cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ioctl.c (142915B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (C) 2007 Oracle.  All rights reserved.
      4 */
      5
      6#include <linux/kernel.h>
      7#include <linux/bio.h>
      8#include <linux/file.h>
      9#include <linux/fs.h>
     10#include <linux/fsnotify.h>
     11#include <linux/pagemap.h>
     12#include <linux/highmem.h>
     13#include <linux/time.h>
     14#include <linux/string.h>
     15#include <linux/backing-dev.h>
     16#include <linux/mount.h>
     17#include <linux/namei.h>
     18#include <linux/writeback.h>
     19#include <linux/compat.h>
     20#include <linux/security.h>
     21#include <linux/xattr.h>
     22#include <linux/mm.h>
     23#include <linux/slab.h>
     24#include <linux/blkdev.h>
     25#include <linux/uuid.h>
     26#include <linux/btrfs.h>
     27#include <linux/uaccess.h>
     28#include <linux/iversion.h>
     29#include <linux/fileattr.h>
     30#include <linux/fsverity.h>
     31#include <linux/sched/xacct.h>
     32#include "ctree.h"
     33#include "disk-io.h"
     34#include "export.h"
     35#include "transaction.h"
     36#include "btrfs_inode.h"
     37#include "print-tree.h"
     38#include "volumes.h"
     39#include "locking.h"
     40#include "backref.h"
     41#include "rcu-string.h"
     42#include "send.h"
     43#include "dev-replace.h"
     44#include "props.h"
     45#include "sysfs.h"
     46#include "qgroup.h"
     47#include "tree-log.h"
     48#include "compression.h"
     49#include "space-info.h"
     50#include "delalloc-space.h"
     51#include "block-group.h"
     52#include "subpage.h"
     53
     54#ifdef CONFIG_64BIT
     55/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
     56 * structures are incorrect, as the timespec structure from userspace
     57 * is 4 bytes too small. We define these alternatives here to teach
     58 * the kernel about the 32-bit struct packing.
     59 */
     60struct btrfs_ioctl_timespec_32 {
     61	__u64 sec;
     62	__u32 nsec;
     63} __attribute__ ((__packed__));
     64
     65struct btrfs_ioctl_received_subvol_args_32 {
     66	char	uuid[BTRFS_UUID_SIZE];	/* in */
     67	__u64	stransid;		/* in */
     68	__u64	rtransid;		/* out */
     69	struct btrfs_ioctl_timespec_32 stime; /* in */
     70	struct btrfs_ioctl_timespec_32 rtime; /* out */
     71	__u64	flags;			/* in */
     72	__u64	reserved[16];		/* in */
     73} __attribute__ ((__packed__));
     74
     75#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
     76				struct btrfs_ioctl_received_subvol_args_32)
     77#endif
     78
     79#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
     80struct btrfs_ioctl_send_args_32 {
     81	__s64 send_fd;			/* in */
     82	__u64 clone_sources_count;	/* in */
     83	compat_uptr_t clone_sources;	/* in */
     84	__u64 parent_root;		/* in */
     85	__u64 flags;			/* in */
     86	__u32 version;			/* in */
     87	__u8  reserved[28];		/* in */
     88} __attribute__ ((__packed__));
     89
     90#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
     91			       struct btrfs_ioctl_send_args_32)
     92
     93struct btrfs_ioctl_encoded_io_args_32 {
     94	compat_uptr_t iov;
     95	compat_ulong_t iovcnt;
     96	__s64 offset;
     97	__u64 flags;
     98	__u64 len;
     99	__u64 unencoded_len;
    100	__u64 unencoded_offset;
    101	__u32 compression;
    102	__u32 encryption;
    103	__u8 reserved[64];
    104};
    105
    106#define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
    107				       struct btrfs_ioctl_encoded_io_args_32)
    108#define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
    109					struct btrfs_ioctl_encoded_io_args_32)
    110#endif
    111
    112/* Mask out flags that are inappropriate for the given type of inode. */
    113static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
    114		unsigned int flags)
    115{
    116	if (S_ISDIR(inode->i_mode))
    117		return flags;
    118	else if (S_ISREG(inode->i_mode))
    119		return flags & ~FS_DIRSYNC_FL;
    120	else
    121		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
    122}
    123
    124/*
    125 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
    126 * ioctl.
    127 */
    128static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
    129{
    130	unsigned int iflags = 0;
    131	u32 flags = binode->flags;
    132	u32 ro_flags = binode->ro_flags;
    133
    134	if (flags & BTRFS_INODE_SYNC)
    135		iflags |= FS_SYNC_FL;
    136	if (flags & BTRFS_INODE_IMMUTABLE)
    137		iflags |= FS_IMMUTABLE_FL;
    138	if (flags & BTRFS_INODE_APPEND)
    139		iflags |= FS_APPEND_FL;
    140	if (flags & BTRFS_INODE_NODUMP)
    141		iflags |= FS_NODUMP_FL;
    142	if (flags & BTRFS_INODE_NOATIME)
    143		iflags |= FS_NOATIME_FL;
    144	if (flags & BTRFS_INODE_DIRSYNC)
    145		iflags |= FS_DIRSYNC_FL;
    146	if (flags & BTRFS_INODE_NODATACOW)
    147		iflags |= FS_NOCOW_FL;
    148	if (ro_flags & BTRFS_INODE_RO_VERITY)
    149		iflags |= FS_VERITY_FL;
    150
    151	if (flags & BTRFS_INODE_NOCOMPRESS)
    152		iflags |= FS_NOCOMP_FL;
    153	else if (flags & BTRFS_INODE_COMPRESS)
    154		iflags |= FS_COMPR_FL;
    155
    156	return iflags;
    157}
    158
    159/*
    160 * Update inode->i_flags based on the btrfs internal flags.
    161 */
    162void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
    163{
    164	struct btrfs_inode *binode = BTRFS_I(inode);
    165	unsigned int new_fl = 0;
    166
    167	if (binode->flags & BTRFS_INODE_SYNC)
    168		new_fl |= S_SYNC;
    169	if (binode->flags & BTRFS_INODE_IMMUTABLE)
    170		new_fl |= S_IMMUTABLE;
    171	if (binode->flags & BTRFS_INODE_APPEND)
    172		new_fl |= S_APPEND;
    173	if (binode->flags & BTRFS_INODE_NOATIME)
    174		new_fl |= S_NOATIME;
    175	if (binode->flags & BTRFS_INODE_DIRSYNC)
    176		new_fl |= S_DIRSYNC;
    177	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
    178		new_fl |= S_VERITY;
    179
    180	set_mask_bits(&inode->i_flags,
    181		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
    182		      S_VERITY, new_fl);
    183}
    184
    185/*
    186 * Check if @flags are a supported and valid set of FS_*_FL flags and that
    187 * the old and new flags are not conflicting
    188 */
    189static int check_fsflags(unsigned int old_flags, unsigned int flags)
    190{
    191	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
    192		      FS_NOATIME_FL | FS_NODUMP_FL | \
    193		      FS_SYNC_FL | FS_DIRSYNC_FL | \
    194		      FS_NOCOMP_FL | FS_COMPR_FL |
    195		      FS_NOCOW_FL))
    196		return -EOPNOTSUPP;
    197
    198	/* COMPR and NOCOMP on new/old are valid */
    199	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
    200		return -EINVAL;
    201
    202	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
    203		return -EINVAL;
    204
    205	/* NOCOW and compression options are mutually exclusive */
    206	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
    207		return -EINVAL;
    208	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
    209		return -EINVAL;
    210
    211	return 0;
    212}
    213
    214static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
    215				    unsigned int flags)
    216{
    217	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
    218		return -EPERM;
    219
    220	return 0;
    221}
    222
    223/*
    224 * Set flags/xflags from the internal inode flags. The remaining items of
    225 * fsxattr are zeroed.
    226 */
    227int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
    228{
    229	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
    230
    231	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
    232	return 0;
    233}
    234
    235int btrfs_fileattr_set(struct user_namespace *mnt_userns,
    236		       struct dentry *dentry, struct fileattr *fa)
    237{
    238	struct inode *inode = d_inode(dentry);
    239	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
    240	struct btrfs_inode *binode = BTRFS_I(inode);
    241	struct btrfs_root *root = binode->root;
    242	struct btrfs_trans_handle *trans;
    243	unsigned int fsflags, old_fsflags;
    244	int ret;
    245	const char *comp = NULL;
    246	u32 binode_flags;
    247
    248	if (btrfs_root_readonly(root))
    249		return -EROFS;
    250
    251	if (fileattr_has_fsx(fa))
    252		return -EOPNOTSUPP;
    253
    254	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
    255	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
    256	ret = check_fsflags(old_fsflags, fsflags);
    257	if (ret)
    258		return ret;
    259
    260	ret = check_fsflags_compatible(fs_info, fsflags);
    261	if (ret)
    262		return ret;
    263
    264	binode_flags = binode->flags;
    265	if (fsflags & FS_SYNC_FL)
    266		binode_flags |= BTRFS_INODE_SYNC;
    267	else
    268		binode_flags &= ~BTRFS_INODE_SYNC;
    269	if (fsflags & FS_IMMUTABLE_FL)
    270		binode_flags |= BTRFS_INODE_IMMUTABLE;
    271	else
    272		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
    273	if (fsflags & FS_APPEND_FL)
    274		binode_flags |= BTRFS_INODE_APPEND;
    275	else
    276		binode_flags &= ~BTRFS_INODE_APPEND;
    277	if (fsflags & FS_NODUMP_FL)
    278		binode_flags |= BTRFS_INODE_NODUMP;
    279	else
    280		binode_flags &= ~BTRFS_INODE_NODUMP;
    281	if (fsflags & FS_NOATIME_FL)
    282		binode_flags |= BTRFS_INODE_NOATIME;
    283	else
    284		binode_flags &= ~BTRFS_INODE_NOATIME;
    285
    286	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
    287	if (!fa->flags_valid) {
    288		/* 1 item for the inode */
    289		trans = btrfs_start_transaction(root, 1);
    290		if (IS_ERR(trans))
    291			return PTR_ERR(trans);
    292		goto update_flags;
    293	}
    294
    295	if (fsflags & FS_DIRSYNC_FL)
    296		binode_flags |= BTRFS_INODE_DIRSYNC;
    297	else
    298		binode_flags &= ~BTRFS_INODE_DIRSYNC;
    299	if (fsflags & FS_NOCOW_FL) {
    300		if (S_ISREG(inode->i_mode)) {
    301			/*
    302			 * It's safe to turn csums off here, no extents exist.
    303			 * Otherwise we want the flag to reflect the real COW
    304			 * status of the file and will not set it.
    305			 */
    306			if (inode->i_size == 0)
    307				binode_flags |= BTRFS_INODE_NODATACOW |
    308						BTRFS_INODE_NODATASUM;
    309		} else {
    310			binode_flags |= BTRFS_INODE_NODATACOW;
    311		}
    312	} else {
    313		/*
    314		 * Revert back under same assumptions as above
    315		 */
    316		if (S_ISREG(inode->i_mode)) {
    317			if (inode->i_size == 0)
    318				binode_flags &= ~(BTRFS_INODE_NODATACOW |
    319						  BTRFS_INODE_NODATASUM);
    320		} else {
    321			binode_flags &= ~BTRFS_INODE_NODATACOW;
    322		}
    323	}
    324
    325	/*
    326	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
    327	 * flag may be changed automatically if compression code won't make
    328	 * things smaller.
    329	 */
    330	if (fsflags & FS_NOCOMP_FL) {
    331		binode_flags &= ~BTRFS_INODE_COMPRESS;
    332		binode_flags |= BTRFS_INODE_NOCOMPRESS;
    333	} else if (fsflags & FS_COMPR_FL) {
    334
    335		if (IS_SWAPFILE(inode))
    336			return -ETXTBSY;
    337
    338		binode_flags |= BTRFS_INODE_COMPRESS;
    339		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
    340
    341		comp = btrfs_compress_type2str(fs_info->compress_type);
    342		if (!comp || comp[0] == 0)
    343			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
    344	} else {
    345		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
    346	}
    347
    348	/*
    349	 * 1 for inode item
    350	 * 2 for properties
    351	 */
    352	trans = btrfs_start_transaction(root, 3);
    353	if (IS_ERR(trans))
    354		return PTR_ERR(trans);
    355
    356	if (comp) {
    357		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
    358				     strlen(comp), 0);
    359		if (ret) {
    360			btrfs_abort_transaction(trans, ret);
    361			goto out_end_trans;
    362		}
    363	} else {
    364		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
    365				     0, 0);
    366		if (ret && ret != -ENODATA) {
    367			btrfs_abort_transaction(trans, ret);
    368			goto out_end_trans;
    369		}
    370	}
    371
    372update_flags:
    373	binode->flags = binode_flags;
    374	btrfs_sync_inode_flags_to_i_flags(inode);
    375	inode_inc_iversion(inode);
    376	inode->i_ctime = current_time(inode);
    377	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
    378
    379 out_end_trans:
    380	btrfs_end_transaction(trans);
    381	return ret;
    382}
    383
    384/*
    385 * Start exclusive operation @type, return true on success
    386 */
    387bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
    388			enum btrfs_exclusive_operation type)
    389{
    390	bool ret = false;
    391
    392	spin_lock(&fs_info->super_lock);
    393	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
    394		fs_info->exclusive_operation = type;
    395		ret = true;
    396	}
    397	spin_unlock(&fs_info->super_lock);
    398
    399	return ret;
    400}
    401
    402/*
    403 * Conditionally allow to enter the exclusive operation in case it's compatible
    404 * with the running one.  This must be paired with btrfs_exclop_start_unlock and
    405 * btrfs_exclop_finish.
    406 *
    407 * Compatibility:
    408 * - the same type is already running
    409 * - when trying to add a device and balance has been paused
    410 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
    411 *   must check the condition first that would allow none -> @type
    412 */
    413bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
    414				 enum btrfs_exclusive_operation type)
    415{
    416	spin_lock(&fs_info->super_lock);
    417	if (fs_info->exclusive_operation == type ||
    418	    (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
    419	     type == BTRFS_EXCLOP_DEV_ADD))
    420		return true;
    421
    422	spin_unlock(&fs_info->super_lock);
    423	return false;
    424}
    425
    426void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
    427{
    428	spin_unlock(&fs_info->super_lock);
    429}
    430
    431void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
    432{
    433	spin_lock(&fs_info->super_lock);
    434	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
    435	spin_unlock(&fs_info->super_lock);
    436	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
    437}
    438
    439void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
    440			  enum btrfs_exclusive_operation op)
    441{
    442	switch (op) {
    443	case BTRFS_EXCLOP_BALANCE_PAUSED:
    444		spin_lock(&fs_info->super_lock);
    445		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
    446		       fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD);
    447		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
    448		spin_unlock(&fs_info->super_lock);
    449		break;
    450	case BTRFS_EXCLOP_BALANCE:
    451		spin_lock(&fs_info->super_lock);
    452		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
    453		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
    454		spin_unlock(&fs_info->super_lock);
    455		break;
    456	default:
    457		btrfs_warn(fs_info,
    458			"invalid exclop balance operation %d requested", op);
    459	}
    460}
    461
    462static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
    463{
    464	return put_user(inode->i_generation, arg);
    465}
    466
    467static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
    468					void __user *arg)
    469{
    470	struct btrfs_device *device;
    471	struct fstrim_range range;
    472	u64 minlen = ULLONG_MAX;
    473	u64 num_devices = 0;
    474	int ret;
    475
    476	if (!capable(CAP_SYS_ADMIN))
    477		return -EPERM;
    478
    479	/*
    480	 * btrfs_trim_block_group() depends on space cache, which is not
    481	 * available in zoned filesystem. So, disallow fitrim on a zoned
    482	 * filesystem for now.
    483	 */
    484	if (btrfs_is_zoned(fs_info))
    485		return -EOPNOTSUPP;
    486
    487	/*
    488	 * If the fs is mounted with nologreplay, which requires it to be
    489	 * mounted in RO mode as well, we can not allow discard on free space
    490	 * inside block groups, because log trees refer to extents that are not
    491	 * pinned in a block group's free space cache (pinning the extents is
    492	 * precisely the first phase of replaying a log tree).
    493	 */
    494	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
    495		return -EROFS;
    496
    497	rcu_read_lock();
    498	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
    499				dev_list) {
    500		if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
    501			continue;
    502		num_devices++;
    503		minlen = min_t(u64, bdev_discard_granularity(device->bdev),
    504				    minlen);
    505	}
    506	rcu_read_unlock();
    507
    508	if (!num_devices)
    509		return -EOPNOTSUPP;
    510	if (copy_from_user(&range, arg, sizeof(range)))
    511		return -EFAULT;
    512
    513	/*
    514	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
    515	 * block group is in the logical address space, which can be any
    516	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
    517	 */
    518	if (range.len < fs_info->sb->s_blocksize)
    519		return -EINVAL;
    520
    521	range.minlen = max(range.minlen, minlen);
    522	ret = btrfs_trim_fs(fs_info, &range);
    523	if (ret < 0)
    524		return ret;
    525
    526	if (copy_to_user(arg, &range, sizeof(range)))
    527		return -EFAULT;
    528
    529	return 0;
    530}
    531
    532int __pure btrfs_is_empty_uuid(u8 *uuid)
    533{
    534	int i;
    535
    536	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
    537		if (uuid[i])
    538			return 0;
    539	}
    540	return 1;
    541}
    542
    543/*
    544 * Calculate the number of transaction items to reserve for creating a subvolume
    545 * or snapshot, not including the inode, directory entries, or parent directory.
    546 */
    547static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
    548{
    549	/*
    550	 * 1 to add root block
    551	 * 1 to add root item
    552	 * 1 to add root ref
    553	 * 1 to add root backref
    554	 * 1 to add UUID item
    555	 * 1 to add qgroup info
    556	 * 1 to add qgroup limit
    557	 *
    558	 * Ideally the last two would only be accounted if qgroups are enabled,
    559	 * but that can change between now and the time we would insert them.
    560	 */
    561	unsigned int num_items = 7;
    562
    563	if (inherit) {
    564		/* 2 to add qgroup relations for each inherited qgroup */
    565		num_items += 2 * inherit->num_qgroups;
    566	}
    567	return num_items;
    568}
    569
    570static noinline int create_subvol(struct user_namespace *mnt_userns,
    571				  struct inode *dir, struct dentry *dentry,
    572				  struct btrfs_qgroup_inherit *inherit)
    573{
    574	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
    575	struct btrfs_trans_handle *trans;
    576	struct btrfs_key key;
    577	struct btrfs_root_item *root_item;
    578	struct btrfs_inode_item *inode_item;
    579	struct extent_buffer *leaf;
    580	struct btrfs_root *root = BTRFS_I(dir)->root;
    581	struct btrfs_root *new_root;
    582	struct btrfs_block_rsv block_rsv;
    583	struct timespec64 cur_time = current_time(dir);
    584	struct btrfs_new_inode_args new_inode_args = {
    585		.dir = dir,
    586		.dentry = dentry,
    587		.subvol = true,
    588	};
    589	unsigned int trans_num_items;
    590	int ret;
    591	dev_t anon_dev;
    592	u64 objectid;
    593
    594	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
    595	if (!root_item)
    596		return -ENOMEM;
    597
    598	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
    599	if (ret)
    600		goto out_root_item;
    601
    602	/*
    603	 * Don't create subvolume whose level is not zero. Or qgroup will be
    604	 * screwed up since it assumes subvolume qgroup's level to be 0.
    605	 */
    606	if (btrfs_qgroup_level(objectid)) {
    607		ret = -ENOSPC;
    608		goto out_root_item;
    609	}
    610
    611	ret = get_anon_bdev(&anon_dev);
    612	if (ret < 0)
    613		goto out_root_item;
    614
    615	new_inode_args.inode = btrfs_new_subvol_inode(mnt_userns, dir);
    616	if (!new_inode_args.inode) {
    617		ret = -ENOMEM;
    618		goto out_anon_dev;
    619	}
    620	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
    621	if (ret)
    622		goto out_inode;
    623	trans_num_items += create_subvol_num_items(inherit);
    624
    625	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
    626	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
    627					       trans_num_items, false);
    628	if (ret)
    629		goto out_new_inode_args;
    630
    631	trans = btrfs_start_transaction(root, 0);
    632	if (IS_ERR(trans)) {
    633		ret = PTR_ERR(trans);
    634		btrfs_subvolume_release_metadata(root, &block_rsv);
    635		goto out_new_inode_args;
    636	}
    637	trans->block_rsv = &block_rsv;
    638	trans->bytes_reserved = block_rsv.size;
    639
    640	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
    641	if (ret)
    642		goto out;
    643
    644	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
    645				      BTRFS_NESTING_NORMAL);
    646	if (IS_ERR(leaf)) {
    647		ret = PTR_ERR(leaf);
    648		goto out;
    649	}
    650
    651	btrfs_mark_buffer_dirty(leaf);
    652
    653	inode_item = &root_item->inode;
    654	btrfs_set_stack_inode_generation(inode_item, 1);
    655	btrfs_set_stack_inode_size(inode_item, 3);
    656	btrfs_set_stack_inode_nlink(inode_item, 1);
    657	btrfs_set_stack_inode_nbytes(inode_item,
    658				     fs_info->nodesize);
    659	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
    660
    661	btrfs_set_root_flags(root_item, 0);
    662	btrfs_set_root_limit(root_item, 0);
    663	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
    664
    665	btrfs_set_root_bytenr(root_item, leaf->start);
    666	btrfs_set_root_generation(root_item, trans->transid);
    667	btrfs_set_root_level(root_item, 0);
    668	btrfs_set_root_refs(root_item, 1);
    669	btrfs_set_root_used(root_item, leaf->len);
    670	btrfs_set_root_last_snapshot(root_item, 0);
    671
    672	btrfs_set_root_generation_v2(root_item,
    673			btrfs_root_generation(root_item));
    674	generate_random_guid(root_item->uuid);
    675	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
    676	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
    677	root_item->ctime = root_item->otime;
    678	btrfs_set_root_ctransid(root_item, trans->transid);
    679	btrfs_set_root_otransid(root_item, trans->transid);
    680
    681	btrfs_tree_unlock(leaf);
    682
    683	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
    684
    685	key.objectid = objectid;
    686	key.offset = 0;
    687	key.type = BTRFS_ROOT_ITEM_KEY;
    688	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
    689				root_item);
    690	if (ret) {
    691		/*
    692		 * Since we don't abort the transaction in this case, free the
    693		 * tree block so that we don't leak space and leave the
    694		 * filesystem in an inconsistent state (an extent item in the
    695		 * extent tree with a backreference for a root that does not
    696		 * exists).
