relocation.c (115721B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6#include <linux/sched.h> 7#include <linux/pagemap.h> 8#include <linux/writeback.h> 9#include <linux/blkdev.h> 10#include <linux/rbtree.h> 11#include <linux/slab.h> 12#include <linux/error-injection.h> 13#include "ctree.h" 14#include "disk-io.h" 15#include "transaction.h" 16#include "volumes.h" 17#include "locking.h" 18#include "btrfs_inode.h" 19#include "async-thread.h" 20#include "free-space-cache.h" 21#include "qgroup.h" 22#include "print-tree.h" 23#include "delalloc-space.h" 24#include "block-group.h" 25#include "backref.h" 26#include "misc.h" 27#include "subpage.h" 28#include "zoned.h" 29#include "inode-item.h" 30 31/* 32 * Relocation overview 33 * 34 * [What does relocation do] 35 * 36 * The objective of relocation is to relocate all extents of the target block 37 * group to other block groups. 38 * This is utilized by resize (shrink only), profile converting, compacting 39 * space, or balance routine to spread chunks over devices. 40 * 41 * Before | After 42 * ------------------------------------------------------------------ 43 * BG A: 10 data extents | BG A: deleted 44 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated) 45 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated) 46 * 47 * [How does relocation work] 48 * 49 * 1. Mark the target block group read-only 50 * New extents won't be allocated from the target block group. 51 * 52 * 2.1 Record each extent in the target block group 53 * To build a proper map of extents to be relocated. 54 * 55 * 2.2 Build data reloc tree and reloc trees 56 * Data reloc tree will contain an inode, recording all newly relocated 57 * data extents. 58 * There will be only one data reloc tree for one data block group. 59 * 60 * Reloc tree will be a special snapshot of its source tree, containing 61 * relocated tree blocks. 62 * Each tree referring to a tree block in target block group will get its 63 * reloc tree built. 64 * 65 * 2.3 Swap source tree with its corresponding reloc tree 66 * Each involved tree only refers to new extents after swap. 67 * 68 * 3. Cleanup reloc trees and data reloc tree. 69 * As old extents in the target block group are still referenced by reloc 70 * trees, we need to clean them up before really freeing the target block 71 * group. 72 * 73 * The main complexity is in steps 2.2 and 2.3. 74 * 75 * The entry point of relocation is relocate_block_group() function. 76 */ 77 78#define RELOCATION_RESERVED_NODES 256 79/* 80 * map address of tree root to tree 81 */ 82struct mapping_node { 83 struct { 84 struct rb_node rb_node; 85 u64 bytenr; 86 }; /* Use rb_simle_node for search/insert */ 87 void *data; 88}; 89 90struct mapping_tree { 91 struct rb_root rb_root; 92 spinlock_t lock; 93}; 94 95/* 96 * present a tree block to process 97 */ 98struct tree_block { 99 struct { 100 struct rb_node rb_node; 101 u64 bytenr; 102 }; /* Use rb_simple_node for search/insert */ 103 u64 owner; 104 struct btrfs_key key; 105 unsigned int level:8; 106 unsigned int key_ready:1; 107}; 108 109#define MAX_EXTENTS 128 110 111struct file_extent_cluster { 112 u64 start; 113 u64 end; 114 u64 boundary[MAX_EXTENTS]; 115 unsigned int nr; 116}; 117 118struct reloc_control { 119 /* block group to relocate */ 120 struct btrfs_block_group *block_group; 121 /* extent tree */ 122 struct btrfs_root *extent_root; 123 /* inode for moving data */ 124 struct inode *data_inode; 125 126 struct btrfs_block_rsv *block_rsv; 127 128 struct btrfs_backref_cache backref_cache; 129 130 struct file_extent_cluster cluster; 131 /* tree blocks have been processed */ 132 struct extent_io_tree processed_blocks; 133 /* map start of tree root to corresponding reloc tree */ 134 struct mapping_tree reloc_root_tree; 135 /* list of reloc trees */ 136 struct list_head reloc_roots; 137 /* list of subvolume trees that get relocated */ 138 struct list_head dirty_subvol_roots; 139 /* size of metadata reservation for merging reloc trees */ 140 u64 merging_rsv_size; 141 /* size of relocated tree nodes */ 142 u64 nodes_relocated; 143 /* reserved size for block group relocation*/ 144 u64 reserved_bytes; 145 146 u64 search_start; 147 u64 extents_found; 148 149 unsigned int stage:8; 150 unsigned int create_reloc_tree:1; 151 unsigned int merge_reloc_tree:1; 152 unsigned int found_file_extent:1; 153}; 154 155/* stages of data relocation */ 156#define MOVE_DATA_EXTENTS 0 157#define UPDATE_DATA_PTRS 1 158 159static void mark_block_processed(struct reloc_control *rc, 160 struct btrfs_backref_node *node) 161{ 162 u32 blocksize; 163 164 if (node->level == 0 || 165 in_range(node->bytenr, rc->block_group->start, 166 rc->block_group->length)) { 167 blocksize = rc->extent_root->fs_info->nodesize; 168 set_extent_bits(&rc->processed_blocks, node->bytenr, 169 node->bytenr + blocksize - 1, EXTENT_DIRTY); 170 } 171 node->processed = 1; 172} 173 174 175static void mapping_tree_init(struct mapping_tree *tree) 176{ 177 tree->rb_root = RB_ROOT; 178 spin_lock_init(&tree->lock); 179} 180 181/* 182 * walk up backref nodes until reach node presents tree root 183 */ 184static struct btrfs_backref_node *walk_up_backref( 185 struct btrfs_backref_node *node, 186 struct btrfs_backref_edge *edges[], int *index) 187{ 188 struct btrfs_backref_edge *edge; 189 int idx = *index; 190 191 while (!list_empty(&node->upper)) { 192 edge = list_entry(node->upper.next, 193 struct btrfs_backref_edge, list[LOWER]); 194 edges[idx++] = edge; 195 node = edge->node[UPPER]; 196 } 197 BUG_ON(node->detached); 198 *index = idx; 199 return node; 200} 201 202/* 203 * walk down backref nodes to find start of next reference path 204 */ 205static struct btrfs_backref_node *walk_down_backref( 206 struct btrfs_backref_edge *edges[], int *index) 207{ 208 struct btrfs_backref_edge *edge; 209 struct btrfs_backref_node *lower; 210 int idx = *index; 211 212 while (idx > 0) { 213 edge = edges[idx - 1]; 214 lower = edge->node[LOWER]; 215 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 216 idx--; 217 continue; 218 } 219 edge = list_entry(edge->list[LOWER].next, 220 struct btrfs_backref_edge, list[LOWER]); 221 edges[idx - 1] = edge; 222 *index = idx; 223 return edge->node[UPPER]; 224 } 225 *index = 0; 226 return NULL; 227} 228 229static void update_backref_node(struct btrfs_backref_cache *cache, 230 struct btrfs_backref_node *node, u64 bytenr) 231{ 232 struct rb_node *rb_node; 233 rb_erase(&node->rb_node, &cache->rb_root); 234 node->bytenr = bytenr; 235 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node); 236 if (rb_node) 237 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST); 238} 239 240/* 241 * update backref cache after a transaction commit 242 */ 243static int update_backref_cache(struct btrfs_trans_handle *trans, 244 struct btrfs_backref_cache *cache) 245{ 246 struct btrfs_backref_node *node; 247 int level = 0; 248 249 if (cache->last_trans == 0) { 250 cache->last_trans = trans->transid; 251 return 0; 252 } 253 254 if (cache->last_trans == trans->transid) 255 return 0; 256 257 /* 258 * detached nodes are used to avoid unnecessary backref 259 * lookup. transaction commit changes the extent tree. 260 * so the detached nodes are no longer useful. 261 */ 262 while (!list_empty(&cache->detached)) { 263 node = list_entry(cache->detached.next, 264 struct btrfs_backref_node, list); 265 btrfs_backref_cleanup_node(cache, node); 266 } 267 268 while (!list_empty(&cache->changed)) { 269 node = list_entry(cache->changed.next, 270 struct btrfs_backref_node, list); 271 list_del_init(&node->list); 272 BUG_ON(node->pending); 273 update_backref_node(cache, node, node->new_bytenr); 274 } 275 276 /* 277 * some nodes can be left in the pending list if there were 278 * errors during processing the pending nodes. 279 */ 280 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 281 list_for_each_entry(node, &cache->pending[level], list) { 282 BUG_ON(!node->pending); 283 if (node->bytenr == node->new_bytenr) 284 continue; 285 update_backref_node(cache, node, node->new_bytenr); 286 } 287 } 288 289 cache->last_trans = 0; 290 return 1; 291} 292 293static bool reloc_root_is_dead(struct btrfs_root *root) 294{ 295 /* 296 * Pair with set_bit/clear_bit in clean_dirty_subvols and 297 * btrfs_update_reloc_root. We need to see the updated bit before 298 * trying to access reloc_root 299 */ 300 smp_rmb(); 301 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) 302 return true; 303 return false; 304} 305 306/* 307 * Check if this subvolume tree has valid reloc tree. 308 * 309 * Reloc tree after swap is considered dead, thus not considered as valid. 310 * This is enough for most callers, as they don't distinguish dead reloc root 311 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a 312 * special case. 313 */ 314static bool have_reloc_root(struct btrfs_root *root) 315{ 316 if (reloc_root_is_dead(root)) 317 return false; 318 if (!root->reloc_root) 319 return false; 320 return true; 321} 322 323int btrfs_should_ignore_reloc_root(struct btrfs_root *root) 324{ 325 struct btrfs_root *reloc_root; 326 327 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 328 return 0; 329 330 /* This root has been merged with its reloc tree, we can ignore it */ 331 if (reloc_root_is_dead(root)) 332 return 1; 333 334 reloc_root = root->reloc_root; 335 if (!reloc_root) 336 return 0; 337 338 if (btrfs_header_generation(reloc_root->commit_root) == 339 root->fs_info->running_transaction->transid) 340 return 0; 341 /* 342 * if there is reloc tree and it was created in previous 343 * transaction backref lookup can find the reloc tree, 344 * so backref node for the fs tree root is useless for 345 * relocation. 346 */ 347 return 1; 348} 349 350/* 351 * find reloc tree by address of tree root 352 */ 353struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr) 354{ 355 struct reloc_control *rc = fs_info->reloc_ctl; 356 struct rb_node *rb_node; 357 struct mapping_node *node; 358 struct btrfs_root *root = NULL; 359 360 ASSERT(rc); 361 spin_lock(&rc->reloc_root_tree.lock); 362 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr); 363 if (rb_node) { 364 node = rb_entry(rb_node, struct mapping_node, rb_node); 365 root = node->data; 366 } 367 spin_unlock(&rc->reloc_root_tree.lock); 368 return btrfs_grab_root(root); 369} 370 371/* 372 * For useless nodes, do two major clean ups: 373 * 374 * - Cleanup the children edges and nodes 375 * If child node is also orphan (no parent) during cleanup, then the child 376 * node will also be cleaned up. 377 * 378 * - Freeing up leaves (level 0), keeps nodes detached 379 * For nodes, the node is still cached as "detached" 380 * 381 * Return false if @node is not in the @useless_nodes list. 382 * Return true if @node is in the @useless_nodes list. 383 */ 384static bool handle_useless_nodes(struct reloc_control *rc, 385 struct btrfs_backref_node *node) 386{ 387 struct btrfs_backref_cache *cache = &rc->backref_cache; 388 struct list_head *useless_node = &cache->useless_node; 389 bool ret = false; 390 391 while (!list_empty(useless_node)) { 392 struct btrfs_backref_node *cur; 393 394 cur = list_first_entry(useless_node, struct btrfs_backref_node, 395 list); 396 list_del_init(&cur->list); 397 398 /* Only tree root nodes can be added to @useless_nodes */ 399 ASSERT(list_empty(&cur->upper)); 400 401 if (cur == node) 402 ret = true; 403 404 /* The node is the lowest node */ 405 if (cur->lowest) { 406 list_del_init(&cur->lower); 407 cur->lowest = 0; 408 } 409 410 /* Cleanup the lower edges */ 411 while (!list_empty(&cur->lower)) { 412 struct btrfs_backref_edge *edge; 413 struct btrfs_backref_node *lower; 414 415 edge = list_entry(cur->lower.next, 416 struct btrfs_backref_edge, list[UPPER]); 417 list_del(&edge->list[UPPER]); 418 list_del(&edge->list[LOWER]); 419 lower = edge->node[LOWER]; 420 btrfs_backref_free_edge(cache, edge); 421 422 /* Child node is also orphan, queue for cleanup */ 423 if (list_empty(&lower->upper)) 424 list_add(&lower->list, useless_node); 425 } 426 /* Mark this block processed for relocation */ 427 mark_block_processed(rc, cur); 428 429 /* 430 * Backref nodes for tree leaves are deleted from the cache. 