cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

file-item.c (37242B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (C) 2007 Oracle.  All rights reserved.
      4 */
      5
      6#include <linux/bio.h>
      7#include <linux/slab.h>
      8#include <linux/pagemap.h>
      9#include <linux/highmem.h>
     10#include <linux/sched/mm.h>
     11#include <crypto/hash.h>
     12#include "misc.h"
     13#include "ctree.h"
     14#include "disk-io.h"
     15#include "transaction.h"
     16#include "volumes.h"
     17#include "print-tree.h"
     18#include "compression.h"
     19
     20#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
     21				   sizeof(struct btrfs_item) * 2) / \
     22				  size) - 1))
     23
     24#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
     25				       PAGE_SIZE))
     26
     27/**
     28 * Set inode's size according to filesystem options
     29 *
     30 * @inode:      inode we want to update the disk_i_size for
     31 * @new_i_size: i_size we want to set to, 0 if we use i_size
     32 *
     33 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
     34 * returns as it is perfectly fine with a file that has holes without hole file
     35 * extent items.
     36 *
     37 * However without NO_HOLES we need to only return the area that is contiguous
     38 * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
     39 * to an extent that has a gap in between.
     40 *
     41 * Finally new_i_size should only be set in the case of truncate where we're not
     42 * ready to use i_size_read() as the limiter yet.
     43 */
     44void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
     45{
     46	struct btrfs_fs_info *fs_info = inode->root->fs_info;
     47	u64 start, end, i_size;
     48	int ret;
     49
     50	i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
     51	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
     52		inode->disk_i_size = i_size;
     53		return;
     54	}
     55
     56	spin_lock(&inode->lock);
     57	ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
     58					 &end, EXTENT_DIRTY);
     59	if (!ret && start == 0)
     60		i_size = min(i_size, end + 1);
     61	else
     62		i_size = 0;
     63	inode->disk_i_size = i_size;
     64	spin_unlock(&inode->lock);
     65}
     66
     67/**
     68 * Mark range within a file as having a new extent inserted
     69 *
     70 * @inode: inode being modified
     71 * @start: start file offset of the file extent we've inserted
     72 * @len:   logical length of the file extent item
     73 *
     74 * Call when we are inserting a new file extent where there was none before.
     75 * Does not need to call this in the case where we're replacing an existing file
     76 * extent, however if not sure it's fine to call this multiple times.
     77 *
     78 * The start and len must match the file extent item, so thus must be sectorsize
     79 * aligned.
     80 */
     81int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
     82				      u64 len)
     83{
     84	if (len == 0)
     85		return 0;
     86
     87	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
     88
     89	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
     90		return 0;
     91	return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
     92			       EXTENT_DIRTY);
     93}
     94
     95/**
     96 * Marks an inode range as not having a backing extent
     97 *
     98 * @inode: inode being modified
     99 * @start: start file offset of the file extent we've inserted
    100 * @len:   logical length of the file extent item
    101 *
    102 * Called when we drop a file extent, for example when we truncate.  Doesn't
    103 * need to be called for cases where we're replacing a file extent, like when
    104 * we've COWed a file extent.
    105 *
    106 * The start and len must match the file extent item, so thus must be sectorsize
    107 * aligned.
    108 */
    109int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
    110					u64 len)
    111{
    112	if (len == 0)
    113		return 0;
    114
    115	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
    116	       len == (u64)-1);
    117
    118	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
    119		return 0;
    120	return clear_extent_bit(&inode->file_extent_tree, start,
    121				start + len - 1, EXTENT_DIRTY, 0, 0, NULL);
    122}
    123
    124static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info,
    125					u16 csum_size)
    126{
    127	u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size;
    128
    129	return ncsums * fs_info->sectorsize;
    130}
    131
    132int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
    133			     struct btrfs_root *root,
    134			     u64 objectid, u64 pos,
    135			     u64 disk_offset, u64 disk_num_bytes,
    136			     u64 num_bytes, u64 offset, u64 ram_bytes,
    137			     u8 compression, u8 encryption, u16 other_encoding)
    138{
    139	int ret = 0;
    140	struct btrfs_file_extent_item *item;
    141	struct btrfs_key file_key;
    142	struct btrfs_path *path;
    143	struct extent_buffer *leaf;
    144
    145	path = btrfs_alloc_path();
    146	if (!path)
    147		return -ENOMEM;
    148	file_key.objectid = objectid;
    149	file_key.offset = pos;
    150	file_key.type = BTRFS_EXTENT_DATA_KEY;
    151
    152	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
    153				      sizeof(*item));
    154	if (ret < 0)
    155		goto out;
    156	BUG_ON(ret); /* Can't happen */
    157	leaf = path->nodes[0];
    158	item = btrfs_item_ptr(leaf, path->slots[0],
    159			      struct btrfs_file_extent_item);
    160	btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
    161	btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
    162	btrfs_set_file_extent_offset(leaf, item, offset);
    163	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
    164	btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
    165	btrfs_set_file_extent_generation(leaf, item, trans->transid);
    166	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
    167	btrfs_set_file_extent_compression(leaf, item, compression);
    168	btrfs_set_file_extent_encryption(leaf, item, encryption);
    169	btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
    170
    171	btrfs_mark_buffer_dirty(leaf);