    697		 */
    698		btrfs_tree_lock(leaf);
    699		btrfs_clean_tree_block(leaf);
    700		btrfs_tree_unlock(leaf);
    701		btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
    702		free_extent_buffer(leaf);
    703		goto out;
    704	}
    705
    706	free_extent_buffer(leaf);
    707	leaf = NULL;
    708
    709	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
    710	if (IS_ERR(new_root)) {
    711		ret = PTR_ERR(new_root);
    712		btrfs_abort_transaction(trans, ret);
    713		goto out;
    714	}
    715	/* anon_dev is owned by new_root now. */
    716	anon_dev = 0;
    717	BTRFS_I(new_inode_args.inode)->root = new_root;
    718	/* ... and new_root is owned by new_inode_args.inode now. */
    719
    720	ret = btrfs_record_root_in_trans(trans, new_root);
    721	if (ret) {
    722		btrfs_abort_transaction(trans, ret);
    723		goto out;
    724	}
    725
    726	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
    727				  BTRFS_UUID_KEY_SUBVOL, objectid);
    728	if (ret) {
    729		btrfs_abort_transaction(trans, ret);
    730		goto out;
    731	}
    732
    733	ret = btrfs_create_new_inode(trans, &new_inode_args);
    734	if (ret) {
    735		btrfs_abort_transaction(trans, ret);
    736		goto out;
    737	}
    738
    739	d_instantiate_new(dentry, new_inode_args.inode);
    740	new_inode_args.inode = NULL;
    741
    742out:
    743	trans->block_rsv = NULL;
    744	trans->bytes_reserved = 0;
    745	btrfs_subvolume_release_metadata(root, &block_rsv);
    746
    747	if (ret)
    748		btrfs_end_transaction(trans);
    749	else
    750		ret = btrfs_commit_transaction(trans);
    751out_new_inode_args:
    752	btrfs_new_inode_args_destroy(&new_inode_args);
    753out_inode:
    754	iput(new_inode_args.inode);
    755out_anon_dev:
    756	if (anon_dev)
    757		free_anon_bdev(anon_dev);
    758out_root_item:
    759	kfree(root_item);
    760	return ret;
    761}
    762
    763static int create_snapshot(struct btrfs_root *root, struct inode *dir,
    764			   struct dentry *dentry, bool readonly,
    765			   struct btrfs_qgroup_inherit *inherit)
    766{
    767	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
    768	struct inode *inode;
    769	struct btrfs_pending_snapshot *pending_snapshot;
    770	unsigned int trans_num_items;
    771	struct btrfs_trans_handle *trans;
    772	int ret;
    773
    774	/* We do not support snapshotting right now. */
    775	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
    776		btrfs_warn(fs_info,
    777			   "extent tree v2 doesn't support snapshotting yet");
    778		return -EOPNOTSUPP;
    779	}
    780
    781	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
    782		return -EINVAL;
    783
    784	if (atomic_read(&root->nr_swapfiles)) {
    785		btrfs_warn(fs_info,
    786			   "cannot snapshot subvolume with active swapfile");
    787		return -ETXTBSY;
    788	}
    789
    790	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
    791	if (!pending_snapshot)
    792		return -ENOMEM;
    793
    794	ret = get_anon_bdev(&pending_snapshot->anon_dev);
    795	if (ret < 0)
    796		goto free_pending;
    797	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
    798			GFP_KERNEL);
    799	pending_snapshot->path = btrfs_alloc_path();
    800	if (!pending_snapshot->root_item || !pending_snapshot->path) {
    801		ret = -ENOMEM;
    802		goto free_pending;
    803	}
    804
    805	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
    806			     BTRFS_BLOCK_RSV_TEMP);
    807	/*
    808	 * 1 to add dir item
    809	 * 1 to add dir index
    810	 * 1 to update parent inode item
    811	 */
    812	trans_num_items = create_subvol_num_items(inherit) + 3;
    813	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
    814					       &pending_snapshot->block_rsv,
    815					       trans_num_items, false);
    816	if (ret)
    817		goto free_pending;
    818
    819	pending_snapshot->dentry = dentry;
    820	pending_snapshot->root = root;
    821	pending_snapshot->readonly = readonly;
    822	pending_snapshot->dir = dir;
    823	pending_snapshot->inherit = inherit;
    824
    825	trans = btrfs_start_transaction(root, 0);
    826	if (IS_ERR(trans)) {
    827		ret = PTR_ERR(trans);
    828		goto fail;
    829	}
    830
    831	trans->pending_snapshot = pending_snapshot;
    832
    833	ret = btrfs_commit_transaction(trans);
    834	if (ret)
    835		goto fail;
    836
    837	ret = pending_snapshot->error;
    838	if (ret)
    839		goto fail;
    840
    841	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
    842	if (ret)
    843		goto fail;
    844
    845	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
    846	if (IS_ERR(inode)) {
    847		ret = PTR_ERR(inode);
    848		goto fail;
    849	}
    850
    851	d_instantiate(dentry, inode);
    852	ret = 0;
    853	pending_snapshot->anon_dev = 0;
    854fail:
    855	/* Prevent double freeing of anon_dev */
    856	if (ret && pending_snapshot->snap)
    857		pending_snapshot->snap->anon_dev = 0;
    858	btrfs_put_root(pending_snapshot->snap);
    859	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
    860free_pending:
    861	if (pending_snapshot->anon_dev)
    862		free_anon_bdev(pending_snapshot->anon_dev);
    863	kfree(pending_snapshot->root_item);
    864	btrfs_free_path(pending_snapshot->path);
    865	kfree(pending_snapshot);
    866
    867	return ret;
    868}
    869
    870/*  copy of may_delete in fs/namei.c()
    871 *	Check whether we can remove a link victim from directory dir, check
    872 *  whether the type of victim is right.
    873 *  1. We can't do it if dir is read-only (done in permission())
    874 *  2. We should have write and exec permissions on dir
    875 *  3. We can't remove anything from append-only dir
    876 *  4. We can't do anything with immutable dir (done in permission())
    877 *  5. If the sticky bit on dir is set we should either
    878 *	a. be owner of dir, or
    879 *	b. be owner of victim, or
    880 *	c. have CAP_FOWNER capability
    881 *  6. If the victim is append-only or immutable we can't do anything with
    882 *     links pointing to it.
    883 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
    884 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
    885 *  9. We can't remove a root or mountpoint.
    886 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
    887 *     nfs_async_unlink().
    888 */
    889
    890static int btrfs_may_delete(struct user_namespace *mnt_userns,
    891			    struct inode *dir, struct dentry *victim, int isdir)
    892{
    893	int error;
    894
    895	if (d_really_is_negative(victim))
    896		return -ENOENT;
    897
    898	BUG_ON(d_inode(victim->d_parent) != dir);
    899	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
    900
    901	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
    902	if (error)
    903		return error;
    904	if (IS_APPEND(dir))
    905		return -EPERM;
    906	if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
    907	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
    908	    IS_SWAPFILE(d_inode(victim)))
    909		return -EPERM;
    910	if (isdir) {
    911		if (!d_is_dir(victim))
    912			return -ENOTDIR;
    913		if (IS_ROOT(victim))
    914			return -EBUSY;
    915	} else if (d_is_dir(victim))
    916		return -EISDIR;
    917	if (IS_DEADDIR(dir))
    918		return -ENOENT;
    919	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
    920		return -EBUSY;
    921	return 0;
    922}
    923
    924/* copy of may_create in fs/namei.c() */
    925static inline int btrfs_may_create(struct user_namespace *mnt_userns,
    926				   struct inode *dir, struct dentry *child)
    927{
    928	if (d_really_is_positive(child))
    929		return -EEXIST;
    930	if (IS_DEADDIR(dir))
    931		return -ENOENT;
    932	if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
    933		return -EOVERFLOW;
    934	return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
    935}
    936
    937/*
    938 * Create a new subvolume below @parent.  This is largely modeled after
    939 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
    940 * inside this filesystem so it's quite a bit simpler.
    941 */
    942static noinline int btrfs_mksubvol(const struct path *parent,
    943				   struct user_namespace *mnt_userns,
    944				   const char *name, int namelen,
    945				   struct btrfs_root *snap_src,
    946				   bool readonly,
    947				   struct btrfs_qgroup_inherit *inherit)
    948{
    949	struct inode *dir = d_inode(parent->dentry);
    950	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
    951	struct dentry *dentry;
    952	int error;
    953
    954	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
    955	if (error == -EINTR)
    956		return error;
    957
    958	dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
    959	error = PTR_ERR(dentry);
    960	if (IS_ERR(dentry))
    961		goto out_unlock;
    962
    963	error = btrfs_may_create(mnt_userns, dir, dentry);
    964	if (error)
    965		goto out_dput;
    966
    967	/*
    968	 * even if this name doesn't exist, we may get hash collisions.
    969	 * check for them now when we can safely fail
    970	 */
    971	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
    972					       dir->i_ino, name,
    973					       namelen);
    974	if (error)
    975		goto out_dput;
    976
    977	down_read(&fs_info->subvol_sem);
    978
    979	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
    980		goto out_up_read;
    981
    982	if (snap_src)
    983		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
    984	else
    985		error = create_subvol(mnt_userns, dir, dentry, inherit);
    986
    987	if (!error)
    988		fsnotify_mkdir(dir, dentry);
    989out_up_read:
    990	up_read(&fs_info->subvol_sem);
    991out_dput:
    992	dput(dentry);
    993out_unlock:
    994	btrfs_inode_unlock(dir, 0);
    995	return error;
    996}
    997
    998static noinline int btrfs_mksnapshot(const struct path *parent,
    999				   struct user_namespace *mnt_userns,
   1000				   const char *name, int namelen,
   1001				   struct btrfs_root *root,
   1002				   bool readonly,
   1003				   struct btrfs_qgroup_inherit *inherit)
   1004{
   1005	int ret;
   1006	bool snapshot_force_cow = false;
   1007
   1008	/*
   1009	 * Force new buffered writes to reserve space even when NOCOW is
   1010	 * possible. This is to avoid later writeback (running dealloc) to
   1011	 * fallback to COW mode and unexpectedly fail with ENOSPC.
   1012	 */
   1013	btrfs_drew_read_lock(&root->snapshot_lock);
   1014
   1015	ret = btrfs_start_delalloc_snapshot(root, false);
   1016	if (ret)
   1017		goto out;
   1018
   1019	/*
   1020	 * All previous writes have started writeback in NOCOW mode, so now
   1021	 * we force future writes to fallback to COW mode during snapshot
   1022	 * creation.
   1023	 */
   1024	atomic_inc(&root->snapshot_force_cow);
   1025	snapshot_force_cow = true;
   1026
   1027	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
   1028
   1029	ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
   1030			     root, readonly, inherit);
   1031out:
   1032	if (snapshot_force_cow)
   1033		atomic_dec(&root->snapshot_force_cow);
   1034	btrfs_drew_read_unlock(&root->snapshot_lock);
   1035	return ret;
   1036}
   1037
   1038/*
   1039 * Defrag specific helper to get an extent map.
   1040 *
   1041 * Differences between this and btrfs_get_extent() are:
   1042 *
   1043 * - No extent_map will be added to inode->extent_tree
   1044 *   To reduce memory usage in the long run.
   1045 *
   1046 * - Extra optimization to skip file extents older than @newer_than
   1047 *   By using btrfs_search_forward() we can skip entire file ranges that
   1048 *   have extents created in past transactions, because btrfs_search_forward()
   1049 *   will not visit leaves and nodes with a generation smaller than given
   1050 *   minimal generation threshold (@newer_than).
   1051 *
   1052 * Return valid em if we find a file extent matching the requirement.
   1053 * Return NULL if we can not find a file extent matching the requirement.
   1054 *
   1055 * Return ERR_PTR() for error.
   1056 */
   1057static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
   1058					    u64 start, u64 newer_than)
   1059{
   1060	struct btrfs_root *root = inode->root;
   1061	struct btrfs_file_extent_item *fi;
   1062	struct btrfs_path path = { 0 };
   1063	struct extent_map *em;
   1064	struct btrfs_key key;
   1065	u64 ino = btrfs_ino(inode);
   1066	int ret;
   1067
   1068	em = alloc_extent_map();
   1069	if (!em) {
   1070		ret = -ENOMEM;
   1071		goto err;
   1072	}
   1073
   1074	key.objectid = ino;
   1075	key.type = BTRFS_EXTENT_DATA_KEY;
   1076	key.offset = start;
   1077
   1078	if (newer_than) {
   1079		ret = btrfs_search_forward(root, &key, &path, newer_than);
   1080		if (ret < 0)
   1081			goto err;
   1082		/* Can't find anything newer */
   1083		if (ret > 0)
   1084			goto not_found;
   1085	} else {
   1086		ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
   1087		if (ret < 0)
   1088			goto err;
   1089	}
   1090	if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
   1091		/*
   1092		 * If btrfs_search_slot() makes path to point beyond nritems,
   1093		 * we should not have an empty leaf, as this inode must at
   1094		 * least have its INODE_ITEM.
   1095		 */
   1096		ASSERT(btrfs_header_nritems(path.nodes[0]));
   1097		path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
   1098	}
   1099	btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
   1100	/* Perfect match, no need to go one slot back */
   1101	if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
   1102	    key.offset == start)
   1103		goto iterate;
   1104
   1105	/* We didn't find a perfect match, needs to go one slot back */
   1106	if (path.slots[0] > 0) {
   1107		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
   1108		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
   1109			path.slots[0]--;
   1110	}
   1111
   1112iterate:
   1113	/* Iterate through the path to find a file extent covering @start */
   1114	while (true) {
   1115		u64 extent_end;
   1116
   1117		if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
   1118			goto next;
   1119
   1120		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
   1121
   1122		/*
   1123		 * We may go one slot back to INODE_REF/XATTR item, then
   1124		 * need to go forward until we reach an EXTENT_DATA.
   1125		 * But we should still has the correct ino as key.objectid.
   1126		 */
   1127		if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
   1128			goto next;
   1129
   1130		/* It's beyond our target range, definitely not extent found */
   1131		if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
   1132			goto not_found;
   1133
   1134		/*
   1135		 *	|	|<- File extent ->|
   1136		 *	\- start
   1137		 *
   1138		 * This means there is a hole between start and key.offset.
   1139		 */
   1140		if (key.offset > start) {
   1141			em->start = start;
   1142			em->orig_start = start;
   1143			em->block_start = EXTENT_MAP_HOLE;
   1144			em->len = key.offset - start;
   1145			break;
   1146		}
   1147
   1148		fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
   1149				    struct btrfs_file_extent_item);
   1150		extent_end = btrfs_file_extent_end(&path);
   1151
   1152		/*
   1153		 *	|<- file extent ->|	|
   1154		 *				\- start
   1155		 *
   1156		 * We haven't reached start, search next slot.
   1157		 */
   1158		if (extent_end <= start)
   1159			goto next;
   1160
   1161		/* Now this extent covers @start, convert it to em */
   1162		btrfs_extent_item_to_extent_map(inode, &path, fi, false, em);
   1163		break;
   1164next:
   1165		ret = btrfs_next_item(root, &path);
   1166		if (ret < 0)
   1167			goto err;
   1168		if (ret > 0)
   1169			goto not_found;
   1170	}
   1171	btrfs_release_path(&path);
   1172	return em;
   1173
   1174not_found:
   1175	btrfs_release_path(&path);
   1176	free_extent_map(em);
   1177	return NULL;
   1178
   1179err:
   1180	btrfs_release_path(&path);
   1181	free_extent_map(em);
   1182	return ERR_PTR(ret);
   1183}
   1184
   1185static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
   1186					       u64 newer_than, bool locked)
   1187{
   1188	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
   1189	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
   1190	struct extent_map *em;
   1191	const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
   1192
   1193	/*
   1194	 * hopefully we have this extent in the tree already, try without
   1195	 * the full extent lock
   1196	 */
   1197	read_lock(&em_tree->lock);
   1198	em = lookup_extent_mapping(em_tree, start, sectorsize);
   1199	read_unlock(&em_tree->lock);
   1200
   1201	/*
   1202	 * We can get a merged extent, in that case, we need to re-search
   1203	 * tree to get the original em for defrag.
   1204	 *
   1205	 * If @newer_than is 0 or em::generation < newer_than, we can trust
   1206	 * this em, as either we don't care about the generation, or the
   1207	 * merged extent map will be rejected anyway.
   1208	 */
   1209	if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) &&
   1210	    newer_than && em->generation >= newer_than) {
   1211		free_extent_map(em);
   1212		em = NULL;
   1213	}
   1214
   1215	if (!em) {
   1216		struct extent_state *cached = NULL;
   1217		u64 end = start + sectorsize - 1;
   1218
   1219		/* get the big lock and read metadata off disk */
   1220		if (!locked)
   1221			lock_extent_bits(io_tree, start, end, &cached);
   1222		em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
   1223		if (!locked)
   1224			unlock_extent_cached(io_tree, start, end, &cached);
   1225
   1226		if (IS_ERR(em))
   1227			return NULL;
   1228	}
   1229
   1230	return em;
   1231}
   1232
   1233static u32 get_extent_max_capacity(const struct extent_map *em)
   1234{
   1235	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
   1236		return BTRFS_MAX_COMPRESSED;
   1237	return BTRFS_MAX_EXTENT_SIZE;
   1238}
   1239
   1240static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
   1241				     u32 extent_thresh, u64 newer_than, bool locked)
   1242{
   1243	struct extent_map *next;
   1244	bool ret = false;
   1245
   1246	/* this is the last extent */
   1247	if (em->start + em->len >= i_size_read(inode))
   1248		return false;
   1249
   1250	/*
   1251	 * Here we need to pass @newer_then when checking the next extent, or
   1252	 * we will hit a case we mark current extent for defrag, but the next
   1253	 * one will not be a target.
   1254	 * This will just cause extra IO without really reducing the fragments.
   1255	 */
   1256	next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
   1257	/* No more em or hole */
   1258	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
   1259		goto out;
   1260	if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags))
   1261		goto out;
   1262	/*
   1263	 * If the next extent is at its max capacity, defragging current extent
   1264	 * makes no sense, as the total number of extents won't change.
   1265	 */
   1266	if (next->len >= get_extent_max_capacity(em))
   1267		goto out;
   1268	/* Skip older extent */
   1269	if (next->generation < newer_than)
   1270		goto out;
   1271	/* Also check extent size */
   1272	if (next->len >= extent_thresh)
   1273		goto out;
   1274
   1275	ret = true;
   1276out:
   1277	free_extent_map(next);
   1278	return ret;
   1279}
   1280
   1281/*
   1282 * Prepare one page to be defragged.
   1283 *
   1284 * This will ensure:
   1285 *
   1286 * - Returned page is locked and has been set up properly.
   1287 * - No ordered extent exists in the page.
   1288 * - The page is uptodate.
   1289 *
   1290 * NOTE: Caller should also wait for page writeback after the cluster is
   1291 * prepared, here we don't do writeback wait for each page.
   1292 */
   1293static struct page *defrag_prepare_one_page(struct btrfs_inode *inode,
   1294					    pgoff_t index)
   1295{
   1296	struct address_space *mapping = inode->vfs_inode.i_mapping;
   1297	gfp_t mask = btrfs_alloc_write_mask(mapping);
   1298	u64 page_start = (u64)index << PAGE_SHIFT;
   1299	u64 page_end = page_start + PAGE_SIZE - 1;
   1300	struct extent_state *cached_state = NULL;
   1301	struct page *page;
   1302	int ret;
   1303
   1304again:
   1305	page = find_or_create_page(mapping, index, mask);
   1306	if (!page)
   1307		return ERR_PTR(-ENOMEM);
   1308
   1309	/*
   1310	 * Since we can defragment files opened read-only, we can encounter
   1311	 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
   1312	 * can't do I/O using huge pages yet, so return an error for now.
   1313	 * Filesystem transparent huge pages are typically only used for
   1314	 * executables that explicitly enable them, so this isn't very
   1315	 * restrictive.
   1316	 */
   1317	if (PageCompound(page)) {
   1318		unlock_page(page);
   1319		put_page(page);
   1320		return ERR_PTR(-ETXTBSY);
   1321	}
   1322
   1323	ret = set_page_extent_mapped(page);
   1324	if (ret < 0) {
   1325		unlock_page(page);
   1326		put_page(page);
   1327		return ERR_PTR(ret);
   1328	}
   1329
   1330	/* Wait for any existing ordered extent in the range */
   1331	while (1) {
   1332		struct btrfs_ordered_extent *ordered;
   1333
   1334		lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
   1335		ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
   1336		unlock_extent_cached(&inode->io_tree, page_start, page_end,
   1337				     &cached_state);
   1338		if (!ordered)
   1339			break;
   1340
   1341		unlock_page(page);
   1342		btrfs_start_ordered_extent(ordered, 1);
   1343		btrfs_put_ordered_extent(ordered);
   1344		lock_page(page);
   1345		/*
   1346		 * We unlocked the page above, so we need check if it was
   1347		 * released or not.
   1348		 */
   1349		if (page->mapping != mapping || !PagePrivate(page)) {
   1350			unlock_page(page);
   1351			put_page(page);
   1352			goto again;
   1353		}
   1354	}
   1355
   1356	/*
   1357	 * Now the page range has no ordered extent any more.  Read the page to
   1358	 * make it uptodate.
   1359	 */
   1360	if (!PageUptodate(page)) {
   1361		btrfs_read_folio(NULL, page_folio(page));
   1362		lock_page(page);
   1363		if (page->mapping != mapping || !PagePrivate(page)) {
   1364			unlock_page(page);
   1365			put_page(page);
   1366			goto again;
   1367		}
   1368		if (!PageUptodate(page)) {
   1369			unlock_page(page);
   1370			put_page(page);
   1371			return ERR_PTR(-EIO);
   1372		}
   1373	}
   1374	return page;
   1375}
   1376
   1377struct defrag_target_range {
   1378	struct list_head list;
   1379	u64 start;
   1380	u64 len;
   1381};
   1382
   1383/*
   1384 * Collect all valid target extents.
   1385 *
   1386 * @start:	   file offset to lookup
   1387 * @len:	   length to lookup
   1388 * @extent_thresh: file extent size threshold, any extent size >= this value
   1389 *		   will be ignored
   1390 * @newer_than:    only defrag extents newer than this value
   1391 * @do_compress:   whether the defrag is doing compression
   1392 *		   if true, @extent_thresh will be ignored and all regular
   1393 *		   file extents meeting @newer_than will be targets.
   1394 * @locked:	   if the range has already held extent lock
   1395 * @target_list:   list of targets file extents
   1396 */
   1397static int defrag_collect_targets(struct btrfs_inode *inode,
   1398				  u64 start, u64 len, u32 extent_thresh,
   1399				  u64 newer_than, bool do_compress,
   1400				  bool locked, struct list_head *target_list,
   1401				  u64 *last_scanned_ret)
   1402{
   1403	bool last_is_target = false;
   1404	u64 cur = start;
   1405	int ret = 0;
   1406
   1407	while (cur < start + len) {
   1408		struct extent_map *em;
   1409		struct defrag_target_range *new;
   1410		bool next_mergeable = true;
   1411		u64 range_len;
   1412
   1413		last_is_target = false;
   1414		em = defrag_lookup_extent(&inode->vfs_inode, cur,
   1415					  newer_than, locked);
   1416		if (!em)
   1417			break;
   1418
   1419		/*
   1420		 * If the file extent is an inlined one, we may still want to
   1421		 * defrag it (fallthrough) if it will cause a regular extent.