431 * Backref nodes for upper level tree blocks are left in the 432 * cache to avoid unnecessary backref lookup. 433 */ 434 if (cur->level > 0) { 435 list_add(&cur->list, &cache->detached); 436 cur->detached = 1; 437 } else { 438 rb_erase(&cur->rb_node, &cache->rb_root); 439 btrfs_backref_free_node(cache, cur); 440 } 441 } 442 return ret; 443} 444 445/* 446 * Build backref tree for a given tree block. Root of the backref tree 447 * corresponds the tree block, leaves of the backref tree correspond roots of 448 * b-trees that reference the tree block. 449 * 450 * The basic idea of this function is check backrefs of a given block to find 451 * upper level blocks that reference the block, and then check backrefs of 452 * these upper level blocks recursively. The recursion stops when tree root is 453 * reached or backrefs for the block is cached. 454 * 455 * NOTE: if we find that backrefs for a block are cached, we know backrefs for 456 * all upper level blocks that directly/indirectly reference the block are also 457 * cached. 458 */ 459static noinline_for_stack struct btrfs_backref_node *build_backref_tree( 460 struct reloc_control *rc, struct btrfs_key *node_key, 461 int level, u64 bytenr) 462{ 463 struct btrfs_backref_iter *iter; 464 struct btrfs_backref_cache *cache = &rc->backref_cache; 465 /* For searching parent of TREE_BLOCK_REF */ 466 struct btrfs_path *path; 467 struct btrfs_backref_node *cur; 468 struct btrfs_backref_node *node = NULL; 469 struct btrfs_backref_edge *edge; 470 int ret; 471 int err = 0; 472 473 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS); 474 if (!iter) 475 return ERR_PTR(-ENOMEM); 476 path = btrfs_alloc_path(); 477 if (!path) { 478 err = -ENOMEM; 479 goto out; 480 } 481 482 node = btrfs_backref_alloc_node(cache, bytenr, level); 483 if (!node) { 484 err = -ENOMEM; 485 goto out; 486 } 487 488 node->lowest = 1; 489 cur = node; 490 491 /* Breadth-first search to build backref cache */ 492 do { 493 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key, 494 cur); 495 if (ret < 0) { 496 err = ret; 497 goto out; 498 } 499 edge = list_first_entry_or_null(&cache->pending_edge, 500 struct btrfs_backref_edge, list[UPPER]); 501 /* 502 * The pending list isn't empty, take the first block to 503 * process 504 */ 505 if (edge) { 506 list_del_init(&edge->list[UPPER]); 507 cur = edge->node[UPPER]; 508 } 509 } while (edge); 510 511 /* Finish the upper linkage of newly added edges/nodes */ 512 ret = btrfs_backref_finish_upper_links(cache, node); 513 if (ret < 0) { 514 err = ret; 515 goto out; 516 } 517 518 if (handle_useless_nodes(rc, node)) 519 node = NULL; 520out: 521 btrfs_backref_iter_free(iter); 522 btrfs_free_path(path); 523 if (err) { 524 btrfs_backref_error_cleanup(cache, node); 525 return ERR_PTR(err); 526 } 527 ASSERT(!node || !node->detached); 528 ASSERT(list_empty(&cache->useless_node) && 529 list_empty(&cache->pending_edge)); 530 return node; 531} 532 533/* 534 * helper to add backref node for the newly created snapshot. 535 * the backref node is created by cloning backref node that 536 * corresponds to root of source tree 537 */ 538static int clone_backref_node(struct btrfs_trans_handle *trans, 539 struct reloc_control *rc, 540 struct btrfs_root *src, 541 struct btrfs_root *dest) 542{ 543 struct btrfs_root *reloc_root = src->reloc_root; 544 struct btrfs_backref_cache *cache = &rc->backref_cache; 545 struct btrfs_backref_node *node = NULL; 546 struct btrfs_backref_node *new_node; 547 struct btrfs_backref_edge *edge; 548 struct btrfs_backref_edge *new_edge; 549 struct rb_node *rb_node; 550 551 if (cache->last_trans > 0) 552 update_backref_cache(trans, cache); 553 554 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start); 555 if (rb_node) { 556 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 557 if (node->detached) 558 node = NULL; 559 else 560 BUG_ON(node->new_bytenr != reloc_root->node->start); 561 } 562 563 if (!node) { 564 rb_node = rb_simple_search(&cache->rb_root, 565 reloc_root->commit_root->start); 566 if (rb_node) { 567 node = rb_entry(rb_node, struct btrfs_backref_node, 568 rb_node); 569 BUG_ON(node->detached); 570 } 571 } 572 573 if (!node) 574 return 0; 575 576 new_node = btrfs_backref_alloc_node(cache, dest->node->start, 577 node->level); 578 if (!new_node) 579 return -ENOMEM; 580 581 new_node->lowest = node->lowest; 582 new_node->checked = 1; 583 new_node->root = btrfs_grab_root(dest); 584 ASSERT(new_node->root); 585 586 if (!node->lowest) { 587 list_for_each_entry(edge, &node->lower, list[UPPER]) { 588 new_edge = btrfs_backref_alloc_edge(cache); 589 if (!new_edge) 590 goto fail; 591 592 btrfs_backref_link_edge(new_edge, edge->node[LOWER], 593 new_node, LINK_UPPER); 594 } 595 } else { 596 list_add_tail(&new_node->lower, &cache->leaves); 597 } 598 599 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr, 600 &new_node->rb_node); 601 if (rb_node) 602 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST); 603 604 if (!new_node->lowest) { 605 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 606 list_add_tail(&new_edge->list[LOWER], 607 &new_edge->node[LOWER]->upper); 608 } 609 } 610 return 0; 611fail: 612 while (!list_empty(&new_node->lower)) { 613 new_edge = list_entry(new_node->lower.next, 614 struct btrfs_backref_edge, list[UPPER]); 615 list_del(&new_edge->list[UPPER]); 616 btrfs_backref_free_edge(cache, new_edge); 617 } 618 btrfs_backref_free_node(cache, new_node); 619 return -ENOMEM; 620} 621 622/* 623 * helper to add 'address of tree root -> reloc tree' mapping 624 */ 625static int __must_check __add_reloc_root(struct btrfs_root *root) 626{ 627 struct btrfs_fs_info *fs_info = root->fs_info; 628 struct rb_node *rb_node; 629 struct mapping_node *node; 630 struct reloc_control *rc = fs_info->reloc_ctl; 631 632 node = kmalloc(sizeof(*node), GFP_NOFS); 633 if (!node) 634 return -ENOMEM; 635 636 node->bytenr = root->commit_root->start; 637 node->data = root; 638 639 spin_lock(&rc->reloc_root_tree.lock); 640 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 641 node->bytenr, &node->rb_node); 642 spin_unlock(&rc->reloc_root_tree.lock); 643 if (rb_node) { 644 btrfs_err(fs_info, 645 "Duplicate root found for start=%llu while inserting into relocation tree", 646 node->bytenr); 647 return -EEXIST; 648 } 649 650 list_add_tail(&root->root_list, &rc->reloc_roots); 651 return 0; 652} 653 654/* 655 * helper to delete the 'address of tree root -> reloc tree' 656 * mapping 657 */ 658static void __del_reloc_root(struct btrfs_root *root) 659{ 660 struct btrfs_fs_info *fs_info = root->fs_info; 661 struct rb_node *rb_node; 662 struct mapping_node *node = NULL; 663 struct reloc_control *rc = fs_info->reloc_ctl; 664 bool put_ref = false; 665 666 if (rc && root->node) { 667 spin_lock(&rc->reloc_root_tree.lock); 668 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 669 root->commit_root->start); 670 if (rb_node) { 671 node = rb_entry(rb_node, struct mapping_node, rb_node); 672 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 673 RB_CLEAR_NODE(&node->rb_node); 674 } 675 spin_unlock(&rc->reloc_root_tree.lock); 676 ASSERT(!node || (struct btrfs_root *)node->data == root); 677 } 678 679 /* 680 * We only put the reloc root here if it's on the list. There's a lot 681 * of places where the pattern is to splice the rc->reloc_roots, process 682 * the reloc roots, and then add the reloc root back onto 683 * rc->reloc_roots. If we call __del_reloc_root while it's off of the 684 * list we don't want the reference being dropped, because the guy 685 * messing with the list is in charge of the reference. 686 */ 687 spin_lock(&fs_info->trans_lock); 688 if (!list_empty(&root->root_list)) { 689 put_ref = true; 690 list_del_init(&root->root_list); 691 } 692 spin_unlock(&fs_info->trans_lock); 693 if (put_ref) 694 btrfs_put_root(root); 695 kfree(node); 696} 697 698/* 699 * helper to update the 'address of tree root -> reloc tree' 700 * mapping 701 */ 702static int __update_reloc_root(struct btrfs_root *root) 703{ 704 struct btrfs_fs_info *fs_info = root->fs_info; 705 struct rb_node *rb_node; 706 struct mapping_node *node = NULL; 707 struct reloc_control *rc = fs_info->reloc_ctl; 708 709 spin_lock(&rc->reloc_root_tree.lock); 710 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 711 root->commit_root->start); 712 if (rb_node) { 713 node = rb_entry(rb_node, struct mapping_node, rb_node); 714 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 715 } 716 spin_unlock(&rc->reloc_root_tree.lock); 717 718 if (!node) 719 return 0; 720 BUG_ON((struct btrfs_root *)node->data != root); 721 722 spin_lock(&rc->reloc_root_tree.lock); 723 node->bytenr = root->node->start; 724 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 725 node->bytenr, &node->rb_node); 726 spin_unlock(&rc->reloc_root_tree.lock); 727 if (rb_node) 728 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST); 729 return 0; 730} 731 732static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 733 struct btrfs_root *root, u64 objectid) 734{ 735 struct btrfs_fs_info *fs_info = root->fs_info; 736 struct btrfs_root *reloc_root; 737 struct extent_buffer *eb; 738 struct btrfs_root_item *root_item; 739 struct btrfs_key root_key; 740 int ret = 0; 741 bool must_abort = false; 742 743 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 744 if (!root_item) 745 return ERR_PTR(-ENOMEM); 746 747 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 748 root_key.type = BTRFS_ROOT_ITEM_KEY; 749 root_key.offset = objectid; 750 751 if (root->root_key.objectid == objectid) { 752 u64 commit_root_gen; 753 754 /* called by btrfs_init_reloc_root */ 755 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 756 BTRFS_TREE_RELOC_OBJECTID); 757 if (ret) 758 goto fail; 759 760 /* 761 * Set the last_snapshot field to the generation of the commit 762 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 763 * correctly (returns true) when the relocation root is created 764 * either inside the critical section of a transaction commit 765 * (through transaction.c:qgroup_account_snapshot()) and when 766 * it's created before the transaction commit is started. 767 */ 768 commit_root_gen = btrfs_header_generation(root->commit_root); 769 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 770 } else { 771 /* 772 * called by btrfs_reloc_post_snapshot_hook. 773 * the source tree is a reloc tree, all tree blocks 774 * modified after it was created have RELOC flag 775 * set in their headers. so it's OK to not update 776 * the 'last_snapshot'. 777 */ 778 ret = btrfs_copy_root(trans, root, root->node, &eb, 779 BTRFS_TREE_RELOC_OBJECTID); 780 if (ret) 781 goto fail; 782 } 783 784 /* 785 * We have changed references at this point, we must abort the 786 * transaction if anything fails. 787 */ 788 must_abort = true; 789 790 memcpy(root_item, &root->root_item, sizeof(*root_item)); 791 btrfs_set_root_bytenr(root_item, eb->start); 792 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 793 btrfs_set_root_generation(root_item, trans->transid); 794 795 if (root->root_key.objectid == objectid) { 796 btrfs_set_root_refs(root_item, 0); 797 memset(&root_item->drop_progress, 0, 798 sizeof(struct btrfs_disk_key)); 799 btrfs_set_root_drop_level(root_item, 0); 800 } 801 802 btrfs_tree_unlock(eb); 803 free_extent_buffer(eb); 804 805 ret = btrfs_insert_root(trans, fs_info->tree_root, 806 &root_key, root_item); 807 if (ret) 808 goto fail; 809 810 kfree(root_item); 811 812 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key); 813 if (IS_ERR(reloc_root)) { 814 ret = PTR_ERR(reloc_root); 815 goto abort; 816 } 817 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 818 reloc_root->last_trans = trans->transid; 819 return reloc_root; 820fail: 821 kfree(root_item); 822abort: 823 if (must_abort) 824 btrfs_abort_transaction(trans, ret); 825 return ERR_PTR(ret); 826} 827 828/* 829 * create reloc tree for a given fs tree. reloc tree is just a 830 * snapshot of the fs tree with special root objectid. 