    172out:
    173	btrfs_free_path(path);
    174	return ret;
    175}
    176
    177static struct btrfs_csum_item *
    178btrfs_lookup_csum(struct btrfs_trans_handle *trans,
    179		  struct btrfs_root *root,
    180		  struct btrfs_path *path,
    181		  u64 bytenr, int cow)
    182{
    183	struct btrfs_fs_info *fs_info = root->fs_info;
    184	int ret;
    185	struct btrfs_key file_key;
    186	struct btrfs_key found_key;
    187	struct btrfs_csum_item *item;
    188	struct extent_buffer *leaf;
    189	u64 csum_offset = 0;
    190	const u32 csum_size = fs_info->csum_size;
    191	int csums_in_item;
    192
    193	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
    194	file_key.offset = bytenr;
    195	file_key.type = BTRFS_EXTENT_CSUM_KEY;
    196	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
    197	if (ret < 0)
    198		goto fail;
    199	leaf = path->nodes[0];
    200	if (ret > 0) {
    201		ret = 1;
    202		if (path->slots[0] == 0)
    203			goto fail;
    204		path->slots[0]--;
    205		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
    206		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
    207			goto fail;
    208
    209		csum_offset = (bytenr - found_key.offset) >>
    210				fs_info->sectorsize_bits;
    211		csums_in_item = btrfs_item_size(leaf, path->slots[0]);
    212		csums_in_item /= csum_size;
    213
    214		if (csum_offset == csums_in_item) {
    215			ret = -EFBIG;
    216			goto fail;
    217		} else if (csum_offset > csums_in_item) {
    218			goto fail;
    219		}
    220	}
    221	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
    222	item = (struct btrfs_csum_item *)((unsigned char *)item +
    223					  csum_offset * csum_size);
    224	return item;
    225fail:
    226	if (ret > 0)
    227		ret = -ENOENT;
    228	return ERR_PTR(ret);
    229}
    230
    231int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
    232			     struct btrfs_root *root,
    233			     struct btrfs_path *path, u64 objectid,
    234			     u64 offset, int mod)
    235{
    236	struct btrfs_key file_key;
    237	int ins_len = mod < 0 ? -1 : 0;
    238	int cow = mod != 0;
    239
    240	file_key.objectid = objectid;
    241	file_key.offset = offset;
    242	file_key.type = BTRFS_EXTENT_DATA_KEY;
    243
    244	return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
    245}
    246
    247/*
    248 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
    249 * estore the result to @dst.
    250 *
    251 * Return >0 for the number of sectors we found.
    252 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
    253 * for it. Caller may want to try next sector until one range is hit.
    254 * Return <0 for fatal error.
    255 */
    256static int search_csum_tree(struct btrfs_fs_info *fs_info,
    257			    struct btrfs_path *path, u64 disk_bytenr,
    258			    u64 len, u8 *dst)
    259{
    260	struct btrfs_root *csum_root;
    261	struct btrfs_csum_item *item = NULL;
    262	struct btrfs_key key;
    263	const u32 sectorsize = fs_info->sectorsize;
    264	const u32 csum_size = fs_info->csum_size;
    265	u32 itemsize;
    266	int ret;
    267	u64 csum_start;
    268	u64 csum_len;
    269
    270	ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
    271	       IS_ALIGNED(len, sectorsize));
    272
    273	/* Check if the current csum item covers disk_bytenr */
    274	if (path->nodes[0]) {
    275		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
    276				      struct btrfs_csum_item);
    277		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
    278		itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
    279
    280		csum_start = key.offset;
    281		csum_len = (itemsize / csum_size) * sectorsize;
    282
    283		if (in_range(disk_bytenr, csum_start, csum_len))
    284			goto found;
    285	}
    286
    287	/* Current item doesn't contain the desired range, search again */
    288	btrfs_release_path(path);
    289	csum_root = btrfs_csum_root(fs_info, disk_bytenr);
    290	item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
    291	if (IS_ERR(item)) {
    292		ret = PTR_ERR(item);
    293		goto out;
    294	}
    295	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
    296	itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
    297
    298	csum_start = key.offset;
    299	csum_len = (itemsize / csum_size) * sectorsize;
    300	ASSERT(in_range(disk_bytenr, csum_start, csum_len));
    301
    302found:
    303	ret = (min(csum_start + csum_len, disk_bytenr + len) -
    304		   disk_bytenr) >> fs_info->sectorsize_bits;
    305	read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
    306			ret * csum_size);
    307out:
    308	if (ret == -ENOENT || ret == -EFBIG)
    309		ret = 0;
    310	return ret;
    311}
    312
    313/*
    314 * Locate the file_offset of @cur_disk_bytenr of a @bio.
    315 *
    316 * Bio of btrfs represents read range of
    317 * [bi_sector << 9, bi_sector << 9 + bi_size).
    318 * Knowing this, we can iterate through each bvec to locate the page belong to
    319 * @cur_disk_bytenr and get the file offset.
    320 *
    321 * @inode is used to determine if the bvec page really belongs to @inode.
    322 *
    323 * Return 0 if we can't find the file offset
    324 * Return >0 if we find the file offset and restore it to @file_offset_ret
    325 */
    326static int search_file_offset_in_bio(struct bio *bio, struct inode *inode,
    327				     u64 disk_bytenr, u64 *file_offset_ret)
    328{
    329	struct bvec_iter iter;
    330	struct bio_vec bvec;
    331	u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT;
    332	int ret = 0;
    333
    334	bio_for_each_segment(bvec, bio, iter) {
    335		struct page *page = bvec.bv_page;
    336
    337		if (cur > disk_bytenr)
    338			break;
    339		if (cur + bvec.bv_len <= disk_bytenr) {
    340			cur += bvec.bv_len;
    341			continue;
    342		}
    343		ASSERT(in_range(disk_bytenr, cur, bvec.bv_len));
    344		if (page->mapping && page->mapping->host &&
    345		    page->mapping->host == inode) {
    346			ret = 1;
    347			*file_offset_ret = page_offset(page) + bvec.bv_offset +
    348					   disk_bytenr - cur;
    349			break;
    350		}
    351	}
    352	return ret;
    353}
    354
    355/**
    356 * Lookup the checksum for the read bio in csum tree.
