ordered-data.c (31108B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6#include <linux/slab.h> 7#include <linux/blkdev.h> 8#include <linux/writeback.h> 9#include <linux/sched/mm.h> 10#include "misc.h" 11#include "ctree.h" 12#include "transaction.h" 13#include "btrfs_inode.h" 14#include "extent_io.h" 15#include "disk-io.h" 16#include "compression.h" 17#include "delalloc-space.h" 18#include "qgroup.h" 19#include "subpage.h" 20 21static struct kmem_cache *btrfs_ordered_extent_cache; 22 23static u64 entry_end(struct btrfs_ordered_extent *entry) 24{ 25 if (entry->file_offset + entry->num_bytes < entry->file_offset) 26 return (u64)-1; 27 return entry->file_offset + entry->num_bytes; 28} 29 30/* returns NULL if the insertion worked, or it returns the node it did find 31 * in the tree 32 */ 33static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 34 struct rb_node *node) 35{ 36 struct rb_node **p = &root->rb_node; 37 struct rb_node *parent = NULL; 38 struct btrfs_ordered_extent *entry; 39 40 while (*p) { 41 parent = *p; 42 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 43 44 if (file_offset < entry->file_offset) 45 p = &(*p)->rb_left; 46 else if (file_offset >= entry_end(entry)) 47 p = &(*p)->rb_right; 48 else 49 return parent; 50 } 51 52 rb_link_node(node, parent, p); 53 rb_insert_color(node, root); 54 return NULL; 55} 56 57/* 58 * look for a given offset in the tree, and if it can't be found return the 59 * first lesser offset 60 */ 61static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 62 struct rb_node **prev_ret) 63{ 64 struct rb_node *n = root->rb_node; 65 struct rb_node *prev = NULL; 66 struct rb_node *test; 67 struct btrfs_ordered_extent *entry; 68 struct btrfs_ordered_extent *prev_entry = NULL; 69 70 while (n) { 71 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 72 prev = n; 73 prev_entry = entry; 74 75 if (file_offset < entry->file_offset) 76 n = n->rb_left; 77 else if (file_offset >= entry_end(entry)) 78 n = n->rb_right; 79 else 80 return n; 81 } 82 if (!prev_ret) 83 return NULL; 84 85 while (prev && file_offset >= entry_end(prev_entry)) { 86 test = rb_next(prev); 87 if (!test) 88 break; 89 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 90 rb_node); 91 if (file_offset < entry_end(prev_entry)) 92 break; 93 94 prev = test; 95 } 96 if (prev) 97 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 98 rb_node); 99 while (prev && file_offset < entry_end(prev_entry)) { 100 test = rb_prev(prev); 101 if (!test) 102 break; 103 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 104 rb_node); 105 prev = test; 106 } 107 *prev_ret = prev; 108 return NULL; 109} 110 111static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 112 u64 len) 113{ 114 if (file_offset + len <= entry->file_offset || 115 entry->file_offset + entry->num_bytes <= file_offset) 116 return 0; 117 return 1; 118} 119 120/* 121 * look find the first ordered struct that has this offset, otherwise 122 * the first one less than this offset 123 */ 124static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 125 u64 file_offset) 126{ 127 struct rb_root *root = &tree->tree; 128 struct rb_node *prev = NULL; 129 struct rb_node *ret; 130 struct btrfs_ordered_extent *entry; 131 132 if (tree->last) { 133 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 134 rb_node); 135 if (in_range(file_offset, entry->file_offset, entry->num_bytes)) 136 return tree->last; 137 } 138 ret = __tree_search(root, file_offset, &prev); 139 if (!ret) 140 ret = prev; 141 if (ret) 142 tree->last = ret; 143 return ret; 144} 145 146/** 147 * Add an ordered extent to the per-inode tree. 148 * 149 * @inode: Inode that this extent is for. 150 * @file_offset: Logical offset in file where the extent starts. 151 * @num_bytes: Logical length of extent in file. 152 * @ram_bytes: Full length of unencoded data. 153 * @disk_bytenr: Offset of extent on disk. 154 * @disk_num_bytes: Size of extent on disk. 155 * @offset: Offset into unencoded data where file data starts. 156 * @flags: Flags specifying type of extent (1 << BTRFS_ORDERED_*). 