   1422		 * This is for users who want to convert inline extents to
   1423		 * regular ones through max_inline= mount option.
   1424		 */
   1425		if (em->block_start == EXTENT_MAP_INLINE &&
   1426		    em->len <= inode->root->fs_info->max_inline)
   1427			goto next;
   1428
   1429		/* Skip hole/delalloc/preallocated extents */
   1430		if (em->block_start == EXTENT_MAP_HOLE ||
   1431		    em->block_start == EXTENT_MAP_DELALLOC ||
   1432		    test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
   1433			goto next;
   1434
   1435		/* Skip older extent */
   1436		if (em->generation < newer_than)
   1437			goto next;
   1438
   1439		/* This em is under writeback, no need to defrag */
   1440		if (em->generation == (u64)-1)
   1441			goto next;
   1442
   1443		/*
   1444		 * Our start offset might be in the middle of an existing extent
   1445		 * map, so take that into account.
   1446		 */
   1447		range_len = em->len - (cur - em->start);
   1448		/*
   1449		 * If this range of the extent map is already flagged for delalloc,
   1450		 * skip it, because:
   1451		 *
   1452		 * 1) We could deadlock later, when trying to reserve space for
   1453		 *    delalloc, because in case we can't immediately reserve space
   1454		 *    the flusher can start delalloc and wait for the respective
   1455		 *    ordered extents to complete. The deadlock would happen
   1456		 *    because we do the space reservation while holding the range
   1457		 *    locked, and starting writeback, or finishing an ordered
   1458		 *    extent, requires locking the range;
   1459		 *
   1460		 * 2) If there's delalloc there, it means there's dirty pages for
   1461		 *    which writeback has not started yet (we clean the delalloc
   1462		 *    flag when starting writeback and after creating an ordered
   1463		 *    extent). If we mark pages in an adjacent range for defrag,
   1464		 *    then we will have a larger contiguous range for delalloc,
   1465		 *    very likely resulting in a larger extent after writeback is
   1466		 *    triggered (except in a case of free space fragmentation).
   1467		 */
   1468		if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1,
   1469				   EXTENT_DELALLOC, 0, NULL))
   1470			goto next;
   1471
   1472		/*
   1473		 * For do_compress case, we want to compress all valid file
   1474		 * extents, thus no @extent_thresh or mergeable check.
   1475		 */
   1476		if (do_compress)
   1477			goto add;
   1478
   1479		/* Skip too large extent */
   1480		if (range_len >= extent_thresh)
   1481			goto next;
   1482
   1483		/*
   1484		 * Skip extents already at its max capacity, this is mostly for
   1485		 * compressed extents, which max cap is only 128K.
   1486		 */
   1487		if (em->len >= get_extent_max_capacity(em))
   1488			goto next;
   1489
   1490		/*
   1491		 * Normally there are no more extents after an inline one, thus
   1492		 * @next_mergeable will normally be false and not defragged.
   1493		 * So if an inline extent passed all above checks, just add it
   1494		 * for defrag, and be converted to regular extents.
   1495		 */
   1496		if (em->block_start == EXTENT_MAP_INLINE)
   1497			goto add;
   1498
   1499		next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
   1500						extent_thresh, newer_than, locked);
   1501		if (!next_mergeable) {
   1502			struct defrag_target_range *last;
   1503
   1504			/* Empty target list, no way to merge with last entry */
   1505			if (list_empty(target_list))
   1506				goto next;
   1507			last = list_entry(target_list->prev,
   1508					  struct defrag_target_range, list);
   1509			/* Not mergeable with last entry */
   1510			if (last->start + last->len != cur)
   1511				goto next;
   1512
   1513			/* Mergeable, fall through to add it to @target_list. */
   1514		}
   1515
   1516add:
   1517		last_is_target = true;
   1518		range_len = min(extent_map_end(em), start + len) - cur;
   1519		/*
   1520		 * This one is a good target, check if it can be merged into
   1521		 * last range of the target list.
   1522		 */
   1523		if (!list_empty(target_list)) {
   1524			struct defrag_target_range *last;
   1525
   1526			last = list_entry(target_list->prev,
   1527					  struct defrag_target_range, list);
   1528			ASSERT(last->start + last->len <= cur);
   1529			if (last->start + last->len == cur) {
   1530				/* Mergeable, enlarge the last entry */
   1531				last->len += range_len;
   1532				goto next;
   1533			}
   1534			/* Fall through to allocate a new entry */
   1535		}
   1536
   1537		/* Allocate new defrag_target_range */
   1538		new = kmalloc(sizeof(*new), GFP_NOFS);
   1539		if (!new) {
   1540			free_extent_map(em);
   1541			ret = -ENOMEM;
   1542			break;
   1543		}
   1544		new->start = cur;
   1545		new->len = range_len;
   1546		list_add_tail(&new->list, target_list);
   1547
   1548next:
   1549		cur = extent_map_end(em);
   1550		free_extent_map(em);
   1551	}
   1552	if (ret < 0) {
   1553		struct defrag_target_range *entry;
   1554		struct defrag_target_range *tmp;
   1555
   1556		list_for_each_entry_safe(entry, tmp, target_list, list) {
   1557			list_del_init(&entry->list);
   1558			kfree(entry);
   1559		}
   1560	}
   1561	if (!ret && last_scanned_ret) {
   1562		/*
   1563		 * If the last extent is not a target, the caller can skip to
   1564		 * the end of that extent.
   1565		 * Otherwise, we can only go the end of the specified range.
   1566		 */
   1567		if (!last_is_target)
   1568			*last_scanned_ret = max(cur, *last_scanned_ret);
   1569		else
   1570			*last_scanned_ret = max(start + len, *last_scanned_ret);
   1571	}
   1572	return ret;
   1573}
   1574
   1575#define CLUSTER_SIZE	(SZ_256K)
   1576static_assert(IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
   1577
   1578/*
   1579 * Defrag one contiguous target range.
   1580 *
   1581 * @inode:	target inode
   1582 * @target:	target range to defrag
   1583 * @pages:	locked pages covering the defrag range
   1584 * @nr_pages:	number of locked pages
   1585 *
   1586 * Caller should ensure:
   1587 *
   1588 * - Pages are prepared
   1589 *   Pages should be locked, no ordered extent in the pages range,
   1590 *   no writeback.
   1591 *
   1592 * - Extent bits are locked
   1593 */
   1594static int defrag_one_locked_target(struct btrfs_inode *inode,
   1595				    struct defrag_target_range *target,
   1596				    struct page **pages, int nr_pages,
   1597				    struct extent_state **cached_state)
   1598{
   1599	struct btrfs_fs_info *fs_info = inode->root->fs_info;
   1600	struct extent_changeset *data_reserved = NULL;
   1601	const u64 start = target->start;
   1602	const u64 len = target->len;
   1603	unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
   1604	unsigned long start_index = start >> PAGE_SHIFT;
   1605	unsigned long first_index = page_index(pages[0]);
   1606	int ret = 0;
   1607	int i;
   1608
   1609	ASSERT(last_index - first_index + 1 <= nr_pages);
   1610
   1611	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
   1612	if (ret < 0)
   1613		return ret;
   1614	clear_extent_bit(&inode->io_tree, start, start + len - 1,
   1615			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
   1616			 EXTENT_DEFRAG, 0, 0, cached_state);
   1617	set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state);
   1618
   1619	/* Update the page status */
   1620	for (i = start_index - first_index; i <= last_index - first_index; i++) {
   1621		ClearPageChecked(pages[i]);
   1622		btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
   1623	}
   1624	btrfs_delalloc_release_extents(inode, len);
   1625	extent_changeset_free(data_reserved);
   1626
   1627	return ret;
   1628}
   1629
   1630static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
   1631			    u32 extent_thresh, u64 newer_than, bool do_compress,
   1632			    u64 *last_scanned_ret)
   1633{
   1634	struct extent_state *cached_state = NULL;
   1635	struct defrag_target_range *entry;
   1636	struct defrag_target_range *tmp;
   1637	LIST_HEAD(target_list);
   1638	struct page **pages;
   1639	const u32 sectorsize = inode->root->fs_info->sectorsize;
   1640	u64 last_index = (start + len - 1) >> PAGE_SHIFT;
   1641	u64 start_index = start >> PAGE_SHIFT;
   1642	unsigned int nr_pages = last_index - start_index + 1;
   1643	int ret = 0;
   1644	int i;
   1645
   1646	ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
   1647	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
   1648
   1649	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
   1650	if (!pages)
   1651		return -ENOMEM;
   1652
   1653	/* Prepare all pages */
   1654	for (i = 0; i < nr_pages; i++) {
   1655		pages[i] = defrag_prepare_one_page(inode, start_index + i);
   1656		if (IS_ERR(pages[i])) {
   1657			ret = PTR_ERR(pages[i]);
   1658			pages[i] = NULL;
   1659			goto free_pages;
   1660		}
   1661	}
   1662	for (i = 0; i < nr_pages; i++)
   1663		wait_on_page_writeback(pages[i]);
   1664
   1665	/* Lock the pages range */
   1666	lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT,
   1667			 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
   1668			 &cached_state);
   1669	/*
   1670	 * Now we have a consistent view about the extent map, re-check
   1671	 * which range really needs to be defragged.
   1672	 *
   1673	 * And this time we have extent locked already, pass @locked = true
   1674	 * so that we won't relock the extent range and cause deadlock.
   1675	 */
   1676	ret = defrag_collect_targets(inode, start, len, extent_thresh,
   1677				     newer_than, do_compress, true,
   1678				     &target_list, last_scanned_ret);
   1679	if (ret < 0)
   1680		goto unlock_extent;
   1681
   1682	list_for_each_entry(entry, &target_list, list) {
   1683		ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
   1684					       &cached_state);
   1685		if (ret < 0)
   1686			break;
   1687	}
   1688
   1689	list_for_each_entry_safe(entry, tmp, &target_list, list) {
   1690		list_del_init(&entry->list);
   1691		kfree(entry);
   1692	}
   1693unlock_extent:
   1694	unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT,
   1695			     (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
   1696			     &cached_state);
   1697free_pages:
   1698	for (i = 0; i < nr_pages; i++) {
   1699		if (pages[i]) {
   1700			unlock_page(pages[i]);
   1701			put_page(pages[i]);
   1702		}
   1703	}
   1704	kfree(pages);
   1705	return ret;
   1706}
   1707
   1708static int defrag_one_cluster(struct btrfs_inode *inode,
   1709			      struct file_ra_state *ra,
   1710			      u64 start, u32 len, u32 extent_thresh,
   1711			      u64 newer_than, bool do_compress,
   1712			      unsigned long *sectors_defragged,
   1713			      unsigned long max_sectors,
   1714			      u64 *last_scanned_ret)
   1715{
   1716	const u32 sectorsize = inode->root->fs_info->sectorsize;
   1717	struct defrag_target_range *entry;
   1718	struct defrag_target_range *tmp;
   1719	LIST_HEAD(target_list);
   1720	int ret;
   1721
   1722	ret = defrag_collect_targets(inode, start, len, extent_thresh,
   1723				     newer_than, do_compress, false,
   1724				     &target_list, NULL);
   1725	if (ret < 0)
   1726		goto out;
   1727
   1728	list_for_each_entry(entry, &target_list, list) {
   1729		u32 range_len = entry->len;
   1730
   1731		/* Reached or beyond the limit */
   1732		if (max_sectors && *sectors_defragged >= max_sectors) {
   1733			ret = 1;
   1734			break;
   1735		}
   1736
   1737		if (max_sectors)
   1738			range_len = min_t(u32, range_len,
   1739				(max_sectors - *sectors_defragged) * sectorsize);
   1740
   1741		/*
   1742		 * If defrag_one_range() has updated last_scanned_ret,
   1743		 * our range may already be invalid (e.g. hole punched).
   1744		 * Skip if our range is before last_scanned_ret, as there is
   1745		 * no need to defrag the range anymore.
   1746		 */
   1747		if (entry->start + range_len <= *last_scanned_ret)
   1748			continue;
   1749
   1750		if (ra)
   1751			page_cache_sync_readahead(inode->vfs_inode.i_mapping,
   1752				ra, NULL, entry->start >> PAGE_SHIFT,
   1753				((entry->start + range_len - 1) >> PAGE_SHIFT) -
   1754				(entry->start >> PAGE_SHIFT) + 1);
   1755		/*
   1756		 * Here we may not defrag any range if holes are punched before
   1757		 * we locked the pages.
   1758		 * But that's fine, it only affects the @sectors_defragged
   1759		 * accounting.
   1760		 */
   1761		ret = defrag_one_range(inode, entry->start, range_len,
   1762				       extent_thresh, newer_than, do_compress,
   1763				       last_scanned_ret);
   1764		if (ret < 0)
   1765			break;
   1766		*sectors_defragged += range_len >>
   1767				      inode->root->fs_info->sectorsize_bits;
   1768	}
   1769out:
   1770	list_for_each_entry_safe(entry, tmp, &target_list, list) {
   1771		list_del_init(&entry->list);
   1772		kfree(entry);
   1773	}
   1774	if (ret >= 0)
   1775		*last_scanned_ret = max(*last_scanned_ret, start + len);
   1776	return ret;
   1777}
   1778
   1779/*
   1780 * Entry point to file defragmentation.
   1781 *
   1782 * @inode:	   inode to be defragged
   1783 * @ra:		   readahead state (can be NUL)
   1784 * @range:	   defrag options including range and flags
   1785 * @newer_than:	   minimum transid to defrag
   1786 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
   1787 *		   will be defragged.
   1788 *
   1789 * Return <0 for error.
   1790 * Return >=0 for the number of sectors defragged, and range->start will be updated
   1791 * to indicate the file offset where next defrag should be started at.
   1792 * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
   1793 *  defragging all the range).
   1794 */
   1795int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
   1796		      struct btrfs_ioctl_defrag_range_args *range,
   1797		      u64 newer_than, unsigned long max_to_defrag)
   1798{
   1799	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
   1800	unsigned long sectors_defragged = 0;
   1801	u64 isize = i_size_read(inode);
   1802	u64 cur;
   1803	u64 last_byte;
   1804	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
   1805	bool ra_allocated = false;
   1806	int compress_type = BTRFS_COMPRESS_ZLIB;
   1807	int ret = 0;
   1808	u32 extent_thresh = range->extent_thresh;
   1809	pgoff_t start_index;
   1810
   1811	if (isize == 0)
   1812		return 0;
   1813
   1814	if (range->start >= isize)
   1815		return -EINVAL;
   1816
   1817	if (do_compress) {
   1818		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
   1819			return -EINVAL;
   1820		if (range->compress_type)
   1821			compress_type = range->compress_type;
   1822	}
   1823
   1824	if (extent_thresh == 0)
   1825		extent_thresh = SZ_256K;
   1826
   1827	if (range->start + range->len > range->start) {
   1828		/* Got a specific range */
   1829		last_byte = min(isize, range->start + range->len);
   1830	} else {
   1831		/* Defrag until file end */
   1832		last_byte = isize;
   1833	}
   1834
   1835	/* Align the range */
   1836	cur = round_down(range->start, fs_info->sectorsize);
   1837	last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
   1838
   1839	/*
   1840	 * If we were not given a ra, allocate a readahead context. As
   1841	 * readahead is just an optimization, defrag will work without it so
   1842	 * we don't error out.
   1843	 */
   1844	if (!ra) {
   1845		ra_allocated = true;
   1846		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
   1847		if (ra)
   1848			file_ra_state_init(ra, inode->i_mapping);
   1849	}
   1850
   1851	/*
   1852	 * Make writeback start from the beginning of the range, so that the
   1853	 * defrag range can be written sequentially.
   1854	 */
   1855	start_index = cur >> PAGE_SHIFT;
   1856	if (start_index < inode->i_mapping->writeback_index)
   1857		inode->i_mapping->writeback_index = start_index;
   1858
   1859	while (cur < last_byte) {
   1860		const unsigned long prev_sectors_defragged = sectors_defragged;
   1861		u64 last_scanned = cur;
   1862		u64 cluster_end;
   1863
   1864		if (btrfs_defrag_cancelled(fs_info)) {
   1865			ret = -EAGAIN;
   1866			break;
   1867		}
   1868
   1869		/* We want the cluster end at page boundary when possible */
   1870		cluster_end = (((cur >> PAGE_SHIFT) +
   1871			       (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
   1872		cluster_end = min(cluster_end, last_byte);
   1873
   1874		btrfs_inode_lock(inode, 0);
   1875		if (IS_SWAPFILE(inode)) {
   1876			ret = -ETXTBSY;
   1877			btrfs_inode_unlock(inode, 0);
   1878			break;
   1879		}
   1880		if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
   1881			btrfs_inode_unlock(inode, 0);
   1882			break;
   1883		}
   1884		if (do_compress)
   1885			BTRFS_I(inode)->defrag_compress = compress_type;
   1886		ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
   1887				cluster_end + 1 - cur, extent_thresh,
   1888				newer_than, do_compress, &sectors_defragged,
   1889				max_to_defrag, &last_scanned);
   1890
   1891		if (sectors_defragged > prev_sectors_defragged)
   1892			balance_dirty_pages_ratelimited(inode->i_mapping);
   1893
   1894		btrfs_inode_unlock(inode, 0);
   1895		if (ret < 0)
   1896			break;
   1897		cur = max(cluster_end + 1, last_scanned);
   1898		if (ret > 0) {
   1899			ret = 0;
   1900			break;
   1901		}
   1902		cond_resched();
   1903	}
   1904
   1905	if (ra_allocated)
   1906		kfree(ra);
   1907	/*
   1908	 * Update range.start for autodefrag, this will indicate where to start
   1909	 * in next run.
   1910	 */
   1911	range->start = cur;
   1912	if (sectors_defragged) {
   1913		/*
   1914		 * We have defragged some sectors, for compression case they
   1915		 * need to be written back immediately.
   1916		 */
   1917		if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
   1918			filemap_flush(inode->i_mapping);
   1919			if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
   1920				     &BTRFS_I(inode)->runtime_flags))
   1921				filemap_flush(inode->i_mapping);
   1922		}
   1923		if (range->compress_type == BTRFS_COMPRESS_LZO)
   1924			btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
   1925		else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
   1926			btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
   1927		ret = sectors_defragged;
   1928	}
   1929	if (do_compress) {
   1930		btrfs_inode_lock(inode, 0);
   1931		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
   1932		btrfs_inode_unlock(inode, 0);
   1933	}
   1934	return ret;
   1935}
   1936
   1937/*
   1938 * Try to start exclusive operation @type or cancel it if it's running.
   1939 *
   1940 * Return:
   1941 *   0        - normal mode, newly claimed op started
   1942 *  >0        - normal mode, something else is running,
   1943 *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
   1944 * ECANCELED  - cancel mode, successful cancel
   1945 * ENOTCONN   - cancel mode, operation not running anymore
   1946 */
   1947static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
   1948			enum btrfs_exclusive_operation type, bool cancel)
   1949{
   1950	if (!cancel) {
   1951		/* Start normal op */
   1952		if (!btrfs_exclop_start(fs_info, type))
   1953			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
   1954		/* Exclusive operation is now claimed */
   1955		return 0;
   1956	}
   1957
   1958	/* Cancel running op */
   1959	if (btrfs_exclop_start_try_lock(fs_info, type)) {
   1960		/*
   1961		 * This blocks any exclop finish from setting it to NONE, so we
   1962		 * request cancellation. Either it runs and we will wait for it,
   1963		 * or it has finished and no waiting will happen.