    357 *
    358 * @inode: inode that the bio is for.
    359 * @bio: bio to look up.
    360 * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
    361 *       checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
    362 *       NULL, the checksum buffer is allocated and returned in
    363 *       btrfs_bio(bio)->csum instead.
    364 *
    365 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
    366 */
    367blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst)
    368{
    369	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
    370	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
    371	struct btrfs_bio *bbio = NULL;
    372	struct btrfs_path *path;
    373	const u32 sectorsize = fs_info->sectorsize;
    374	const u32 csum_size = fs_info->csum_size;
    375	u32 orig_len = bio->bi_iter.bi_size;
    376	u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
    377	u64 cur_disk_bytenr;
    378	u8 *csum;
    379	const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
    380	int count = 0;
    381	blk_status_t ret = BLK_STS_OK;
    382
    383	if ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
    384	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
    385		return BLK_STS_OK;
    386
    387	/*
    388	 * This function is only called for read bio.
    389	 *
    390	 * This means two things:
    391	 * - All our csums should only be in csum tree
    392	 *   No ordered extents csums, as ordered extents are only for write
    393	 *   path.
    394	 * - No need to bother any other info from bvec
    395	 *   Since we're looking up csums, the only important info is the
    396	 *   disk_bytenr and the length, which can be extracted from bi_iter
    397	 *   directly.
    398	 */
    399	ASSERT(bio_op(bio) == REQ_OP_READ);
    400	path = btrfs_alloc_path();
    401	if (!path)
    402		return BLK_STS_RESOURCE;
    403
    404	if (!dst) {
    405		bbio = btrfs_bio(bio);
    406
    407		if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
    408			bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
    409			if (!bbio->csum) {
    410				btrfs_free_path(path);
    411				return BLK_STS_RESOURCE;
    412			}
    413		} else {
    414			bbio->csum = bbio->csum_inline;
    415		}
    416		csum = bbio->csum;
    417	} else {
    418		csum = dst;
    419	}
    420
    421	/*
    422	 * If requested number of sectors is larger than one leaf can contain,
    423	 * kick the readahead for csum tree.
    424	 */
    425	if (nblocks > fs_info->csums_per_leaf)
    426		path->reada = READA_FORWARD;
    427
    428	/*
    429	 * the free space stuff is only read when it hasn't been
    430	 * updated in the current transaction.  So, we can safely
    431	 * read from the commit root and sidestep a nasty deadlock
    432	 * between reading the free space cache and updating the csum tree.
    433	 */
    434	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
    435		path->search_commit_root = 1;
    436		path->skip_locking = 1;
    437	}
    438
    439	for (cur_disk_bytenr = orig_disk_bytenr;
    440	     cur_disk_bytenr < orig_disk_bytenr + orig_len;
    441	     cur_disk_bytenr += (count * sectorsize)) {
    442		u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr;
    443		unsigned int sector_offset;
    444		u8 *csum_dst;
    445
    446		/*
    447		 * Although both cur_disk_bytenr and orig_disk_bytenr is u64,
    448		 * we're calculating the offset to the bio start.
    449		 *
    450		 * Bio size is limited to UINT_MAX, thus unsigned int is large
    451		 * enough to contain the raw result, not to mention the right
    452		 * shifted result.
    453		 */
    454		ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX);
    455		sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >>
    456				fs_info->sectorsize_bits;
    457		csum_dst = csum + sector_offset * csum_size;
    458
    459		count = search_csum_tree(fs_info, path, cur_disk_bytenr,
    460					 search_len, csum_dst);
    461		if (count < 0) {
    462			ret = errno_to_blk_status(count);
    463			if (bbio)
    464				btrfs_bio_free_csum(bbio);
    465			break;
    466		}
    467
    468		/*
    469		 * We didn't find a csum for this range.  We need to make sure
    470		 * we complain loudly about this, because we are not NODATASUM.
    471		 *
    472		 * However for the DATA_RELOC inode we could potentially be
    473		 * relocating data extents for a NODATASUM inode, so the inode
    474		 * itself won't be marked with NODATASUM, but the extent we're
    475		 * copying is in fact NODATASUM.  If we don't find a csum we
    476		 * assume this is the case.