157 * @compress_type: Compression algorithm used for data. 158 * 159 * Most of these parameters correspond to &struct btrfs_file_extent_item. The 160 * tree is given a single reference on the ordered extent that was inserted. 161 * 162 * Return: 0 or -ENOMEM. 163 */ 164int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset, 165 u64 num_bytes, u64 ram_bytes, u64 disk_bytenr, 166 u64 disk_num_bytes, u64 offset, unsigned flags, 167 int compress_type) 168{ 169 struct btrfs_root *root = inode->root; 170 struct btrfs_fs_info *fs_info = root->fs_info; 171 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 172 struct rb_node *node; 173 struct btrfs_ordered_extent *entry; 174 int ret; 175 176 if (flags & 177 ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) { 178 /* For nocow write, we can release the qgroup rsv right now */ 179 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes); 180 if (ret < 0) 181 return ret; 182 ret = 0; 183 } else { 184 /* 185 * The ordered extent has reserved qgroup space, release now 186 * and pass the reserved number for qgroup_record to free. 187 */ 188 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes); 189 if (ret < 0) 190 return ret; 191 } 192 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 193 if (!entry) 194 return -ENOMEM; 195 196 entry->file_offset = file_offset; 197 entry->num_bytes = num_bytes; 198 entry->ram_bytes = ram_bytes; 199 entry->disk_bytenr = disk_bytenr; 200 entry->disk_num_bytes = disk_num_bytes; 201 entry->offset = offset; 202 entry->bytes_left = num_bytes; 203 entry->inode = igrab(&inode->vfs_inode); 204 entry->compress_type = compress_type; 205 entry->truncated_len = (u64)-1; 206 entry->qgroup_rsv = ret; 207 entry->physical = (u64)-1; 208 209 ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0); 210 entry->flags = flags; 211 212 percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes, 213 fs_info->delalloc_batch); 214 215 /* one ref for the tree */ 216 refcount_set(&entry->refs, 1); 217 init_waitqueue_head(&entry->wait); 218 INIT_LIST_HEAD(&entry->list); 219 INIT_LIST_HEAD(&entry->log_list); 220 INIT_LIST_HEAD(&entry->root_extent_list); 221 INIT_LIST_HEAD(&entry->work_list); 222 init_completion(&entry->completion); 223 224 trace_btrfs_ordered_extent_add(inode, entry); 225 226 spin_lock_irq(&tree->lock); 227 node = tree_insert(&tree->tree, file_offset, 228 &entry->rb_node); 229 if (node) 230 btrfs_panic(fs_info, -EEXIST, 231 "inconsistency in ordered tree at offset %llu", 232 file_offset); 233 spin_unlock_irq(&tree->lock); 234 235 spin_lock(&root->ordered_extent_lock); 236 list_add_tail(&entry->root_extent_list, 237 &root->ordered_extents); 238 root->nr_ordered_extents++; 239 if (root->nr_ordered_extents == 1) { 240 spin_lock(&fs_info->ordered_root_lock); 241 BUG_ON(!list_empty(&root->ordered_root)); 242 list_add_tail(&root->ordered_root, &fs_info->ordered_roots); 243 spin_unlock(&fs_info->ordered_root_lock); 244 } 245 spin_unlock(&root->ordered_extent_lock); 246 247 /* 248 * We don't need the count_max_extents here, we can assume that all of 249 * that work has been done at higher layers, so this is truly the 250 * smallest the extent is going to get. 251 */ 252 spin_lock(&inode->lock); 253 btrfs_mod_outstanding_extents(inode, 1); 254 spin_unlock(&inode->lock); 255 256 return 0; 257} 258 259/* 260 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 261 * when an ordered extent is finished. If the list covers more than one 262 * ordered extent, it is split across multiples. 263 */ 264void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry, 265 struct btrfs_ordered_sum *sum) 266{ 267 struct btrfs_ordered_inode_tree *tree; 268 269 tree = &BTRFS_I(entry->inode)->ordered_tree; 270 spin_lock_irq(&tree->lock); 271 list_add_tail(&sum->list, &entry->list); 272 spin_unlock_irq(&tree->lock); 273} 274 275/* 276 * Mark all ordered extents io inside the specified range finished. 277 * 278 * @page: The invovled page for the opeartion. 279 * For uncompressed buffered IO, the page status also needs to be 280 * updated to indicate whether the pending ordered io is finished. 