   1964		 */
   1965		atomic_inc(&fs_info->reloc_cancel_req);
   1966		btrfs_exclop_start_unlock(fs_info);
   1967
   1968		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
   1969			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
   1970				    TASK_INTERRUPTIBLE);
   1971
   1972		return -ECANCELED;
   1973	}
   1974
   1975	/* Something else is running or none */
   1976	return -ENOTCONN;
   1977}
   1978
   1979static noinline int btrfs_ioctl_resize(struct file *file,
   1980					void __user *arg)
   1981{
   1982	BTRFS_DEV_LOOKUP_ARGS(args);
   1983	struct inode *inode = file_inode(file);
   1984	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
   1985	u64 new_size;
   1986	u64 old_size;
   1987	u64 devid = 1;
   1988	struct btrfs_root *root = BTRFS_I(inode)->root;
   1989	struct btrfs_ioctl_vol_args *vol_args;
   1990	struct btrfs_trans_handle *trans;
   1991	struct btrfs_device *device = NULL;
   1992	char *sizestr;
   1993	char *retptr;
   1994	char *devstr = NULL;
   1995	int ret = 0;
   1996	int mod = 0;
   1997	bool cancel;
   1998
   1999	if (!capable(CAP_SYS_ADMIN))
   2000		return -EPERM;
   2001
   2002	ret = mnt_want_write_file(file);
   2003	if (ret)
   2004		return ret;
   2005
   2006	/*
   2007	 * Read the arguments before checking exclusivity to be able to
   2008	 * distinguish regular resize and cancel
   2009	 */
   2010	vol_args = memdup_user(arg, sizeof(*vol_args));
   2011	if (IS_ERR(vol_args)) {
   2012		ret = PTR_ERR(vol_args);
   2013		goto out_drop;
   2014	}
   2015	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
   2016	sizestr = vol_args->name;
   2017	cancel = (strcmp("cancel", sizestr) == 0);
   2018	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
   2019	if (ret)
   2020		goto out_free;
   2021	/* Exclusive operation is now claimed */
   2022
   2023	devstr = strchr(sizestr, ':');
   2024	if (devstr) {
   2025		sizestr = devstr + 1;
   2026		*devstr = '\0';
   2027		devstr = vol_args->name;
   2028		ret = kstrtoull(devstr, 10, &devid);
   2029		if (ret)
   2030			goto out_finish;
   2031		if (!devid) {
   2032			ret = -EINVAL;
   2033			goto out_finish;
   2034		}
   2035		btrfs_info(fs_info, "resizing devid %llu", devid);
   2036	}
   2037
   2038	args.devid = devid;
   2039	device = btrfs_find_device(fs_info->fs_devices, &args);
   2040	if (!device) {
   2041		btrfs_info(fs_info, "resizer unable to find device %llu",
   2042			   devid);
   2043		ret = -ENODEV;
   2044		goto out_finish;
   2045	}
   2046
   2047	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
   2048		btrfs_info(fs_info,
   2049			   "resizer unable to apply on readonly device %llu",
   2050		       devid);
   2051		ret = -EPERM;
   2052		goto out_finish;
   2053	}
   2054
   2055	if (!strcmp(sizestr, "max"))
   2056		new_size = bdev_nr_bytes(device->bdev);
   2057	else {
   2058		if (sizestr[0] == '-') {
   2059			mod = -1;
   2060			sizestr++;
   2061		} else if (sizestr[0] == '+') {
   2062			mod = 1;
   2063			sizestr++;
   2064		}
   2065		new_size = memparse(sizestr, &retptr);
   2066		if (*retptr != '\0' || new_size == 0) {
   2067			ret = -EINVAL;
   2068			goto out_finish;
   2069		}
   2070	}
   2071
   2072	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
   2073		ret = -EPERM;
   2074		goto out_finish;
   2075	}
   2076
   2077	old_size = btrfs_device_get_total_bytes(device);
   2078
   2079	if (mod < 0) {
   2080		if (new_size > old_size) {
   2081			ret = -EINVAL;
   2082			goto out_finish;
   2083		}
   2084		new_size = old_size - new_size;
   2085	} else if (mod > 0) {
   2086		if (new_size > ULLONG_MAX - old_size) {
   2087			ret = -ERANGE;
   2088			goto out_finish;
   2089		}
   2090		new_size = old_size + new_size;
   2091	}
   2092
   2093	if (new_size < SZ_256M) {
   2094		ret = -EINVAL;
   2095		goto out_finish;
   2096	}
   2097	if (new_size > bdev_nr_bytes(device->bdev)) {
   2098		ret = -EFBIG;
   2099		goto out_finish;
   2100	}
   2101
   2102	new_size = round_down(new_size, fs_info->sectorsize);
   2103
   2104	if (new_size > old_size) {
   2105		trans = btrfs_start_transaction(root, 0);
   2106		if (IS_ERR(trans)) {
   2107			ret = PTR_ERR(trans);
   2108			goto out_finish;
   2109		}
   2110		ret = btrfs_grow_device(trans, device, new_size);
   2111		btrfs_commit_transaction(trans);
   2112	} else if (new_size < old_size) {
   2113		ret = btrfs_shrink_device(device, new_size);
   2114	} /* equal, nothing need to do */
   2115
   2116	if (ret == 0 && new_size != old_size)
   2117		btrfs_info_in_rcu(fs_info,
   2118			"resize device %s (devid %llu) from %llu to %llu",
   2119			rcu_str_deref(device->name), device->devid,
   2120			old_size, new_size);
   2121out_finish:
   2122	btrfs_exclop_finish(fs_info);
   2123out_free:
   2124	kfree(vol_args);
   2125out_drop:
   2126	mnt_drop_write_file(file);
   2127	return ret;
   2128}
   2129
   2130static noinline int __btrfs_ioctl_snap_create(struct file *file,
   2131				struct user_namespace *mnt_userns,
   2132				const char *name, unsigned long fd, int subvol,
   2133				bool readonly,
   2134				struct btrfs_qgroup_inherit *inherit)
   2135{
   2136	int namelen;
   2137	int ret = 0;
   2138
   2139	if (!S_ISDIR(file_inode(file)->i_mode))
   2140		return -ENOTDIR;
   2141
   2142	ret = mnt_want_write_file(file);
   2143	if (ret)
   2144		goto out;
   2145
   2146	namelen = strlen(name);
   2147	if (strchr(name, '/')) {
   2148		ret = -EINVAL;
   2149		goto out_drop_write;
   2150	}
   2151
   2152	if (name[0] == '.' &&
   2153	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
   2154		ret = -EEXIST;
   2155		goto out_drop_write;
   2156	}
   2157
   2158	if (subvol) {
   2159		ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
   2160				     namelen, NULL, readonly, inherit);
   2161	} else {
   2162		struct fd src = fdget(fd);
   2163		struct inode *src_inode;
   2164		if (!src.file) {
   2165			ret = -EINVAL;
   2166			goto out_drop_write;
   2167		}
   2168
   2169		src_inode = file_inode(src.file);
   2170		if (src_inode->i_sb != file_inode(file)->i_sb) {
   2171			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
   2172				   "Snapshot src from another FS");
   2173			ret = -EXDEV;
   2174		} else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
   2175			/*
   2176			 * Subvolume creation is not restricted, but snapshots
   2177			 * are limited to own subvolumes only
   2178			 */
   2179			ret = -EPERM;
   2180		} else {
   2181			ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
   2182					       name, namelen,
   2183					       BTRFS_I(src_inode)->root,
   2184					       readonly, inherit);
   2185		}
   2186		fdput(src);
   2187	}
   2188out_drop_write:
   2189	mnt_drop_write_file(file);
   2190out:
   2191	return ret;
   2192}
   2193
   2194static noinline int btrfs_ioctl_snap_create(struct file *file,
   2195					    void __user *arg, int subvol)
   2196{
   2197	struct btrfs_ioctl_vol_args *vol_args;
   2198	int ret;
   2199
   2200	if (!S_ISDIR(file_inode(file)->i_mode))
   2201		return -ENOTDIR;
   2202
   2203	vol_args = memdup_user(arg, sizeof(*vol_args));
   2204	if (IS_ERR(vol_args))
   2205		return PTR_ERR(vol_args);
   2206	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
   2207
   2208	ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
   2209					vol_args->name, vol_args->fd, subvol,
   2210					false, NULL);
   2211
   2212	kfree(vol_args);
   2213	return ret;
   2214}
   2215
   2216static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
   2217					       void __user *arg, int subvol)
   2218{
   2219	struct btrfs_ioctl_vol_args_v2 *vol_args;
   2220	int ret;
   2221	bool readonly = false;
   2222	struct btrfs_qgroup_inherit *inherit = NULL;
   2223
   2224	if (!S_ISDIR(file_inode(file)->i_mode))
   2225		return -ENOTDIR;
   2226
   2227	vol_args = memdup_user(arg, sizeof(*vol_args));
   2228	if (IS_ERR(vol_args))
   2229		return PTR_ERR(vol_args);
   2230	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
   2231
   2232	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
   2233		ret = -EOPNOTSUPP;
   2234		goto free_args;
   2235	}
   2236
   2237	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
   2238		readonly = true;
   2239	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
   2240		u64 nums;
   2241
   2242		if (vol_args->size < sizeof(*inherit) ||
   2243		    vol_args->size > PAGE_SIZE) {
   2244			ret = -EINVAL;
   2245			goto free_args;
   2246		}
   2247		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
   2248		if (IS_ERR(inherit)) {
   2249			ret = PTR_ERR(inherit);
   2250			goto free_args;
   2251		}
   2252
   2253		if (inherit->num_qgroups > PAGE_SIZE ||
   2254		    inherit->num_ref_copies > PAGE_SIZE ||
   2255		    inherit->num_excl_copies > PAGE_SIZE) {
   2256			ret = -EINVAL;
   2257			goto free_inherit;
   2258		}
   2259
   2260		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
   2261		       2 * inherit->num_excl_copies;
   2262		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
   2263			ret = -EINVAL;
   2264			goto free_inherit;
   2265		}
   2266	}
   2267
   2268	ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
   2269					vol_args->name, vol_args->fd, subvol,
   2270					readonly, inherit);
   2271	if (ret)
   2272		goto free_inherit;
   2273free_inherit:
   2274	kfree(inherit);
   2275free_args:
   2276	kfree(vol_args);
   2277	return ret;
   2278}
   2279
   2280static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
   2281						void __user *arg)
   2282{
   2283	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
   2284	struct btrfs_root *root = BTRFS_I(inode)->root;
   2285	int ret = 0;
   2286	u64 flags = 0;
   2287
   2288	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
   2289		return -EINVAL;
   2290
   2291	down_read(&fs_info->subvol_sem);
   2292	if (btrfs_root_readonly(root))
   2293		flags |= BTRFS_SUBVOL_RDONLY;
   2294	up_read(&fs_info->subvol_sem);
   2295
   2296	if (copy_to_user(arg, &flags, sizeof(flags)))
   2297		ret = -EFAULT;
   2298
   2299	return ret;
   2300}
   2301
   2302static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
   2303					      void __user *arg)
   2304{
   2305	struct inode *inode = file_inode(file);
   2306	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
   2307	struct btrfs_root *root = BTRFS_I(inode)->root;
   2308	struct btrfs_trans_handle *trans;
   2309	u64 root_flags;
   2310	u64 flags;
   2311	int ret = 0;
   2312
   2313	if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
   2314		return -EPERM;
   2315
   2316	ret = mnt_want_write_file(file);
   2317	if (ret)
   2318		goto out;
   2319
   2320	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
   2321		ret = -EINVAL;
   2322		goto out_drop_write;
   2323	}
   2324
   2325	if (copy_from_user(&flags, arg, sizeof(flags))) {
   2326		ret = -EFAULT;
   2327		goto out_drop_write;
   2328	}
   2329
   2330	if (flags & ~BTRFS_SUBVOL_RDONLY) {
   2331		ret = -EOPNOTSUPP;
   2332		goto out_drop_write;
   2333	}
   2334
   2335	down_write(&fs_info->subvol_sem);
   2336
   2337	/* nothing to do */
   2338	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
   2339		goto out_drop_sem;
   2340
   2341	root_flags = btrfs_root_flags(&root->root_item);
   2342	if (flags & BTRFS_SUBVOL_RDONLY) {
   2343		btrfs_set_root_flags(&root->root_item,
   2344				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
   2345	} else {
   2346		/*
   2347		 * Block RO -> RW transition if this subvolume is involved in
   2348		 * send
   2349		 */
   2350		spin_lock(&root->root_item_lock);
   2351		if (root->send_in_progress == 0) {
   2352			btrfs_set_root_flags(&root->root_item,
   2353				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
   2354			spin_unlock(&root->root_item_lock);
   2355		} else {
   2356			spin_unlock(&root->root_item_lock);
   2357			btrfs_warn(fs_info,
   2358				   "Attempt to set subvolume %llu read-write during send",
   2359				   root->root_key.objectid);
   2360			ret = -EPERM;
   2361			goto out_drop_sem;
   2362		}
   2363	}
   2364
   2365	trans = btrfs_start_transaction(root, 1);
   2366	if (IS_ERR(trans)) {
   2367		ret = PTR_ERR(trans);
   2368		goto out_reset;
   2369	}
   2370
   2371	ret = btrfs_update_root(trans, fs_info->tree_root,
   2372				&root->root_key, &root->root_item);
   2373	if (ret < 0) {
   2374		btrfs_end_transaction(trans);
   2375		goto out_reset;
   2376	}
   2377
   2378	ret = btrfs_commit_transaction(trans);
   2379
   2380out_reset:
   2381	if (ret)
   2382		btrfs_set_root_flags(&root->root_item, root_flags);
   2383out_drop_sem:
   2384	up_write(&fs_info->subvol_sem);
   2385out_drop_write:
   2386	mnt_drop_write_file(file);
   2387out:
   2388	return ret;
   2389}
   2390
   2391static noinline int key_in_sk(struct btrfs_key *key,
   2392			      struct btrfs_ioctl_search_key *sk)
   2393{
   2394	struct btrfs_key test;
   2395	int ret;
   2396
   2397	test.objectid = sk->min_objectid;
   2398	test.type = sk->min_type;
   2399	test.offset = sk->min_offset;
   2400
   2401	ret = btrfs_comp_cpu_keys(key, &test);
   2402	if (ret < 0)
   2403		return 0;
   2404
   2405	test.objectid = sk->max_objectid;
   2406	test.type = sk->max_type;
   2407	test.offset = sk->max_offset;
   2408
   2409	ret = btrfs_comp_cpu_keys(key, &test);
   2410	if (ret > 0)
   2411		return 0;
   2412	return 1;
   2413}
   2414
   2415static noinline int copy_to_sk(struct btrfs_path *path,
   2416			       struct btrfs_key *key,
   2417			       struct btrfs_ioctl_search_key *sk,
   2418			       size_t *buf_size,
   2419			       char __user *ubuf,
   2420			       unsigned long *sk_offset,
   2421			       int *num_found)
   2422{
   2423	u64 found_transid;
   2424	struct extent_buffer *leaf;
   2425	struct btrfs_ioctl_search_header sh;
   2426	struct btrfs_key test;
   2427	unsigned long item_off;
   2428	unsigned long item_len;
   2429	int nritems;
   2430	int i;
   2431	int slot;
   2432	int ret = 0;
   2433
   2434	leaf = path->nodes[0];
   2435	slot = path->slots[0];
   2436	nritems = btrfs_header_nritems(leaf);
   2437
   2438	if (btrfs_header_generation(leaf) > sk->max_transid) {
   2439		i = nritems;
   2440		goto advance_key;
   2441	}
   2442	found_transid = btrfs_header_generation(leaf);
   2443
   2444	for (i = slot; i < nritems; i++) {
   2445		item_off = btrfs_item_ptr_offset(leaf, i);
   2446		item_len = btrfs_item_size(leaf, i);
   2447
   2448		btrfs_item_key_to_cpu(leaf, key, i);
   2449		if (!key_in_sk(key, sk))
   2450			continue;
   2451
   2452		if (sizeof(sh) + item_len > *buf_size) {
   2453			if (*num_found) {
   2454				ret = 1;
   2455				goto out;
   2456			}
   2457
   2458			/*
   2459			 * return one empty item back for v1, which does not
   2460			 * handle -EOVERFLOW
   2461			 */
   2462
   2463			*buf_size = sizeof(sh) + item_len;
   2464			item_len = 0;
   2465			ret = -EOVERFLOW;
   2466		}
   2467
   2468		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
   2469			ret = 1;
   2470			goto out;
   2471		}
   2472
   2473		sh.objectid = key->objectid;
   2474		sh.offset = key->offset;
   2475		sh.type = key->type;
   2476		sh.len = item_len;
   2477		sh.transid = found_transid;
   2478
   2479		/*
   2480		 * Copy search result header. If we fault then loop again so we
   2481		 * can fault in the pages and -EFAULT there if there's a
   2482		 * problem. Otherwise we'll fault and then copy the buffer in
   2483		 * properly this next time through
   2484		 */
   2485		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
   2486			ret = 0;
   2487			goto out;
   2488		}
   2489
   2490		*sk_offset += sizeof(sh);
   2491
   2492		if (item_len) {
   2493			char __user *up = ubuf + *sk_offset;
   2494			/*
   2495			 * Copy the item, same behavior as above, but reset the
   2496			 * * sk_offset so we copy the full thing again.
   2497			 */
   2498			if (read_extent_buffer_to_user_nofault(leaf, up,
   2499						item_off, item_len)) {
   2500				ret = 0;
   2501				*sk_offset -= sizeof(sh);
   2502				goto out;
   2503			}
   2504
   2505			*sk_offset += item_len;
   2506		}
   2507		(*num_found)++;
   2508
   2509		if (ret) /* -EOVERFLOW from above */
   2510			goto out;
   2511
   2512		if (*num_found >= sk->nr_items) {
   2513			ret = 1;
   2514			goto out;
   2515		}
   2516	}
   2517advance_key:
   2518	ret = 0;
   2519	test.objectid = sk->max_objectid;
   2520	test.type = sk->max_type;
   2521	test.offset = sk->max_offset;
   2522	if (btrfs_comp_cpu_keys(key, &test) >= 0)
   2523		ret = 1;
   2524	else if (key->offset < (u64)-1)
   2525		key->offset++;
   2526	else if (key->type < (u8)-1) {
   2527		key->offset = 0;
   2528		key->type++;
   2529	} else if (key->objectid < (u64)-1) {
   2530		key->offset = 0;
   2531		key->type = 0;
   2532		key->objectid++;
   2533	} else
   2534		ret = 1;
   2535out:
   2536	/*
   2537	 *  0: all items from this leaf copied, continue with next
   2538	 *  1: * more items can be copied, but unused buffer is too small
   2539	 *     * all items were found
   2540	 *     Either way, it will stops the loop which iterates to the next
   2541	 *     leaf
   2542	 *  -EOVERFLOW: item was to large for buffer
   2543	 *  -EFAULT: could not copy extent buffer back to userspace
   2544	 */
   2545	return ret;
   2546}
   2547
   2548static noinline int search_ioctl(struct inode *inode,
   2549				 struct btrfs_ioctl_search_key *sk,
   2550				 size_t *buf_size,
   2551				 char __user *ubuf)
   2552{
   2553	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
   2554	struct btrfs_root *root;
   2555	struct btrfs_key key;
   2556	struct btrfs_path *path;
   2557	int ret;
   2558	int num_found = 0;
   2559	unsigned long sk_offset = 0;
   2560
   2561	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
   2562		*buf_size = sizeof(struct btrfs_ioctl_search_header);
   2563		return -EOVERFLOW;
   2564	}
   2565
   2566	path = btrfs_alloc_path();
   2567	if (!path)
   2568		return -ENOMEM;
   2569
   2570	if (sk->tree_id == 0) {
   2571		/* search the root of the inode that was passed */
   2572		root = btrfs_grab_root(BTRFS_I(inode)->root);
   2573	} else {
   2574		root = btrfs_get_fs_root(info, sk->tree_id, true);
   2575		if (IS_ERR(root)) {
   2576			btrfs_free_path(path);
   2577			return PTR_ERR(root);
   2578		}
   2579	}
   2580
   2581	key.objectid = sk->min_objectid;
   2582	key.type = sk->min_type;
   2583	key.offset = sk->min_offset;
   2584
   2585	while (1) {
   2586		ret = -EFAULT;
   2587		/*
   2588		 * Ensure that the whole user buffer is faulted in at sub-page
   2589		 * granularity, otherwise the loop may live-lock.
   2590		 */
   2591		if (fault_in_subpage_writeable(ubuf + sk_offset,
   2592					       *buf_size - sk_offset))
   2593			break;
   2594
   2595		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
   2596		if (ret != 0) {
   2597			if (ret > 0)
   2598				ret = 0;
   2599			goto err;
   2600		}
   2601		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
   2602				 &sk_offset, &num_found);
   2603		btrfs_release_path(path);
   2604		if (ret)
   2605			break;
   2606
   2607	}
   2608	if (ret > 0)
   2609		ret = 0;
   2610err:
   2611	sk->nr_items = num_found;
   2612	btrfs_put_root(root);
   2613	btrfs_free_path(path);
   2614	return ret;
   2615}
   2616
   2617static noinline int btrfs_ioctl_tree_search(struct inode *inode,
   2618					    void __user *argp)
   2619{
   2620	struct btrfs_ioctl_search_args __user *uargs = argp;
   2621	struct btrfs_ioctl_search_key sk;
   2622	int ret;
   2623	size_t buf_size;
   2624
   2625	if (!capable(CAP_SYS_ADMIN))
   2626		return -EPERM;
   2627
   2628	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
   2629		return -EFAULT;
   2630
   2631	buf_size = sizeof(uargs->buf);
   2632
   2633	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
   2634
   2635	/*
   2636	 * In the origin implementation an overflow is handled by returning a
   2637	 * search header with a len of zero, so reset ret.
   2638	 */
   2639	if (ret == -EOVERFLOW)
   2640		ret = 0;
   2641
   2642	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
   2643		ret = -EFAULT;
   2644	return ret;
   2645}
   2646
   2647static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
   2648					       void __user *argp)
   2649{
   2650	struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
   2651	struct btrfs_ioctl_search_args_v2 args;
   2652	int ret;
   2653	size_t buf_size;
   2654	const size_t buf_limit = SZ_16M;
   2655
   2656	if (!capable(CAP_SYS_ADMIN))
   2657		return -EPERM;
   2658
   2659	/* copy search header and buffer size */
   2660	if (copy_from_user(&args, uarg, sizeof(args)))
   2661		return -EFAULT;
   2662
   2663	buf_size = args.buf_size;
   2664
   2665	/* limit result size to 16MB */
   2666	if (buf_size > buf_limit)
   2667		buf_size = buf_limit;
   2668
   2669	ret = search_ioctl(inode, &args.key, &buf_size,
   2670			   (char __user *)(&uarg->buf[0]));
   2671	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
   2672		ret = -EFAULT;
   2673	else if (ret == -EOVERFLOW &&
   2674		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
   2675		ret = -EFAULT;
   2676
   2677	return ret;
   2678}
   2679
   2680/*
   2681 * Search INODE_REFs to identify path name of 'dirid' directory
   2682 * in a 'tree_id' tree. and sets path name to 'name'.
   2683 */
   2684static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
   2685				u64 tree_id, u64 dirid, char *name)
   2686{
   2687	struct btrfs_root *root;
   2688	struct btrfs_key key;
   2689	char *ptr;
   2690	int ret = -1;
   2691	int slot;
   2692	int len;
   2693	int total_len = 0;
   2694	struct btrfs_inode_ref *iref;
   2695	struct extent_buffer *l;
   2696	struct btrfs_path *path;
   2697
   2698	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
   2699		name[0]='\0';
   2700		return 0;
   2701	}
   2702
   2703	path = btrfs_alloc_path();
   2704	if (!path)
   2705		return -ENOMEM;
   2706
   2707	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
   2708
   2709	root = btrfs_get_fs_root(info, tree_id, true);
   2710	if (IS_ERR(root)) {
   2711		ret = PTR_ERR(root);
   2712		root = NULL;
   2713		goto out;
   2714	}
   2715
   2716	key.objectid = dirid;
   2717	key.type = BTRFS_INODE_REF_KEY;
   2718	key.offset = (u64)-1;
   2719
   2720	while (1) {
   2721		ret = btrfs_search_backwards(root, &key, path);
   2722		if (ret < 0)
   2723			goto out;
   2724		else if (ret > 0) {
   2725			ret = -ENOENT;
   2726			goto out;
   2727		}
   2728
   2729		l = path->nodes[0];
   2730		slot = path->slots[0];
   2731
   2732		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
   2733		len = btrfs_inode_ref_name_len(l, iref);
   2734		ptr -= len + 1;
   2735		total_len += len + 1;
   2736		if (ptr < name) {
   2737			ret = -ENAMETOOLONG;
   2738			goto out;
   2739		}
   2740
   2741		*(ptr + len) = '/';
   2742		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
   2743
   2744		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
   2745			break;
   2746
   2747		btrfs_release_path(path);
   2748		key.objectid = key.offset;
   2749		key.offset = (u64)-1;
   2750		dirid = key.objectid;
   2751	}
   2752	memmove(name, ptr, total_len);
   2753	name[total_len] = '\0';
   2754	ret = 0;
   2755out:
   2756	btrfs_put_root(root);
   2757	btrfs_free_path(path);
   2758	return ret;
   2759}
   2760
   2761static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
   2762				struct inode *inode,
   2763				struct btrfs_ioctl_ino_lookup_user_args *args)
   2764{
   2765	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
   2766	struct super_block *sb = inode->i_sb;
   2767	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
   2768	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
   2769	u64 dirid = args->dirid;
   2770	unsigned long item_off;
   2771	unsigned long item_len;
   2772	struct btrfs_inode_ref *iref;
   2773	struct btrfs_root_ref *rref;
   2774	struct btrfs_root *root = NULL;
   2775	struct btrfs_path *path;
   2776	struct btrfs_key key, key2;
   2777	struct extent_buffer *leaf;
   2778	struct inode *temp_inode;
   2779	char *ptr;
   2780	int slot;
   2781	int len;
   2782	int total_len = 0;
   2783	int ret;
   2784
   2785	path = btrfs_alloc_path();
   2786	if (!path)
   2787		return -ENOMEM;
   2788
   2789	/*
   2790	 * If the bottom subvolume does not exist directly under upper_limit,
   2791	 * construct the path in from the bottom up.