831 * 832 * The reloc_root comes out of here with two references, one for 833 * root->reloc_root, and another for being on the rc->reloc_roots list. 834 */ 835int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 836 struct btrfs_root *root) 837{ 838 struct btrfs_fs_info *fs_info = root->fs_info; 839 struct btrfs_root *reloc_root; 840 struct reloc_control *rc = fs_info->reloc_ctl; 841 struct btrfs_block_rsv *rsv; 842 int clear_rsv = 0; 843 int ret; 844 845 if (!rc) 846 return 0; 847 848 /* 849 * The subvolume has reloc tree but the swap is finished, no need to 850 * create/update the dead reloc tree 851 */ 852 if (reloc_root_is_dead(root)) 853 return 0; 854 855 /* 856 * This is subtle but important. We do not do 857 * record_root_in_transaction for reloc roots, instead we record their 858 * corresponding fs root, and then here we update the last trans for the 859 * reloc root. This means that we have to do this for the entire life 860 * of the reloc root, regardless of which stage of the relocation we are 861 * in. 862 */ 863 if (root->reloc_root) { 864 reloc_root = root->reloc_root; 865 reloc_root->last_trans = trans->transid; 866 return 0; 867 } 868 869 /* 870 * We are merging reloc roots, we do not need new reloc trees. Also 871 * reloc trees never need their own reloc tree. 872 */ 873 if (!rc->create_reloc_tree || 874 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 875 return 0; 876 877 if (!trans->reloc_reserved) { 878 rsv = trans->block_rsv; 879 trans->block_rsv = rc->block_rsv; 880 clear_rsv = 1; 881 } 882 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 883 if (clear_rsv) 884 trans->block_rsv = rsv; 885 if (IS_ERR(reloc_root)) 886 return PTR_ERR(reloc_root); 887 888 ret = __add_reloc_root(reloc_root); 889 ASSERT(ret != -EEXIST); 890 if (ret) { 891 /* Pairs with create_reloc_root */ 892 btrfs_put_root(reloc_root); 893 return ret; 894 } 895 root->reloc_root = btrfs_grab_root(reloc_root); 896 return 0; 897} 898 899/* 900 * update root item of reloc tree 901 */ 902int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 903 struct btrfs_root *root) 904{ 905 struct btrfs_fs_info *fs_info = root->fs_info; 906 struct btrfs_root *reloc_root; 907 struct btrfs_root_item *root_item; 908 int ret; 909 910 if (!have_reloc_root(root)) 911 return 0; 912 913 reloc_root = root->reloc_root; 914 root_item = &reloc_root->root_item; 915 916 /* 917 * We are probably ok here, but __del_reloc_root() will drop its ref of 918 * the root. We have the ref for root->reloc_root, but just in case 919 * hold it while we update the reloc root. 920 */ 921 btrfs_grab_root(reloc_root); 922 923 /* root->reloc_root will stay until current relocation finished */ 924 if (fs_info->reloc_ctl->merge_reloc_tree && 925 btrfs_root_refs(root_item) == 0) { 926 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 927 /* 928 * Mark the tree as dead before we change reloc_root so 929 * have_reloc_root will not touch it from now on. 930 */ 931 smp_wmb(); 932 __del_reloc_root(reloc_root); 933 } 934 935 if (reloc_root->commit_root != reloc_root->node) { 936 __update_reloc_root(reloc_root); 937 btrfs_set_root_node(root_item, reloc_root->node); 938 free_extent_buffer(reloc_root->commit_root); 939 reloc_root->commit_root = btrfs_root_node(reloc_root); 940 } 941 942 ret = btrfs_update_root(trans, fs_info->tree_root, 943 &reloc_root->root_key, root_item); 944 btrfs_put_root(reloc_root); 945 return ret; 946} 947 948/* 949 * helper to find first cached inode with inode number >= objectid 950 * in a subvolume 951 */ 952static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 953{ 954 struct rb_node *node; 955 struct rb_node *prev; 956 struct btrfs_inode *entry; 957 struct inode *inode; 958 959 spin_lock(&root->inode_lock); 960again: 961 node = root->inode_tree.rb_node; 962 prev = NULL; 963 while (node) { 964 prev = node; 965 entry = rb_entry(node, struct btrfs_inode, rb_node); 966 967 if (objectid < btrfs_ino(entry)) 968 node = node->rb_left; 969 else if (objectid > btrfs_ino(entry)) 970 node = node->rb_right; 971 else 972 break; 973 } 974 if (!node) { 975 while (prev) { 976 entry = rb_entry(prev, struct btrfs_inode, rb_node); 977 if (objectid <= btrfs_ino(entry)) { 978 node = prev; 979 break; 980 } 981 prev = rb_next(prev); 982 } 983 } 984 while (node) { 985 entry = rb_entry(node, struct btrfs_inode, rb_node); 986 inode = igrab(&entry->vfs_inode); 987 if (inode) { 988 spin_unlock(&root->inode_lock); 989 return inode; 990 } 991 992 objectid = btrfs_ino(entry) + 1; 993 if (cond_resched_lock(&root->inode_lock)) 994 goto again; 995 996 node = rb_next(node); 997 } 998 spin_unlock(&root->inode_lock); 999 return NULL; 1000} 1001 1002/* 1003 * get new location of data 1004 */ 1005static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1006 u64 bytenr, u64 num_bytes) 1007{ 1008 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1009 struct btrfs_path *path; 1010 struct btrfs_file_extent_item *fi; 1011 struct extent_buffer *leaf; 1012 int ret; 1013 1014 path = btrfs_alloc_path(); 1015 if (!path) 1016 return -ENOMEM; 1017 1018 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1019 ret = btrfs_lookup_file_extent(NULL, root, path, 1020 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 1021 if (ret < 0) 1022 goto out; 1023 if (ret > 0) { 1024 ret = -ENOENT; 1025 goto out; 1026 } 1027 1028 leaf = path->nodes[0]; 1029 fi = btrfs_item_ptr(leaf, path->slots[0], 1030 struct btrfs_file_extent_item); 1031 1032 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1033 btrfs_file_extent_compression(leaf, fi) || 1034 btrfs_file_extent_encryption(leaf, fi) || 1035 btrfs_file_extent_other_encoding(leaf, fi)); 1036 1037 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1038 ret = -EINVAL; 1039 goto out; 1040 } 1041 1042 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1043 ret = 0; 1044out: 1045 btrfs_free_path(path); 1046 return ret; 1047} 1048 1049/* 1050 * update file extent items in the tree leaf to point to 1051 * the new locations. 1052 */ 1053static noinline_for_stack 1054int replace_file_extents(struct btrfs_trans_handle *trans, 1055 struct reloc_control *rc, 1056 struct btrfs_root *root, 1057 struct extent_buffer *leaf) 1058{ 1059 struct btrfs_fs_info *fs_info = root->fs_info; 1060 struct btrfs_key key; 1061 struct btrfs_file_extent_item *fi; 1062 struct inode *inode = NULL; 1063 u64 parent; 1064 u64 bytenr; 1065 u64 new_bytenr = 0; 1066 u64 num_bytes; 1067 u64 end; 1068 u32 nritems; 1069 u32 i; 1070 int ret = 0; 1071 int first = 1; 1072 int dirty = 0; 1073 1074 if (rc->stage != UPDATE_DATA_PTRS) 1075 return 0; 1076 1077 /* reloc trees always use full backref */ 1078 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1079 parent = leaf->start; 1080 else 1081 parent = 0; 1082 1083 nritems = btrfs_header_nritems(leaf); 1084 for (i = 0; i < nritems; i++) { 1085 struct btrfs_ref ref = { 0 }; 1086 1087 cond_resched(); 1088 btrfs_item_key_to_cpu(leaf, &key, i); 1089 if (key.type != BTRFS_EXTENT_DATA_KEY) 1090 continue; 1091 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1092 if (btrfs_file_extent_type(leaf, fi) == 1093 BTRFS_FILE_EXTENT_INLINE) 1094 continue; 1095 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1096 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1097 if (bytenr == 0) 1098 continue; 1099 if (!in_range(bytenr, rc->block_group->start, 1100 rc->block_group->length)) 1101 continue; 1102 1103 /* 1104 * if we are modifying block in fs tree, wait for read_folio 1105 * to complete and drop the extent cache 1106 */ 1107 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1108 if (first) { 1109 inode = find_next_inode(root, key.objectid); 1110 first = 0; 1111 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1112 btrfs_add_delayed_iput(inode); 1113 inode = find_next_inode(root, key.objectid); 1114 } 1115 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1116 end = key.offset + 1117 btrfs_file_extent_num_bytes(leaf, fi); 1118 WARN_ON(!IS_ALIGNED(key.offset, 1119 fs_info->sectorsize)); 1120 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1121 end--; 1122 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1123 key.offset, end); 1124 if (!ret) 1125 continue; 1126 1127 btrfs_drop_extent_cache(BTRFS_I(inode), 1128 key.offset, end, 1); 1129 unlock_extent(&BTRFS_I(inode)->io_tree, 1130 key.offset, end); 1131 } 1132 } 1133 1134 ret = get_new_location(rc->data_inode, &new_bytenr, 1135 bytenr, num_bytes); 1136 if (ret) { 1137 /* 1138 * Don't have to abort since we've not changed anything 1139 * in the file extent yet. 1140 */ 1141 break; 1142 } 1143 1144 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1145 dirty = 1; 1146 1147 key.offset -= btrfs_file_extent_offset(leaf, fi); 1148 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1149 num_bytes, parent); 1150 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1151 key.objectid, key.offset, 1152 root->root_key.objectid, false); 1153 ret = btrfs_inc_extent_ref(trans, &ref); 1154 if (ret) { 1155 btrfs_abort_transaction(trans, ret); 1156 break; 1157 } 1158 1159 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1160 num_bytes, parent); 1161 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1162 key.objectid, key.offset, 1163 root->root_key.objectid, false); 1164 ret = btrfs_free_extent(trans, &ref); 1165 if (ret) { 1166 btrfs_abort_transaction(trans, ret); 1167 break; 1168 } 1169 } 1170 if (dirty) 1171 btrfs_mark_buffer_dirty(leaf); 1172 if (inode) 1173 btrfs_add_delayed_iput(inode); 1174 return ret; 1175} 1176 1177static noinline_for_stack 1178int memcmp_node_keys(struct extent_buffer *eb, int slot, 1179 struct btrfs_path *path, int level) 1180{ 1181 struct btrfs_disk_key key1; 1182 struct btrfs_disk_key key2; 1183 btrfs_node_key(eb, &key1, slot); 1184 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1185 return memcmp(&key1, &key2, sizeof(key1)); 1186} 1187 1188/* 1189 * try to replace tree blocks in fs tree with the new blocks 1190 * in reloc tree. tree blocks haven't been modified since the 1191 * reloc tree was create can be replaced. 1192 * 1193 * if a block was replaced, level of the block + 1 is returned. 1194 * if no block got replaced, 0 is returned. if there are other 1195 * errors, a negative error number is returned. 1196 */ 1197static noinline_for_stack 1198int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 1199 struct btrfs_root *dest, struct btrfs_root *src, 1200 struct btrfs_path *path, struct btrfs_key *next_key, 1201 int lowest_level, int max_level) 1202{ 1203 struct btrfs_fs_info *fs_info = dest->fs_info; 1204 struct extent_buffer *eb; 1205 struct extent_buffer *parent; 1206 struct btrfs_ref ref = { 0 }; 1207 struct btrfs_key key; 1208 u64 old_bytenr; 1209 u64 new_bytenr; 1210 u64 old_ptr_gen; 1211 u64 new_ptr_gen; 1212 u64 last_snapshot; 1213 u32 blocksize; 1214 int cow = 0; 1215 int level; 1216 int ret; 1217 int slot; 1218 1219 ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1220 ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1221 1222 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1223again: 1224 slot = path->slots[lowest_level]; 1225 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1226 1227 eb = btrfs_lock_root_node(dest); 1228 level = btrfs_header_level(eb); 1229 1230 if (level < lowest_level) { 1231 btrfs_tree_unlock(eb); 1232 free_extent_buffer(eb); 1233 return 0; 1234 } 1235 1236 if (cow) { 1237 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb, 1238 BTRFS_NESTING_COW); 1239 if (ret) { 1240 btrfs_tree_unlock(eb); 1241 free_extent_buffer(eb); 1242 return ret; 1243 } 1244 } 1245 1246 if (next_key) { 1247 next_key->objectid = (u64)-1; 1248 next_key->type = (u8)-1; 1249 next_key->offset = (u64)-1; 1250 } 1251 1252 parent = eb; 1253 while (1) { 1254 level = btrfs_header_level(parent); 1255 ASSERT(level >= lowest_level); 1256 1257 ret = btrfs_bin_search(parent, &key, &slot); 1258 if (ret < 0) 1259 break; 1260 if (ret && slot > 0) 1261 slot--; 1262 1263 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1264 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1265 1266 old_bytenr = btrfs_node_blockptr(parent, slot); 1267 blocksize = fs_info->nodesize; 1268 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1269 1270 if (level <= max_level) { 1271 eb = path->nodes[level]; 1272 new_bytenr = btrfs_node_blockptr(eb, 1273 path->slots[level]); 1274 new_ptr_gen = btrfs_node_ptr_generation(eb, 1275 path->slots[level]); 1276 } else { 1277 new_bytenr = 0; 1278 new_ptr_gen = 0; 1279 } 1280 1281 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1282 ret = level; 1283 break; 1284 } 1285 1286 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1287 memcmp_node_keys(parent, slot, path, level)) { 1288 if (level <= lowest_level) { 1289 ret = 0; 1290 break; 1291 } 1292 1293 eb = btrfs_read_node_slot(parent, slot); 1294 if (IS_ERR(eb)) { 1295 ret = PTR_ERR(eb); 1296 break; 1297 } 1298 btrfs_tree_lock(eb); 1299 if (cow) { 1300 ret = btrfs_cow_block(trans, dest, eb, parent, 1301 slot, &eb, 1302 BTRFS_NESTING_COW); 1303 if (ret) { 1304 btrfs_tree_unlock(eb); 1305 free_extent_buffer(eb); 1306 break; 1307 } 1308 } 1309 1310 btrfs_tree_unlock(parent); 1311 free_extent_buffer(parent); 1312 1313 parent = eb; 1314 continue; 1315 } 1316 1317 if (!cow) { 1318 btrfs_tree_unlock(parent); 1319 free_extent_buffer(parent); 1320 cow = 1; 1321 goto again; 1322 } 1323 1324 btrfs_node_key_to_cpu(path->nodes[level], &key, 1325 path->slots[level]); 1326 btrfs_release_path(path); 1327 1328 path->lowest_level = level; 1329 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1330 path->lowest_level = 0; 1331 if (ret) { 1332 if (ret > 0) 1333 ret = -ENOENT; 1334 break; 1335 } 1336 1337 /* 1338 * Info qgroup to trace both subtrees. 