281 * Can be NULL for direct IO and compressed write. 282 * For these cases, callers are ensured they won't execute the 283 * endio function twice. 284 * @finish_func: The function to be executed when all the IO of an ordered 285 * extent are finished. 286 * 287 * This function is called for endio, thus the range must have ordered 288 * extent(s) coveri it. 289 */ 290void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode, 291 struct page *page, u64 file_offset, 292 u64 num_bytes, btrfs_func_t finish_func, 293 bool uptodate) 294{ 295 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 296 struct btrfs_fs_info *fs_info = inode->root->fs_info; 297 struct btrfs_workqueue *wq; 298 struct rb_node *node; 299 struct btrfs_ordered_extent *entry = NULL; 300 unsigned long flags; 301 u64 cur = file_offset; 302 303 if (btrfs_is_free_space_inode(inode)) 304 wq = fs_info->endio_freespace_worker; 305 else 306 wq = fs_info->endio_write_workers; 307 308 if (page) 309 ASSERT(page->mapping && page_offset(page) <= file_offset && 310 file_offset + num_bytes <= page_offset(page) + PAGE_SIZE); 311 312 spin_lock_irqsave(&tree->lock, flags); 313 while (cur < file_offset + num_bytes) { 314 u64 entry_end; 315 u64 end; 316 u32 len; 317 318 node = tree_search(tree, cur); 319 /* No ordered extents at all */ 320 if (!node) 321 break; 322 323 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 324 entry_end = entry->file_offset + entry->num_bytes; 325 /* 326 * |<-- OE --->| | 327 * cur 328 * Go to next OE. 329 */ 330 if (cur >= entry_end) { 331 node = rb_next(node); 332 /* No more ordered extents, exit */ 333 if (!node) 334 break; 335 entry = rb_entry(node, struct btrfs_ordered_extent, 336 rb_node); 337 338 /* Go to next ordered extent and continue */ 339 cur = entry->file_offset; 340 continue; 341 } 342 /* 343 * | |<--- OE --->| 344 * cur 345 * Go to the start of OE. 346 */ 347 if (cur < entry->file_offset) { 348 cur = entry->file_offset; 349 continue; 350 } 351 352 /* 353 * Now we are definitely inside one ordered extent. 354 * 355 * |<--- OE --->| 356 * | 357 * cur 358 */ 359 end = min(entry->file_offset + entry->num_bytes, 360 file_offset + num_bytes) - 1; 361 ASSERT(end + 1 - cur < U32_MAX); 362 len = end + 1 - cur; 363 364 if (page) { 365 /* 366 * Ordered (Private2) bit indicates whether we still 367 * have pending io unfinished for the ordered extent. 368 * 369 * If there's no such bit, we need to skip to next range. 370 */ 371 if (!btrfs_page_test_ordered(fs_info, page, cur, len)) { 372 cur += len; 373 continue; 374 } 375 btrfs_page_clear_ordered(fs_info, page, cur, len); 376 } 377 378 /* Now we're fine to update the accounting */ 379 if (unlikely(len > entry->bytes_left)) { 380 WARN_ON(1); 381 btrfs_crit(fs_info, 382"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu", 383 inode->root->root_key.objectid, 384 btrfs_ino(inode), 385 entry->file_offset, 386 entry->num_bytes, 387 len, entry->bytes_left); 388 entry->bytes_left = 0; 389 } else { 390 entry->bytes_left -= len; 391 } 392 393 if (!uptodate) 394 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 395 396 /* 397 * All the IO of the ordered extent is finished, we need to queue 398 * the finish_func to be executed. 399 */ 400 if (entry->bytes_left == 0) { 401 set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 402 cond_wake_up(&entry->wait); 403 refcount_inc(&entry->refs); 404 spin_unlock_irqrestore(&tree->lock, flags); 405 btrfs_init_work(&entry->work, finish_func, NULL, NULL); 406 btrfs_queue_work(wq, &entry->work); 407 spin_lock_irqsave(&tree->lock, flags); 408 } 409 cur += len; 410 } 411 spin_unlock_irqrestore(&tree->lock, flags); 412} 413 414/* 415 * Finish IO for one ordered extent across a given range. The range can only 416 * contain one ordered extent. 417 * 418 * @cached: The cached ordered extent. If not NULL, we can skip the tree 419 * search and use the ordered extent directly. 420 * Will be also used to store the finished ordered extent. 421 * @file_offset: File offset for the finished IO 422 * @io_size: Length of the finish IO range 423 * 424 * Return true if the ordered extent is finished in the range, and update 425 * @cached. 