   2792	 */
   2793	if (dirid != upper_limit.objectid) {
   2794		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
   2795
   2796		root = btrfs_get_fs_root(fs_info, treeid, true);
   2797		if (IS_ERR(root)) {
   2798			ret = PTR_ERR(root);
   2799			goto out;
   2800		}
   2801
   2802		key.objectid = dirid;
   2803		key.type = BTRFS_INODE_REF_KEY;
   2804		key.offset = (u64)-1;
   2805		while (1) {
   2806			ret = btrfs_search_backwards(root, &key, path);
   2807			if (ret < 0)
   2808				goto out_put;
   2809			else if (ret > 0) {
   2810				ret = -ENOENT;
   2811				goto out_put;
   2812			}
   2813
   2814			leaf = path->nodes[0];
   2815			slot = path->slots[0];
   2816
   2817			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
   2818			len = btrfs_inode_ref_name_len(leaf, iref);
   2819			ptr -= len + 1;
   2820			total_len += len + 1;
   2821			if (ptr < args->path) {
   2822				ret = -ENAMETOOLONG;
   2823				goto out_put;
   2824			}
   2825
   2826			*(ptr + len) = '/';
   2827			read_extent_buffer(leaf, ptr,
   2828					(unsigned long)(iref + 1), len);
   2829
   2830			/* Check the read+exec permission of this directory */
   2831			ret = btrfs_previous_item(root, path, dirid,
   2832						  BTRFS_INODE_ITEM_KEY);
   2833			if (ret < 0) {
   2834				goto out_put;
   2835			} else if (ret > 0) {
   2836				ret = -ENOENT;
   2837				goto out_put;
   2838			}
   2839
   2840			leaf = path->nodes[0];
   2841			slot = path->slots[0];
   2842			btrfs_item_key_to_cpu(leaf, &key2, slot);
   2843			if (key2.objectid != dirid) {
   2844				ret = -ENOENT;
   2845				goto out_put;
   2846			}
   2847
   2848			temp_inode = btrfs_iget(sb, key2.objectid, root);
   2849			if (IS_ERR(temp_inode)) {
   2850				ret = PTR_ERR(temp_inode);
   2851				goto out_put;
   2852			}
   2853			ret = inode_permission(mnt_userns, temp_inode,
   2854					       MAY_READ | MAY_EXEC);
   2855			iput(temp_inode);
   2856			if (ret) {
   2857				ret = -EACCES;
   2858				goto out_put;
   2859			}
   2860
   2861			if (key.offset == upper_limit.objectid)
   2862				break;
   2863			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
   2864				ret = -EACCES;
   2865				goto out_put;
   2866			}
   2867
   2868			btrfs_release_path(path);
   2869			key.objectid = key.offset;
   2870			key.offset = (u64)-1;
   2871			dirid = key.objectid;
   2872		}
   2873
   2874		memmove(args->path, ptr, total_len);
   2875		args->path[total_len] = '\0';
   2876		btrfs_put_root(root);
   2877		root = NULL;
   2878		btrfs_release_path(path);
   2879	}
   2880
   2881	/* Get the bottom subvolume's name from ROOT_REF */
   2882	key.objectid = treeid;
   2883	key.type = BTRFS_ROOT_REF_KEY;
   2884	key.offset = args->treeid;
   2885	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
   2886	if (ret < 0) {
   2887		goto out;
   2888	} else if (ret > 0) {
   2889		ret = -ENOENT;
   2890		goto out;
   2891	}
   2892
   2893	leaf = path->nodes[0];
   2894	slot = path->slots[0];
   2895	btrfs_item_key_to_cpu(leaf, &key, slot);
   2896
   2897	item_off = btrfs_item_ptr_offset(leaf, slot);
   2898	item_len = btrfs_item_size(leaf, slot);
   2899	/* Check if dirid in ROOT_REF corresponds to passed dirid */
   2900	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
   2901	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
   2902		ret = -EINVAL;
   2903		goto out;
   2904	}
   2905
   2906	/* Copy subvolume's name */
   2907	item_off += sizeof(struct btrfs_root_ref);
   2908	item_len -= sizeof(struct btrfs_root_ref);
   2909	read_extent_buffer(leaf, args->name, item_off, item_len);
   2910	args->name[item_len] = 0;
   2911
   2912out_put:
   2913	btrfs_put_root(root);
   2914out:
   2915	btrfs_free_path(path);
   2916	return ret;
   2917}
   2918
   2919static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
   2920					   void __user *argp)
   2921{
   2922	struct btrfs_ioctl_ino_lookup_args *args;
   2923	int ret = 0;
   2924
   2925	args = memdup_user(argp, sizeof(*args));
   2926	if (IS_ERR(args))
   2927		return PTR_ERR(args);
   2928
   2929	/*
   2930	 * Unprivileged query to obtain the containing subvolume root id. The
   2931	 * path is reset so it's consistent with btrfs_search_path_in_tree.
   2932	 */
   2933	if (args->treeid == 0)
   2934		args->treeid = root->root_key.objectid;
   2935
   2936	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
   2937		args->name[0] = 0;
   2938		goto out;
   2939	}
   2940
   2941	if (!capable(CAP_SYS_ADMIN)) {
   2942		ret = -EPERM;
   2943		goto out;
   2944	}
   2945
   2946	ret = btrfs_search_path_in_tree(root->fs_info,
   2947					args->treeid, args->objectid,
   2948					args->name);
   2949
   2950out:
   2951	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
   2952		ret = -EFAULT;
   2953
   2954	kfree(args);
   2955	return ret;
   2956}
   2957
   2958/*
   2959 * Version of ino_lookup ioctl (unprivileged)
   2960 *
   2961 * The main differences from ino_lookup ioctl are:
   2962 *
   2963 *   1. Read + Exec permission will be checked using inode_permission() during
   2964 *      path construction. -EACCES will be returned in case of failure.
   2965 *   2. Path construction will be stopped at the inode number which corresponds
   2966 *      to the fd with which this ioctl is called. If constructed path does not
   2967 *      exist under fd's inode, -EACCES will be returned.
   2968 *   3. The name of bottom subvolume is also searched and filled.
   2969 */
   2970static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
   2971{
   2972	struct btrfs_ioctl_ino_lookup_user_args *args;
   2973	struct inode *inode;
   2974	int ret;
   2975
   2976	args = memdup_user(argp, sizeof(*args));
   2977	if (IS_ERR(args))
   2978		return PTR_ERR(args);
   2979
   2980	inode = file_inode(file);
   2981
   2982	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
   2983	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
   2984		/*
   2985		 * The subvolume does not exist under fd with which this is
   2986		 * called
   2987		 */
   2988		kfree(args);
   2989		return -EACCES;
   2990	}
   2991
   2992	ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
   2993
   2994	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
   2995		ret = -EFAULT;
   2996
   2997	kfree(args);
   2998	return ret;
   2999}
   3000
   3001/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
   3002static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
   3003{
   3004	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
   3005	struct btrfs_fs_info *fs_info;
   3006	struct btrfs_root *root;
   3007	struct btrfs_path *path;
   3008	struct btrfs_key key;
   3009	struct btrfs_root_item *root_item;
   3010	struct btrfs_root_ref *rref;
   3011	struct extent_buffer *leaf;
   3012	unsigned long item_off;
   3013	unsigned long item_len;
   3014	int slot;
   3015	int ret = 0;
   3016
   3017	path = btrfs_alloc_path();
   3018	if (!path)
   3019		return -ENOMEM;
   3020
   3021	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
   3022	if (!subvol_info) {
   3023		btrfs_free_path(path);
   3024		return -ENOMEM;
   3025	}
   3026
   3027	fs_info = BTRFS_I(inode)->root->fs_info;
   3028
   3029	/* Get root_item of inode's subvolume */
   3030	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
   3031	root = btrfs_get_fs_root(fs_info, key.objectid, true);
   3032	if (IS_ERR(root)) {
   3033		ret = PTR_ERR(root);
   3034		goto out_free;
   3035	}
   3036	root_item = &root->root_item;
   3037
   3038	subvol_info->treeid = key.objectid;
   3039
   3040	subvol_info->generation = btrfs_root_generation(root_item);
   3041	subvol_info->flags = btrfs_root_flags(root_item);
   3042
   3043	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
   3044	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
   3045						    BTRFS_UUID_SIZE);
   3046	memcpy(subvol_info->received_uuid, root_item->received_uuid,
   3047						    BTRFS_UUID_SIZE);
   3048
   3049	subvol_info->ctransid = btrfs_root_ctransid(root_item);
   3050	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
   3051	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
   3052
   3053	subvol_info->otransid = btrfs_root_otransid(root_item);
   3054	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
   3055	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
   3056
   3057	subvol_info->stransid = btrfs_root_stransid(root_item);
   3058	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
   3059	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
   3060
   3061	subvol_info->rtransid = btrfs_root_rtransid(root_item);
   3062	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
   3063	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
   3064
   3065	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
   3066		/* Search root tree for ROOT_BACKREF of this subvolume */
   3067		key.type = BTRFS_ROOT_BACKREF_KEY;
   3068		key.offset = 0;
   3069		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
   3070		if (ret < 0) {
   3071			goto out;
   3072		} else if (path->slots[0] >=
   3073			   btrfs_header_nritems(path->nodes[0])) {
   3074			ret = btrfs_next_leaf(fs_info->tree_root, path);
   3075			if (ret < 0) {
   3076				goto out;
   3077			} else if (ret > 0) {
   3078				ret = -EUCLEAN;
   3079				goto out;
   3080			}
   3081		}
   3082
   3083		leaf = path->nodes[0];
   3084		slot = path->slots[0];
   3085		btrfs_item_key_to_cpu(leaf, &key, slot);
   3086		if (key.objectid == subvol_info->treeid &&
   3087		    key.type == BTRFS_ROOT_BACKREF_KEY) {
   3088			subvol_info->parent_id = key.offset;
   3089
   3090			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
   3091			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
   3092
   3093			item_off = btrfs_item_ptr_offset(leaf, slot)
   3094					+ sizeof(struct btrfs_root_ref);
   3095			item_len = btrfs_item_size(leaf, slot)
   3096					- sizeof(struct btrfs_root_ref);
   3097			read_extent_buffer(leaf, subvol_info->name,
   3098					   item_off, item_len);
   3099		} else {
   3100			ret = -ENOENT;
   3101			goto out;
   3102		}
   3103	}
   3104
   3105	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
   3106		ret = -EFAULT;
   3107
   3108out:
   3109	btrfs_put_root(root);
   3110out_free:
   3111	btrfs_free_path(path);
   3112	kfree(subvol_info);
   3113	return ret;
   3114}
   3115
   3116/*
   3117 * Return ROOT_REF information of the subvolume containing this inode
   3118 * except the subvolume name.
   3119 */
   3120static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
   3121					  void __user *argp)
   3122{
   3123	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
   3124	struct btrfs_root_ref *rref;
   3125	struct btrfs_path *path;
   3126	struct btrfs_key key;
   3127	struct extent_buffer *leaf;
   3128	u64 objectid;
   3129	int slot;
   3130	int ret;
   3131	u8 found;
   3132
   3133	path = btrfs_alloc_path();
   3134	if (!path)
   3135		return -ENOMEM;
   3136
   3137	rootrefs = memdup_user(argp, sizeof(*rootrefs));
   3138	if (IS_ERR(rootrefs)) {
   3139		btrfs_free_path(path);
   3140		return PTR_ERR(rootrefs);
   3141	}
   3142
   3143	objectid = root->root_key.objectid;
   3144	key.objectid = objectid;
   3145	key.type = BTRFS_ROOT_REF_KEY;
   3146	key.offset = rootrefs->min_treeid;
   3147	found = 0;
   3148
   3149	root = root->fs_info->tree_root;
   3150	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
   3151	if (ret < 0) {
   3152		goto out;
   3153	} else if (path->slots[0] >=
   3154		   btrfs_header_nritems(path->nodes[0])) {
   3155		ret = btrfs_next_leaf(root, path);
   3156		if (ret < 0) {
   3157			goto out;
   3158		} else if (ret > 0) {
   3159			ret = -EUCLEAN;
   3160			goto out;
   3161		}
   3162	}
   3163	while (1) {
   3164		leaf = path->nodes[0];
   3165		slot = path->slots[0];
   3166
   3167		btrfs_item_key_to_cpu(leaf, &key, slot);
   3168		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
   3169			ret = 0;
   3170			goto out;
   3171		}
   3172
   3173		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
   3174			ret = -EOVERFLOW;
   3175			goto out;
   3176		}
   3177
   3178		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
   3179		rootrefs->rootref[found].treeid = key.offset;
   3180		rootrefs->rootref[found].dirid =
   3181				  btrfs_root_ref_dirid(leaf, rref);
   3182		found++;
   3183
   3184		ret = btrfs_next_item(root, path);
   3185		if (ret < 0) {
   3186			goto out;
   3187		} else if (ret > 0) {
   3188			ret = -EUCLEAN;
   3189			goto out;
   3190		}
   3191	}
   3192
   3193out:
   3194	if (!ret || ret == -EOVERFLOW) {
   3195		rootrefs->num_items = found;
   3196		/* update min_treeid for next search */
   3197		if (found)
   3198			rootrefs->min_treeid =
   3199				rootrefs->rootref[found - 1].treeid + 1;
   3200		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
   3201			ret = -EFAULT;
   3202	}
   3203
   3204	kfree(rootrefs);
   3205	btrfs_free_path(path);
   3206
   3207	return ret;
   3208}
   3209
   3210static noinline int btrfs_ioctl_snap_destroy(struct file *file,
   3211					     void __user *arg,
   3212					     bool destroy_v2)
   3213{
   3214	struct dentry *parent = file->f_path.dentry;
   3215	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
   3216	struct dentry *dentry;
   3217	struct inode *dir = d_inode(parent);
   3218	struct inode *inode;
   3219	struct btrfs_root *root = BTRFS_I(dir)->root;
   3220	struct btrfs_root *dest = NULL;
   3221	struct btrfs_ioctl_vol_args *vol_args = NULL;
   3222	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
   3223	struct user_namespace *mnt_userns = file_mnt_user_ns(file);
   3224	char *subvol_name, *subvol_name_ptr = NULL;
   3225	int subvol_namelen;
   3226	int err = 0;
   3227	bool destroy_parent = false;
   3228
   3229	/* We don't support snapshots with extent tree v2 yet. */
   3230	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
   3231		btrfs_err(fs_info,
   3232			  "extent tree v2 doesn't support snapshot deletion yet");
   3233		return -EOPNOTSUPP;
   3234	}
   3235
   3236	if (destroy_v2) {
   3237		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
   3238		if (IS_ERR(vol_args2))
   3239			return PTR_ERR(vol_args2);
   3240
   3241		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
   3242			err = -EOPNOTSUPP;
   3243			goto out;
   3244		}
   3245
   3246		/*
   3247		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
   3248		 * name, same as v1 currently does.
   3249		 */
   3250		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
   3251			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
   3252			subvol_name = vol_args2->name;
   3253
   3254			err = mnt_want_write_file(file);
   3255			if (err)
   3256				goto out;
   3257		} else {
   3258			struct inode *old_dir;
   3259
   3260			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
   3261				err = -EINVAL;
   3262				goto out;
   3263			}
   3264
   3265			err = mnt_want_write_file(file);
   3266			if (err)
   3267				goto out;
   3268
   3269			dentry = btrfs_get_dentry(fs_info->sb,
   3270					BTRFS_FIRST_FREE_OBJECTID,
   3271					vol_args2->subvolid, 0, 0);
   3272			if (IS_ERR(dentry)) {
   3273				err = PTR_ERR(dentry);
   3274				goto out_drop_write;
   3275			}
   3276
   3277			/*
   3278			 * Change the default parent since the subvolume being
   3279			 * deleted can be outside of the current mount point.
   3280			 */
   3281			parent = btrfs_get_parent(dentry);
   3282
   3283			/*
   3284			 * At this point dentry->d_name can point to '/' if the
   3285			 * subvolume we want to destroy is outsite of the
   3286			 * current mount point, so we need to release the
   3287			 * current dentry and execute the lookup to return a new
   3288			 * one with ->d_name pointing to the
   3289			 * <mount point>/subvol_name.
   3290			 */
   3291			dput(dentry);
   3292			if (IS_ERR(parent)) {
   3293				err = PTR_ERR(parent);
   3294				goto out_drop_write;
   3295			}
   3296			old_dir = dir;
   3297			dir = d_inode(parent);
   3298
   3299			/*
   3300			 * If v2 was used with SPEC_BY_ID, a new parent was
   3301			 * allocated since the subvolume can be outside of the
   3302			 * current mount point. Later on we need to release this
   3303			 * new parent dentry.
   3304			 */
   3305			destroy_parent = true;
   3306
   3307			/*
   3308			 * On idmapped mounts, deletion via subvolid is
   3309			 * restricted to subvolumes that are immediate
   3310			 * ancestors of the inode referenced by the file
   3311			 * descriptor in the ioctl. Otherwise the idmapping
   3312			 * could potentially be abused to delete subvolumes
   3313			 * anywhere in the filesystem the user wouldn't be able
   3314			 * to delete without an idmapped mount.
   3315			 */
   3316			if (old_dir != dir && mnt_userns != &init_user_ns) {
   3317				err = -EOPNOTSUPP;
   3318				goto free_parent;
   3319			}
   3320
   3321			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
   3322						fs_info, vol_args2->subvolid);
   3323			if (IS_ERR(subvol_name_ptr)) {
   3324				err = PTR_ERR(subvol_name_ptr);
   3325				goto free_parent;
   3326			}
   3327			/* subvol_name_ptr is already nul terminated */
   3328			subvol_name = (char *)kbasename(subvol_name_ptr);
   3329		}
   3330	} else {
   3331		vol_args = memdup_user(arg, sizeof(*vol_args));
   3332		if (IS_ERR(vol_args))
   3333			return PTR_ERR(vol_args);
   3334
   3335		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
   3336		subvol_name = vol_args->name;
   3337
   3338		err = mnt_want_write_file(file);
   3339		if (err)
   3340			goto out;
   3341	}
   3342
   3343	subvol_namelen = strlen(subvol_name);
   3344
   3345	if (strchr(subvol_name, '/') ||
   3346	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
   3347		err = -EINVAL;
   3348		goto free_subvol_name;
   3349	}
   3350
   3351	if (!S_ISDIR(dir->i_mode)) {
   3352		err = -ENOTDIR;
   3353		goto free_subvol_name;
   3354	}
   3355
   3356	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
   3357	if (err == -EINTR)
   3358		goto free_subvol_name;
   3359	dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
   3360	if (IS_ERR(dentry)) {
   3361		err = PTR_ERR(dentry);
   3362		goto out_unlock_dir;
   3363	}
   3364
   3365	if (d_really_is_negative(dentry)) {
   3366		err = -ENOENT;
   3367		goto out_dput;
   3368	}
   3369
   3370	inode = d_inode(dentry);
   3371	dest = BTRFS_I(inode)->root;
   3372	if (!capable(CAP_SYS_ADMIN)) {
   3373		/*
   3374		 * Regular user.  Only allow this with a special mount
   3375		 * option, when the user has write+exec access to the
   3376		 * subvol root, and when rmdir(2) would have been
   3377		 * allowed.
   3378		 *
   3379		 * Note that this is _not_ check that the subvol is
   3380		 * empty or doesn't contain data that we wouldn't
   3381		 * otherwise be able to delete.
   3382		 *
   3383		 * Users who want to delete empty subvols should try
   3384		 * rmdir(2).
   3385		 */
   3386		err = -EPERM;
   3387		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
   3388			goto out_dput;
   3389
   3390		/*
   3391		 * Do not allow deletion if the parent dir is the same
   3392		 * as the dir to be deleted.  That means the ioctl
   3393		 * must be called on the dentry referencing the root
   3394		 * of the subvol, not a random directory contained
   3395		 * within it.
   3396		 */
   3397		err = -EINVAL;
   3398		if (root == dest)
   3399			goto out_dput;
   3400
   3401		err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
   3402		if (err)
   3403			goto out_dput;
   3404	}
   3405
   3406	/* check if subvolume may be deleted by a user */
   3407	err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
   3408	if (err)
   3409		goto out_dput;
   3410
   3411	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
   3412		err = -EINVAL;
   3413		goto out_dput;
   3414	}
   3415
   3416	btrfs_inode_lock(inode, 0);
   3417	err = btrfs_delete_subvolume(dir, dentry);
   3418	btrfs_inode_unlock(inode, 0);
   3419	if (!err)
   3420		d_delete_notify(dir, dentry);
   3421
   3422out_dput:
   3423	dput(dentry);
   3424out_unlock_dir:
   3425	btrfs_inode_unlock(dir, 0);
   3426free_subvol_name:
   3427	kfree(subvol_name_ptr);
   3428free_parent:
   3429	if (destroy_parent)
   3430		dput(parent);
   3431out_drop_write:
   3432	mnt_drop_write_file(file);
   3433out:
   3434	kfree(vol_args2);
   3435	kfree(vol_args);
   3436	return err;
   3437}
   3438
   3439static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
   3440{
   3441	struct inode *inode = file_inode(file);
   3442	struct btrfs_root *root = BTRFS_I(inode)->root;
   3443	struct btrfs_ioctl_defrag_range_args range = {0};
   3444	int ret;
   3445
   3446	ret = mnt_want_write_file(file);
   3447	if (ret)
   3448		return ret;
   3449
   3450	if (btrfs_root_readonly(root)) {
   3451		ret = -EROFS;
   3452		goto out;
   3453	}
   3454
   3455	switch (inode->i_mode & S_IFMT) {
   3456	case S_IFDIR:
   3457		if (!capable(CAP_SYS_ADMIN)) {
   3458			ret = -EPERM;
   3459			goto out;
   3460		}
   3461		ret = btrfs_defrag_root(root);
   3462		break;
   3463	case S_IFREG:
   3464		/*
   3465		 * Note that this does not check the file descriptor for write
   3466		 * access. This prevents defragmenting executables that are
   3467		 * running and allows defrag on files open in read-only mode.