1339 * 1340 * We must trace both trees. 1341 * 1) Tree reloc subtree 1342 * If not traced, we will leak data numbers 1343 * 2) Fs subtree 1344 * If not traced, we will double count old data 1345 * 1346 * We don't scan the subtree right now, but only record 1347 * the swapped tree blocks. 1348 * The real subtree rescan is delayed until we have new 1349 * CoW on the subtree root node before transaction commit. 1350 */ 1351 ret = btrfs_qgroup_add_swapped_blocks(trans, dest, 1352 rc->block_group, parent, slot, 1353 path->nodes[level], path->slots[level], 1354 last_snapshot); 1355 if (ret < 0) 1356 break; 1357 /* 1358 * swap blocks in fs tree and reloc tree. 1359 */ 1360 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1361 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1362 btrfs_mark_buffer_dirty(parent); 1363 1364 btrfs_set_node_blockptr(path->nodes[level], 1365 path->slots[level], old_bytenr); 1366 btrfs_set_node_ptr_generation(path->nodes[level], 1367 path->slots[level], old_ptr_gen); 1368 btrfs_mark_buffer_dirty(path->nodes[level]); 1369 1370 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr, 1371 blocksize, path->nodes[level]->start); 1372 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid, 1373 0, true); 1374 ret = btrfs_inc_extent_ref(trans, &ref); 1375 if (ret) { 1376 btrfs_abort_transaction(trans, ret); 1377 break; 1378 } 1379 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1380 blocksize, 0); 1381 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0, 1382 true); 1383 ret = btrfs_inc_extent_ref(trans, &ref); 1384 if (ret) { 1385 btrfs_abort_transaction(trans, ret); 1386 break; 1387 } 1388 1389 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr, 1390 blocksize, path->nodes[level]->start); 1391 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid, 1392 0, true); 1393 ret = btrfs_free_extent(trans, &ref); 1394 if (ret) { 1395 btrfs_abort_transaction(trans, ret); 1396 break; 1397 } 1398 1399 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr, 1400 blocksize, 0); 1401 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 1402 0, true); 1403 ret = btrfs_free_extent(trans, &ref); 1404 if (ret) { 1405 btrfs_abort_transaction(trans, ret); 1406 break; 1407 } 1408 1409 btrfs_unlock_up_safe(path, 0); 1410 1411 ret = level; 1412 break; 1413 } 1414 btrfs_tree_unlock(parent); 1415 free_extent_buffer(parent); 1416 return ret; 1417} 1418 1419/* 1420 * helper to find next relocated block in reloc tree 1421 */ 1422static noinline_for_stack 1423int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1424 int *level) 1425{ 1426 struct extent_buffer *eb; 1427 int i; 1428 u64 last_snapshot; 1429 u32 nritems; 1430 1431 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1432 1433 for (i = 0; i < *level; i++) { 1434 free_extent_buffer(path->nodes[i]); 1435 path->nodes[i] = NULL; 1436 } 1437 1438 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1439 eb = path->nodes[i]; 1440 nritems = btrfs_header_nritems(eb); 1441 while (path->slots[i] + 1 < nritems) { 1442 path->slots[i]++; 1443 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1444 last_snapshot) 1445 continue; 1446 1447 *level = i; 1448 return 0; 1449 } 1450 free_extent_buffer(path->nodes[i]); 1451 path->nodes[i] = NULL; 1452 } 1453 return 1; 1454} 1455 1456/* 1457 * walk down reloc tree to find relocated block of lowest level 1458 */ 1459static noinline_for_stack 1460int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1461 int *level) 1462{ 1463 struct extent_buffer *eb = NULL; 1464 int i; 1465 u64 ptr_gen = 0; 1466 u64 last_snapshot; 1467 u32 nritems; 1468 1469 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1470 1471 for (i = *level; i > 0; i--) { 1472 eb = path->nodes[i]; 1473 nritems = btrfs_header_nritems(eb); 1474 while (path->slots[i] < nritems) { 1475 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1476 if (ptr_gen > last_snapshot) 1477 break; 1478 path->slots[i]++; 1479 } 1480 if (path->slots[i] >= nritems) { 1481 if (i == *level) 1482 break; 1483 *level = i + 1; 1484 return 0; 1485 } 1486 if (i == 1) { 1487 *level = i; 1488 return 0; 1489 } 1490 1491 eb = btrfs_read_node_slot(eb, path->slots[i]); 1492 if (IS_ERR(eb)) 1493 return PTR_ERR(eb); 1494 BUG_ON(btrfs_header_level(eb) != i - 1); 1495 path->nodes[i - 1] = eb; 1496 path->slots[i - 1] = 0; 1497 } 1498 return 1; 1499} 1500 1501/* 1502 * invalidate extent cache for file extents whose key in range of 1503 * [min_key, max_key) 1504 */ 1505static int invalidate_extent_cache(struct btrfs_root *root, 1506 struct btrfs_key *min_key, 1507 struct btrfs_key *max_key) 1508{ 1509 struct btrfs_fs_info *fs_info = root->fs_info; 1510 struct inode *inode = NULL; 1511 u64 objectid; 1512 u64 start, end; 1513 u64 ino; 1514 1515 objectid = min_key->objectid; 1516 while (1) { 1517 cond_resched(); 1518 iput(inode); 1519 1520 if (objectid > max_key->objectid) 1521 break; 1522 1523 inode = find_next_inode(root, objectid); 1524 if (!inode) 1525 break; 1526 ino = btrfs_ino(BTRFS_I(inode)); 1527 1528 if (ino > max_key->objectid) { 1529 iput(inode); 1530 break; 1531 } 1532 1533 objectid = ino + 1; 1534 if (!S_ISREG(inode->i_mode)) 1535 continue; 1536 1537 if (unlikely(min_key->objectid == ino)) { 1538 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1539 continue; 1540 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1541 start = 0; 1542 else { 1543 start = min_key->offset; 1544 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 1545 } 1546 } else { 1547 start = 0; 1548 } 1549 1550 if (unlikely(max_key->objectid == ino)) { 1551 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1552 continue; 1553 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1554 end = (u64)-1; 1555 } else { 1556 if (max_key->offset == 0) 1557 continue; 1558 end = max_key->offset; 1559 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1560 end--; 1561 } 1562 } else { 1563 end = (u64)-1; 1564 } 1565 1566 /* the lock_extent waits for read_folio to complete */ 1567 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 1568 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1); 1569 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1570 } 1571 return 0; 1572} 1573 1574static int find_next_key(struct btrfs_path *path, int level, 1575 struct btrfs_key *key) 1576 1577{ 1578 while (level < BTRFS_MAX_LEVEL) { 1579 if (!path->nodes[level]) 1580 break; 1581 if (path->slots[level] + 1 < 1582 btrfs_header_nritems(path->nodes[level])) { 1583 btrfs_node_key_to_cpu(path->nodes[level], key, 1584 path->slots[level] + 1); 1585 return 0; 1586 } 1587 level++; 1588 } 1589 return 1; 1590} 1591 1592/* 1593 * Insert current subvolume into reloc_control::dirty_subvol_roots 1594 */ 1595static int insert_dirty_subvol(struct btrfs_trans_handle *trans, 1596 struct reloc_control *rc, 1597 struct btrfs_root *root) 1598{ 1599 struct btrfs_root *reloc_root = root->reloc_root; 1600 struct btrfs_root_item *reloc_root_item; 1601 int ret; 1602 1603 /* @root must be a subvolume tree root with a valid reloc tree */ 1604 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1605 ASSERT(reloc_root); 1606 1607 reloc_root_item = &reloc_root->root_item; 1608 memset(&reloc_root_item->drop_progress, 0, 1609 sizeof(reloc_root_item->drop_progress)); 1610 btrfs_set_root_drop_level(reloc_root_item, 0); 1611 btrfs_set_root_refs(reloc_root_item, 0); 1612 ret = btrfs_update_reloc_root(trans, root); 1613 if (ret) 1614 return ret; 1615 1616 if (list_empty(&root->reloc_dirty_list)) { 1617 btrfs_grab_root(root); 1618 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); 1619 } 1620 1621 return 0; 1622} 1623 1624static int clean_dirty_subvols(struct reloc_control *rc) 1625{ 1626 struct btrfs_root *root; 1627 struct btrfs_root *next; 1628 int ret = 0; 1629 int ret2; 1630 1631 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, 1632 reloc_dirty_list) { 1633 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1634 /* Merged subvolume, cleanup its reloc root */ 1635 struct btrfs_root *reloc_root = root->reloc_root; 1636 1637 list_del_init(&root->reloc_dirty_list); 1638 root->reloc_root = NULL; 1639 /* 1640 * Need barrier to ensure clear_bit() only happens after 1641 * root->reloc_root = NULL. Pairs with have_reloc_root. 1642 */ 1643 smp_wmb(); 1644 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 1645 if (reloc_root) { 1646 /* 1647 * btrfs_drop_snapshot drops our ref we hold for 1648 * ->reloc_root. If it fails however we must 1649 * drop the ref ourselves. 1650 */ 1651 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1); 1652 if (ret2 < 0) { 1653 btrfs_put_root(reloc_root); 1654 if (!ret) 1655 ret = ret2; 1656 } 1657 } 1658 btrfs_put_root(root); 1659 } else { 1660 /* Orphan reloc tree, just clean it up */ 1661 ret2 = btrfs_drop_snapshot(root, 0, 1); 1662 if (ret2 < 0) { 1663 btrfs_put_root(root); 1664 if (!ret) 1665 ret = ret2; 1666 } 1667 } 1668 } 1669 return ret; 1670} 1671 1672/* 1673 * merge the relocated tree blocks in reloc tree with corresponding 1674 * fs tree. 1675 */ 1676static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 1677 struct btrfs_root *root) 1678{ 1679 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1680 struct btrfs_key key; 1681 struct btrfs_key next_key; 1682 struct btrfs_trans_handle *trans = NULL; 1683 struct btrfs_root *reloc_root; 1684 struct btrfs_root_item *root_item; 1685 struct btrfs_path *path; 1686 struct extent_buffer *leaf; 1687 int reserve_level; 1688 int level; 1689 int max_level; 1690 int replaced = 0; 1691 int ret = 0; 1692 u32 min_reserved; 1693 1694 path = btrfs_alloc_path(); 1695 if (!path) 1696 return -ENOMEM; 1697 path->reada = READA_FORWARD; 1698 1699 reloc_root = root->reloc_root; 1700 root_item = &reloc_root->root_item; 1701 1702 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 1703 level = btrfs_root_level(root_item); 1704 atomic_inc(&reloc_root->node->refs); 1705 path->nodes[level] = reloc_root->node; 1706 path->slots[level] = 0; 1707 } else { 1708 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 1709 1710 level = btrfs_root_drop_level(root_item); 1711 BUG_ON(level == 0); 1712 path->lowest_level = level; 1713 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 1714 path->lowest_level = 0; 1715 if (ret < 0) { 1716 btrfs_free_path(path); 1717 return ret; 1718 } 1719 1720 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 1721 path->slots[level]); 1722 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 1723 1724 btrfs_unlock_up_safe(path, 0); 1725 } 1726 1727 /* 1728 * In merge_reloc_root(), we modify the upper level pointer to swap the 1729 * tree blocks between reloc tree and subvolume tree. Thus for tree 1730 * block COW, we COW at most from level 1 to root level for each tree. 1731 * 1732 * Thus the needed metadata size is at most root_level * nodesize, 1733 * and * 2 since we have two trees to COW. 1734 */ 1735 reserve_level = max_t(int, 1, btrfs_root_level(root_item)); 1736 min_reserved = fs_info->nodesize * reserve_level * 2; 1737 memset(&next_key, 0, sizeof(next_key)); 1738 1739 while (1) { 1740 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, 1741 min_reserved, 1742 BTRFS_RESERVE_FLUSH_LIMIT); 1743 if (ret) 1744 goto out; 1745 trans = btrfs_start_transaction(root, 0); 1746 if (IS_ERR(trans)) { 1747 ret = PTR_ERR(trans); 1748 trans = NULL; 1749 goto out; 1750 } 1751 1752 /* 1753 * At this point we no longer have a reloc_control, so we can't 1754 * depend on btrfs_init_reloc_root to update our last_trans. 