426 * Return false otherwise. 427 * 428 * NOTE: The range can NOT cross multiple ordered extents. 429 * Thus caller should ensure the range doesn't cross ordered extents. 430 */ 431bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode, 432 struct btrfs_ordered_extent **cached, 433 u64 file_offset, u64 io_size) 434{ 435 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 436 struct rb_node *node; 437 struct btrfs_ordered_extent *entry = NULL; 438 unsigned long flags; 439 bool finished = false; 440 441 spin_lock_irqsave(&tree->lock, flags); 442 if (cached && *cached) { 443 entry = *cached; 444 goto have_entry; 445 } 446 447 node = tree_search(tree, file_offset); 448 if (!node) 449 goto out; 450 451 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 452have_entry: 453 if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) 454 goto out; 455 456 if (io_size > entry->bytes_left) 457 btrfs_crit(inode->root->fs_info, 458 "bad ordered accounting left %llu size %llu", 459 entry->bytes_left, io_size); 460 461 entry->bytes_left -= io_size; 462 463 if (entry->bytes_left == 0) { 464 /* 465 * Ensure only one caller can set the flag and finished_ret 466 * accordingly 467 */ 468 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 469 /* test_and_set_bit implies a barrier */ 470 cond_wake_up_nomb(&entry->wait); 471 } 472out: 473 if (finished && cached && entry) { 474 *cached = entry; 475 refcount_inc(&entry->refs); 476 } 477 spin_unlock_irqrestore(&tree->lock, flags); 478 return finished; 479} 480 481/* 482 * used to drop a reference on an ordered extent. This will free 483 * the extent if the last reference is dropped 484 */ 485void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 486{ 487 struct list_head *cur; 488 struct btrfs_ordered_sum *sum; 489 490 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry); 491 492 if (refcount_dec_and_test(&entry->refs)) { 493 ASSERT(list_empty(&entry->root_extent_list)); 494 ASSERT(list_empty(&entry->log_list)); 495 ASSERT(RB_EMPTY_NODE(&entry->rb_node)); 496 if (entry->inode) 497 btrfs_add_delayed_iput(entry->inode); 498 while (!list_empty(&entry->list)) { 499 cur = entry->list.next; 500 sum = list_entry(cur, struct btrfs_ordered_sum, list); 501 list_del(&sum->list); 502 kvfree(sum); 503 } 504 kmem_cache_free(btrfs_ordered_extent_cache, entry); 505 } 506} 507 508/* 509 * remove an ordered extent from the tree. No references are dropped 510 * and waiters are woken up. 511 */ 512void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode, 513 struct btrfs_ordered_extent *entry) 514{ 515 struct btrfs_ordered_inode_tree *tree; 516 struct btrfs_root *root = btrfs_inode->root; 517 struct btrfs_fs_info *fs_info = root->fs_info; 518 struct rb_node *node; 519 bool pending; 520 521 /* This is paired with btrfs_add_ordered_extent. */ 522 spin_lock(&btrfs_inode->lock); 523 btrfs_mod_outstanding_extents(btrfs_inode, -1); 524 spin_unlock(&btrfs_inode->lock); 525 if (root != fs_info->tree_root) { 526 u64 release; 527 528 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags)) 529 release = entry->disk_num_bytes; 530 else 531 release = entry->num_bytes; 532 btrfs_delalloc_release_metadata(btrfs_inode, release, false); 533 } 534 535 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes, 536 fs_info->delalloc_batch); 537 538 tree = &btrfs_inode->ordered_tree; 539 spin_lock_irq(&tree->lock); 540 node = &entry->rb_node; 541 rb_erase(node, &tree->tree); 542 RB_CLEAR_NODE(node); 543 if (tree->last == node) 544 tree->last = NULL; 545 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 546 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags); 547 spin_unlock_irq(&tree->lock); 548 549 /* 550 * The current running transaction is waiting on us, we need to let it 551 * know that we're complete and wake it up. 552 */ 553 if (pending) { 554 struct btrfs_transaction *trans; 555 556 /* 557 * The checks for trans are just a formality, it should be set, 558 * but if it isn't we don't want to deref/assert under the spin 559 * lock, so be nice and check if trans is set, but ASSERT() so 560 * if it isn't set a developer will notice. 