   3468		 */
   3469		if (!capable(CAP_SYS_ADMIN) &&
   3470		    inode_permission(&init_user_ns, inode, MAY_WRITE)) {
   3471			ret = -EPERM;
   3472			goto out;
   3473		}
   3474
   3475		if (argp) {
   3476			if (copy_from_user(&range, argp, sizeof(range))) {
   3477				ret = -EFAULT;
   3478				goto out;
   3479			}
   3480			/* compression requires us to start the IO */
   3481			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
   3482				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
   3483				range.extent_thresh = (u32)-1;
   3484			}
   3485		} else {
   3486			/* the rest are all set to zero by kzalloc */
   3487			range.len = (u64)-1;
   3488		}
   3489		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
   3490					&range, BTRFS_OLDEST_GENERATION, 0);
   3491		if (ret > 0)
   3492			ret = 0;
   3493		break;
   3494	default:
   3495		ret = -EINVAL;
   3496	}
   3497out:
   3498	mnt_drop_write_file(file);
   3499	return ret;
   3500}
   3501
   3502static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
   3503{
   3504	struct btrfs_ioctl_vol_args *vol_args;
   3505	bool restore_op = false;
   3506	int ret;
   3507
   3508	if (!capable(CAP_SYS_ADMIN))
   3509		return -EPERM;
   3510
   3511	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
   3512		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
   3513		return -EINVAL;
   3514	}
   3515
   3516	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
   3517		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
   3518			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
   3519
   3520		/*
   3521		 * We can do the device add because we have a paused balanced,
   3522		 * change the exclusive op type and remember we should bring
   3523		 * back the paused balance
   3524		 */
   3525		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
   3526		btrfs_exclop_start_unlock(fs_info);
   3527		restore_op = true;
   3528	}
   3529
   3530	vol_args = memdup_user(arg, sizeof(*vol_args));
   3531	if (IS_ERR(vol_args)) {
   3532		ret = PTR_ERR(vol_args);
   3533		goto out;
   3534	}
   3535
   3536	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
   3537	ret = btrfs_init_new_device(fs_info, vol_args->name);
   3538
   3539	if (!ret)
   3540		btrfs_info(fs_info, "disk added %s", vol_args->name);
   3541
   3542	kfree(vol_args);
   3543out:
   3544	if (restore_op)
   3545		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
   3546	else
   3547		btrfs_exclop_finish(fs_info);
   3548	return ret;
   3549}
   3550
   3551static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
   3552{
   3553	BTRFS_DEV_LOOKUP_ARGS(args);
   3554	struct inode *inode = file_inode(file);
   3555	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
   3556	struct btrfs_ioctl_vol_args_v2 *vol_args;
   3557	struct block_device *bdev = NULL;
   3558	fmode_t mode;
   3559	int ret;
   3560	bool cancel = false;
   3561
   3562	if (!capable(CAP_SYS_ADMIN))
   3563		return -EPERM;
   3564
   3565	vol_args = memdup_user(arg, sizeof(*vol_args));
   3566	if (IS_ERR(vol_args))
   3567		return PTR_ERR(vol_args);
   3568
   3569	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
   3570		ret = -EOPNOTSUPP;
   3571		goto out;
   3572	}
   3573
   3574	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
   3575	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
   3576		args.devid = vol_args->devid;
   3577	} else if (!strcmp("cancel", vol_args->name)) {
   3578		cancel = true;
   3579	} else {
   3580		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
   3581		if (ret)
   3582			goto out;
   3583	}
   3584
   3585	ret = mnt_want_write_file(file);
   3586	if (ret)
   3587		goto out;
   3588
   3589	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
   3590					   cancel);
   3591	if (ret)
   3592		goto err_drop;
   3593
   3594	/* Exclusive operation is now claimed */
   3595	ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
   3596
   3597	btrfs_exclop_finish(fs_info);
   3598
   3599	if (!ret) {
   3600		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
   3601			btrfs_info(fs_info, "device deleted: id %llu",
   3602					vol_args->devid);
   3603		else
   3604			btrfs_info(fs_info, "device deleted: %s",
   3605					vol_args->name);
   3606	}
   3607err_drop:
   3608	mnt_drop_write_file(file);
   3609	if (bdev)
   3610		blkdev_put(bdev, mode);
   3611out:
   3612	btrfs_put_dev_args_from_path(&args);
   3613	kfree(vol_args);
   3614	return ret;
   3615}
   3616
   3617static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
   3618{
   3619	BTRFS_DEV_LOOKUP_ARGS(args);
   3620	struct inode *inode = file_inode(file);
   3621	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
   3622	struct btrfs_ioctl_vol_args *vol_args;
   3623	struct block_device *bdev = NULL;
   3624	fmode_t mode;
   3625	int ret;
   3626	bool cancel = false;
   3627
   3628	if (!capable(CAP_SYS_ADMIN))
   3629		return -EPERM;
   3630
   3631	vol_args = memdup_user(arg, sizeof(*vol_args));
   3632	if (IS_ERR(vol_args))
   3633		return PTR_ERR(vol_args);
   3634
   3635	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
   3636	if (!strcmp("cancel", vol_args->name)) {
   3637		cancel = true;
   3638	} else {
   3639		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
   3640		if (ret)
   3641			goto out;
   3642	}
   3643
   3644	ret = mnt_want_write_file(file);
   3645	if (ret)
   3646		goto out;
   3647
   3648	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
   3649					   cancel);
   3650	if (ret == 0) {
   3651		ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
   3652		if (!ret)
   3653			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
   3654		btrfs_exclop_finish(fs_info);
   3655	}
   3656
   3657	mnt_drop_write_file(file);
   3658	if (bdev)
   3659		blkdev_put(bdev, mode);
   3660out:
   3661	btrfs_put_dev_args_from_path(&args);
   3662	kfree(vol_args);
   3663	return ret;
   3664}
   3665
   3666static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
   3667				void __user *arg)
   3668{
   3669	struct btrfs_ioctl_fs_info_args *fi_args;
   3670	struct btrfs_device *device;
   3671	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
   3672	u64 flags_in;
   3673	int ret = 0;
   3674
   3675	fi_args = memdup_user(arg, sizeof(*fi_args));
   3676	if (IS_ERR(fi_args))
   3677		return PTR_ERR(fi_args);
   3678
   3679	flags_in = fi_args->flags;
   3680	memset(fi_args, 0, sizeof(*fi_args));
   3681
   3682	rcu_read_lock();
   3683	fi_args->num_devices = fs_devices->num_devices;
   3684
   3685	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
   3686		if (device->devid > fi_args->max_id)
   3687			fi_args->max_id = device->devid;
   3688	}
   3689	rcu_read_unlock();
   3690
   3691	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
   3692	fi_args->nodesize = fs_info->nodesize;
   3693	fi_args->sectorsize = fs_info->sectorsize;
   3694	fi_args->clone_alignment = fs_info->sectorsize;
   3695
   3696	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
   3697		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
   3698		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
   3699		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
   3700	}
   3701
   3702	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
   3703		fi_args->generation = fs_info->generation;
   3704		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
   3705	}
   3706
   3707	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
   3708		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
   3709		       sizeof(fi_args->metadata_uuid));
   3710		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
   3711	}
   3712
   3713	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
   3714		ret = -EFAULT;
   3715
   3716	kfree(fi_args);
   3717	return ret;
   3718}
   3719
   3720static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
   3721				 void __user *arg)
   3722{
   3723	BTRFS_DEV_LOOKUP_ARGS(args);
   3724	struct btrfs_ioctl_dev_info_args *di_args;
   3725	struct btrfs_device *dev;
   3726	int ret = 0;
   3727
   3728	di_args = memdup_user(arg, sizeof(*di_args));
   3729	if (IS_ERR(di_args))
   3730		return PTR_ERR(di_args);
   3731
   3732	args.devid = di_args->devid;
   3733	if (!btrfs_is_empty_uuid(di_args->uuid))
   3734		args.uuid = di_args->uuid;
   3735
   3736	rcu_read_lock();
   3737	dev = btrfs_find_device(fs_info->fs_devices, &args);
   3738	if (!dev) {
   3739		ret = -ENODEV;
   3740		goto out;
   3741	}
   3742
   3743	di_args->devid = dev->devid;
   3744	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
   3745	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
   3746	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
   3747	if (dev->name) {
   3748		strncpy(di_args->path, rcu_str_deref(dev->name),
   3749				sizeof(di_args->path) - 1);
   3750		di_args->path[sizeof(di_args->path) - 1] = 0;
   3751	} else {
   3752		di_args->path[0] = '\0';
   3753	}
   3754
   3755out:
   3756	rcu_read_unlock();
   3757	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
   3758		ret = -EFAULT;
   3759
   3760	kfree(di_args);
   3761	return ret;
   3762}
   3763
   3764static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
   3765{
   3766	struct inode *inode = file_inode(file);
   3767	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
   3768	struct btrfs_root *root = BTRFS_I(inode)->root;
   3769	struct btrfs_root *new_root;
   3770	struct btrfs_dir_item *di;
   3771	struct btrfs_trans_handle *trans;
   3772	struct btrfs_path *path = NULL;
   3773	struct btrfs_disk_key disk_key;
   3774	u64 objectid = 0;
   3775	u64 dir_id;
   3776	int ret;
   3777
   3778	if (!capable(CAP_SYS_ADMIN))
   3779		return -EPERM;
   3780
   3781	ret = mnt_want_write_file(file);
   3782	if (ret)
   3783		return ret;
   3784
   3785	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
   3786		ret = -EFAULT;
   3787		goto out;
   3788	}
   3789
   3790	if (!objectid)
   3791		objectid = BTRFS_FS_TREE_OBJECTID;
   3792
   3793	new_root = btrfs_get_fs_root(fs_info, objectid, true);
   3794	if (IS_ERR(new_root)) {
   3795		ret = PTR_ERR(new_root);
   3796		goto out;
   3797	}
   3798	if (!is_fstree(new_root->root_key.objectid)) {
   3799		ret = -ENOENT;
   3800		goto out_free;
   3801	}
   3802
   3803	path = btrfs_alloc_path();
   3804	if (!path) {
   3805		ret = -ENOMEM;
   3806		goto out_free;
   3807	}
   3808
   3809	trans = btrfs_start_transaction(root, 1);
   3810	if (IS_ERR(trans)) {
   3811		ret = PTR_ERR(trans);
   3812		goto out_free;
   3813	}
   3814
   3815	dir_id = btrfs_super_root_dir(fs_info->super_copy);
   3816	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
   3817				   dir_id, "default", 7, 1);
   3818	if (IS_ERR_OR_NULL(di)) {
   3819		btrfs_release_path(path);
   3820		btrfs_end_transaction(trans);
   3821		btrfs_err(fs_info,
   3822			  "Umm, you don't have the default diritem, this isn't going to work");
   3823		ret = -ENOENT;
   3824		goto out_free;
   3825	}
   3826
   3827	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
   3828	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
   3829	btrfs_mark_buffer_dirty(path->nodes[0]);
   3830	btrfs_release_path(path);
   3831
   3832	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
   3833	btrfs_end_transaction(trans);
   3834out_free:
   3835	btrfs_put_root(new_root);
   3836	btrfs_free_path(path);
   3837out:
   3838	mnt_drop_write_file(file);
   3839	return ret;
   3840}
   3841
   3842static void get_block_group_info(struct list_head *groups_list,
   3843				 struct btrfs_ioctl_space_info *space)
   3844{
   3845	struct btrfs_block_group *block_group;
   3846
   3847	space->total_bytes = 0;
   3848	space->used_bytes = 0;
   3849	space->flags = 0;
   3850	list_for_each_entry(block_group, groups_list, list) {
   3851		space->flags = block_group->flags;
   3852		space->total_bytes += block_group->length;
   3853		space->used_bytes += block_group->used;
   3854	}
   3855}
   3856
   3857static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
   3858				   void __user *arg)
   3859{
   3860	struct btrfs_ioctl_space_args space_args;
   3861	struct btrfs_ioctl_space_info space;
   3862	struct btrfs_ioctl_space_info *dest;
   3863	struct btrfs_ioctl_space_info *dest_orig;
   3864	struct btrfs_ioctl_space_info __user *user_dest;
   3865	struct btrfs_space_info *info;
   3866	static const u64 types[] = {
   3867		BTRFS_BLOCK_GROUP_DATA,
   3868		BTRFS_BLOCK_GROUP_SYSTEM,
   3869		BTRFS_BLOCK_GROUP_METADATA,
   3870		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
   3871	};
   3872	int num_types = 4;
   3873	int alloc_size;
   3874	int ret = 0;
   3875	u64 slot_count = 0;
   3876	int i, c;
   3877
   3878	if (copy_from_user(&space_args,
   3879			   (struct btrfs_ioctl_space_args __user *)arg,
   3880			   sizeof(space_args)))
   3881		return -EFAULT;
   3882
   3883	for (i = 0; i < num_types; i++) {
   3884		struct btrfs_space_info *tmp;
   3885
   3886		info = NULL;
   3887		list_for_each_entry(tmp, &fs_info->space_info, list) {
   3888			if (tmp->flags == types[i]) {
   3889				info = tmp;
   3890				break;
   3891			}
   3892		}
   3893
   3894		if (!info)
   3895			continue;
   3896
   3897		down_read(&info->groups_sem);
   3898		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
   3899			if (!list_empty(&info->block_groups[c]))
   3900				slot_count++;
   3901		}
   3902		up_read(&info->groups_sem);
   3903	}
   3904
   3905	/*
   3906	 * Global block reserve, exported as a space_info
   3907	 */
   3908	slot_count++;
   3909
   3910	/* space_slots == 0 means they are asking for a count */
   3911	if (space_args.space_slots == 0) {
   3912		space_args.total_spaces = slot_count;
   3913		goto out;
   3914	}
   3915
   3916	slot_count = min_t(u64, space_args.space_slots, slot_count);
   3917
   3918	alloc_size = sizeof(*dest) * slot_count;
   3919
   3920	/* we generally have at most 6 or so space infos, one for each raid
   3921	 * level.  So, a whole page should be more than enough for everyone
   3922	 */
   3923	if (alloc_size > PAGE_SIZE)
   3924		return -ENOMEM;
   3925
   3926	space_args.total_spaces = 0;
   3927	dest = kmalloc(alloc_size, GFP_KERNEL);
   3928	if (!dest)
   3929		return -ENOMEM;
   3930	dest_orig = dest;
   3931
   3932	/* now we have a buffer to copy into */
   3933	for (i = 0; i < num_types; i++) {
   3934		struct btrfs_space_info *tmp;
   3935
   3936		if (!slot_count)
   3937			break;
   3938
   3939		info = NULL;
   3940		list_for_each_entry(tmp, &fs_info->space_info, list) {
   3941			if (tmp->flags == types[i]) {
   3942				info = tmp;
   3943				break;
   3944			}
   3945		}
   3946
   3947		if (!info)
   3948			continue;
   3949		down_read(&info->groups_sem);
   3950		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
   3951			if (!list_empty(&info->block_groups[c])) {
   3952				get_block_group_info(&info->block_groups[c],
   3953						     &space);
   3954				memcpy(dest, &space, sizeof(space));
   3955				dest++;
   3956				space_args.total_spaces++;
   3957				slot_count--;
   3958			}
   3959			if (!slot_count)
   3960				break;
   3961		}
   3962		up_read(&info->groups_sem);
   3963	}
   3964
   3965	/*
   3966	 * Add global block reserve
   3967	 */
   3968	if (slot_count) {
   3969		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
   3970
   3971		spin_lock(&block_rsv->lock);
   3972		space.total_bytes = block_rsv->size;
   3973		space.used_bytes = block_rsv->size - block_rsv->reserved;
   3974		spin_unlock(&block_rsv->lock);
   3975		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
   3976		memcpy(dest, &space, sizeof(space));
   3977		space_args.total_spaces++;
   3978	}
   3979
   3980	user_dest = (struct btrfs_ioctl_space_info __user *)
   3981		(arg + sizeof(struct btrfs_ioctl_space_args));
   3982
   3983	if (copy_to_user(user_dest, dest_orig, alloc_size))
   3984		ret = -EFAULT;
   3985
   3986	kfree(dest_orig);
   3987out:
   3988	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
   3989		ret = -EFAULT;
   3990
   3991	return ret;
   3992}
   3993
   3994static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
   3995					    void __user *argp)
   3996{
   3997	struct btrfs_trans_handle *trans;
   3998	u64 transid;
   3999
   4000	trans = btrfs_attach_transaction_barrier(root);
   4001	if (IS_ERR(trans)) {
   4002		if (PTR_ERR(trans) != -ENOENT)
   4003			return PTR_ERR(trans);
   4004
   4005		/* No running transaction, don't bother */
   4006		transid = root->fs_info->last_trans_committed;
   4007		goto out;
   4008	}
   4009	transid = trans->transid;
   4010	btrfs_commit_transaction_async(trans);
   4011out:
   4012	if (argp)
   4013		if (copy_to_user(argp, &transid, sizeof(transid)))
   4014			return -EFAULT;
   4015	return 0;
   4016}
   4017
   4018static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
   4019					   void __user *argp)
   4020{
   4021	u64 transid;
   4022
   4023	if (argp) {
   4024		if (copy_from_user(&transid, argp, sizeof(transid)))
   4025			return -EFAULT;
   4026	} else {
   4027		transid = 0;  /* current trans */
   4028	}
   4029	return btrfs_wait_for_commit(fs_info, transid);
   4030}
   4031
   4032static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
   4033{
   4034	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
   4035	struct btrfs_ioctl_scrub_args *sa;
   4036	int ret;
   4037
   4038	if (!capable(CAP_SYS_ADMIN))
   4039		return -EPERM;
   4040
   4041	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
   4042		btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
   4043		return -EINVAL;
   4044	}
   4045
   4046	sa = memdup_user(arg, sizeof(*sa));
   4047	if (IS_ERR(sa))
   4048		return PTR_ERR(sa);
   4049
   4050	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
   4051		ret = mnt_want_write_file(file);
   4052		if (ret)
   4053			goto out;
   4054	}
   4055
   4056	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
   4057			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
   4058			      0);
   4059
   4060	/*
   4061	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
   4062	 * error. This is important as it allows user space to know how much
   4063	 * progress scrub has done. For example, if scrub is canceled we get
   4064	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
   4065	 * space. Later user space can inspect the progress from the structure
   4066	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
   4067	 * previously (btrfs-progs does this).
   4068	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
   4069	 * then return -EFAULT to signal the structure was not copied or it may
   4070	 * be corrupt and unreliable due to a partial copy.
   4071	 */
   4072	if (copy_to_user(arg, sa, sizeof(*sa)))
   4073		ret = -EFAULT;
   4074
   4075	if (!(sa->flags & BTRFS_SCRUB_READONLY))
   4076		mnt_drop_write_file(file);
   4077out:
   4078	kfree(sa);
   4079	return ret;
   4080}
   4081
   4082static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
   4083{
   4084	if (!capable(CAP_SYS_ADMIN))
   4085		return -EPERM;
   4086
   4087	return btrfs_scrub_cancel(fs_info);
   4088}
   4089
   4090static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
   4091				       void __user *arg)
   4092{
   4093	struct btrfs_ioctl_scrub_args *sa;
   4094	int ret;
   4095
   4096	if (!capable(CAP_SYS_ADMIN))
   4097		return -EPERM;
   4098
   4099	sa = memdup_user(arg, sizeof(*sa));
   4100	if (IS_ERR(sa))
   4101		return PTR_ERR(sa);
   4102
   4103	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
   4104
   4105	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
   4106		ret = -EFAULT;
   4107
   4108	kfree(sa);
   4109	return ret;
   4110}
   4111
   4112static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
   4113				      void __user *arg)
   4114{
   4115	struct btrfs_ioctl_get_dev_stats *sa;
   4116	int ret;
   4117
   4118	sa = memdup_user(arg, sizeof(*sa));
   4119	if (IS_ERR(sa))
   4120		return PTR_ERR(sa);
   4121
   4122	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
   4123		kfree(sa);
   4124		return -EPERM;
   4125	}
   4126
   4127	ret = btrfs_get_dev_stats(fs_info, sa);
   4128
   4129	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
   4130		ret = -EFAULT;
   4131
   4132	kfree(sa);
   4133	return ret;
   4134}
   4135
   4136static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
   4137				    void __user *arg)
   4138{
   4139	struct btrfs_ioctl_dev_replace_args *p;
   4140	int ret;
   4141
   4142	if (!capable(CAP_SYS_ADMIN))
   4143		return -EPERM;
   4144
   4145	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
   4146		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
   4147		return -EINVAL;
   4148	}
   4149
   4150	p = memdup_user(arg, sizeof(*p));
   4151	if (IS_ERR(p))
   4152		return PTR_ERR(p);
   4153
   4154	switch (p->cmd) {
   4155	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
   4156		if (sb_rdonly(fs_info->sb)) {
   4157			ret = -EROFS;
   4158			goto out;
   4159		}
   4160		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
   4161			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
   4162		} else {
   4163			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
   4164			btrfs_exclop_finish(fs_info);
   4165		}
   4166		break;
   4167	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
   4168		btrfs_dev_replace_status(fs_info, p);
   4169		ret = 0;
   4170		break;
   4171	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
   4172		p->result = btrfs_dev_replace_cancel(fs_info);
   4173		ret = 0;
   4174		break;
   4175	default:
   4176		ret = -EINVAL;
   4177		break;
   4178	}
   4179
   4180	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
   4181		ret = -EFAULT;
   4182out:
   4183	kfree(p);
   4184	return ret;
   4185}
   4186
   4187static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
   4188{
   4189	int ret = 0;
   4190	int i;
   4191	u64 rel_ptr;
   4192	int size;
   4193	struct btrfs_ioctl_ino_path_args *ipa = NULL;
   4194	struct inode_fs_paths *ipath = NULL;
   4195	struct btrfs_path *path;
   4196
   4197	if (!capable(CAP_DAC_READ_SEARCH))
   4198		return -EPERM;
   4199
   4200	path = btrfs_alloc_path();
   4201	if (!path) {
   4202		ret = -ENOMEM;
   4203		goto out;
   4204	}
   4205
   4206	ipa = memdup_user(arg, sizeof(*ipa));
   4207	if (IS_ERR(ipa)) {
   4208		ret = PTR_ERR(ipa);
   4209		ipa = NULL;
   4210		goto out;
   4211	}
   4212
   4213	size = min_t(u32, ipa->size, 4096);
   4214	ipath = init_ipath(size, root, path);
   4215	if (IS_ERR(ipath)) {
   4216		ret = PTR_ERR(ipath);
   4217		ipath = NULL;
   4218		goto out;
   4219	}
   4220
   4221	ret = paths_from_inode(ipa->inum, ipath);
   4222	if (ret < 0)
   4223		goto out;
   4224
   4225	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
   4226		rel_ptr = ipath->fspath->val[i] -
   4227			  (u64)(unsigned long)ipath->fspath->val;
   4228		ipath->fspath->val[i] = rel_ptr;
   4229	}
   4230
   4231	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
   4232			   ipath->fspath, size);
   4233	if (ret) {
   4234		ret = -EFAULT;
   4235		goto out;
   4236	}
   4237
   4238out:
   4239	btrfs_free_path(path);
   4240	free_ipath(ipath);
   4241	kfree(ipa);
   4242
   4243	return ret;
   4244}
   4245
   4246static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
   4247{
   4248	struct btrfs_data_container *inodes = ctx;
   4249	const size_t c = 3 * sizeof(u64);
   4250
   4251	if (inodes->bytes_left >= c) {
   4252		inodes->bytes_left -= c;
   4253		inodes->val[inodes->elem_cnt] = inum;
   4254		inodes->val[inodes->elem_cnt + 1] = offset;
   4255		inodes->val[inodes->elem_cnt + 2] = root;
   4256		inodes->elem_cnt += 3;
   4257	} else {
   4258		inodes->bytes_missing += c - inodes->bytes_left;
   4259		inodes->bytes_left = 0;
   4260		inodes->elem_missed += 3;
   4261	}
   4262
   4263	return 0;
   4264}
   4265
   4266static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
   4267					void __user *arg, int version)
   4268{
   4269	int ret = 0;
   4270	int size;
   4271	struct btrfs_ioctl_logical_ino_args *loi;
   4272	struct btrfs_data_container *inodes = NULL;
   4273	struct btrfs_path *path = NULL;
   4274	bool ignore_offset;
   4275
   4276	if (!capable(CAP_SYS_ADMIN))
   4277		return -EPERM;
   4278
   4279	loi = memdup_user(arg, sizeof(*loi));
   4280	if (IS_ERR(loi))
   4281		return PTR_ERR(loi);
   4282
   4283	if (version == 1) {
   4284		ignore_offset = false;
   4285		size = min_t(u32, loi->size, SZ_64K);
   4286	} else {
   4287		/* All reserved bits must be 0 for now */
   4288		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
   4289			ret = -EINVAL;
   4290			goto out_loi;
   4291		}
   4292		/* Only accept flags we have defined so far */
   4293		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
   4294			ret = -EINVAL;
   4295			goto out_loi;
   4296		}
   4297		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
   4298		size = min_t(u32, loi->size, SZ_16M);
   4299	}
   4300
   4301	path = btrfs_alloc_path();
   4302	if (!path) {
   4303		ret = -ENOMEM;
   4304		goto out;
   4305	}
   4306
   4307	inodes = init_data_container(size);
   4308	if (IS_ERR(inodes)) {
   4309		ret = PTR_ERR(inodes);
   4310		inodes = NULL;
   4311		goto out;
   4312	}
   4313
   4314	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
   4315					  build_ino_list, inodes, ignore_offset);
   4316	if (ret == -EINVAL)
   4317		ret = -ENOENT;
   4318	if (ret < 0)
   4319		goto out;
   4320
   4321	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
   4322			   size);
   4323	if (ret)
   4324		ret = -EFAULT;
   4325
   4326out:
   4327	btrfs_free_path(path);
   4328	kvfree(inodes);
   4329out_loi:
   4330	kfree(loi);
   4331
   4332	return ret;
   4333}
   4334
   4335void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
   4336			       struct btrfs_ioctl_balance_args *bargs)
   4337{
   4338	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
   4339
   4340	bargs->flags = bctl->flags;
   4341
   4342	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
   4343		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
   4344	if (atomic_read(&fs_info->balance_pause_req))
   4345		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
   4346	if (atomic_read(&fs_info->balance_cancel_req))
   4347		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
   4348
   4349	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
   4350	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
   4351	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
   4352
   4353	spin_lock(&fs_info->balance_lock);
   4354	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
   4355	spin_unlock(&fs_info->balance_lock);
   4356}
   4357
   4358static long btrfs_ioctl_balance(struct file *file, void __user *arg)
   4359{
   4360	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
   4361	struct btrfs_fs_info *fs_info = root->fs_info;
   4362	struct btrfs_ioctl_balance_args *bargs;
   4363	struct btrfs_balance_control *bctl;
   4364	bool need_unlock; /* for mut. excl. ops lock */
   4365	int ret;
   4366
   4367	if (!capable(CAP_SYS_ADMIN))
   4368		return -EPERM;
   4369
   4370	ret = mnt_want_write_file(file);
   4371	if (ret)
   4372		return ret;
   4373
   4374	bargs = memdup_user(arg, sizeof(*bargs));
   4375	if (IS_ERR(bargs)) {
   4376		ret = PTR_ERR(bargs);
   4377		bargs = NULL;
   4378		goto out;
   4379	}
   4380
   4381again:
   4382	if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
   4383		mutex_lock(&fs_info->balance_mutex);
   4384		need_unlock = true;
   4385		goto locked;
   4386	}
   4387
   4388	/*
   4389	 * mut. excl. ops lock is locked.  Three possibilities:
   4390	 *   (1) some other op is running
   4391	 *   (2) balance is running
   4392	 *   (3) balance is paused -- special case (think resume)
   4393	 */
   4394	mutex_lock(&fs_info->balance_mutex);
   4395	if (fs_info->balance_ctl) {
   4396		/* this is either (2) or (3) */
   4397		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
   4398			mutex_unlock(&fs_info->balance_mutex);
   4399			/*
   4400			 * Lock released to allow other waiters to continue,
   4401			 * we'll reexamine the status again.
