to allow for multiple
     23 * passes with different discard filter requirements.  A delayed work item is
     24 * used to manage discarding with timeout determined by a max of the delay
     25 * incurred by the iops rate limit, the byte rate limit, and the max delay of
     26 * BTRFS_DISCARD_MAX_DELAY.
     27 *
     28 * Note, this only keeps track of block_groups that are explicitly for data.
     29 * Mixed block_groups are not supported.
     30 *
     31 * The first list is special to manage discarding of fully free block groups.
     32 * This is necessary because we issue a final trim for a full free block group
     33 * after forgetting it.  When a block group becomes unused, instead of directly
     34 * being added to the unused_bgs list, we add it to this first list.  Then
     35 * from there, if it becomes fully discarded, we place it onto the unused_bgs
     36 * list.
     37 *
     38 * The in-memory free space cache serves as the backing state for discard.
     39 * Consequently this means there is no persistence.  We opt to load all the
     40 * block groups in as not discarded, so the mount case degenerates to the
     41 * crashing case.
     42 *
     43 * As the free space cache uses bitmaps, there exists a tradeoff between
     44 * ease/efficiency for find_free_extent() and the accuracy of discard state.
     45 * Here we opt to let untrimmed regions merge with everything while only letting
     46 * trimmed regions merge with other trimmed regions.  This can cause
     47 * overtrimming, but the coalescing benefit seems to be worth it.  Additionally,
     48 * bitmap state is tracked as a whole.  If we're able to fully trim a bitmap,
     49 * the trimmed flag is set on the bitmap.  Otherwise, if an allocation comes in,
     50 * this resets the state and we will retry trimming the whole bitmap.  This is a
     51 * tradeoff between discard state accuracy and the cost of accounting.
     52 */
     53
     54/* This is an initial delay to give some chance for block reuse */
     55#define BTRFS_DISCARD_DELAY		(120ULL * NSEC_PER_SEC)
     56#define BTRFS_DISCARD_UNUSED_DELAY	(10ULL * NSEC_PER_SEC)
     57
     58/* Target completion latency of discarding all discardable extents */
     59#define BTRFS_DISCARD_TARGET_MSEC	(6 * 60 * 60UL * MSEC_PER_SEC)
     60#define BTRFS_DISCARD_MIN_DELAY_MSEC	(1UL)
     61#define BTRFS_DISCARD_MAX_DELAY_MSEC	(1000UL)
     62#define BTRFS_DISCARD_MAX_IOPS		(10U)
     63
     64/* Montonically decreasing minimum length filters after index 0 */
     65static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = {
     66	0,
     67	BTRFS_ASYNC_DISCARD_MAX_FILTER,
     68	BTRFS_ASYNC_DISCARD_MIN_FILTER
     69};
     70
     71static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl,
     72					  struct btrfs_block_group *block_group)
     73{
     74	return &discard_ctl->discard_list[block_group->discard_index];
     75}
     76
     77static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
     78				  struct btrfs_block_group *block_group)
     79{
     80	if (!btrfs_run_discard_work(discard_ctl))
     81		return;
     82
     83	if (list_empty(&block_group->discard_list) ||
     84	    block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) {
     85		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED)
     86			block_group->discard_index = BTRFS_DISCARD_INDEX_START;
     87		block_group->discard_eligible_time = (ktime_get_ns() +
     88						      BTRFS_DISCARD_DELAY);
     89		block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
     90	}
     91
     92	list_move_tail(&block_group->discard_list,
     93		       get_discard_list(discard_ctl, block_group));
     94}
     95
     96static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
     97				struct btrfs_block_group *block_group)
     98{
     99	if (!btrfs_is_block_group_data_only(block_group))
    100		return;
    101
    102	spin_lock(&discard_ctl->lock);
    103	__add_to_discard_list(discard_ctl, block_group);
    104	spin_unlock(&discard_ctl->lock);
    105}
    106
    107static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl,
    108				       struct btrfs_block_group *block_group)
    109{
    110	spin_lock(&discard_ctl->lock);
    111
    112	if (!btrfs_run_discard_work(discard_ctl)) {
    113		spin_unlock(&discard_ctl->lock);
    114		return;
    115	}
    116
    117	list_del_init(&block_group->discard_list);
    118
    119	block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
    120	block_group->discard_eligible_time = (ktime_get_ns() +
    121					      BTRFS_DISCARD_UNUSED_DELAY);
    122	block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
    123	list_add_tail(&block_group->discard_list,
    124		      &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]);
    125
    126	spin_unlock(&discard_ctl->lock);
    127}
    128
    129static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl,
    130				     struct btrfs_block_group *block_group)
    131{
    132	bool running = false;
    133
    134	spin_lock(&discard_ctl->lock);
    135
    136	if (block_group == discard_ctl->block_group) {
    137		running = true;
    138		discard_ctl->block_group = NULL;
    139	}
    140
    141	block_group->discard_eligible_time = 0;
    142	list_del_init(&block_group->discard_list);
    143
    144	spin_unlock(&discard_ctl->lock);
    145
    146	return running;
    147}
    148
    149/**
    150 * find_next_block_group - find block_group that's up next for discarding
    151 * @discard_ctl: discard control
    152 * @now: current time
    153 *
    154 * Iterate over the discard lists to find the next block_group up for
    155 * discarding checking the discard_eligible_time of block_group.