    477		 */
    478		if (count == 0) {
    479			memset(csum_dst, 0, csum_size);
    480			count = 1;
    481
    482			if (BTRFS_I(inode)->root->root_key.objectid ==
    483			    BTRFS_DATA_RELOC_TREE_OBJECTID) {
    484				u64 file_offset;
    485				int ret;
    486
    487				ret = search_file_offset_in_bio(bio, inode,
    488						cur_disk_bytenr, &file_offset);
    489				if (ret)
    490					set_extent_bits(io_tree, file_offset,
    491						file_offset + sectorsize - 1,
    492						EXTENT_NODATASUM);
    493			} else {
    494				btrfs_warn_rl(fs_info,
    495			"csum hole found for disk bytenr range [%llu, %llu)",
    496				cur_disk_bytenr, cur_disk_bytenr + sectorsize);
    497			}
    498		}
    499	}
    500
    501	btrfs_free_path(path);
    502	return ret;
    503}
    504
    505int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
    506			     struct list_head *list, int search_commit)
    507{
    508	struct btrfs_fs_info *fs_info = root->fs_info;
    509	struct btrfs_key key;
    510	struct btrfs_path *path;
    511	struct extent_buffer *leaf;
    512	struct btrfs_ordered_sum *sums;
    513	struct btrfs_csum_item *item;
    514	LIST_HEAD(tmplist);
    515	unsigned long offset;
    516	int ret;
    517	size_t size;
    518	u64 csum_end;
    519	const u32 csum_size = fs_info->csum_size;
    520
    521	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
    522	       IS_ALIGNED(end + 1, fs_info->sectorsize));
    523
    524	path = btrfs_alloc_path();
    525	if (!path)
    526		return -ENOMEM;
    527
    528	if (search_commit) {
    529		path->skip_locking = 1;
    530		path->reada = READA_FORWARD;
    531		path->search_commit_root = 1;
    532	}
    533
    534	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
    535	key.offset = start;
    536	key.type = BTRFS_EXTENT_CSUM_KEY;
    537
    538	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
    539	if (ret < 0)
    540		goto fail;
    541	if (ret > 0 && path->slots[0] > 0) {
    542		leaf = path->nodes[0];
    543		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
    544		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
    545		    key.type == BTRFS_EXTENT_CSUM_KEY) {
    546			offset = (start - key.offset) >> fs_info->sectorsize_bits;
    547			if (offset * csum_size <
    548			    btrfs_item_size(leaf, path->slots[0] - 1))
    549				path->slots[0]--;
    550		}
    551	}
    552
    553	while (start <= end) {
    554		leaf = path->nodes[0];
    555		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
    556			ret = btrfs_next_leaf(root, path);
    557			if (ret < 0)
    558				goto fail;
    559			if (ret > 0)
    560				break;
    561			leaf = path->nodes[0];
    562		}
    563
    564		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
    565		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
    566		    key.type != BTRFS_EXTENT_CSUM_KEY ||
    567		    key.offset > end)
    568			break;
    569
    570		if (key.offset > start)
    571			start = key.offset;
    572
    573		size = btrfs_item_size(leaf, path->slots[0]);
    574		csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
    575		if (csum_end <= start) {
    576			path->slots[0]++;
    577			continue;
    578		}
    579
    580		csum_end = min(csum_end, end + 1);
    581		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
    582				      struct btrfs_csum_item);
    583		while (start < csum_end) {
    584			size = min_t(size_t, csum_end - start,
    585				     max_ordered_sum_bytes(fs_info, csum_size));
    586			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
    587				       GFP_NOFS);
    588			if (!sums) {
    589				ret = -ENOMEM;
    590				goto fail;
    591			}
    592
    593			sums->bytenr = start;
    594			sums->len = (int)size;
    595
    596			offset = (start - key.offset) >> fs_info->sectorsize_bits;
    597			offset *= csum_size;
    598			size >>= fs_info->sectorsize_bits;
    599
    600			read_extent_buffer(path->nodes[0],
    601					   sums->sums,
    602					   ((unsigned long)item) + offset,
    603					   csum_size * size);
    604
    605			start += fs_info->sectorsize * size;
    606			list_add_tail(&sums->list, &tmplist);
    607		}
    608		path->slots[0]++;
    609	}
    610	ret = 0;
    611fail:
    612	while (ret < 0 && !list_empty(&tmplist)) {
    613		sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
    614		list_del(&sums->list);
    615		kfree(sums);
    616	}
    617	list_splice_tail(&tmplist, list);
    618
    619	btrfs_free_path(path);
    620	return ret;
    621}
    622
    623/**
    624 * Calculate checksums of the data contained inside a bio
    625 *
    626 * @inode:	 Owner of the data inside the bio
    627 * @bio:	 Contains the data to be checksummed
    628 * @offset:      If (u64)-1, @bio may contain discontiguous bio vecs, so the
    629 *               file offsets are determined from the page offsets in the bio.
    630 *               Otherwise, this is the starting file offset of the bio vecs in
    631 *               @bio, which must be contiguous.
    632 * @one_ordered: If true, @bio only refers to one ordered extent.
    633 */
    634blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
    635				u64 offset, bool one_ordered)
    636{
    637	struct btrfs_fs_info *fs_info = inode->root->fs_info;
    638	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
    639	struct btrfs_ordered_sum *sums;
    640	struct btrfs_ordered_extent *ordered = NULL;
    641	const bool use_page_offsets = (offset == (u64)-1);
    642	char *data;
    643	struct bvec_iter iter;
    644	struct bio_vec bvec;
    645	int index;
    646	unsigned int blockcount;
    647	unsigned long total_bytes = 0;
    648	unsigned long this_sum_bytes = 0;
    649	int i;
    650	unsigned nofs_flag;
    651
    652	nofs_flag = memalloc_nofs_save();
    653	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
    654		       GFP_KERNEL);
    655	memalloc_nofs_restore(nofs_flag);
    656
    657	if (!sums)
    658		return BLK_STS_RESOURCE;
    659
    660	sums->len = bio->bi_iter.bi_size;
    661	INIT_LIST_HEAD(&sums->list);
    662
    663	sums->bytenr = bio->bi_iter.bi_sector << 9;
    664	index = 0;
    665
    666	shash->tfm = fs_info->csum_shash;
    667
    668	bio_for_each_segment(bvec, bio, iter) {
    669		if (use_page_offsets)
    670			offset = page_offset(bvec.bv_page) + bvec.bv_offset;
    671
    672		if (!ordered) {
    673			ordered = btrfs_lookup_ordered_extent(inode, offset);
    674			/*
    675			 * The bio range is not covered by any ordered extent,
    676			 * must be a code logic error.