   4402			 */
   4403			mutex_lock(&fs_info->balance_mutex);
   4404
   4405			if (fs_info->balance_ctl &&
   4406			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
   4407				/* this is (3) */
   4408				need_unlock = false;
   4409				goto locked;
   4410			}
   4411
   4412			mutex_unlock(&fs_info->balance_mutex);
   4413			goto again;
   4414		} else {
   4415			/* this is (2) */
   4416			mutex_unlock(&fs_info->balance_mutex);
   4417			ret = -EINPROGRESS;
   4418			goto out;
   4419		}
   4420	} else {
   4421		/* this is (1) */
   4422		mutex_unlock(&fs_info->balance_mutex);
   4423		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
   4424		goto out;
   4425	}
   4426
   4427locked:
   4428	if (bargs->flags & BTRFS_BALANCE_RESUME) {
   4429		if (!fs_info->balance_ctl) {
   4430			ret = -ENOTCONN;
   4431			goto out_unlock;
   4432		}
   4433
   4434		bctl = fs_info->balance_ctl;
   4435		spin_lock(&fs_info->balance_lock);
   4436		bctl->flags |= BTRFS_BALANCE_RESUME;
   4437		spin_unlock(&fs_info->balance_lock);
   4438		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
   4439
   4440		goto do_balance;
   4441	}
   4442
   4443	if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
   4444		ret = -EINVAL;
   4445		goto out_unlock;
   4446	}
   4447
   4448	if (fs_info->balance_ctl) {
   4449		ret = -EINPROGRESS;
   4450		goto out_unlock;
   4451	}
   4452
   4453	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
   4454	if (!bctl) {
   4455		ret = -ENOMEM;
   4456		goto out_unlock;
   4457	}
   4458
   4459	memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
   4460	memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
   4461	memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
   4462
   4463	bctl->flags = bargs->flags;
   4464do_balance:
   4465	/*
   4466	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
   4467	 * bctl is freed in reset_balance_state, or, if restriper was paused
   4468	 * all the way until unmount, in free_fs_info.  The flag should be
   4469	 * cleared after reset_balance_state.
   4470	 */
   4471	need_unlock = false;
   4472
   4473	ret = btrfs_balance(fs_info, bctl, bargs);
   4474	bctl = NULL;
   4475
   4476	if (ret == 0 || ret == -ECANCELED) {
   4477		if (copy_to_user(arg, bargs, sizeof(*bargs)))
   4478			ret = -EFAULT;
   4479	}
   4480
   4481	kfree(bctl);
   4482out_unlock:
   4483	mutex_unlock(&fs_info->balance_mutex);
   4484	if (need_unlock)
   4485		btrfs_exclop_finish(fs_info);
   4486out:
   4487	mnt_drop_write_file(file);
   4488	kfree(bargs);
   4489	return ret;
   4490}
   4491
   4492static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
   4493{
   4494	if (!capable(CAP_SYS_ADMIN))
   4495		return -EPERM;
   4496
   4497	switch (cmd) {
   4498	case BTRFS_BALANCE_CTL_PAUSE:
   4499		return btrfs_pause_balance(fs_info);
   4500	case BTRFS_BALANCE_CTL_CANCEL:
   4501		return btrfs_cancel_balance(fs_info);
   4502	}
   4503
   4504	return -EINVAL;
   4505}
   4506
   4507static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
   4508					 void __user *arg)
   4509{
   4510	struct btrfs_ioctl_balance_args *bargs;
   4511	int ret = 0;
   4512
   4513	if (!capable(CAP_SYS_ADMIN))
   4514		return -EPERM;
   4515
   4516	mutex_lock(&fs_info->balance_mutex);
   4517	if (!fs_info->balance_ctl) {
   4518		ret = -ENOTCONN;
   4519		goto out;
   4520	}
   4521
   4522	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
   4523	if (!bargs) {
   4524		ret = -ENOMEM;
   4525		goto out;
   4526	}
   4527
   4528	btrfs_update_ioctl_balance_args(fs_info, bargs);
   4529
   4530	if (copy_to_user(arg, bargs, sizeof(*bargs)))
   4531		ret = -EFAULT;
   4532
   4533	kfree(bargs);
   4534out:
   4535	mutex_unlock(&fs_info->balance_mutex);
   4536	return ret;
   4537}
   4538
   4539static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
   4540{
   4541	struct inode *inode = file_inode(file);
   4542	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
   4543	struct btrfs_ioctl_quota_ctl_args *sa;
   4544	int ret;
   4545
   4546	if (!capable(CAP_SYS_ADMIN))
   4547		return -EPERM;
   4548
   4549	ret = mnt_want_write_file(file);
   4550	if (ret)
   4551		return ret;
   4552
   4553	sa = memdup_user(arg, sizeof(*sa));
   4554	if (IS_ERR(sa)) {
   4555		ret = PTR_ERR(sa);
   4556		goto drop_write;
   4557	}
   4558
   4559	down_write(&fs_info->subvol_sem);
   4560
   4561	switch (sa->cmd) {
   4562	case BTRFS_QUOTA_CTL_ENABLE:
   4563		ret = btrfs_quota_enable(fs_info);
   4564		break;
   4565	case BTRFS_QUOTA_CTL_DISABLE:
   4566		ret = btrfs_quota_disable(fs_info);
   4567		break;
   4568	default:
   4569		ret = -EINVAL;
   4570		break;
   4571	}
   4572
   4573	kfree(sa);
   4574	up_write(&fs_info->subvol_sem);
   4575drop_write:
   4576	mnt_drop_write_file(file);
   4577	return ret;
   4578}
   4579
   4580static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
   4581{
   4582	struct inode *inode = file_inode(file);
   4583	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
   4584	struct btrfs_root *root = BTRFS_I(inode)->root;
   4585	struct btrfs_ioctl_qgroup_assign_args *sa;
   4586	struct btrfs_trans_handle *trans;
   4587	int ret;
   4588	int err;
   4589
   4590	if (!capable(CAP_SYS_ADMIN))
   4591		return -EPERM;
   4592
   4593	ret = mnt_want_write_file(file);
   4594	if (ret)
   4595		return ret;
   4596
   4597	sa = memdup_user(arg, sizeof(*sa));
   4598	if (IS_ERR(sa)) {
   4599		ret = PTR_ERR(sa);
   4600		goto drop_write;
   4601	}
   4602
   4603	trans = btrfs_join_transaction(root);
   4604	if (IS_ERR(trans)) {
   4605		ret = PTR_ERR(trans);
   4606		goto out;
   4607	}
   4608
   4609	if (sa->assign) {
   4610		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
   4611	} else {
   4612		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
   4613	}
   4614
   4615	/* update qgroup status and info */
   4616	err = btrfs_run_qgroups(trans);
   4617	if (err < 0)
   4618		btrfs_handle_fs_error(fs_info, err,
   4619				      "failed to update qgroup status and info");
   4620	err = btrfs_end_transaction(trans);
   4621	if (err && !ret)
   4622		ret = err;
   4623
   4624out:
   4625	kfree(sa);
   4626drop_write:
   4627	mnt_drop_write_file(file);
   4628	return ret;
   4629}
   4630
   4631static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
   4632{
   4633	struct inode *inode = file_inode(file);
   4634	struct btrfs_root *root = BTRFS_I(inode)->root;
   4635	struct btrfs_ioctl_qgroup_create_args *sa;
   4636	struct btrfs_trans_handle *trans;
   4637	int ret;
   4638	int err;
   4639
   4640	if (!capable(CAP_SYS_ADMIN))
   4641		return -EPERM;
   4642
   4643	ret = mnt_want_write_file(file);
   4644	if (ret)
   4645		return ret;
   4646
   4647	sa = memdup_user(arg, sizeof(*sa));
   4648	if (IS_ERR(sa)) {
   4649		ret = PTR_ERR(sa);
   4650		goto drop_write;
   4651	}
   4652
   4653	if (!sa->qgroupid) {
   4654		ret = -EINVAL;
   4655		goto out;
   4656	}
   4657
   4658	trans = btrfs_join_transaction(root);
   4659	if (IS_ERR(trans)) {
   4660		ret = PTR_ERR(trans);
   4661		goto out;
   4662	}
   4663
   4664	if (sa->create) {
   4665		ret = btrfs_create_qgroup(trans, sa->qgroupid);
   4666	} else {
   4667		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
   4668	}
   4669
   4670	err = btrfs_end_transaction(trans);
   4671	if (err && !ret)
   4672		ret = err;
   4673
   4674out:
   4675	kfree(sa);
   4676drop_write:
   4677	mnt_drop_write_file(file);
   4678	return ret;
   4679}
   4680
   4681static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
   4682{
   4683	struct inode *inode = file_inode(file);
   4684	struct btrfs_root *root = BTRFS_I(inode)->root;
   4685	struct btrfs_ioctl_qgroup_limit_args *sa;
   4686	struct btrfs_trans_handle *trans;
   4687	int ret;
   4688	int err;
   4689	u64 qgroupid;
   4690
   4691	if (!capable(CAP_SYS_ADMIN))
   4692		return -EPERM;
   4693
   4694	ret = mnt_want_write_file(file);
   4695	if (ret)
   4696		return ret;
   4697
   4698	sa = memdup_user(arg, sizeof(*sa));
   4699	if (IS_ERR(sa)) {
   4700		ret = PTR_ERR(sa);
   4701		goto drop_write;
   4702	}
   4703
   4704	trans = btrfs_join_transaction(root);
   4705	if (IS_ERR(trans)) {
   4706		ret = PTR_ERR(trans);
   4707		goto out;
   4708	}
   4709
   4710	qgroupid = sa->qgroupid;
   4711	if (!qgroupid) {
   4712		/* take the current subvol as qgroup */
   4713		qgroupid = root->root_key.objectid;
   4714	}
   4715
   4716	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
   4717
   4718	err = btrfs_end_transaction(trans);
   4719	if (err && !ret)
   4720		ret = err;
   4721
   4722out:
   4723	kfree(sa);
   4724drop_write:
   4725	mnt_drop_write_file(file);
   4726	return ret;
   4727}
   4728
   4729static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
   4730{
   4731	struct inode *inode = file_inode(file);
   4732	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
   4733	struct btrfs_ioctl_quota_rescan_args *qsa;
   4734	int ret;
   4735
   4736	if (!capable(CAP_SYS_ADMIN))
   4737		return -EPERM;
   4738
   4739	ret = mnt_want_write_file(file);
   4740	if (ret)
   4741		return ret;
   4742
   4743	qsa = memdup_user(arg, sizeof(*qsa));
   4744	if (IS_ERR(qsa)) {
   4745		ret = PTR_ERR(qsa);
   4746		goto drop_write;
   4747	}
   4748
   4749	if (qsa->flags) {
   4750		ret = -EINVAL;
   4751		goto out;
   4752	}
   4753
   4754	ret = btrfs_qgroup_rescan(fs_info);
   4755
   4756out:
   4757	kfree(qsa);
   4758drop_write:
   4759	mnt_drop_write_file(file);
   4760	return ret;
   4761}
   4762
   4763static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
   4764						void __user *arg)
   4765{
   4766	struct btrfs_ioctl_quota_rescan_args qsa = {0};
   4767
   4768	if (!capable(CAP_SYS_ADMIN))
   4769		return -EPERM;
   4770
   4771	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
   4772		qsa.flags = 1;
   4773		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
   4774	}
   4775
   4776	if (copy_to_user(arg, &qsa, sizeof(qsa)))
   4777		return -EFAULT;
   4778
   4779	return 0;
   4780}
   4781
   4782static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
   4783						void __user *arg)
   4784{
   4785	if (!capable(CAP_SYS_ADMIN))
   4786		return -EPERM;
   4787
   4788	return btrfs_qgroup_wait_for_completion(fs_info, true);
   4789}
   4790
   4791static long _btrfs_ioctl_set_received_subvol(struct file *file,
   4792					    struct user_namespace *mnt_userns,
   4793					    struct btrfs_ioctl_received_subvol_args *sa)
   4794{
   4795	struct inode *inode = file_inode(file);
   4796	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
   4797	struct btrfs_root *root = BTRFS_I(inode)->root;
   4798	struct btrfs_root_item *root_item = &root->root_item;
   4799	struct btrfs_trans_handle *trans;
   4800	struct timespec64 ct = current_time(inode);
   4801	int ret = 0;
   4802	int received_uuid_changed;
   4803
   4804	if (!inode_owner_or_capable(mnt_userns, inode))
   4805		return -EPERM;
   4806
   4807	ret = mnt_want_write_file(file);
   4808	if (ret < 0)
   4809		return ret;
   4810
   4811	down_write(&fs_info->subvol_sem);
   4812
   4813	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
   4814		ret = -EINVAL;
   4815		goto out;
   4816	}
   4817
   4818	if (btrfs_root_readonly(root)) {
   4819		ret = -EROFS;
   4820		goto out;
   4821	}
   4822
   4823	/*
   4824	 * 1 - root item
   4825	 * 2 - uuid items (received uuid + subvol uuid)
   4826	 */
   4827	trans = btrfs_start_transaction(root, 3);
   4828	if (IS_ERR(trans)) {
   4829		ret = PTR_ERR(trans);
   4830		trans = NULL;
   4831		goto out;
   4832	}
   4833
   4834	sa->rtransid = trans->transid;
   4835	sa->rtime.sec = ct.tv_sec;
   4836	sa->rtime.nsec = ct.tv_nsec;
   4837
   4838	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
   4839				       BTRFS_UUID_SIZE);
   4840	if (received_uuid_changed &&
   4841	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
   4842		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
   4843					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
   4844					  root->root_key.objectid);
   4845		if (ret && ret != -ENOENT) {
   4846		        btrfs_abort_transaction(trans, ret);
   4847		        btrfs_end_transaction(trans);
   4848		        goto out;
   4849		}
   4850	}
   4851	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
   4852	btrfs_set_root_stransid(root_item, sa->stransid);
   4853	btrfs_set_root_rtransid(root_item, sa->rtransid);
   4854	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
   4855	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
   4856	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
   4857	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
   4858
   4859	ret = btrfs_update_root(trans, fs_info->tree_root,
   4860				&root->root_key, &root->root_item);
   4861	if (ret < 0) {
   4862		btrfs_end_transaction(trans);
   4863		goto out;
   4864	}
   4865	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
   4866		ret = btrfs_uuid_tree_add(trans, sa->uuid,
   4867					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
   4868					  root->root_key.objectid);
   4869		if (ret < 0 && ret != -EEXIST) {
   4870			btrfs_abort_transaction(trans, ret);
   4871			btrfs_end_transaction(trans);
   4872			goto out;
   4873		}
   4874	}
   4875	ret = btrfs_commit_transaction(trans);
   4876out:
   4877	up_write(&fs_info->subvol_sem);
   4878	mnt_drop_write_file(file);
   4879	return ret;
   4880}
   4881
   4882#ifdef CONFIG_64BIT
   4883static long btrfs_ioctl_set_received_subvol_32(struct file *file,
   4884						void __user *arg)
   4885{
   4886	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
   4887	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
   4888	int ret = 0;
   4889
   4890	args32 = memdup_user(arg, sizeof(*args32));
   4891	if (IS_ERR(args32))
   4892		return PTR_ERR(args32);
   4893
   4894	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
   4895	if (!args64) {
   4896		ret = -ENOMEM;
   4897		goto out;
   4898	}
   4899
   4900	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
   4901	args64->stransid = args32->stransid;
   4902	args64->rtransid = args32->rtransid;
   4903	args64->stime.sec = args32->stime.sec;
   4904	args64->stime.nsec = args32->stime.nsec;
   4905	args64->rtime.sec = args32->rtime.sec;
   4906	args64->rtime.nsec = args32->rtime.nsec;
   4907	args64->flags = args32->flags;
   4908
   4909	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
   4910	if (ret)
   4911		goto out;
   4912
   4913	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
   4914	args32->stransid = args64->stransid;
   4915	args32->rtransid = args64->rtransid;
   4916	args32->stime.sec = args64->stime.sec;
   4917	args32->stime.nsec = args64->stime.nsec;
   4918	args32->rtime.sec = args64->rtime.sec;
   4919	args32->rtime.nsec = args64->rtime.nsec;
   4920	args32->flags = args64->flags;
   4921
   4922	ret = copy_to_user(arg, args32, sizeof(*args32));
   4923	if (ret)
   4924		ret = -EFAULT;
   4925
   4926out:
   4927	kfree(args32);
   4928	kfree(args64);
   4929	return ret;
   4930}
   4931#endif
   4932
   4933static long btrfs_ioctl_set_received_subvol(struct file *file,
   4934					    void __user *arg)
   4935{
   4936	struct btrfs_ioctl_received_subvol_args *sa = NULL;
   4937	int ret = 0;
   4938
   4939	sa = memdup_user(arg, sizeof(*sa));
   4940	if (IS_ERR(sa))
   4941		return PTR_ERR(sa);
   4942
   4943	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
   4944
   4945	if (ret)
   4946		goto out;
   4947
   4948	ret = copy_to_user(arg, sa, sizeof(*sa));
   4949	if (ret)
   4950		ret = -EFAULT;
   4951
   4952out:
   4953	kfree(sa);
   4954	return ret;
   4955}
   4956
   4957static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
   4958					void __user *arg)
   4959{
   4960	size_t len;
   4961	int ret;
   4962	char label[BTRFS_LABEL_SIZE];
   4963
   4964	spin_lock(&fs_info->super_lock);
   4965	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
   4966	spin_unlock(&fs_info->super_lock);
   4967
   4968	len = strnlen(label, BTRFS_LABEL_SIZE);
   4969
   4970	if (len == BTRFS_LABEL_SIZE) {
   4971		btrfs_warn(fs_info,
   4972			   "label is too long, return the first %zu bytes",
   4973			   --len);
   4974	}
   4975
   4976	ret = copy_to_user(arg, label, len);
   4977
   4978	return ret ? -EFAULT : 0;
   4979}
   4980
   4981static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
   4982{
   4983	struct inode *inode = file_inode(file);
   4984	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
   4985	struct btrfs_root *root = BTRFS_I(inode)->root;
   4986	struct btrfs_super_block *super_block = fs_info->super_copy;
   4987	struct btrfs_trans_handle *trans;
   4988	char label[BTRFS_LABEL_SIZE];
   4989	int ret;
   4990
   4991	if (!capable(CAP_SYS_ADMIN))
   4992		return -EPERM;
   4993
   4994	if (copy_from_user(label, arg, sizeof(label)))
   4995		return -EFAULT;
   4996
   4997	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
   4998		btrfs_err(fs_info,
   4999			  "unable to set label with more than %d bytes",
   5000			  BTRFS_LABEL_SIZE - 1);
   5001		return -EINVAL;
   5002	}
   5003
   5004	ret = mnt_want_write_file(file);
   5005	if (ret)
   5006		return ret;
   5007
   5008	trans = btrfs_start_transaction(root, 0);
   5009	if (IS_ERR(trans)) {
   5010		ret = PTR_ERR(trans);
   5011		goto out_unlock;
   5012	}
   5013
   5014	spin_lock(&fs_info->super_lock);
   5015	strcpy(super_block->label, label);
   5016	spin_unlock(&fs_info->super_lock);
   5017	ret = btrfs_commit_transaction(trans);
   5018
   5019out_unlock:
   5020	mnt_drop_write_file(file);
   5021	return ret;
   5022}
   5023
   5024#define INIT_FEATURE_FLAGS(suffix) \
   5025	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
   5026	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
   5027	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
   5028
   5029int btrfs_ioctl_get_supported_features(void __user *arg)
   5030{
   5031	static const struct btrfs_ioctl_feature_flags features[3] = {
   5032		INIT_FEATURE_FLAGS(SUPP),
   5033		INIT_FEATURE_FLAGS(SAFE_SET),
   5034		INIT_FEATURE_FLAGS(SAFE_CLEAR)
   5035	};
   5036
   5037	if (copy_to_user(arg, &features, sizeof(features)))
   5038		return -EFAULT;
   5039
   5040	return 0;
   5041}
   5042
   5043static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
   5044					void __user *arg)
   5045{
   5046	struct btrfs_super_block *super_block = fs_info->super_copy;
   5047	struct btrfs_ioctl_feature_flags features;
   5048
   5049	features.compat_flags = btrfs_super_compat_flags(super_block);
   5050	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