    156 */
    157static struct btrfs_block_group *find_next_block_group(
    158					struct btrfs_discard_ctl *discard_ctl,
    159					u64 now)
    160{
    161	struct btrfs_block_group *ret_block_group = NULL, *block_group;
    162	int i;
    163
    164	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
    165		struct list_head *discard_list = &discard_ctl->discard_list[i];
    166
    167		if (!list_empty(discard_list)) {
    168			block_group = list_first_entry(discard_list,
    169						       struct btrfs_block_group,
    170						       discard_list);
    171
    172			if (!ret_block_group)
    173				ret_block_group = block_group;
    174
    175			if (ret_block_group->discard_eligible_time < now)
    176				break;
    177
    178			if (ret_block_group->discard_eligible_time >
    179			    block_group->discard_eligible_time)
    180				ret_block_group = block_group;
    181		}
    182	}
    183
    184	return ret_block_group;
    185}
    186
    187/**
    188 * Wrap find_next_block_group()
    189 *
    190 * @discard_ctl:   discard control
    191 * @discard_state: the discard_state of the block_group after state management
    192 * @discard_index: the discard_index of the block_group after state management
    193 * @now:           time when discard was invoked, in ns
    194 *
    195 * This wraps find_next_block_group() and sets the block_group to be in use.
    196 * discard_state's control flow is managed here.  Variables related to
    197 * discard_state are reset here as needed (eg discard_cursor).  @discard_state
    198 * and @discard_index are remembered as it may change while we're discarding,
    199 * but we want the discard to execute in the context determined here.
    200 */
    201static struct btrfs_block_group *peek_discard_list(
    202					struct btrfs_discard_ctl *discard_ctl,
    203					enum btrfs_discard_state *discard_state,
    204					int *discard_index, u64 now)
    205{
    206	struct btrfs_block_group *block_group;
    207
    208	spin_lock(&discard_ctl->lock);
    209again:
    210	block_group = find_next_block_group(discard_ctl, now);
    211
    212	if (block_group && now >= block_group->discard_eligible_time) {
    213		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED &&
    214		    block_group->used != 0) {
    215			if (btrfs_is_block_group_data_only(block_group))
    216				__add_to_discard_list(discard_ctl, block_group);
    217			else
    218				list_del_init(&block_group->discard_list);
    219			goto again;
    220		}
    221		if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) {
    222			block_group->discard_cursor = block_group->start;
    223			block_group->discard_state = BTRFS_DISCARD_EXTENTS;
    224		}
    225		discard_ctl->block_group = block_group;
    226	}
    227	if (block_group) {
    228		*discard_state = block_group->discard_state;
    229		*discard_index = block_group->discard_index;
    230	}
    231	spin_unlock(&discard_ctl->lock);
    232
    233	return block_group;
    234}
    235
    236/**
    237 * btrfs_discard_check_filter - updates a block groups filters
    238 * @block_group: block group of interest
    239 * @bytes: recently freed region size after coalescing
    240 *
    241 * Async discard maintains multiple lists with progressively smaller filters
    242 * to prioritize discarding based on size.  Should a free space that matches
    243 * a larger filter be returned to the free_space_cache, prioritize that discard
    244 * by moving @block_group to the proper filter.