1755 * 1756 * But that's ok, we started the trans handle on our 1757 * corresponding fs_root, which means it's been added to the 1758 * dirty list. At commit time we'll still call 1759 * btrfs_update_reloc_root() and update our root item 1760 * appropriately. 1761 */ 1762 reloc_root->last_trans = trans->transid; 1763 trans->block_rsv = rc->block_rsv; 1764 1765 replaced = 0; 1766 max_level = level; 1767 1768 ret = walk_down_reloc_tree(reloc_root, path, &level); 1769 if (ret < 0) 1770 goto out; 1771 if (ret > 0) 1772 break; 1773 1774 if (!find_next_key(path, level, &key) && 1775 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 1776 ret = 0; 1777 } else { 1778 ret = replace_path(trans, rc, root, reloc_root, path, 1779 &next_key, level, max_level); 1780 } 1781 if (ret < 0) 1782 goto out; 1783 if (ret > 0) { 1784 level = ret; 1785 btrfs_node_key_to_cpu(path->nodes[level], &key, 1786 path->slots[level]); 1787 replaced = 1; 1788 } 1789 1790 ret = walk_up_reloc_tree(reloc_root, path, &level); 1791 if (ret > 0) 1792 break; 1793 1794 BUG_ON(level == 0); 1795 /* 1796 * save the merging progress in the drop_progress. 1797 * this is OK since root refs == 1 in this case. 1798 */ 1799 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 1800 path->slots[level]); 1801 btrfs_set_root_drop_level(root_item, level); 1802 1803 btrfs_end_transaction_throttle(trans); 1804 trans = NULL; 1805 1806 btrfs_btree_balance_dirty(fs_info); 1807 1808 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1809 invalidate_extent_cache(root, &key, &next_key); 1810 } 1811 1812 /* 1813 * handle the case only one block in the fs tree need to be 1814 * relocated and the block is tree root. 1815 */ 1816 leaf = btrfs_lock_root_node(root); 1817 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf, 1818 BTRFS_NESTING_COW); 1819 btrfs_tree_unlock(leaf); 1820 free_extent_buffer(leaf); 1821out: 1822 btrfs_free_path(path); 1823 1824 if (ret == 0) { 1825 ret = insert_dirty_subvol(trans, rc, root); 1826 if (ret) 1827 btrfs_abort_transaction(trans, ret); 1828 } 1829 1830 if (trans) 1831 btrfs_end_transaction_throttle(trans); 1832 1833 btrfs_btree_balance_dirty(fs_info); 1834 1835 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1836 invalidate_extent_cache(root, &key, &next_key); 1837 1838 return ret; 1839} 1840 1841static noinline_for_stack 1842int prepare_to_merge(struct reloc_control *rc, int err) 1843{ 1844 struct btrfs_root *root = rc->extent_root; 1845 struct btrfs_fs_info *fs_info = root->fs_info; 1846 struct btrfs_root *reloc_root; 1847 struct btrfs_trans_handle *trans; 1848 LIST_HEAD(reloc_roots); 1849 u64 num_bytes = 0; 1850 int ret; 1851 1852 mutex_lock(&fs_info->reloc_mutex); 1853 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 1854 rc->merging_rsv_size += rc->nodes_relocated * 2; 1855 mutex_unlock(&fs_info->reloc_mutex); 1856 1857again: 1858 if (!err) { 1859 num_bytes = rc->merging_rsv_size; 1860 ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes, 1861 BTRFS_RESERVE_FLUSH_ALL); 1862 if (ret) 1863 err = ret; 1864 } 1865 1866 trans = btrfs_join_transaction(rc->extent_root); 1867 if (IS_ERR(trans)) { 1868 if (!err) 1869 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1870 num_bytes, NULL); 1871 return PTR_ERR(trans); 1872 } 1873 1874 if (!err) { 1875 if (num_bytes != rc->merging_rsv_size) { 1876 btrfs_end_transaction(trans); 1877 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1878 num_bytes, NULL); 1879 goto again; 1880 } 1881 } 1882 1883 rc->merge_reloc_tree = 1; 1884 1885 while (!list_empty(&rc->reloc_roots)) { 1886 reloc_root = list_entry(rc->reloc_roots.next, 1887 struct btrfs_root, root_list); 1888 list_del_init(&reloc_root->root_list); 1889 1890 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1891 false); 1892 if (IS_ERR(root)) { 1893 /* 1894 * Even if we have an error we need this reloc root 1895 * back on our list so we can clean up properly. 1896 */ 1897 list_add(&reloc_root->root_list, &reloc_roots); 1898 btrfs_abort_transaction(trans, (int)PTR_ERR(root)); 1899 if (!err) 1900 err = PTR_ERR(root); 1901 break; 1902 } 1903 ASSERT(root->reloc_root == reloc_root); 1904 1905 /* 1906 * set reference count to 1, so btrfs_recover_relocation 1907 * knows it should resumes merging 1908 */ 1909 if (!err) 1910 btrfs_set_root_refs(&reloc_root->root_item, 1); 1911 ret = btrfs_update_reloc_root(trans, root); 1912 1913 /* 1914 * Even if we have an error we need this reloc root back on our 1915 * list so we can clean up properly. 1916 */ 1917 list_add(&reloc_root->root_list, &reloc_roots); 1918 btrfs_put_root(root); 1919 1920 if (ret) { 1921 btrfs_abort_transaction(trans, ret); 1922 if (!err) 1923 err = ret; 1924 break; 1925 } 1926 } 1927 1928 list_splice(&reloc_roots, &rc->reloc_roots); 1929 1930 if (!err) 1931 err = btrfs_commit_transaction(trans); 1932 else 1933 btrfs_end_transaction(trans); 1934 return err; 1935} 1936 1937static noinline_for_stack 1938void free_reloc_roots(struct list_head *list) 1939{ 1940 struct btrfs_root *reloc_root, *tmp; 1941 1942 list_for_each_entry_safe(reloc_root, tmp, list, root_list) 1943 __del_reloc_root(reloc_root); 1944} 1945 1946static noinline_for_stack 1947void merge_reloc_roots(struct reloc_control *rc) 1948{ 1949 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1950 struct btrfs_root *root; 1951 struct btrfs_root *reloc_root; 1952 LIST_HEAD(reloc_roots); 1953 int found = 0; 1954 int ret = 0; 1955again: 1956 root = rc->extent_root; 1957 1958 /* 1959 * this serializes us with btrfs_record_root_in_transaction, 1960 * we have to make sure nobody is in the middle of 1961 * adding their roots to the list while we are 1962 * doing this splice 1963 */ 1964 mutex_lock(&fs_info->reloc_mutex); 1965 list_splice_init(&rc->reloc_roots, &reloc_roots); 1966 mutex_unlock(&fs_info->reloc_mutex); 1967 1968 while (!list_empty(&reloc_roots)) { 1969 found = 1; 1970 reloc_root = list_entry(reloc_roots.next, 1971 struct btrfs_root, root_list); 1972 1973 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1974 false); 1975 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 1976 if (IS_ERR(root)) { 1977 /* 1978 * For recovery we read the fs roots on mount, 1979 * and if we didn't find the root then we marked 1980 * the reloc root as a garbage root. For normal 1981 * relocation obviously the root should exist in 1982 * memory. However there's no reason we can't 1983 * handle the error properly here just in case. 1984 */ 1985 ASSERT(0); 1986 ret = PTR_ERR(root); 1987 goto out; 1988 } 1989 if (root->reloc_root != reloc_root) { 1990 /* 1991 * This is actually impossible without something 1992 * going really wrong (like weird race condition 1993 * or cosmic rays). 1994 */ 1995 ASSERT(0); 1996 ret = -EINVAL; 1997 goto out; 1998 } 1999 ret = merge_reloc_root(rc, root); 2000 btrfs_put_root(root); 2001 if (ret) { 2002 if (list_empty(&reloc_root->root_list)) 2003 list_add_tail(&reloc_root->root_list, 2004 &reloc_roots); 2005 goto out; 2006 } 2007 } else { 2008 if (!IS_ERR(root)) { 2009 if (root->reloc_root == reloc_root) { 2010 root->reloc_root = NULL; 2011 btrfs_put_root(reloc_root); 2012 } 2013 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, 2014 &root->state); 2015 btrfs_put_root(root); 2016 } 2017 2018 list_del_init(&reloc_root->root_list); 2019 /* Don't forget to queue this reloc root for cleanup */ 2020 list_add_tail(&reloc_root->reloc_dirty_list, 2021 &rc->dirty_subvol_roots); 2022 } 2023 } 2024 2025 if (found) { 2026 found = 0; 2027 goto again; 2028 } 2029out: 2030 if (ret) { 2031 btrfs_handle_fs_error(fs_info, ret, NULL); 2032 free_reloc_roots(&reloc_roots); 2033 2034 /* new reloc root may be added */ 2035 mutex_lock(&fs_info->reloc_mutex); 2036 list_splice_init(&rc->reloc_roots, &reloc_roots); 2037 mutex_unlock(&fs_info->reloc_mutex); 2038 free_reloc_roots(&reloc_roots); 2039 } 2040 2041 /* 2042 * We used to have 2043 * 2044 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2045 * 2046 * here, but it's wrong. If we fail to start the transaction in 2047 * prepare_to_merge() we will have only 0 ref reloc roots, none of which 2048 * have actually been removed from the reloc_root_tree rb tree. This is 2049 * fine because we're bailing here, and we hold a reference on the root 2050 * for the list that holds it, so these roots will be cleaned up when we 2051 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root 2052 * will be cleaned up on unmount. 2053 * 2054 * The remaining nodes will be cleaned up by free_reloc_control. 2055 */ 2056} 2057 2058static void free_block_list(struct rb_root *blocks) 2059{ 2060 struct tree_block *block; 2061 struct rb_node *rb_node; 2062 while ((rb_node = rb_first(blocks))) { 2063 block = rb_entry(rb_node, struct tree_block, rb_node); 2064 rb_erase(rb_node, blocks); 2065 kfree(block); 2066 } 2067} 2068 2069static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2070 struct btrfs_root *reloc_root) 2071{ 2072 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 2073 struct btrfs_root *root; 2074 int ret; 2075 2076 if (reloc_root->last_trans == trans->transid) 2077 return 0; 2078 2079 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false); 2080 2081 /* 2082 * This should succeed, since we can't have a reloc root without having 2083 * already looked up the actual root and created the reloc root for this 2084 * root. 2085 * 2086 * However if there's some sort of corruption where we have a ref to a 2087 * reloc root without a corresponding root this could return ENOENT. 2088 */ 2089 if (IS_ERR(root)) { 2090 ASSERT(0); 2091 return PTR_ERR(root); 2092 } 2093 if (root->reloc_root != reloc_root) { 2094 ASSERT(0); 2095 btrfs_err(fs_info, 2096 "root %llu has two reloc roots associated with it", 2097 reloc_root->root_key.offset); 2098 btrfs_put_root(root); 2099 return -EUCLEAN; 2100 } 2101 ret = btrfs_record_root_in_trans(trans, root); 2102 btrfs_put_root(root); 2103 2104 return ret; 2105} 2106 2107static noinline_for_stack 2108struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2109 struct reloc_control *rc, 2110 struct btrfs_backref_node *node, 2111 struct btrfs_backref_edge *edges[]) 2112{ 2113 struct btrfs_backref_node *next; 2114 struct btrfs_root *root; 2115 int index = 0; 2116 int ret; 2117 2118 next = node; 2119 while (1) { 2120 cond_resched(); 2121 next = walk_up_backref(next, edges, &index); 2122 root = next->root; 2123 2124 /* 2125 * If there is no root, then our references for this block are 2126 * incomplete, as we should be able to walk all the way up to a 2127 * block that is owned by a root. 2128 * 2129 * This path is only for SHAREABLE roots, so if we come upon a 2130 * non-SHAREABLE root then we have backrefs that resolve 2131 * improperly. 