   5051	features.incompat_flags = btrfs_super_incompat_flags(super_block);
   5052
   5053	if (copy_to_user(arg, &features, sizeof(features)))
   5054		return -EFAULT;
   5055
   5056	return 0;
   5057}
   5058
   5059static int check_feature_bits(struct btrfs_fs_info *fs_info,
   5060			      enum btrfs_feature_set set,
   5061			      u64 change_mask, u64 flags, u64 supported_flags,
   5062			      u64 safe_set, u64 safe_clear)
   5063{
   5064	const char *type = btrfs_feature_set_name(set);
   5065	char *names;
   5066	u64 disallowed, unsupported;
   5067	u64 set_mask = flags & change_mask;
   5068	u64 clear_mask = ~flags & change_mask;
   5069
   5070	unsupported = set_mask & ~supported_flags;
   5071	if (unsupported) {
   5072		names = btrfs_printable_features(set, unsupported);
   5073		if (names) {
   5074			btrfs_warn(fs_info,
   5075				   "this kernel does not support the %s feature bit%s",
   5076				   names, strchr(names, ',') ? "s" : "");
   5077			kfree(names);
   5078		} else
   5079			btrfs_warn(fs_info,
   5080				   "this kernel does not support %s bits 0x%llx",
   5081				   type, unsupported);
   5082		return -EOPNOTSUPP;
   5083	}
   5084
   5085	disallowed = set_mask & ~safe_set;
   5086	if (disallowed) {
   5087		names = btrfs_printable_features(set, disallowed);
   5088		if (names) {
   5089			btrfs_warn(fs_info,
   5090				   "can't set the %s feature bit%s while mounted",
   5091				   names, strchr(names, ',') ? "s" : "");
   5092			kfree(names);
   5093		} else
   5094			btrfs_warn(fs_info,
   5095				   "can't set %s bits 0x%llx while mounted",
   5096				   type, disallowed);
   5097		return -EPERM;
   5098	}
   5099
   5100	disallowed = clear_mask & ~safe_clear;
   5101	if (disallowed) {
   5102		names = btrfs_printable_features(set, disallowed);
   5103		if (names) {
   5104			btrfs_warn(fs_info,
   5105				   "can't clear the %s feature bit%s while mounted",
   5106				   names, strchr(names, ',') ? "s" : "");
   5107			kfree(names);
   5108		} else
   5109			btrfs_warn(fs_info,
   5110				   "can't clear %s bits 0x%llx while mounted",
   5111				   type, disallowed);
   5112		return -EPERM;
   5113	}
   5114
   5115	return 0;
   5116}
   5117
   5118#define check_feature(fs_info, change_mask, flags, mask_base)	\
   5119check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
   5120		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
   5121		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
   5122		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
   5123
   5124static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
   5125{
   5126	struct inode *inode = file_inode(file);
   5127	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
   5128	struct btrfs_root *root = BTRFS_I(inode)->root;
   5129	struct btrfs_super_block *super_block = fs_info->super_copy;
   5130	struct btrfs_ioctl_feature_flags flags[2];
   5131	struct btrfs_trans_handle *trans;
   5132	u64 newflags;
   5133	int ret;
   5134
   5135	if (!capable(CAP_SYS_ADMIN))
   5136		return -EPERM;
   5137
   5138	if (copy_from_user(flags, arg, sizeof(flags)))
   5139		return -EFAULT;
   5140
   5141	/* Nothing to do */
   5142	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
   5143	    !flags[0].incompat_flags)
   5144		return 0;
   5145
   5146	ret = check_feature(fs_info, flags[0].compat_flags,
   5147			    flags[1].compat_flags, COMPAT);
   5148	if (ret)
   5149		return ret;
   5150
   5151	ret = check_feature(fs_info, flags[0].compat_ro_flags,
   5152			    flags[1].compat_ro_flags, COMPAT_RO);
   5153	if (ret)
   5154		return ret;
   5155
   5156	ret = check_feature(fs_info, flags[0].incompat_flags,
   5157			    flags[1].incompat_flags, INCOMPAT);
   5158	if (ret)
   5159		return ret;
   5160
   5161	ret = mnt_want_write_file(file);
   5162	if (ret)
   5163		return ret;
   5164
   5165	trans = btrfs_start_transaction(root, 0);
   5166	if (IS_ERR(trans)) {
   5167		ret = PTR_ERR(trans);
   5168		goto out_drop_write;
   5169	}
   5170
   5171	spin_lock(&fs_info->super_lock);
   5172	newflags = btrfs_super_compat_flags(super_block);
   5173	newflags |= flags[0].compat_flags & flags[1].compat_flags;
   5174	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
   5175	btrfs_set_super_compat_flags(super_block, newflags);
   5176
   5177	newflags = btrfs_super_compat_ro_flags(super_block);
   5178	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
   5179	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
   5180	btrfs_set_super_compat_ro_flags(super_block, newflags);
   5181
   5182	newflags = btrfs_super_incompat_flags(super_block);
   5183	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
   5184	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
   5185	btrfs_set_super_incompat_flags(super_block, newflags);
   5186	spin_unlock(&fs_info->super_lock);
   5187
   5188	ret = btrfs_commit_transaction(trans);
   5189out_drop_write:
   5190	mnt_drop_write_file(file);
   5191
   5192	return ret;
   5193}
   5194
   5195static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
   5196{
   5197	struct btrfs_ioctl_send_args *arg;
   5198	int ret;
   5199
   5200	if (compat) {
   5201#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
   5202		struct btrfs_ioctl_send_args_32 args32;
   5203
   5204		ret = copy_from_user(&args32, argp, sizeof(args32));
   5205		if (ret)
   5206			return -EFAULT;
   5207		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
   5208		if (!arg)
   5209			return -ENOMEM;
   5210		arg->send_fd = args32.send_fd;
   5211		arg->clone_sources_count = args32.clone_sources_count;
   5212		arg->clone_sources = compat_ptr(args32.clone_sources);
   5213		arg->parent_root = args32.parent_root;
   5214		arg->flags = args32.flags;
   5215		memcpy(arg->reserved, args32.reserved,
   5216		       sizeof(args32.reserved));
   5217#else
   5218		return -ENOTTY;
   5219#endif
   5220	} else {
   5221		arg = memdup_user(argp, sizeof(*arg));
   5222		if (IS_ERR(arg))
   5223			return PTR_ERR(arg);
   5224	}
   5225	ret = btrfs_ioctl_send(inode, arg);
   5226	kfree(arg);
   5227	return ret;
   5228}
   5229
   5230static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
   5231				    bool compat)
   5232{
   5233	struct btrfs_ioctl_encoded_io_args args = { 0 };
   5234	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
   5235					     flags);
   5236	size_t copy_end;
   5237	struct iovec iovstack[UIO_FASTIOV];
   5238	struct iovec *iov = iovstack;
   5239	struct iov_iter iter;
   5240	loff_t pos;
   5241	struct kiocb kiocb;
   5242	ssize_t ret;
   5243
   5244	if (!capable(CAP_SYS_ADMIN)) {
   5245		ret = -EPERM;
   5246		goto out_acct;
   5247	}
   5248
   5249	if (compat) {
   5250#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
   5251		struct btrfs_ioctl_encoded_io_args_32 args32;
   5252
   5253		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
   5254				       flags);
   5255		if (copy_from_user(&args32, argp, copy_end)) {
   5256			ret = -EFAULT;
   5257			goto out_acct;
   5258		}
   5259		args.iov = compat_ptr(args32.iov);
   5260		args.iovcnt = args32.iovcnt;
   5261		args.offset = args32.offset;
   5262		args.flags = args32.flags;
   5263#else
   5264		return -ENOTTY;
   5265#endif
   5266	} else {
   5267		copy_end = copy_end_kernel;
   5268		if (copy_from_user(&args, argp, copy_end)) {
   5269			ret = -EFAULT;
   5270			goto out_acct;
   5271		}
   5272	}
   5273	if (args.flags != 0) {
   5274		ret = -EINVAL;
   5275		goto out_acct;
   5276	}
   5277
   5278	ret = import_iovec(READ, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
   5279			   &iov, &iter);
   5280	if (ret < 0)
   5281		goto out_acct;
   5282
   5283	if (iov_iter_count(&iter) == 0) {
   5284		ret = 0;
   5285		goto out_iov;
   5286	}
   5287	pos = args.offset;
   5288	ret = rw_verify_area(READ, file, &pos, args.len);
   5289	if (ret < 0)
   5290		goto out_iov;
   5291
   5292	init_sync_kiocb(&kiocb, file);
   5293	kiocb.ki_pos = pos;
   5294
   5295	ret = btrfs_encoded_read(&kiocb, &iter, &args);
   5296	if (ret >= 0) {
   5297		fsnotify_access(file);
   5298		if (copy_to_user(argp + copy_end,
   5299				 (char *)&args + copy_end_kernel,
   5300				 sizeof(args) - copy_end_kernel))
   5301			ret = -EFAULT;
   5302	}
   5303
   5304out_iov:
   5305	kfree(iov);
   5306out_acct:
   5307	if (ret > 0)
   5308		add_rchar(current, ret);
   5309	inc_syscr(current);
   5310	return ret;
   5311}
   5312
   5313static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
   5314{
   5315	struct btrfs_ioctl_encoded_io_args args;
   5316	struct iovec iovstack[UIO_FASTIOV];
   5317	struct iovec *iov = iovstack;
   5318	struct iov_iter iter;
   5319	loff_t pos;
   5320	struct kiocb kiocb;
   5321	ssize_t ret;
   5322
   5323	if (!capable(CAP_SYS_ADMIN)) {
   5324		ret = -EPERM;
   5325		goto out_acct;
   5326	}
   5327
   5328	if (!(file->f_mode & FMODE_WRITE)) {
   5329		ret = -EBADF;
   5330		goto out_acct;
   5331	}
   5332
   5333	if (compat) {
   5334#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
   5335		struct btrfs_ioctl_encoded_io_args_32 args32;
   5336
   5337		if (copy_from_user(&args32, argp, sizeof(args32))) {
   5338			ret = -EFAULT;
   5339			goto out_acct;
   5340		}
   5341		args.iov = compat_ptr(args32.iov);
   5342		args.iovcnt = args32.iovcnt;
   5343		args.offset = args32.offset;
   5344		args.flags = args32.flags;
   5345		args.len = args32.len;
   5346		args.unencoded_len = args32.unencoded_len;
   5347		args.unencoded_offset = args32.unencoded_offset;
   5348		args.compression = args32.compression;
   5349		args.encryption = args32.encryption;
   5350		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
   5351#else
   5352		return -ENOTTY;
   5353#endif
   5354	} else {
   5355		if (copy_from_user(&args, argp, sizeof(args))) {
   5356			ret = -EFAULT;
   5357			goto out_acct;
   5358		}
   5359	}
   5360
   5361	ret = -EINVAL;
   5362	if (args.flags != 0)
   5363		goto out_acct;
   5364	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
   5365		goto out_acct;
   5366	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
   5367	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
   5368		goto out_acct;
   5369	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
   5370	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
   5371		goto out_acct;
   5372	if (args.unencoded_offset > args.unencoded_len)
   5373		goto out_acct;
   5374	if (args.len > args.unencoded_len - args.unencoded_offset)
   5375		goto out_acct;
   5376
   5377	ret = import_iovec(WRITE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
   5378			   &iov, &iter);
   5379	if (ret < 0)
   5380		goto out_acct;
   5381
   5382	file_start_write(file);
   5383
   5384	if (iov_iter_count(&iter) == 0) {
   5385		ret = 0;
   5386		goto out_end_write;
   5387	}
   5388	pos = args.offset;
   5389	ret = rw_verify_area(WRITE, file, &pos, args.len);
   5390	if (ret < 0)
   5391		goto out_end_write;
   5392
   5393	init_sync_kiocb(&kiocb, file);
   5394	ret = kiocb_set_rw_flags(&kiocb, 0);
   5395	if (ret)
   5396		goto out_end_write;
   5397	kiocb.ki_pos = pos;
   5398
   5399	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
   5400	if (ret > 0)
   5401		fsnotify_modify(file);
   5402
   5403out_end_write:
   5404	file_end_write(file);
   5405	kfree(iov);
   5406out_acct:
   5407	if (ret > 0)
   5408		add_wchar(current, ret);
   5409	inc_syscw(current);
   5410	return ret;
   5411}
   5412
   5413long btrfs_ioctl(struct file *file, unsigned int
   5414		cmd, unsigned long arg)
   5415{
   5416	struct inode *inode = file_inode(file);
   5417	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
   5418	struct btrfs_root *root = BTRFS_I(inode)->root;
   5419	void __user *argp = (void __user *)arg;
   5420
   5421	switch (cmd) {
   5422	case FS_IOC_GETVERSION:
   5423		return btrfs_ioctl_getversion(inode, argp);
   5424	case FS_IOC_GETFSLABEL:
   5425		return btrfs_ioctl_get_fslabel(fs_info, argp);
   5426	case FS_IOC_SETFSLABEL:
   5427		return btrfs_ioctl_set_fslabel(file, argp);
   5428	case FITRIM:
   5429		return btrfs_ioctl_fitrim(fs_info, argp);
   5430	case BTRFS_IOC_SNAP_CREATE:
   5431		return btrfs_ioctl_snap_create(file, argp, 0);
   5432	case BTRFS_IOC_SNAP_CREATE_V2:
   5433		return btrfs_ioctl_snap_create_v2(file, argp, 0);
   5434	case BTRFS_IOC_SUBVOL_CREATE:
   5435		return btrfs_ioctl_snap_create(file, argp, 1);
   5436	case BTRFS_IOC_SUBVOL_CREATE_V2:
   5437		return btrfs_ioctl_snap_create_v2(file, argp, 1);
   5438	case BTRFS_IOC_SNAP_DESTROY:
   5439		return btrfs_ioctl_snap_destroy(file, argp, false);
   5440	case BTRFS_IOC_SNAP_DESTROY_V2:
   5441		return btrfs_ioctl_snap_destroy(file, argp, true);
   5442	case BTRFS_IOC_SUBVOL_GETFLAGS:
   5443		return btrfs_ioctl_subvol_getflags(inode, argp);
   5444	case BTRFS_IOC_SUBVOL_SETFLAGS:
   5445		return btrfs_ioctl_subvol_setflags(file, argp);
   5446	case BTRFS_IOC_DEFAULT_SUBVOL:
   5447		return btrfs_ioctl_default_subvol(file, argp);
   5448	case BTRFS_IOC_DEFRAG:
   5449		return btrfs_ioctl_defrag(file, NULL);
   5450	case BTRFS_IOC_DEFRAG_RANGE:
   5451		return btrfs_ioctl_defrag(file, argp);
   5452	case BTRFS_IOC_RESIZE:
   5453		return btrfs_ioctl_resize(file, argp);
   5454	case BTRFS_IOC_ADD_DEV:
   5455		return btrfs_ioctl_add_dev(fs_info, argp);
   5456	case BTRFS_IOC_RM_DEV:
   5457		return btrfs_ioctl_rm_dev(file, argp);
   5458	case BTRFS_IOC_RM_DEV_V2:
   5459		return btrfs_ioctl_rm_dev_v2(file, argp);
   5460	case BTRFS_IOC_FS_INFO:
   5461		return btrfs_ioctl_fs_info(fs_info, argp);
   5462	case BTRFS_IOC_DEV_INFO:
   5463		return btrfs_ioctl_dev_info(fs_info, argp);
   5464	case BTRFS_IOC_TREE_SEARCH:
   5465		return btrfs_ioctl_tree_search(inode, argp);
   5466	case BTRFS_IOC_TREE_SEARCH_V2:
   5467		return btrfs_ioctl_tree_search_v2(inode, argp);
   5468	case BTRFS_IOC_INO_LOOKUP:
   5469		return btrfs_ioctl_ino_lookup(root, argp);
   5470	case BTRFS_IOC_INO_PATHS:
   5471		return btrfs_ioctl_ino_to_path(root, argp);
   5472	case BTRFS_IOC_LOGICAL_INO:
   5473		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
   5474	case BTRFS_IOC_LOGICAL_INO_V2:
   5475		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
   5476	case BTRFS_IOC_SPACE_INFO:
   5477		return btrfs_ioctl_space_info(fs_info, argp);
   5478	case BTRFS_IOC_SYNC: {
   5479		int ret;
   5480
   5481		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
   5482		if (ret)
   5483			return ret;
   5484		ret = btrfs_sync_fs(inode->i_sb, 1);
   5485		/*
   5486		 * The transaction thread may want to do more work,
   5487		 * namely it pokes the cleaner kthread that will start
   5488		 * processing uncleaned subvols.
   5489		 */
   5490		wake_up_process(fs_info->transaction_kthread);
   5491		return ret;
   5492	}
   5493	case BTRFS_IOC_START_SYNC:
   5494		return btrfs_ioctl_start_sync(root, argp);
   5495	case BTRFS_IOC_WAIT_SYNC:
   5496		return btrfs_ioctl_wait_sync(fs_info, argp);
   5497	case BTRFS_IOC_SCRUB:
   5498		return btrfs_ioctl_scrub(file, argp);
   5499	case BTRFS_IOC_SCRUB_CANCEL:
   5500		return btrfs_ioctl_scrub_cancel(fs_info);
   5501	case BTRFS_IOC_SCRUB_PROGRESS:
   5502		return btrfs_ioctl_scrub_progress(fs_info, argp);
   5503	case BTRFS_IOC_BALANCE_V2:
   5504		return btrfs_ioctl_balance(file, argp);
   5505	case BTRFS_IOC_BALANCE_CTL:
   5506		return btrfs_ioctl_balance_ctl(fs_info, arg);
   5507	case BTRFS_IOC_BALANCE_PROGRESS:
   5508		return btrfs_ioctl_balance_progress(fs_info, argp);
   5509	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
   5510		return btrfs_ioctl_set_received_subvol(file, argp);
   5511#ifdef CONFIG_64BIT
   5512	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
   5513		return btrfs_ioctl_set_received_subvol_32(file, argp);
   5514#endif
   5515	case BTRFS_IOC_SEND:
   5516		return _btrfs_ioctl_send(inode, argp, false);
   5517#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
   5518	case BTRFS_IOC_SEND_32:
   5519		return _btrfs_ioctl_send(inode, argp, true);
   5520#endif
   5521	case BTRFS_IOC_GET_DEV_STATS:
   5522		return btrfs_ioctl_get_dev_stats(fs_info, argp);
   5523	case BTRFS_IOC_QUOTA_CTL:
   5524		return btrfs_ioctl_quota_ctl(file, argp);
   5525	case BTRFS_IOC_QGROUP_ASSIGN:
   5526		return btrfs_ioctl_qgroup_assign(file, argp);
   5527	case BTRFS_IOC_QGROUP_CREATE:
   5528		return btrfs_ioctl_qgroup_create(file, argp);
   5529	case BTRFS_IOC_QGROUP_LIMIT:
   5530		return btrfs_ioctl_qgroup_limit(file, argp);
   5531	case BTRFS_IOC_QUOTA_RESCAN:
   5532		return btrfs_ioctl_quota_rescan(file, argp);
   5533	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
   5534		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
   5535	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
   5536		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
   5537	case BTRFS_IOC_DEV_REPLACE:
   5538		return btrfs_ioctl_dev_replace(fs_info, argp);
   5539	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
   5540		return btrfs_ioctl_get_supported_features(argp);
   5541	case BTRFS_IOC_GET_FEATURES:
   5542		return btrfs_ioctl_get_features(fs_info, argp);
   5543	case BTRFS_IOC_SET_FEATURES:
   5544		return btrfs_ioctl_set_features(file, argp);
   5545	case BTRFS_IOC_GET_SUBVOL_INFO:
   5546		return btrfs_ioctl_get_subvol_info(inode, argp);
   5547	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
   5548		return btrfs_ioctl_get_subvol_rootref(root, argp);
   5549	case BTRFS_IOC_INO_LOOKUP_USER:
   5550		return btrfs_ioctl_ino_lookup_user(file, argp);
   5551	case FS_IOC_ENABLE_VERITY:
   5552		return fsverity_ioctl_enable(file, (const void __user *)argp);
   5553	case FS_IOC_MEASURE_VERITY:
   5554		return fsverity_ioctl_measure(file, argp);
   5555	case BTRFS_IOC_ENCODED_READ:
   5556		return btrfs_ioctl_encoded_read(file, argp, false);
   5557	case BTRFS_IOC_ENCODED_WRITE:
   5558		return btrfs_ioctl_encoded_write(file, argp, false);
   5559#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
   5560	case BTRFS_IOC_ENCODED_READ_32:
   5561		return btrfs_ioctl_encoded_read(file, argp, true);
   5562	case BTRFS_IOC_ENCODED_WRITE_32:
   5563		return btrfs_ioctl_encoded_write(file, argp, true);
   5564#endif
   5565	}
   5566
   5567	return -ENOTTY;
   5568}
   5569
   5570#ifdef CONFIG_COMPAT
   5571long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
   5572{
   5573	/*
   5574	 * These all access 32-bit values anyway so no further
   5575	 * handling is necessary.
   5576	 */
   5577	switch (cmd) {
   5578	case FS_IOC32_GETVERSION:
   5579		cmd = FS_IOC_GETVERSION;
   5580		break;
   5581	}
   5582
   5583	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
   5584}
   5585#endif