    245 */
    246void btrfs_discard_check_filter(struct btrfs_block_group *block_group,
    247				u64 bytes)
    248{
    249	struct btrfs_discard_ctl *discard_ctl;
    250
    251	if (!block_group ||
    252	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
    253		return;
    254
    255	discard_ctl = &block_group->fs_info->discard_ctl;
    256
    257	if (block_group->discard_index > BTRFS_DISCARD_INDEX_START &&
    258	    bytes >= discard_minlen[block_group->discard_index - 1]) {
    259		int i;
    260
    261		remove_from_discard_list(discard_ctl, block_group);
    262
    263		for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS;
    264		     i++) {
    265			if (bytes >= discard_minlen[i]) {
    266				block_group->discard_index = i;
    267				add_to_discard_list(discard_ctl, block_group);
    268				break;
    269			}
    270		}
    271	}
    272}
    273
    274/**
    275 * btrfs_update_discard_index - moves a block group along the discard lists
    276 * @discard_ctl: discard control
    277 * @block_group: block_group of interest
    278 *
    279 * Increment @block_group's discard_index.  If it falls of the list, let it be.
    280 * Otherwise add it back to the appropriate list.
    281 */
    282static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl,
    283				       struct btrfs_block_group *block_group)
    284{
    285	block_group->discard_index++;
    286	if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) {
    287		block_group->discard_index = 1;
    288		return;
    289	}
    290
    291	add_to_discard_list(discard_ctl, block_group);
    292}
    293
    294/**
    295 * btrfs_discard_cancel_work - remove a block_group from the discard lists
    296 * @discard_ctl: discard control
    297 * @block_group: block_group of interest
    298 *
    299 * This removes @block_group from the discard lists.  If necessary, it waits on
    300 * the current work and then reschedules the delayed work.
    301 */
    302void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl,
    303			       struct btrfs_block_group *block_group)
    304{
    305	if (remove_from_discard_list(discard_ctl, block_group)) {
    306		cancel_delayed_work_sync(&discard_ctl->work);
    307		btrfs_discard_schedule_work(discard_ctl, true);
    308	}
    309}
    310
    311/**
    312 * btrfs_discard_queue_work - handles queuing the block_groups
    313 * @discard_ctl: discard control
    314 * @block_group: block_group of interest
    315 *
    316 * This maintains the LRU order of the discard lists.
    317 */
    318void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl,
    319			      struct btrfs_block_group *block_group)
    320{
    321	if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
    322		return;
    323
    324	if (block_group->used == 0)
    325		add_to_discard_unused_list(discard_ctl, block_group);
    326	else
    327		add_to_discard_list(discard_ctl, block_group);
    328
    329	if (!delayed_work_pending(&discard_ctl->work))
    330		btrfs_discard_schedule_work(discard_ctl, false);
    331}
    332
    333static void __btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
    334					  u64 now, bool override)
    335{
    336	struct btrfs_block_group *block_group;
    337
    338	if (!btrfs_run_discard_work(discard_ctl))
    339		return;
    340	if (!override && delayed_work_pending(&discard_ctl->work))
    341		return;
    342
    343	block_group = find_next_block_group(discard_ctl, now);
    344	if (block_group) {
    345		u64 delay = discard_ctl->delay_ms * NSEC_PER_MSEC;
    346		u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit);
    347
    348		/*
    349		 * A single delayed workqueue item is responsible for
    350		 * discarding, so we can manage the bytes rate limit by keeping
    351		 * track of the previous discard.
    352		 */
    353		if (kbps_limit && discard_ctl->prev_discard) {
    354			u64 bps_limit = ((u64)kbps_limit) * SZ_1K;
    355			u64 bps_delay = div64_u64(discard_ctl->prev_discard *
    356						  NSEC_PER_SEC, bps_limit);
    357
    358			delay = max(delay, bps_delay);
    359		}
    360
    361		/*
    362		 * This timeout is to hopefully prevent immediate discarding
    363		 * in a recently allocated block group.
    364		 */
    365		if (now < block_group->discard_eligible_time) {
    366			u64 bg_timeout = block_group->discard_eligible_time - now;
    367
    368			delay = max(delay, bg_timeout);
    369		}
    370
    371		if (override && discard_ctl->prev_discard) {
    372			u64 elapsed = now - discard_ctl->prev_discard_time;
    373
    374			if (delay > elapsed)
    375				delay -= elapsed;
    376			else
    377				delay = 0;
    378		}
    379
    380		mod_delayed_work(discard_ctl->discard_workers,
    381				 &discard_ctl->work, nsecs_to_jiffies(delay));
    382	}
    383}
    384
    385/*
    386 * btrfs_discard_schedule_work - responsible for scheduling the discard work
    387 * @discard_ctl:  discard control
    388 * @override:     override the current timer
    389 *
    390 * Discards are issued by a delayed workqueue item.  @override is used to
    391 * update the current delay as the baseline delay interval is reevaluated on
    392 * transaction commit.  This is also maxed with any other rate limit.