561 */ 562 spin_lock(&fs_info->trans_lock); 563 trans = fs_info->running_transaction; 564 if (trans) 565 refcount_inc(&trans->use_count); 566 spin_unlock(&fs_info->trans_lock); 567 568 ASSERT(trans); 569 if (trans) { 570 if (atomic_dec_and_test(&trans->pending_ordered)) 571 wake_up(&trans->pending_wait); 572 btrfs_put_transaction(trans); 573 } 574 } 575 576 spin_lock(&root->ordered_extent_lock); 577 list_del_init(&entry->root_extent_list); 578 root->nr_ordered_extents--; 579 580 trace_btrfs_ordered_extent_remove(btrfs_inode, entry); 581 582 if (!root->nr_ordered_extents) { 583 spin_lock(&fs_info->ordered_root_lock); 584 BUG_ON(list_empty(&root->ordered_root)); 585 list_del_init(&root->ordered_root); 586 spin_unlock(&fs_info->ordered_root_lock); 587 } 588 spin_unlock(&root->ordered_extent_lock); 589 wake_up(&entry->wait); 590} 591 592static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 593{ 594 struct btrfs_ordered_extent *ordered; 595 596 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 597 btrfs_start_ordered_extent(ordered, 1); 598 complete(&ordered->completion); 599} 600 601/* 602 * wait for all the ordered extents in a root. This is done when balancing 603 * space between drives. 604 */ 605u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, 606 const u64 range_start, const u64 range_len) 607{ 608 struct btrfs_fs_info *fs_info = root->fs_info; 609 LIST_HEAD(splice); 610 LIST_HEAD(skipped); 611 LIST_HEAD(works); 612 struct btrfs_ordered_extent *ordered, *next; 613 u64 count = 0; 614 const u64 range_end = range_start + range_len; 615 616 mutex_lock(&root->ordered_extent_mutex); 617 spin_lock(&root->ordered_extent_lock); 618 list_splice_init(&root->ordered_extents, &splice); 619 while (!list_empty(&splice) && nr) { 620 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 621 root_extent_list); 622 623 if (range_end <= ordered->disk_bytenr || 624 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) { 625 list_move_tail(&ordered->root_extent_list, &skipped); 626 cond_resched_lock(&root->ordered_extent_lock); 627 continue; 628 } 629 630 list_move_tail(&ordered->root_extent_list, 631 &root->ordered_extents); 632 refcount_inc(&ordered->refs); 633 spin_unlock(&root->ordered_extent_lock); 634 635 btrfs_init_work(&ordered->flush_work, 636 btrfs_run_ordered_extent_work, NULL, NULL); 637 list_add_tail(&ordered->work_list, &works); 638 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); 639 640 cond_resched(); 641 spin_lock(&root->ordered_extent_lock); 642 if (nr != U64_MAX) 643 nr--; 644 count++; 645 } 646 list_splice_tail(&skipped, &root->ordered_extents); 647 list_splice_tail(&splice, &root->ordered_extents); 648 spin_unlock(&root->ordered_extent_lock); 649 650 list_for_each_entry_safe(ordered, next, &works, work_list) { 651 list_del_init(&ordered->work_list); 652 wait_for_completion(&ordered->completion); 653 btrfs_put_ordered_extent(ordered); 654 cond_resched(); 655 } 656 mutex_unlock(&root->ordered_extent_mutex); 657 658 return count; 659} 660 661void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, 662 const u64 range_start, const u64 range_len) 663{ 664 struct btrfs_root *root; 665 struct list_head splice; 666 u64 done; 667 668 INIT_LIST_HEAD(&splice); 669 670 mutex_lock(&fs_info->ordered_operations_mutex); 671 spin_lock(&fs_info->ordered_root_lock); 672 list_splice_init(&fs_info->ordered_roots, &splice); 673 while (!list_empty(&splice) && nr) { 674 root = list_first_entry(&splice, struct btrfs_root, 675 ordered_root); 676 root = btrfs_grab_root(root); 677 BUG_ON(!root); 678 list_move_tail(&root->ordered_root, 679 &fs_info->ordered_roots); 680 spin_unlock(&fs_info->ordered_root_lock); 681 682 done = btrfs_wait_ordered_extents(root, nr, 683 range_start, range_len); 684 btrfs_put_root(root); 685 686 spin_lock(&fs_info->ordered_root_lock); 687 if (nr != U64_MAX) { 688 nr -= done; 689 } 690 } 691 list_splice_tail(&splice, &fs_info->ordered_roots); 692 spin_unlock(&fs_info->ordered_root_lock); 693 mutex_unlock(&fs_info->ordered_operations_mutex); 694} 695 696/* 697 * Used to start IO or wait for a given ordered extent to finish. 