2132 * 2133 * Both of these cases indicate file system corruption, or a bug 2134 * in the backref walking code. 2135 */ 2136 if (!root) { 2137 ASSERT(0); 2138 btrfs_err(trans->fs_info, 2139 "bytenr %llu doesn't have a backref path ending in a root", 2140 node->bytenr); 2141 return ERR_PTR(-EUCLEAN); 2142 } 2143 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2144 ASSERT(0); 2145 btrfs_err(trans->fs_info, 2146 "bytenr %llu has multiple refs with one ending in a non-shareable root", 2147 node->bytenr); 2148 return ERR_PTR(-EUCLEAN); 2149 } 2150 2151 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2152 ret = record_reloc_root_in_trans(trans, root); 2153 if (ret) 2154 return ERR_PTR(ret); 2155 break; 2156 } 2157 2158 ret = btrfs_record_root_in_trans(trans, root); 2159 if (ret) 2160 return ERR_PTR(ret); 2161 root = root->reloc_root; 2162 2163 /* 2164 * We could have raced with another thread which failed, so 2165 * root->reloc_root may not be set, return ENOENT in this case. 2166 */ 2167 if (!root) 2168 return ERR_PTR(-ENOENT); 2169 2170 if (next->new_bytenr != root->node->start) { 2171 /* 2172 * We just created the reloc root, so we shouldn't have 2173 * ->new_bytenr set and this shouldn't be in the changed 2174 * list. If it is then we have multiple roots pointing 2175 * at the same bytenr which indicates corruption, or 2176 * we've made a mistake in the backref walking code. 2177 */ 2178 ASSERT(next->new_bytenr == 0); 2179 ASSERT(list_empty(&next->list)); 2180 if (next->new_bytenr || !list_empty(&next->list)) { 2181 btrfs_err(trans->fs_info, 2182 "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu", 2183 node->bytenr, next->bytenr); 2184 return ERR_PTR(-EUCLEAN); 2185 } 2186 2187 next->new_bytenr = root->node->start; 2188 btrfs_put_root(next->root); 2189 next->root = btrfs_grab_root(root); 2190 ASSERT(next->root); 2191 list_add_tail(&next->list, 2192 &rc->backref_cache.changed); 2193 mark_block_processed(rc, next); 2194 break; 2195 } 2196 2197 WARN_ON(1); 2198 root = NULL; 2199 next = walk_down_backref(edges, &index); 2200 if (!next || next->level <= node->level) 2201 break; 2202 } 2203 if (!root) { 2204 /* 2205 * This can happen if there's fs corruption or if there's a bug 2206 * in the backref lookup code. 2207 */ 2208 ASSERT(0); 2209 return ERR_PTR(-ENOENT); 2210 } 2211 2212 next = node; 2213 /* setup backref node path for btrfs_reloc_cow_block */ 2214 while (1) { 2215 rc->backref_cache.path[next->level] = next; 2216 if (--index < 0) 2217 break; 2218 next = edges[index]->node[UPPER]; 2219 } 2220 return root; 2221} 2222 2223/* 2224 * Select a tree root for relocation. 2225 * 2226 * Return NULL if the block is not shareable. We should use do_relocation() in 2227 * this case. 2228 * 2229 * Return a tree root pointer if the block is shareable. 2230 * Return -ENOENT if the block is root of reloc tree. 2231 */ 2232static noinline_for_stack 2233struct btrfs_root *select_one_root(struct btrfs_backref_node *node) 2234{ 2235 struct btrfs_backref_node *next; 2236 struct btrfs_root *root; 2237 struct btrfs_root *fs_root = NULL; 2238 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2239 int index = 0; 2240 2241 next = node; 2242 while (1) { 2243 cond_resched(); 2244 next = walk_up_backref(next, edges, &index); 2245 root = next->root; 2246 2247 /* 2248 * This can occur if we have incomplete extent refs leading all 2249 * the way up a particular path, in this case return -EUCLEAN. 2250 */ 2251 if (!root) 2252 return ERR_PTR(-EUCLEAN); 2253 2254 /* No other choice for non-shareable tree */ 2255 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2256 return root; 2257 2258 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2259 fs_root = root; 2260 2261 if (next != node) 2262 return NULL; 2263 2264 next = walk_down_backref(edges, &index); 2265 if (!next || next->level <= node->level) 2266 break; 2267 } 2268 2269 if (!fs_root) 2270 return ERR_PTR(-ENOENT); 2271 return fs_root; 2272} 2273 2274static noinline_for_stack 2275u64 calcu_metadata_size(struct reloc_control *rc, 2276 struct btrfs_backref_node *node, int reserve) 2277{ 2278 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2279 struct btrfs_backref_node *next = node; 2280 struct btrfs_backref_edge *edge; 2281 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2282 u64 num_bytes = 0; 2283 int index = 0; 2284 2285 BUG_ON(reserve && node->processed); 2286 2287 while (next) { 2288 cond_resched(); 2289 while (1) { 2290 if (next->processed && (reserve || next != node)) 2291 break; 2292 2293 num_bytes += fs_info->nodesize; 2294 2295 if (list_empty(&next->upper)) 2296 break; 2297 2298 edge = list_entry(next->upper.next, 2299 struct btrfs_backref_edge, list[LOWER]); 2300 edges[index++] = edge; 2301 next = edge->node[UPPER]; 2302 } 2303 next = walk_down_backref(edges, &index); 2304 } 2305 return num_bytes; 2306} 2307 2308static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2309 struct reloc_control *rc, 2310 struct btrfs_backref_node *node) 2311{ 2312 struct btrfs_root *root = rc->extent_root; 2313 struct btrfs_fs_info *fs_info = root->fs_info; 2314 u64 num_bytes; 2315 int ret; 2316 u64 tmp; 2317 2318 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2319 2320 trans->block_rsv = rc->block_rsv; 2321 rc->reserved_bytes += num_bytes; 2322 2323 /* 2324 * We are under a transaction here so we can only do limited flushing. 2325 * If we get an enospc just kick back -EAGAIN so we know to drop the 2326 * transaction and try to refill when we can flush all the things. 2327 */ 2328 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes, 2329 BTRFS_RESERVE_FLUSH_LIMIT); 2330 if (ret) { 2331 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2332 while (tmp <= rc->reserved_bytes) 2333 tmp <<= 1; 2334 /* 2335 * only one thread can access block_rsv at this point, 2336 * so we don't need hold lock to protect block_rsv. 2337 * we expand more reservation size here to allow enough 2338 * space for relocation and we will return earlier in 2339 * enospc case. 2340 */ 2341 rc->block_rsv->size = tmp + fs_info->nodesize * 2342 RELOCATION_RESERVED_NODES; 2343 return -EAGAIN; 2344 } 2345 2346 return 0; 2347} 2348 2349/* 2350 * relocate a block tree, and then update pointers in upper level 2351 * blocks that reference the block to point to the new location. 2352 * 2353 * if called by link_to_upper, the block has already been relocated. 2354 * in that case this function just updates pointers. 2355 */ 2356static int do_relocation(struct btrfs_trans_handle *trans, 2357 struct reloc_control *rc, 2358 struct btrfs_backref_node *node, 2359 struct btrfs_key *key, 2360 struct btrfs_path *path, int lowest) 2361{ 2362 struct btrfs_backref_node *upper; 2363 struct btrfs_backref_edge *edge; 2364 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2365 struct btrfs_root *root; 2366 struct extent_buffer *eb; 2367 u32 blocksize; 2368 u64 bytenr; 2369 int slot; 2370 int ret = 0; 2371 2372 /* 2373 * If we are lowest then this is the first time we're processing this 2374 * block, and thus shouldn't have an eb associated with it yet. 2375 */ 2376 ASSERT(!lowest || !node->eb); 2377 2378 path->lowest_level = node->level + 1; 2379 rc->backref_cache.path[node->level] = node; 2380 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2381 struct btrfs_ref ref = { 0 }; 2382 2383 cond_resched(); 2384 2385 upper = edge->node[UPPER]; 2386 root = select_reloc_root(trans, rc, upper, edges); 2387 if (IS_ERR(root)) { 2388 ret = PTR_ERR(root); 2389 goto next; 2390 } 2391 2392 if (upper->eb && !upper->locked) { 2393 if (!lowest) { 2394 ret = btrfs_bin_search(upper->eb, key, &slot); 2395 if (ret < 0) 2396 goto next; 2397 BUG_ON(ret); 2398 bytenr = btrfs_node_blockptr(upper->eb, slot); 2399 if (node->eb->start == bytenr) 2400 goto next; 2401 } 2402 btrfs_backref_drop_node_buffer(upper); 2403 } 2404 2405 if (!upper->eb) { 2406 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2407 if (ret) { 2408 if (ret > 0) 2409 ret = -ENOENT; 2410 2411 btrfs_release_path(path); 2412 break; 2413 } 2414 2415 if (!upper->eb) { 2416 upper->eb = path->nodes[upper->level]; 2417 path->nodes[upper->level] = NULL; 2418 } else { 2419 BUG_ON(upper->eb != path->nodes[upper->level]); 2420 } 2421 2422 upper->locked = 1; 2423 path->locks[upper->level] = 0; 2424 2425 slot = path->slots[upper->level]; 2426 btrfs_release_path(path); 2427 } else { 2428 ret = btrfs_bin_search(upper->eb, key, &slot); 2429 if (ret < 0) 2430 goto next; 2431 BUG_ON(ret); 2432 } 2433 2434 bytenr = btrfs_node_blockptr(upper->eb, slot); 2435 if (lowest) { 2436 if (bytenr != node->bytenr) { 2437 btrfs_err(root->fs_info, 2438 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2439 bytenr, node->bytenr, slot, 2440 upper->eb->start); 2441 ret = -EIO; 2442 goto next; 2443 } 2444 } else { 2445 if (node->eb->start == bytenr) 2446 goto next; 2447 } 2448 2449 blocksize = root->fs_info->nodesize; 2450 eb = btrfs_read_node_slot(upper->eb, slot); 2451 if (IS_ERR(eb)) { 2452 ret = PTR_ERR(eb); 2453 goto next; 2454 } 2455 btrfs_tree_lock(eb); 2456 2457 if (!node->eb) { 2458 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2459 slot, &eb, BTRFS_NESTING_COW); 2460 btrfs_tree_unlock(eb); 2461 free_extent_buffer(eb); 2462 if (ret < 0) 2463 goto next; 2464 /* 2465 * We've just COWed this block, it should have updated 2466 * the correct backref node entry. 2467 */ 2468 ASSERT(node->eb == eb); 2469 } else { 2470 btrfs_set_node_blockptr(upper->eb, slot, 2471 node->eb->start); 2472 btrfs_set_node_ptr_generation(upper->eb, slot, 2473 trans->transid); 2474 btrfs_mark_buffer_dirty(upper->eb); 2475 2476 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2477 node->eb->start, blocksize, 2478 upper->eb->start); 2479 btrfs_init_tree_ref(&ref, node->level, 2480 btrfs_header_owner(upper->eb), 2481 root->root_key.objectid, false); 2482 ret = btrfs_inc_extent_ref(trans, &ref); 2483 if (!ret) 2484 ret = btrfs_drop_subtree(trans, root, eb, 2485 upper->eb); 2486 if (ret) 2487 btrfs_abort_transaction(trans, ret); 2488 } 2489next: 2490 if (!upper->pending) 2491 btrfs_backref_drop_node_buffer(upper); 2492 else 2493 btrfs_backref_unlock_node_buffer(upper); 2494 if (ret) 2495 break; 2496 } 2497 2498 if (!ret && node->pending) { 2499 btrfs_backref_drop_node_buffer(node); 2500 list_move_tail(&node->list, &rc->backref_cache.changed); 2501 node->pending = 0; 2502 } 2503 2504 path->lowest_level = 0; 2505 2506 /* 2507 * We should have allocated all of our space in the block rsv and thus 2508 * shouldn't ENOSPC. 2509 */ 2510 ASSERT(ret != -ENOSPC); 2511 return ret; 2512} 2513 2514static int link_to_upper(struct btrfs_trans_handle *trans, 2515 struct reloc_control *rc, 2516 struct btrfs_backref_node *node, 2517 struct btrfs_path *path) 2518{ 2519 struct btrfs_key key; 2520 2521 btrfs_node_key_to_cpu(node->eb, &key, 0); 2522 return do_relocation(trans, rc, node, &key, path, 0); 2523} 2524 2525static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2526 struct reloc_control *rc, 2527 struct btrfs_path *path, int err) 2528{ 2529 LIST_HEAD(list); 2530 struct btrfs_backref_cache *cache = &rc->backref_cache; 2531 struct btrfs_backref_node *node; 2532 int level; 2533 int ret; 2534 2535 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2536 while (!list_empty(&cache->pending[level])) { 2537 node = list_entry(cache->pending[level].next, 2538 struct btrfs_backref_node, list); 2539 list_move_tail(&node->list, &list); 2540 BUG_ON(!node->pending); 2541 2542 if (!err) { 2543 ret = link_to_upper(trans, rc, node, path); 2544 if (ret < 0) 2545 err = ret; 2546 } 2547 } 2548 list_splice_init(&list, &cache->pending[level]); 2549 } 2550 return err; 2551} 2552 2553/* 2554 * mark a block and all blocks directly/indirectly reference the block 2555 * as processed. 