    393 */
    394void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
    395				 bool override)
    396{
    397	const u64 now = ktime_get_ns();
    398
    399	spin_lock(&discard_ctl->lock);
    400	__btrfs_discard_schedule_work(discard_ctl, now, override);
    401	spin_unlock(&discard_ctl->lock);
    402}
    403
    404/**
    405 * btrfs_finish_discard_pass - determine next step of a block_group
    406 * @discard_ctl: discard control
    407 * @block_group: block_group of interest
    408 *
    409 * This determines the next step for a block group after it's finished going
    410 * through a pass on a discard list.  If it is unused and fully trimmed, we can
    411 * mark it unused and send it to the unused_bgs path.  Otherwise, pass it onto
    412 * the appropriate filter list or let it fall off.
    413 */
    414static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl,
    415				      struct btrfs_block_group *block_group)
    416{
    417	remove_from_discard_list(discard_ctl, block_group);
    418
    419	if (block_group->used == 0) {
    420		if (btrfs_is_free_space_trimmed(block_group))
    421			btrfs_mark_bg_unused(block_group);
    422		else
    423			add_to_discard_unused_list(discard_ctl, block_group);
    424	} else {
    425		btrfs_update_discard_index(discard_ctl, block_group);
    426	}
    427}
    428
    429/**
    430 * btrfs_discard_workfn - discard work function
    431 * @work: work
    432 *
    433 * This finds the next block_group to start discarding and then discards a
    434 * single region.  It does this in a two-pass fashion: first extents and second
    435 * bitmaps.  Completely discarded block groups are sent to the unused_bgs path.
    436 */
    437static void btrfs_discard_workfn(struct work_struct *work)
    438{
    439	struct btrfs_discard_ctl *discard_ctl;
    440	struct btrfs_block_group *block_group;
    441	enum btrfs_discard_state discard_state;
    442	int discard_index = 0;
    443	u64 trimmed = 0;
    444	u64 minlen = 0;
    445	u64 now = ktime_get_ns();
    446
    447	discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work);
    448
    449	block_group = peek_discard_list(discard_ctl, &discard_state,
    450					&discard_index, now);
    451	if (!block_group || !btrfs_run_discard_work(discard_ctl))
    452		return;
    453	if (now < block_group->discard_eligible_time) {
    454		btrfs_discard_schedule_work(discard_ctl, false);
    455		return;
    456	}
    457
    458	/* Perform discarding */
    459	minlen = discard_minlen[discard_index];
    460
    461	if (discard_state == BTRFS_DISCARD_BITMAPS) {
    462		u64 maxlen = 0;
    463
    464		/*
    465		 * Use the previous levels minimum discard length as the max
    466		 * length filter.  In the case something is added to make a
    467		 * region go beyond the max filter, the entire bitmap is set
    468		 * back to BTRFS_TRIM_STATE_UNTRIMMED.
    469		 */
    470		if (discard_index != BTRFS_DISCARD_INDEX_UNUSED)
    471			maxlen = discard_minlen[discard_index - 1];
    472
    473		btrfs_trim_block_group_bitmaps(block_group, &trimmed,
    474				       block_group->discard_cursor,
    475				       btrfs_block_group_end(block_group),
    476				       minlen, maxlen, true);
    477		discard_ctl->discard_bitmap_bytes += trimmed;
    478	} else {
    479		btrfs_trim_block_group_extents(block_group, &trimmed,
    480				       block_group->discard_cursor,
    481				       btrfs_block_group_end(block_group),
    482				       minlen, true);
    483		discard_ctl->discard_extent_bytes += trimmed;
    484	}
    485
    486	/* Determine next steps for a block_group */
    487	if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) {
    488		if (discard_state == BTRFS_DISCARD_BITMAPS) {
    489			btrfs_finish_discard_pass(discard_ctl, block_group);
    490		} else {
    491			block_group->discard_cursor = block_group->start;
    492			spin_lock(&discard_ctl->lock);
    493			if (block_group->discard_state !=
    494			    BTRFS_DISCARD_RESET_CURSOR)
    495				block_group->discard_state =
    496							BTRFS_DISCARD_BITMAPS;
    497			spin_unlock(&discard_ctl->lock);
    498		}
    499	}
    500
    501	now = ktime_get_ns();
    502	spin_lock(&discard_ctl->lock);
    503	discard_ctl->prev_discard = trimmed;
    504	discard_ctl->prev_discard_time = now;
    505	discard_ctl->block_group = NULL;
    506	__btrfs_discard_schedule_work(discard_ctl, now, false);
    507	spin_unlock(&discard_ctl->lock);
    508}
    509
    510/**
    511 * btrfs_run_discard_work - determines if async discard should be running
    512 * @discard_ctl: discard control
    513 *
    514 * Checks if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set.