698 * 699 * If wait is one, this effectively waits on page writeback for all the pages 700 * in the extent, and it waits on the io completion code to insert 701 * metadata into the btree corresponding to the extent 702 */ 703void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait) 704{ 705 u64 start = entry->file_offset; 706 u64 end = start + entry->num_bytes - 1; 707 struct btrfs_inode *inode = BTRFS_I(entry->inode); 708 709 trace_btrfs_ordered_extent_start(inode, entry); 710 711 /* 712 * pages in the range can be dirty, clean or writeback. We 713 * start IO on any dirty ones so the wait doesn't stall waiting 714 * for the flusher thread to find them 715 */ 716 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 717 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end); 718 if (wait) { 719 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 720 &entry->flags)); 721 } 722} 723 724/* 725 * Used to wait on ordered extents across a large range of bytes. 726 */ 727int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 728{ 729 int ret = 0; 730 int ret_wb = 0; 731 u64 end; 732 u64 orig_end; 733 struct btrfs_ordered_extent *ordered; 734 735 if (start + len < start) { 736 orig_end = INT_LIMIT(loff_t); 737 } else { 738 orig_end = start + len - 1; 739 if (orig_end > INT_LIMIT(loff_t)) 740 orig_end = INT_LIMIT(loff_t); 741 } 742 743 /* start IO across the range first to instantiate any delalloc 744 * extents 745 */ 746 ret = btrfs_fdatawrite_range(inode, start, orig_end); 747 if (ret) 748 return ret; 749 750 /* 751 * If we have a writeback error don't return immediately. Wait first 752 * for any ordered extents that haven't completed yet. This is to make 753 * sure no one can dirty the same page ranges and call writepages() 754 * before the ordered extents complete - to avoid failures (-EEXIST) 755 * when adding the new ordered extents to the ordered tree. 756 */ 757 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); 758 759 end = orig_end; 760 while (1) { 761 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end); 762 if (!ordered) 763 break; 764 if (ordered->file_offset > orig_end) { 765 btrfs_put_ordered_extent(ordered); 766 break; 767 } 768 if (ordered->file_offset + ordered->num_bytes <= start) { 769 btrfs_put_ordered_extent(ordered); 770 break; 771 } 772 btrfs_start_ordered_extent(ordered, 1); 773 end = ordered->file_offset; 774 /* 775 * If the ordered extent had an error save the error but don't 776 * exit without waiting first for all other ordered extents in 777 * the range to complete. 778 */ 779 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 780 ret = -EIO; 781 btrfs_put_ordered_extent(ordered); 782 if (end == 0 || end == start) 783 break; 784 end--; 785 } 786 return ret_wb ? ret_wb : ret; 787} 788 789/* 790 * find an ordered extent corresponding to file_offset. return NULL if 791 * nothing is found, otherwise take a reference on the extent and return it 792 */ 793struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode, 794 u64 file_offset) 795{ 796 struct btrfs_ordered_inode_tree *tree; 797 struct rb_node *node; 798 struct btrfs_ordered_extent *entry = NULL; 799 unsigned long flags; 800 801 tree = &inode->ordered_tree; 802 spin_lock_irqsave(&tree->lock, flags); 803 node = tree_search(tree, file_offset); 804 if (!node) 805 goto out; 806 807 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 808 if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) 809 entry = NULL; 810 if (entry) 811 refcount_inc(&entry->refs); 812out: 813 spin_unlock_irqrestore(&tree->lock, flags); 814 return entry; 815} 816 817/* Since the DIO code tries to lock a wide area we need to look for any ordered 818 * extents that exist in the range, rather than just the start of the range. 