    677			 */
    678			if (unlikely(!ordered)) {
    679				WARN(1, KERN_WARNING
    680			"no ordered extent for root %llu ino %llu offset %llu\n",
    681				     inode->root->root_key.objectid,
    682				     btrfs_ino(inode), offset);
    683				kvfree(sums);
    684				return BLK_STS_IOERR;
    685			}
    686		}
    687
    688		blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
    689						 bvec.bv_len + fs_info->sectorsize
    690						 - 1);
    691
    692		for (i = 0; i < blockcount; i++) {
    693			if (!one_ordered &&
    694			    !in_range(offset, ordered->file_offset,
    695				      ordered->num_bytes)) {
    696				unsigned long bytes_left;
    697
    698				sums->len = this_sum_bytes;
    699				this_sum_bytes = 0;
    700				btrfs_add_ordered_sum(ordered, sums);
    701				btrfs_put_ordered_extent(ordered);
    702
    703				bytes_left = bio->bi_iter.bi_size - total_bytes;
    704
    705				nofs_flag = memalloc_nofs_save();
    706				sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
    707						      bytes_left), GFP_KERNEL);
    708				memalloc_nofs_restore(nofs_flag);
    709				BUG_ON(!sums); /* -ENOMEM */
    710				sums->len = bytes_left;
    711				ordered = btrfs_lookup_ordered_extent(inode,
    712								offset);
    713				ASSERT(ordered); /* Logic error */
    714				sums->bytenr = (bio->bi_iter.bi_sector << 9)
    715					+ total_bytes;
    716				index = 0;
    717			}
    718
    719			data = bvec_kmap_local(&bvec);
    720			crypto_shash_digest(shash,
    721					    data + (i * fs_info->sectorsize),
    722					    fs_info->sectorsize,
    723					    sums->sums + index);
    724			kunmap_local(data);
    725			index += fs_info->csum_size;
    726			offset += fs_info->sectorsize;
    727			this_sum_bytes += fs_info->sectorsize;
    728			total_bytes += fs_info->sectorsize;
    729		}
    730
    731	}
    732	this_sum_bytes = 0;
    733	btrfs_add_ordered_sum(ordered, sums);
    734	btrfs_put_ordered_extent(ordered);
    735	return 0;
    736}
    737
    738/*
    739 * helper function for csum removal, this expects the
    740 * key to describe the csum pointed to by the path, and it expects
    741 * the csum to overlap the range [bytenr, len]
    742 *
    743 * The csum should not be entirely contained in the range and the
    744 * range should not be entirely contained in the csum.
    745 *
    746 * This calls btrfs_truncate_item with the correct args based on the
    747 * overlap, and fixes up the key as required.
    748 */
    749static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
    750				       struct btrfs_path *path,
    751				       struct btrfs_key *key,
    752				       u64 bytenr, u64 len)
    753{
    754	struct extent_buffer *leaf;
    755	const u32 csum_size = fs_info->csum_size;
    756	u64 csum_end;
    757	u64 end_byte = bytenr + len;
    758	u32 blocksize_bits = fs_info->sectorsize_bits;
    759
    760	leaf = path->nodes[0];
    761	csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
    762	csum_end <<= blocksize_bits;
    763	csum_end += key->offset;
    764
    765	if (key->offset < bytenr && csum_end <= end_byte) {
    766		/*
    767		 *         [ bytenr - len ]
    768		 *         [   ]
    769		 *   [csum     ]
    770		 *   A simple truncate off the end of the item
    771		 */
    772		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
    773		new_size *= csum_size;
    774		btrfs_truncate_item(path, new_size, 1);
    775	} else if (key->offset >= bytenr && csum_end > end_byte &&
    776		   end_byte > key->offset) {
    777		/*
    778		 *         [ bytenr - len ]
    779		 *                 [ ]
    780		 *                 [csum     ]
    781		 * we need to truncate from the beginning of the csum
    782		 */
    783		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
    784		new_size *= csum_size;
    785
    786		btrfs_truncate_item(path, new_size, 0);
    787
    788		key->offset = end_byte;
    789		btrfs_set_item_key_safe(fs_info, path, key);
    790	} else {
    791		BUG();
    792	}
    793}
    794
    795/*
    796 * deletes the csum items from the csum tree for a given
    797 * range of bytes.