    515 */
    516bool btrfs_run_discard_work(struct btrfs_discard_ctl *discard_ctl)
    517{
    518	struct btrfs_fs_info *fs_info = container_of(discard_ctl,
    519						     struct btrfs_fs_info,
    520						     discard_ctl);
    521
    522	return (!(fs_info->sb->s_flags & SB_RDONLY) &&
    523		test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags));
    524}
    525
    526/**
    527 * btrfs_discard_calc_delay - recalculate the base delay
    528 * @discard_ctl: discard control
    529 *
    530 * Recalculate the base delay which is based off the total number of
    531 * discardable_extents.  Clamp this between the lower_limit (iops_limit or 1ms)
    532 * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC).
    533 */
    534void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl)
    535{
    536	s32 discardable_extents;
    537	s64 discardable_bytes;
    538	u32 iops_limit;
    539	unsigned long delay;
    540
    541	discardable_extents = atomic_read(&discard_ctl->discardable_extents);
    542	if (!discardable_extents)
    543		return;
    544
    545	spin_lock(&discard_ctl->lock);
    546
    547	/*
    548	 * The following is to fix a potential -1 discrepenancy that we're not
    549	 * sure how to reproduce. But given that this is the only place that
    550	 * utilizes these numbers and this is only called by from
    551	 * btrfs_finish_extent_commit() which is synchronized, we can correct
    552	 * here.
    553	 */
    554	if (discardable_extents < 0)
    555		atomic_add(-discardable_extents,
    556			   &discard_ctl->discardable_extents);
    557
    558	discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes);
    559	if (discardable_bytes < 0)
    560		atomic64_add(-discardable_bytes,
    561			     &discard_ctl->discardable_bytes);
    562
    563	if (discardable_extents <= 0) {
    564		spin_unlock(&discard_ctl->lock);
    565		return;
    566	}
    567
    568	iops_limit = READ_ONCE(discard_ctl->iops_limit);
    569	if (iops_limit)
    570		delay = MSEC_PER_SEC / iops_limit;
    571	else
    572		delay = BTRFS_DISCARD_TARGET_MSEC / discardable_extents;
    573
    574	delay = clamp(delay, BTRFS_DISCARD_MIN_DELAY_MSEC,
    575		      BTRFS_DISCARD_MAX_DELAY_MSEC);
    576	discard_ctl->delay_ms = delay;
    577
    578	spin_unlock(&discard_ctl->lock);
    579}
    580
    581/**
    582 * btrfs_discard_update_discardable - propagate discard counters
    583 * @block_group: block_group of interest
    584 *
    585 * This propagates deltas of counters up to the discard_ctl.  It maintains a
    586 * current counter and a previous counter passing the delta up to the global
    587 * stat.  Then the current counter value becomes the previous counter value.