819 */ 820struct btrfs_ordered_extent *btrfs_lookup_ordered_range( 821 struct btrfs_inode *inode, u64 file_offset, u64 len) 822{ 823 struct btrfs_ordered_inode_tree *tree; 824 struct rb_node *node; 825 struct btrfs_ordered_extent *entry = NULL; 826 827 tree = &inode->ordered_tree; 828 spin_lock_irq(&tree->lock); 829 node = tree_search(tree, file_offset); 830 if (!node) { 831 node = tree_search(tree, file_offset + len); 832 if (!node) 833 goto out; 834 } 835 836 while (1) { 837 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 838 if (range_overlaps(entry, file_offset, len)) 839 break; 840 841 if (entry->file_offset >= file_offset + len) { 842 entry = NULL; 843 break; 844 } 845 entry = NULL; 846 node = rb_next(node); 847 if (!node) 848 break; 849 } 850out: 851 if (entry) 852 refcount_inc(&entry->refs); 853 spin_unlock_irq(&tree->lock); 854 return entry; 855} 856 857/* 858 * Adds all ordered extents to the given list. The list ends up sorted by the 859 * file_offset of the ordered extents. 860 */ 861void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode, 862 struct list_head *list) 863{ 864 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 865 struct rb_node *n; 866 867 ASSERT(inode_is_locked(&inode->vfs_inode)); 868 869 spin_lock_irq(&tree->lock); 870 for (n = rb_first(&tree->tree); n; n = rb_next(n)) { 871 struct btrfs_ordered_extent *ordered; 872 873 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); 874 875 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) 876 continue; 877 878 ASSERT(list_empty(&ordered->log_list)); 879 list_add_tail(&ordered->log_list, list); 880 refcount_inc(&ordered->refs); 881 } 882 spin_unlock_irq(&tree->lock); 883} 884 885/* 886 * lookup and return any extent before 'file_offset'. NULL is returned 887 * if none is found 888 */ 889struct btrfs_ordered_extent * 890btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset) 891{ 892 struct btrfs_ordered_inode_tree *tree; 893 struct rb_node *node; 894 struct btrfs_ordered_extent *entry = NULL; 895 896 tree = &inode->ordered_tree; 897 spin_lock_irq(&tree->lock); 898 node = tree_search(tree, file_offset); 899 if (!node) 900 goto out; 901 902 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 903 refcount_inc(&entry->refs); 904out: 905 spin_unlock_irq(&tree->lock); 906 return entry; 907} 908 909/* 910 * Lookup the first ordered extent that overlaps the range 911 * [@file_offset, @file_offset + @len). 912 * 913 * The difference between this and btrfs_lookup_first_ordered_extent() is 914 * that this one won't return any ordered extent that does not overlap the range. 915 * And the difference against btrfs_lookup_ordered_extent() is, this function 916 * ensures the first ordered extent gets returned. 917 */ 918struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range( 919 struct btrfs_inode *inode, u64 file_offset, u64 len) 920{ 921 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; 922 struct rb_node *node; 923 struct rb_node *cur; 924 struct rb_node *prev; 925 struct rb_node *next; 926 struct btrfs_ordered_extent *entry = NULL; 927 928 spin_lock_irq(&tree->lock); 929 node = tree->tree.rb_node; 930 /* 931 * Here we don't want to use tree_search() which will use tree->last 932 * and screw up the search order. 933 * And __tree_search() can't return the adjacent ordered extents 934 * either, thus here we do our own search. 935 */ 936 while (node) { 937 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 938 939 if (file_offset < entry->file_offset) { 940 node = node->rb_left; 941 } else if (file_offset >= entry_end(entry)) { 942 node = node->rb_right; 943 } else { 944 /* 945 * Direct hit, got an ordered extent that starts at 946 * @file_offset 947 */ 948 goto out; 949 } 950 } 951 if (!entry) { 952 /* Empty tree */ 953 goto out; 954 } 955 956 cur = &entry->rb_node; 957 /* We got an entry around @file_offset, check adjacent entries */ 958 if (entry->file_offset < file_offset) { 959 prev = cur; 960 next = rb_next(cur); 961 } else { 962 prev = rb_prev(cur); 963 next = cur; 964 } 965 if (prev) { 966 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node); 967 if (range_overlaps(entry, file_offset, len)) 968 goto out; 969 } 970 if (next) { 971 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node); 972 if (range_overlaps(entry, file_offset, len)) 973 goto out; 974 } 975 /* No ordered extent in the range */ 976 entry = NULL; 977out: 978 if (entry) 979 refcount_inc(&entry->refs); 980 spin_unlock_irq(&tree->lock); 981 return entry; 982} 983 984/* 985 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending 986 * ordered extents in it are run to completion. 