2556 */ 2557static void update_processed_blocks(struct reloc_control *rc, 2558 struct btrfs_backref_node *node) 2559{ 2560 struct btrfs_backref_node *next = node; 2561 struct btrfs_backref_edge *edge; 2562 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2563 int index = 0; 2564 2565 while (next) { 2566 cond_resched(); 2567 while (1) { 2568 if (next->processed) 2569 break; 2570 2571 mark_block_processed(rc, next); 2572 2573 if (list_empty(&next->upper)) 2574 break; 2575 2576 edge = list_entry(next->upper.next, 2577 struct btrfs_backref_edge, list[LOWER]); 2578 edges[index++] = edge; 2579 next = edge->node[UPPER]; 2580 } 2581 next = walk_down_backref(edges, &index); 2582 } 2583} 2584 2585static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2586{ 2587 u32 blocksize = rc->extent_root->fs_info->nodesize; 2588 2589 if (test_range_bit(&rc->processed_blocks, bytenr, 2590 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2591 return 1; 2592 return 0; 2593} 2594 2595static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2596 struct tree_block *block) 2597{ 2598 struct extent_buffer *eb; 2599 2600 eb = read_tree_block(fs_info, block->bytenr, block->owner, 2601 block->key.offset, block->level, NULL); 2602 if (IS_ERR(eb)) 2603 return PTR_ERR(eb); 2604 if (!extent_buffer_uptodate(eb)) { 2605 free_extent_buffer(eb); 2606 return -EIO; 2607 } 2608 if (block->level == 0) 2609 btrfs_item_key_to_cpu(eb, &block->key, 0); 2610 else 2611 btrfs_node_key_to_cpu(eb, &block->key, 0); 2612 free_extent_buffer(eb); 2613 block->key_ready = 1; 2614 return 0; 2615} 2616 2617/* 2618 * helper function to relocate a tree block 2619 */ 2620static int relocate_tree_block(struct btrfs_trans_handle *trans, 2621 struct reloc_control *rc, 2622 struct btrfs_backref_node *node, 2623 struct btrfs_key *key, 2624 struct btrfs_path *path) 2625{ 2626 struct btrfs_root *root; 2627 int ret = 0; 2628 2629 if (!node) 2630 return 0; 2631 2632 /* 2633 * If we fail here we want to drop our backref_node because we are going 2634 * to start over and regenerate the tree for it. 2635 */ 2636 ret = reserve_metadata_space(trans, rc, node); 2637 if (ret) 2638 goto out; 2639 2640 BUG_ON(node->processed); 2641 root = select_one_root(node); 2642 if (IS_ERR(root)) { 2643 ret = PTR_ERR(root); 2644 2645 /* See explanation in select_one_root for the -EUCLEAN case. */ 2646 ASSERT(ret == -ENOENT); 2647 if (ret == -ENOENT) { 2648 ret = 0; 2649 update_processed_blocks(rc, node); 2650 } 2651 goto out; 2652 } 2653 2654 if (root) { 2655 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2656 /* 2657 * This block was the root block of a root, and this is 2658 * the first time we're processing the block and thus it 2659 * should not have had the ->new_bytenr modified and 2660 * should have not been included on the changed list. 2661 * 2662 * However in the case of corruption we could have 2663 * multiple refs pointing to the same block improperly, 2664 * and thus we would trip over these checks. ASSERT() 2665 * for the developer case, because it could indicate a 2666 * bug in the backref code, however error out for a 2667 * normal user in the case of corruption. 2668 */ 2669 ASSERT(node->new_bytenr == 0); 2670 ASSERT(list_empty(&node->list)); 2671 if (node->new_bytenr || !list_empty(&node->list)) { 2672 btrfs_err(root->fs_info, 2673 "bytenr %llu has improper references to it", 2674 node->bytenr); 2675 ret = -EUCLEAN; 2676 goto out; 2677 } 2678 ret = btrfs_record_root_in_trans(trans, root); 2679 if (ret) 2680 goto out; 2681 /* 2682 * Another thread could have failed, need to check if we 2683 * have reloc_root actually set. 2684 */ 2685 if (!root->reloc_root) { 2686 ret = -ENOENT; 2687 goto out; 2688 } 2689 root = root->reloc_root; 2690 node->new_bytenr = root->node->start; 2691 btrfs_put_root(node->root); 2692 node->root = btrfs_grab_root(root); 2693 ASSERT(node->root); 2694 list_add_tail(&node->list, &rc->backref_cache.changed); 2695 } else { 2696 path->lowest_level = node->level; 2697 if (root == root->fs_info->chunk_root) 2698 btrfs_reserve_chunk_metadata(trans, false); 2699 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2700 btrfs_release_path(path); 2701 if (root == root->fs_info->chunk_root) 2702 btrfs_trans_release_chunk_metadata(trans); 2703 if (ret > 0) 2704 ret = 0; 2705 } 2706 if (!ret) 2707 update_processed_blocks(rc, node); 2708 } else { 2709 ret = do_relocation(trans, rc, node, key, path, 1); 2710 } 2711out: 2712 if (ret || node->level == 0 || node->cowonly) 2713 btrfs_backref_cleanup_node(&rc->backref_cache, node); 2714 return ret; 2715} 2716 2717/* 2718 * relocate a list of blocks 2719 */ 2720static noinline_for_stack 2721int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2722 struct reloc_control *rc, struct rb_root *blocks) 2723{ 2724 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2725 struct btrfs_backref_node *node; 2726 struct btrfs_path *path; 2727 struct tree_block *block; 2728 struct tree_block *next; 2729 int ret; 2730 int err = 0; 2731 2732 path = btrfs_alloc_path(); 2733 if (!path) { 2734 err = -ENOMEM; 2735 goto out_free_blocks; 2736 } 2737 2738 /* Kick in readahead for tree blocks with missing keys */ 2739 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2740 if (!block->key_ready) 2741 btrfs_readahead_tree_block(fs_info, block->bytenr, 2742 block->owner, 0, 2743 block->level); 2744 } 2745 2746 /* Get first keys */ 2747 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2748 if (!block->key_ready) { 2749 err = get_tree_block_key(fs_info, block); 2750 if (err) 2751 goto out_free_path; 2752 } 2753 } 2754 2755 /* Do tree relocation */ 2756 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2757 node = build_backref_tree(rc, &block->key, 2758 block->level, block->bytenr); 2759 if (IS_ERR(node)) { 2760 err = PTR_ERR(node); 2761 goto out; 2762 } 2763 2764 ret = relocate_tree_block(trans, rc, node, &block->key, 2765 path); 2766 if (ret < 0) { 2767 err = ret; 2768 break; 2769 } 2770 } 2771out: 2772 err = finish_pending_nodes(trans, rc, path, err); 2773 2774out_free_path: 2775 btrfs_free_path(path); 2776out_free_blocks: 2777 free_block_list(blocks); 2778 return err; 2779} 2780 2781static noinline_for_stack int prealloc_file_extent_cluster( 2782 struct btrfs_inode *inode, 2783 struct file_extent_cluster *cluster) 2784{ 2785 u64 alloc_hint = 0; 2786 u64 start; 2787 u64 end; 2788 u64 offset = inode->index_cnt; 2789 u64 num_bytes; 2790 int nr; 2791 int ret = 0; 2792 u64 i_size = i_size_read(&inode->vfs_inode); 2793 u64 prealloc_start = cluster->start - offset; 2794 u64 prealloc_end = cluster->end - offset; 2795 u64 cur_offset = prealloc_start; 2796 2797 /* 2798 * For subpage case, previous i_size may not be aligned to PAGE_SIZE. 2799 * This means the range [i_size, PAGE_END + 1) is filled with zeros by 2800 * btrfs_do_readpage() call of previously relocated file cluster. 2801 * 2802 * If the current cluster starts in the above range, btrfs_do_readpage() 2803 * will skip the read, and relocate_one_page() will later writeback 2804 * the padding zeros as new data, causing data corruption. 2805 * 2806 * Here we have to manually invalidate the range (i_size, PAGE_END + 1). 2807 */ 2808 if (!IS_ALIGNED(i_size, PAGE_SIZE)) { 2809 struct address_space *mapping = inode->vfs_inode.i_mapping; 2810 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2811 const u32 sectorsize = fs_info->sectorsize; 2812 struct page *page; 2813 2814 ASSERT(sectorsize < PAGE_SIZE); 2815 ASSERT(IS_ALIGNED(i_size, sectorsize)); 2816 2817 /* 2818 * Subpage can't handle page with DIRTY but without UPTODATE 2819 * bit as it can lead to the following deadlock: 2820 * 2821 * btrfs_read_folio() 2822 * | Page already *locked* 2823 * |- btrfs_lock_and_flush_ordered_range() 2824 * |- btrfs_start_ordered_extent() 2825 * |- extent_write_cache_pages() 2826 * |- lock_page() 2827 * We try to lock the page we already hold. 2828 * 2829 * Here we just writeback the whole data reloc inode, so that 2830 * we will be ensured to have no dirty range in the page, and 2831 * are safe to clear the uptodate bits. 2832 * 2833 * This shouldn't cause too much overhead, as we need to write 2834 * the data back anyway. 2835 */ 2836 ret = filemap_write_and_wait(mapping); 2837 if (ret < 0) 2838 return ret; 2839 2840 clear_extent_bits(&inode->io_tree, i_size, 2841 round_up(i_size, PAGE_SIZE) - 1, 2842 EXTENT_UPTODATE); 2843 page = find_lock_page(mapping, i_size >> PAGE_SHIFT); 2844 /* 2845 * If page is freed we don't need to do anything then, as we 2846 * will re-read the whole page anyway. 2847 */ 2848 if (page) { 2849 btrfs_subpage_clear_uptodate(fs_info, page, i_size, 2850 round_up(i_size, PAGE_SIZE) - i_size); 2851 unlock_page(page); 2852 put_page(page); 2853 } 2854 } 2855 2856 BUG_ON(cluster->start != cluster->boundary[0]); 2857 ret = btrfs_alloc_data_chunk_ondemand(inode, 2858 prealloc_end + 1 - prealloc_start); 2859 if (ret) 2860 return ret; 2861 2862 btrfs_inode_lock(&inode->vfs_inode, 0); 2863 for (nr = 0; nr < cluster->nr; nr++) { 2864 start = cluster->boundary[nr] - offset; 2865 if (nr + 1 < cluster->nr) 2866 end = cluster->boundary[nr + 1] - 1 - offset; 2867 else 2868 end = cluster->end - offset; 2869 2870 lock_extent(&inode->io_tree, start, end); 2871 num_bytes = end + 1 - start; 2872 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start, 2873 num_bytes, num_bytes, 2874 end + 1, &alloc_hint); 2875 cur_offset = end + 1; 2876 unlock_extent(&inode->io_tree, start, end); 2877 if (ret) 2878 break; 2879 } 2880 btrfs_inode_unlock(&inode->vfs_inode, 0); 2881 2882 if (cur_offset < prealloc_end) 2883 btrfs_free_reserved_data_space_noquota(inode->root->fs_info, 2884 prealloc_end + 1 - cur_offset); 2885 return ret; 2886} 2887 2888static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode, 2889 u64 start, u64 end, u64 block_start) 2890{ 2891 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2892 struct extent_map *em; 2893 int ret = 0; 2894 2895 em = alloc_extent_map(); 2896 if (!em) 2897 return -ENOMEM; 2898 2899 em->start = start; 2900 em->len = end + 1 - start; 2901 em->block_len = em->len; 2902 em->block_start = block_start; 2903 set_bit(EXTENT_FLAG_PINNED, &em->flags); 2904 2905 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2906 while (1) { 2907 write_lock(&em_tree->lock); 2908 ret = add_extent_mapping(em_tree, em, 0); 2909 write_unlock(&em_tree->lock); 2910 if (ret != -EEXIST) { 2911 free_extent_map(em); 2912 break; 2913 } 2914 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 2915 } 2916 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2917 return ret; 2918} 2919 2920/* 2921 * Allow error injection to test balance/relocation cancellation 2922 */ 2923noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info) 2924{ 2925 return atomic_read(&fs_info->balance_cancel_req) || 2926 atomic_read(&fs_info->reloc_cancel_req) || 2927 fatal_signal_pending(current); 2928} 2929ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE); 2930 2931static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster, 2932 int cluster_nr) 2933{ 2934 /* Last extent, use cluster end directly */ 2935 if (cluster_nr >= cluster->nr - 1) 2936 return cluster->end; 2937 2938 /* Use next boundary start*/ 2939 return cluster->boundary[cluster_nr + 1] - 1; 2940} 2941 2942static int relocate_one_page(struct inode *inode, struct file_ra_state *ra, 2943 struct file_extent_cluster *cluster, 2944 int *cluster_nr, unsigned long page_index) 2945{ 2946 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2947 u64 offset = BTRFS_I(inode)->index_cnt; 2948 const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT; 2949 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 2950 struct page *page; 2951 u64 page_start; 2952 u64 page_end; 2953 u64 cur; 2954 int ret; 2955 2956 ASSERT(page_index <= last_index); 2957 page = find_lock_page(inode->i_mapping, page_index); 2958 if (!page) { 2959 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 2960 page_index, last_index + 1 - page_index); 2961 page = find_or_create_page(inode->i_mapping, page_index, mask); 2962 if (!page) 2963 return -ENOMEM; 2964 } 2965 ret = set_page_extent_mapped(page); 2966 if (ret < 0) 2967 goto release_page; 2968 2969 if (PageReadahead(page)) 2970 page_cache_async_readahead(inode->i_mapping, ra, NULL, 2971 page_folio(page), page_index, 2972 last_index + 1 - page_index); 2973 2974 if (!PageUptodate(page)) { 2975 btrfs_read_folio(NULL, page_folio(page)); 2976 lock_page(page); 2977 if (!PageUptodate(page)) { 2978 ret = -EIO; 2979 goto release_page; 2980 } 2981 } 2982 2983 page_start = page_offset(page); 2984 page_end = page_start + PAGE_SIZE - 1; 2985 2986 /* 2987 * Start from the cluster, as for subpage case, the cluster can start 2988 * inside the page. 2989 */ 2990 cur = max(page_start, cluster->boundary[*cluster_nr] - offset); 2991 while (cur <= page_end) { 2992 u64 extent_start = cluster->boundary[*cluster_nr] - offset; 2993 u64 extent_end = get_cluster_boundary_end(cluster, 2994 *cluster_nr) - offset; 2995 u64 clamped_start = max(page_start, extent_start); 2996 u64 clamped_end = min(page_end, extent_end); 2997 u32 clamped_len = clamped_end + 1 - clamped_start; 2998 2999 /* Reserve metadata for this range */ 3000 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 3001 clamped_len, clamped_len, 3002 false); 3003 if (ret) 3004 goto release_page; 3005 3006 /* Mark the range delalloc and dirty for later writeback */ 3007 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end); 3008 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start, 3009 clamped_end, 0, NULL); 3010 if (ret) { 3011 clear_extent_bits(&BTRFS_I(inode)->io_tree, 3012 clamped_start, clamped_end, 3013 EXTENT_LOCKED | EXTENT_BOUNDARY); 3014 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3015 clamped_len, true); 3016 btrfs_delalloc_release_extents(BTRFS_I(inode), 3017 clamped_len); 3018 goto release_page; 3019 } 3020 btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len); 3021 3022 /* 3023 * Set the boundary if it's inside the page. 3024 * Data relocation requires the destination extents to have the 3025 * same size as the source. 