    798 */
    799int btrfs_del_csums(struct btrfs_trans_handle *trans,
    800		    struct btrfs_root *root, u64 bytenr, u64 len)
    801{
    802	struct btrfs_fs_info *fs_info = trans->fs_info;
    803	struct btrfs_path *path;
    804	struct btrfs_key key;
    805	u64 end_byte = bytenr + len;
    806	u64 csum_end;
    807	struct extent_buffer *leaf;
    808	int ret = 0;
    809	const u32 csum_size = fs_info->csum_size;
    810	u32 blocksize_bits = fs_info->sectorsize_bits;
    811
    812	ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
    813	       root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
    814
    815	path = btrfs_alloc_path();
    816	if (!path)
    817		return -ENOMEM;
    818
    819	while (1) {
    820		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
    821		key.offset = end_byte - 1;
    822		key.type = BTRFS_EXTENT_CSUM_KEY;
    823
    824		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
    825		if (ret > 0) {
    826			ret = 0;
    827			if (path->slots[0] == 0)
    828				break;
    829			path->slots[0]--;
    830		} else if (ret < 0) {
    831			break;
    832		}
    833
    834		leaf = path->nodes[0];
    835		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
    836
    837		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
    838		    key.type != BTRFS_EXTENT_CSUM_KEY) {
    839			break;
    840		}
    841
    842		if (key.offset >= end_byte)
    843			break;
    844
    845		csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
    846		csum_end <<= blocksize_bits;
    847		csum_end += key.offset;
    848
    849		/* this csum ends before we start, we're done */
    850		if (csum_end <= bytenr)
    851			break;
    852
    853		/* delete the entire item, it is inside our range */
    854		if (key.offset >= bytenr && csum_end <= end_byte) {
    855			int del_nr = 1;
    856
    857			/*
    858			 * Check how many csum items preceding this one in this
    859			 * leaf correspond to our range and then delete them all
    860			 * at once.
    861			 */
    862			if (key.offset > bytenr && path->slots[0] > 0) {
    863				int slot = path->slots[0] - 1;
    864
    865				while (slot >= 0) {
    866					struct btrfs_key pk;
    867
    868					btrfs_item_key_to_cpu(leaf, &pk, slot);
    869					if (pk.offset < bytenr ||
    870					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
    871					    pk.objectid !=
    872					    BTRFS_EXTENT_CSUM_OBJECTID)
    873						break;
    874					path->slots[0] = slot;
    875					del_nr++;
    876					key.offset = pk.offset;
    877					slot--;
    878				}
    879			}
    880			ret = btrfs_del_items(trans, root, path,
    881					      path->slots[0], del_nr);
    882			if (ret)
    883				break;
    884			if (key.offset == bytenr)
    885				break;
    886		} else if (key.offset < bytenr && csum_end > end_byte) {
    887			unsigned long offset;
    888			unsigned long shift_len;
    889			unsigned long item_offset;
    890			/*
    891			 *        [ bytenr - len ]
    892			 *     [csum                ]
    893			 *
    894			 * Our bytes are in the middle of the csum,
    895			 * we need to split this item and insert a new one.
    896			 *
    897			 * But we can't drop the path because the
    898			 * csum could change, get removed, extended etc.
    899			 *
    900			 * The trick here is the max size of a csum item leaves
    901			 * enough room in the tree block for a single
    902			 * item header.  So, we split the item in place,
    903			 * adding a new header pointing to the existing
    904			 * bytes.  Then we loop around again and we have
    905			 * a nicely formed csum item that we can neatly
    906			 * truncate.
    907			 */
    908			offset = (bytenr - key.offset) >> blocksize_bits;
    909			offset *= csum_size;
    910
    911			shift_len = (len >> blocksize_bits) * csum_size;
    912
    913			item_offset = btrfs_item_ptr_offset(leaf,
    914							    path->slots[0]);
    915
    916			memzero_extent_buffer(leaf, item_offset + offset,
    917					     shift_len);
    918			key.offset = bytenr;
    919
    920			/*
    921			 * btrfs_split_item returns -EAGAIN when the
    922			 * item changed size or key
    923			 */
    924			ret = btrfs_split_item(trans, root, path, &key, offset);
    925			if (ret && ret != -EAGAIN) {
    926				btrfs_abort_transaction(trans, ret);
    927				break;
    928			}
    929			ret = 0;
    930
    931			key.offset = end_byte - 1;
    932		} else {
    933			truncate_one_csum(fs_info, path, &key, bytenr, len);
    934			if (key.offset < bytenr)
    935				break;
    936		}
    937		btrfs_release_path(path);
    938	}
    939	btrfs_free_path(path);
    940	return ret;
    941}
    942
    943static int find_next_csum_offset(struct btrfs_root *root,
    944				 struct btrfs_path *path,
    945				 u64 *next_offset)
    946{
    947	const u32 nritems = btrfs_header_nritems(path->nodes[0]);
    948	struct btrfs_key found_key;
    949	int slot = path->slots[0] + 1;
    950	int ret;
    951
    952	if (nritems == 0 || slot >= nritems) {
    953		ret = btrfs_next_leaf(root, path);
    954		if (ret < 0) {
    955			return ret;
    956		} else if (ret > 0) {
    957			*next_offset = (u64)-1;
    958			return 0;
    959		}
    960		slot = path->slots[0];
    961	}
    962
    963	btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
    964
    965	if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