987 * 988 * @inode: Inode whose ordered tree is to be searched 989 * @start: Beginning of range to flush 990 * @end: Last byte of range to lock 991 * @cached_state: If passed, will return the extent state responsible for the 992 * locked range. It's the caller's responsibility to free the cached state. 993 * 994 * This function always returns with the given range locked, ensuring after it's 995 * called no order extent can be pending. 996 */ 997void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start, 998 u64 end, 999 struct extent_state **cached_state) 1000{ 1001 struct btrfs_ordered_extent *ordered; 1002 struct extent_state *cache = NULL; 1003 struct extent_state **cachedp = &cache; 1004 1005 if (cached_state) 1006 cachedp = cached_state; 1007 1008 while (1) { 1009 lock_extent_bits(&inode->io_tree, start, end, cachedp); 1010 ordered = btrfs_lookup_ordered_range(inode, start, 1011 end - start + 1); 1012 if (!ordered) { 1013 /* 1014 * If no external cached_state has been passed then 1015 * decrement the extra ref taken for cachedp since we 1016 * aren't exposing it outside of this function 1017 */ 1018 if (!cached_state) 1019 refcount_dec(&cache->refs); 1020 break; 1021 } 1022 unlock_extent_cached(&inode->io_tree, start, end, cachedp); 1023 btrfs_start_ordered_extent(ordered, 1); 1024 btrfs_put_ordered_extent(ordered); 1025 } 1026} 1027 1028static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos, 1029 u64 len) 1030{ 1031 struct inode *inode = ordered->inode; 1032 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1033 u64 file_offset = ordered->file_offset + pos; 1034 u64 disk_bytenr = ordered->disk_bytenr + pos; 1035 unsigned long flags = ordered->flags & BTRFS_ORDERED_TYPE_FLAGS; 1036 1037 /* 1038 * The splitting extent is already counted and will be added again in 1039 * btrfs_add_ordered_extent_*(). Subtract len to avoid double counting. 1040 */ 1041 percpu_counter_add_batch(&fs_info->ordered_bytes, -len, 1042 fs_info->delalloc_batch); 1043 WARN_ON_ONCE(flags & (1 << BTRFS_ORDERED_COMPRESSED)); 1044 return btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, len, len, 1045 disk_bytenr, len, 0, flags, 1046 ordered->compress_type); 1047} 1048 1049int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre, 1050 u64 post) 1051{ 1052 struct inode *inode = ordered->inode; 1053 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 1054 struct rb_node *node; 1055 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1056 int ret = 0; 1057 1058 spin_lock_irq(&tree->lock); 1059 /* Remove from tree once */ 1060 node = &ordered->rb_node; 1061 rb_erase(node, &tree->tree); 1062 RB_CLEAR_NODE(node); 1063 if (tree->last == node) 1064 tree->last = NULL; 1065 1066 ordered->file_offset += pre; 1067 ordered->disk_bytenr += pre; 1068 ordered->num_bytes -= (pre + post); 1069 ordered->disk_num_bytes -= (pre + post); 1070 ordered->bytes_left -= (pre + post); 1071 1072 /* Re-insert the node */ 1073 node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node); 1074 if (node) 1075 btrfs_panic(fs_info, -EEXIST, 1076 "zoned: inconsistency in ordered tree at offset %llu", 1077 ordered->file_offset); 1078 1079 spin_unlock_irq(&tree->lock); 1080 1081 if (pre) 1082 ret = clone_ordered_extent(ordered, 0, pre); 1083 if (ret == 0 && post) 1084 ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes, 1085 post); 1086 1087 return ret; 1088} 1089 1090int __init ordered_data_init(void) 1091{ 1092 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 1093 sizeof(struct btrfs_ordered_extent), 0, 1094 SLAB_MEM_SPREAD, 1095 NULL); 1096 if (!btrfs_ordered_extent_cache) 1097 return -ENOMEM; 1098 1099 return 0; 1100} 1101 1102void __cold ordered_data_exit(void) 1103{ 1104 kmem_cache_destroy(btrfs_ordered_extent_cache); 1105}