    588 */
    589void btrfs_discard_update_discardable(struct btrfs_block_group *block_group)
    590{
    591	struct btrfs_free_space_ctl *ctl;
    592	struct btrfs_discard_ctl *discard_ctl;
    593	s32 extents_delta;
    594	s64 bytes_delta;
    595
    596	if (!block_group ||
    597	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) ||
    598	    !btrfs_is_block_group_data_only(block_group))
    599		return;
    600
    601	ctl = block_group->free_space_ctl;
    602	discard_ctl = &block_group->fs_info->discard_ctl;
    603
    604	lockdep_assert_held(&ctl->tree_lock);
    605	extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] -
    606			ctl->discardable_extents[BTRFS_STAT_PREV];
    607	if (extents_delta) {
    608		atomic_add(extents_delta, &discard_ctl->discardable_extents);
    609		ctl->discardable_extents[BTRFS_STAT_PREV] =
    610			ctl->discardable_extents[BTRFS_STAT_CURR];
    611	}
    612
    613	bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] -
    614		      ctl->discardable_bytes[BTRFS_STAT_PREV];
    615	if (bytes_delta) {
    616		atomic64_add(bytes_delta, &discard_ctl->discardable_bytes);
    617		ctl->discardable_bytes[BTRFS_STAT_PREV] =
    618			ctl->discardable_bytes[BTRFS_STAT_CURR];
    619	}
    620}
    621
    622/**
    623 * btrfs_discard_punt_unused_bgs_list - punt unused_bgs list to discard lists
    624 * @fs_info: fs_info of interest
    625 *
    626 * The unused_bgs list needs to be punted to the discard lists because the
    627 * order of operations is changed.  In the normal synchronous discard path, the
    628 * block groups are trimmed via a single large trim in transaction commit.  This
    629 * is ultimately what we are trying to avoid with asynchronous discard.  Thus,
    630 * it must be done before going down the unused_bgs path.
    631 */
    632void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info)
    633{
    634	struct btrfs_block_group *block_group, *next;
    635
    636	spin_lock(&fs_info->unused_bgs_lock);
    637	/* We enabled async discard, so punt all to the queue */
    638	list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs,
    639				 bg_list) {
    640		list_del_init(&block_group->bg_list);
    641		btrfs_put_block_group(block_group);
    642		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
    643	}
    644	spin_unlock(&fs_info->unused_bgs_lock);
    645}
    646
    647/**
    648 * btrfs_discard_purge_list - purge discard lists
    649 * @discard_ctl: discard control
    650 *
    651 * If we are disabling async discard, we may have intercepted block groups that
    652 * are completely free and ready for the unused_bgs path.  As discarding will
    653 * now happen in transaction commit or not at all, we can safely mark the
    654 * corresponding block groups as unused and they will be sent on their merry
    655 * way to the unused_bgs list.
    656 */
    657static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl)
    658{
    659	struct btrfs_block_group *block_group, *next;
    660	int i;
    661
    662	spin_lock(&discard_ctl->lock);
    663	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
    664		list_for_each_entry_safe(block_group, next,
    665					 &discard_ctl->discard_list[i],
    666					 discard_list) {
    667			list_del_init(&block_group->discard_list);
    668			spin_unlock(&discard_ctl->lock);
    669			if (block_group->used == 0)
    670				btrfs_mark_bg_unused(block_group);
    671			spin_lock(&discard_ctl->lock);
    672		}
    673	}
    674	spin_unlock(&discard_ctl->lock);
    675}
    676
    677void btrfs_discard_resume(struct btrfs_fs_info *fs_info)
    678{
    679	if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
    680		btrfs_discard_cleanup(fs_info);
    681		return;
    682	}
    683
    684	btrfs_discard_punt_unused_bgs_list(fs_info);
    685
    686	set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
    687}
    688
    689void btrfs_discard_stop(struct btrfs_fs_info *fs_info)
    690{
    691	clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
    692}
    693
    694void btrfs_discard_init(struct btrfs_fs_info *fs_info)
    695{
    696	struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
    697	int i;
    698
    699	spin_lock_init(&discard_ctl->lock);
    700	INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn);
    701
    702	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++)
    703		INIT_LIST_HEAD(&discard_ctl->discard_list[i]);
    704
    705	discard_ctl->prev_discard = 0;
    706	discard_ctl->prev_discard_time = 0;
    707	atomic_set(&discard_ctl->discardable_extents, 0);
    708	atomic64_set(&discard_ctl->discardable_bytes, 0);
    709	discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE;
    710	discard_ctl->delay_ms = BTRFS_DISCARD_MAX_DELAY_MSEC;
    711	discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS;
    712	discard_ctl->kbps_limit = 0;
    713	discard_ctl->discard_extent_bytes = 0;
    714	discard_ctl->discard_bitmap_bytes = 0;
    715	atomic64_set(&discard_ctl->discard_bytes_saved, 0);
    716}
    717
    718void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info)
    719{
    720	btrfs_discard_stop(fs_info);
    721	cancel_delayed_work_sync(&fs_info->discard_ctl.work);
    722	btrfs_discard_purge_list(&fs_info->discard_ctl);
    723}