    966	    found_key.type != BTRFS_EXTENT_CSUM_KEY)
    967		*next_offset = (u64)-1;
    968	else
    969		*next_offset = found_key.offset;
    970
    971	return 0;
    972}
    973
    974int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
    975			   struct btrfs_root *root,
    976			   struct btrfs_ordered_sum *sums)
    977{
    978	struct btrfs_fs_info *fs_info = root->fs_info;
    979	struct btrfs_key file_key;
    980	struct btrfs_key found_key;
    981	struct btrfs_path *path;
    982	struct btrfs_csum_item *item;
    983	struct btrfs_csum_item *item_end;
    984	struct extent_buffer *leaf = NULL;
    985	u64 next_offset;
    986	u64 total_bytes = 0;
    987	u64 csum_offset;
    988	u64 bytenr;
    989	u32 ins_size;
    990	int index = 0;
    991	int found_next;
    992	int ret;
    993	const u32 csum_size = fs_info->csum_size;
    994
    995	path = btrfs_alloc_path();
    996	if (!path)
    997		return -ENOMEM;
    998again:
    999	next_offset = (u64)-1;
   1000	found_next = 0;
   1001	bytenr = sums->bytenr + total_bytes;
   1002	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
   1003	file_key.offset = bytenr;
   1004	file_key.type = BTRFS_EXTENT_CSUM_KEY;
   1005
   1006	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
   1007	if (!IS_ERR(item)) {
   1008		ret = 0;
   1009		leaf = path->nodes[0];
   1010		item_end = btrfs_item_ptr(leaf, path->slots[0],
   1011					  struct btrfs_csum_item);
   1012		item_end = (struct btrfs_csum_item *)((char *)item_end +
   1013			   btrfs_item_size(leaf, path->slots[0]));
   1014		goto found;
   1015	}
   1016	ret = PTR_ERR(item);
   1017	if (ret != -EFBIG && ret != -ENOENT)
   1018		goto out;
   1019
   1020	if (ret == -EFBIG) {
   1021		u32 item_size;
   1022		/* we found one, but it isn't big enough yet */
   1023		leaf = path->nodes[0];
   1024		item_size = btrfs_item_size(leaf, path->slots[0]);
   1025		if ((item_size / csum_size) >=
   1026		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
   1027			/* already at max size, make a new one */
   1028			goto insert;
   1029		}
   1030	} else {
   1031		/* We didn't find a csum item, insert one. */
   1032		ret = find_next_csum_offset(root, path, &next_offset);
   1033		if (ret < 0)
   1034			goto out;
   1035		found_next = 1;
   1036		goto insert;
   1037	}
   1038
   1039	/*
   1040	 * At this point, we know the tree has a checksum item that ends at an
   1041	 * offset matching the start of the checksum range we want to insert.
   1042	 * We try to extend that item as much as possible and then add as many
   1043	 * checksums to it as they fit.
   1044	 *
   1045	 * First check if the leaf has enough free space for at least one
   1046	 * checksum. If it has go directly to the item extension code, otherwise
   1047	 * release the path and do a search for insertion before the extension.
   1048	 */
   1049	if (btrfs_leaf_free_space(leaf) >= csum_size) {
   1050		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
   1051		csum_offset = (bytenr - found_key.offset) >>
   1052			fs_info->sectorsize_bits;
   1053		goto extend_csum;
   1054	}
   1055
   1056	btrfs_release_path(path);
   1057	path->search_for_extension = 1;
   1058	ret = btrfs_search_slot(trans, root, &file_key, path,
   1059				csum_size, 1);
   1060	path->search_for_extension = 0;
   1061	if (ret < 0)
   1062		goto out;
   1063
   1064	if (ret > 0) {
   1065		if (path->slots[0] == 0)
   1066			goto insert;
   1067		path->slots[0]--;
   1068	}
   1069
   1070	leaf = path->nodes[0];
   1071	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
   1072	csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
   1073
   1074	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
   1075	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
   1076	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
   1077		goto insert;
   1078	}
   1079
   1080extend_csum:
   1081	if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
   1082	    csum_size) {
   1083		int extend_nr;
   1084		u64 tmp;
   1085		u32 diff;
   1086
   1087		tmp = sums->len - total_bytes;
   1088		tmp >>= fs_info->sectorsize_bits;
   1089		WARN_ON(tmp < 1);
   1090		extend_nr = max_t(int, 1, tmp);
   1091
   1092		/*
   1093		 * A log tree can already have checksum items with a subset of
   1094		 * the checksums we are trying to log. This can happen after
   1095		 * doing a sequence of partial writes into prealloc extents and
   1096		 * fsyncs in between, with a full fsync logging a larger subrange
   1097		 * of an extent for which a previous fast fsync logged a smaller
   1098		 * subrange. And this happens in particular due to merging file
   1099		 * extent items when we complete an ordered extent for a range
   1100		 * covered by a prealloc extent - this is done at
   1101		 * btrfs_mark_extent_written().
   1102		 *
   1103		 * So if we try to extend the previous checksum item, which has
   1104		 * a range that ends at the start of the range we want to insert,
   1105		 * make sure we don't extend beyond the start offset of the next
   1106		 * checksum item. If we are at the last item in the leaf, then
   1107		 * forget the optimization of extending and add a new checksum
   1108		 * item - it is not worth the complexity of releasing the path,
   1109		 * getting the first key for the next leaf, repeat the btree
   1110		 * search, etc, because log trees are temporary anyway and it
   1111		 * would only save a few bytes of leaf space.
   1112		 */
   1113		if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
   1114			if (path->slots[0] + 1 >=
   1115			    btrfs_header_nritems(path->nodes[0])) {
   1116				ret = find_next_csum_offset(root, path, &next_offset);
   1117				if (ret < 0)
   1118					goto out;
   1119				found_next = 1;
   1120				goto insert;
   1121			}
   1122
   1123			ret = find_next_csum_offset(root, path, &next_offset);
   1124			if (ret < 0)
   1125				goto out;
   1126
   1127			tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
   1128			if (tmp <= INT_MAX)
   1129				extend_nr = min_t(int, extend_nr, tmp);
   1130		}
   1131
   1132		diff = (csum_offset + extend_nr) * csum_size;
   1133		diff = min(diff,
   1134			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
   1135
   1136		diff = diff - btrfs_item_size(leaf, path->slots[0]);
   1137		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
   1138		diff /= csum_size;
   1139		diff *= csum_size;
   1140
   1141		btrfs_extend_item(path, diff);
   1142		ret = 0;
   1143		goto csum;
   1144	}
   1145
   1146insert:
   1147	btrfs_release_path(path);
   1148	csum_offset = 0;
   1149	if (found_next) {
   1150		u64 tmp;
   1151
   1152		tmp = sums->len - total_bytes;
   1153		tmp >>= fs_info->sectorsize_bits;
   1154		tmp = min(tmp, (next_offset - file_key.offset) >>
   1155					 fs_info->sectorsize_bits);
   1156
   1157		tmp = max_t(u64, 1, tmp);
   1158		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
   1159		ins_size = csum_size * tmp;
   1160	} else {
   1161		ins_size = csum_size;
   1162	}
   1163	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
   1164				      ins_size);
   1165	if (ret < 0)
   1166		goto out;
   1167	if (WARN_ON(ret != 0))
   1168		goto out;
   1169	leaf = path->nodes[0];
   1170csum:
   1171	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
   1172	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
   1173				      btrfs_item_size(leaf, path->slots[0]));
   1174	item = (struct btrfs_csum_item *)((unsigned char *)item +
   1175					  csum_offset * csum_size);
   1176found:
   1177	ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
   1178	ins_size *= csum_size;
   1179	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
   1180			      ins_size);
   1181	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
   1182			    ins_size);
   1183
   1184	index += ins_size;
   1185	ins_size /= csum_size;
   1186	total_bytes += ins_size * fs_info->sectorsize;
   1187
   1188	btrfs_mark_buffer_dirty(path->nodes[0]);
   1189	if (total_bytes < sums->len) {
   1190		btrfs_release_path(path);
   1191		cond_resched();
   1192		goto again;
   1193	}
   1194out:
   1195	btrfs_free_path(path);
   1196	return ret;
   1197}
   1198
   1199void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
   1200				     const struct btrfs_path *path,
   1201				     struct btrfs_file_extent_item *fi,
   1202				     const bool new_inline,
   1203				     struct extent_map *em)
   1204{
   1205	struct btrfs_fs_info *fs_info = inode->root->fs_info;
   1206	struct btrfs_root *root = inode->root;
   1207	struct extent_buffer *leaf = path->nodes[0];
   1208	const int slot = path->slots[0];
   1209	struct btrfs_key key;
   1210	u64 extent_start, extent_end;
   1211	u64 bytenr;
   1212	u8 type = btrfs_file_extent_type(leaf, fi);
   1213	int compress_type = btrfs_file_extent_compression(leaf, fi);
   1214
   1215	btrfs_item_key_to_cpu(leaf, &key, slot);
   1216	extent_start = key.offset;
   1217	extent_end = btrfs_file_extent_end(path);
   1218	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
   1219	em->generation = btrfs_file_extent_generation(leaf, fi);
   1220	if (type == BTRFS_FILE_EXTENT_REG ||
   1221	    type == BTRFS_FILE_EXTENT_PREALLOC) {
   1222		em->start = extent_start;
   1223		em->len = extent_end - extent_start;
   1224		em->orig_start = extent_start -
   1225			btrfs_file_extent_offset(leaf, fi);
   1226		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
   1227		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
   1228		if (bytenr == 0) {
   1229			em->block_start = EXTENT_MAP_HOLE;
   1230			return;
   1231		}
   1232		if (compress_type != BTRFS_COMPRESS_NONE) {
   1233			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
   1234			em->compress_type = compress_type;
   1235			em->block_start = bytenr;
   1236			em->block_len = em->orig_block_len;
   1237		} else {
   1238			bytenr += btrfs_file_extent_offset(leaf, fi);
   1239			em->block_start = bytenr;
   1240			em->block_len = em->len;
   1241			if (type == BTRFS_FILE_EXTENT_PREALLOC)
   1242				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
   1243		}
   1244	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
   1245		em->block_start = EXTENT_MAP_INLINE;
   1246		em->start = extent_start;
   1247		em->len = extent_end - extent_start;
   1248		/*
   1249		 * Initialize orig_start and block_len with the same values
   1250		 * as in inode.c:btrfs_get_extent().
   1251		 */
   1252		em->orig_start = EXTENT_MAP_HOLE;
   1253		em->block_len = (u64)-1;
   1254		if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
   1255			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
   1256			em->compress_type = compress_type;
   1257		}
   1258	} else {
   1259		btrfs_err(fs_info,
   1260			  "unknown file extent item type %d, inode %llu, offset %llu, "
   1261			  "root %llu", type, btrfs_ino(inode), extent_start,
   1262			  root->root_key.objectid);
   1263	}
   1264}
   1265
   1266/*
   1267 * Returns the end offset (non inclusive) of the file extent item the given path
   1268 * points to. If it points to an inline extent, the returned offset is rounded
   1269 * up to the sector size.
   1270 */
   1271u64 btrfs_file_extent_end(const struct btrfs_path *path)
   1272{
   1273	const struct extent_buffer *leaf = path->nodes[0];
   1274	const int slot = path->slots[0];
   1275	struct btrfs_file_extent_item *fi;
   1276	struct btrfs_key key;
   1277	u64 end;
   1278
   1279	btrfs_item_key_to_cpu(leaf, &key, slot);
   1280	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
   1281	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
   1282
   1283	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
   1284		end = btrfs_file_extent_ram_bytes(leaf, fi);
   1285		end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
   1286	} else {
   1287		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
   1288	}
   1289
   1290	return end;
   1291}