3026 * EXTENT_BOUNDARY bit prevents current extent from being merged 3027 * with previous extent. 3028 */ 3029 if (in_range(cluster->boundary[*cluster_nr] - offset, 3030 page_start, PAGE_SIZE)) { 3031 u64 boundary_start = cluster->boundary[*cluster_nr] - 3032 offset; 3033 u64 boundary_end = boundary_start + 3034 fs_info->sectorsize - 1; 3035 3036 set_extent_bits(&BTRFS_I(inode)->io_tree, 3037 boundary_start, boundary_end, 3038 EXTENT_BOUNDARY); 3039 } 3040 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end); 3041 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len); 3042 cur += clamped_len; 3043 3044 /* Crossed extent end, go to next extent */ 3045 if (cur >= extent_end) { 3046 (*cluster_nr)++; 3047 /* Just finished the last extent of the cluster, exit. */ 3048 if (*cluster_nr >= cluster->nr) 3049 break; 3050 } 3051 } 3052 unlock_page(page); 3053 put_page(page); 3054 3055 balance_dirty_pages_ratelimited(inode->i_mapping); 3056 btrfs_throttle(fs_info); 3057 if (btrfs_should_cancel_balance(fs_info)) 3058 ret = -ECANCELED; 3059 return ret; 3060 3061release_page: 3062 unlock_page(page); 3063 put_page(page); 3064 return ret; 3065} 3066 3067static int relocate_file_extent_cluster(struct inode *inode, 3068 struct file_extent_cluster *cluster) 3069{ 3070 u64 offset = BTRFS_I(inode)->index_cnt; 3071 unsigned long index; 3072 unsigned long last_index; 3073 struct file_ra_state *ra; 3074 int cluster_nr = 0; 3075 int ret = 0; 3076 3077 if (!cluster->nr) 3078 return 0; 3079 3080 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3081 if (!ra) 3082 return -ENOMEM; 3083 3084 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster); 3085 if (ret) 3086 goto out; 3087 3088 file_ra_state_init(ra, inode->i_mapping); 3089 3090 ret = setup_relocation_extent_mapping(inode, cluster->start - offset, 3091 cluster->end - offset, cluster->start); 3092 if (ret) 3093 goto out; 3094 3095 last_index = (cluster->end - offset) >> PAGE_SHIFT; 3096 for (index = (cluster->start - offset) >> PAGE_SHIFT; 3097 index <= last_index && !ret; index++) 3098 ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index); 3099 if (ret == 0) 3100 WARN_ON(cluster_nr != cluster->nr); 3101out: 3102 kfree(ra); 3103 return ret; 3104} 3105 3106static noinline_for_stack 3107int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3108 struct file_extent_cluster *cluster) 3109{ 3110 int ret; 3111 3112 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3113 ret = relocate_file_extent_cluster(inode, cluster); 3114 if (ret) 3115 return ret; 3116 cluster->nr = 0; 3117 } 3118 3119 if (!cluster->nr) 3120 cluster->start = extent_key->objectid; 3121 else 3122 BUG_ON(cluster->nr >= MAX_EXTENTS); 3123 cluster->end = extent_key->objectid + extent_key->offset - 1; 3124 cluster->boundary[cluster->nr] = extent_key->objectid; 3125 cluster->nr++; 3126 3127 if (cluster->nr >= MAX_EXTENTS) { 3128 ret = relocate_file_extent_cluster(inode, cluster); 3129 if (ret) 3130 return ret; 3131 cluster->nr = 0; 3132 } 3133 return 0; 3134} 3135 3136/* 3137 * helper to add a tree block to the list. 3138 * the major work is getting the generation and level of the block 3139 */ 3140static int add_tree_block(struct reloc_control *rc, 3141 struct btrfs_key *extent_key, 3142 struct btrfs_path *path, 3143 struct rb_root *blocks) 3144{ 3145 struct extent_buffer *eb; 3146 struct btrfs_extent_item *ei; 3147 struct btrfs_tree_block_info *bi; 3148 struct tree_block *block; 3149 struct rb_node *rb_node; 3150 u32 item_size; 3151 int level = -1; 3152 u64 generation; 3153 u64 owner = 0; 3154 3155 eb = path->nodes[0]; 3156 item_size = btrfs_item_size(eb, path->slots[0]); 3157 3158 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3159 item_size >= sizeof(*ei) + sizeof(*bi)) { 3160 unsigned long ptr = 0, end; 3161 3162 ei = btrfs_item_ptr(eb, path->slots[0], 3163 struct btrfs_extent_item); 3164 end = (unsigned long)ei + item_size; 3165 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3166 bi = (struct btrfs_tree_block_info *)(ei + 1); 3167 level = btrfs_tree_block_level(eb, bi); 3168 ptr = (unsigned long)(bi + 1); 3169 } else { 3170 level = (int)extent_key->offset; 3171 ptr = (unsigned long)(ei + 1); 3172 } 3173 generation = btrfs_extent_generation(eb, ei); 3174 3175 /* 3176 * We're reading random blocks without knowing their owner ahead 3177 * of time. This is ok most of the time, as all reloc roots and 3178 * fs roots have the same lock type. However normal trees do 3179 * not, and the only way to know ahead of time is to read the 3180 * inline ref offset. We know it's an fs root if 3181 * 3182 * 1. There's more than one ref. 3183 * 2. There's a SHARED_DATA_REF_KEY set. 3184 * 3. FULL_BACKREF is set on the flags. 3185 * 3186 * Otherwise it's safe to assume that the ref offset == the 3187 * owner of this block, so we can use that when calling 3188 * read_tree_block. 3189 */ 3190 if (btrfs_extent_refs(eb, ei) == 1 && 3191 !(btrfs_extent_flags(eb, ei) & 3192 BTRFS_BLOCK_FLAG_FULL_BACKREF) && 3193 ptr < end) { 3194 struct btrfs_extent_inline_ref *iref; 3195 int type; 3196 3197 iref = (struct btrfs_extent_inline_ref *)ptr; 3198 type = btrfs_get_extent_inline_ref_type(eb, iref, 3199 BTRFS_REF_TYPE_BLOCK); 3200 if (type == BTRFS_REF_TYPE_INVALID) 3201 return -EINVAL; 3202 if (type == BTRFS_TREE_BLOCK_REF_KEY) 3203 owner = btrfs_extent_inline_ref_offset(eb, iref); 3204 } 3205 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 3206 btrfs_print_v0_err(eb->fs_info); 3207 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 3208 return -EINVAL; 3209 } else { 3210 BUG(); 3211 } 3212 3213 btrfs_release_path(path); 3214 3215 BUG_ON(level == -1); 3216 3217 block = kmalloc(sizeof(*block), GFP_NOFS); 3218 if (!block) 3219 return -ENOMEM; 3220 3221 block->bytenr = extent_key->objectid; 3222 block->key.objectid = rc->extent_root->fs_info->nodesize; 3223 block->key.offset = generation; 3224 block->level = level; 3225 block->key_ready = 0; 3226 block->owner = owner; 3227 3228 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node); 3229 if (rb_node) 3230 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr, 3231 -EEXIST); 3232 3233 return 0; 3234} 3235 3236/* 3237 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3238 */ 3239static int __add_tree_block(struct reloc_control *rc, 3240 u64 bytenr, u32 blocksize, 3241 struct rb_root *blocks) 3242{ 3243 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3244 struct btrfs_path *path; 3245 struct btrfs_key key; 3246 int ret; 3247 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 3248 3249 if (tree_block_processed(bytenr, rc)) 3250 return 0; 3251 3252 if (rb_simple_search(blocks, bytenr)) 3253 return 0; 3254 3255 path = btrfs_alloc_path(); 3256 if (!path) 3257 return -ENOMEM; 3258again: 3259 key.objectid = bytenr; 3260 if (skinny) { 3261 key.type = BTRFS_METADATA_ITEM_KEY; 3262 key.offset = (u64)-1; 3263 } else { 3264 key.type = BTRFS_EXTENT_ITEM_KEY; 3265 key.offset = blocksize; 3266 } 3267 3268 path->search_commit_root = 1; 3269 path->skip_locking = 1; 3270 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3271 if (ret < 0) 3272 goto out; 3273 3274 if (ret > 0 && skinny) { 3275 if (path->slots[0]) { 3276 path->slots[0]--; 3277 btrfs_item_key_to_cpu(path->nodes[0], &key, 3278 path->slots[0]); 3279 if (key.objectid == bytenr && 3280 (key.type == BTRFS_METADATA_ITEM_KEY || 3281 (key.type == BTRFS_EXTENT_ITEM_KEY && 3282 key.offset == blocksize))) 3283 ret = 0; 3284 } 3285 3286 if (ret) { 3287 skinny = false; 3288 btrfs_release_path(path); 3289 goto again; 3290 } 3291 } 3292 if (ret) { 3293 ASSERT(ret == 1); 3294 btrfs_print_leaf(path->nodes[0]); 3295 btrfs_err(fs_info, 3296 "tree block extent item (%llu) is not found in extent tree", 3297 bytenr); 3298 WARN_ON(1); 3299 ret = -EINVAL; 3300 goto out; 3301 } 3302 3303 ret = add_tree_block(rc, &key, path, blocks); 3304out: 3305 btrfs_free_path(path); 3306 return ret; 3307} 3308 3309static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3310 struct btrfs_block_group *block_group, 3311 struct inode *inode, 3312 u64 ino) 3313{ 3314 struct btrfs_root *root = fs_info->tree_root; 3315 struct btrfs_trans_handle *trans; 3316 int ret = 0; 3317 3318 if (inode) 3319 goto truncate; 3320 3321 inode = btrfs_iget(fs_info->sb, ino, root); 3322 if (IS_ERR(inode)) 3323 return -ENOENT; 3324 3325truncate: 3326 ret = btrfs_check_trunc_cache_free_space(fs_info, 3327 &fs_info->global_block_rsv); 3328 if (ret) 3329 goto out; 3330 3331 trans = btrfs_join_transaction(root); 3332 if (IS_ERR(trans)) { 3333 ret = PTR_ERR(trans); 3334 goto out; 3335 } 3336 3337 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3338 3339 btrfs_end_transaction(trans); 3340 btrfs_btree_balance_dirty(fs_info); 3341out: 3342 iput(inode); 3343 return ret; 3344} 3345 3346/* 3347 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the 3348 * cache inode, to avoid free space cache data extent blocking data relocation. 3349 */ 3350static int delete_v1_space_cache(struct extent_buffer *leaf, 3351 struct btrfs_block_group *block_group, 3352 u64 data_bytenr) 3353{ 3354 u64 space_cache_ino; 3355 struct btrfs_file_extent_item *ei; 3356 struct btrfs_key key; 3357 bool found = false; 3358 int i; 3359 int ret; 3360 3361 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID) 3362 return 0; 3363 3364 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 3365 u8 type; 3366 3367 btrfs_item_key_to_cpu(leaf, &key, i); 3368 if (key.type != BTRFS_EXTENT_DATA_KEY) 3369 continue; 3370 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 3371 type = btrfs_file_extent_type(leaf, ei); 3372 3373 if ((type == BTRFS_FILE_EXTENT_REG || 3374 type == BTRFS_FILE_EXTENT_PREALLOC) && 3375 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) { 3376 found = true; 3377 space_cache_ino = key.objectid; 3378 break; 3379 } 3380 } 3381 if (!found) 3382 return -ENOENT; 3383 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL, 3384 space_cache_ino); 3385 return ret; 3386} 3387 3388/* 3389 * helper to find all tree blocks that reference a given data extent 3390 */ 3391static noinline_for_stack 3392int add_data_references(struct reloc_control *rc, 3393 struct btrfs_key *extent_key, 3394 struct btrfs_path *path, 3395 struct rb_root *blocks) 3396{ 3397 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3398 struct ulist *leaves = NULL; 3399 struct ulist_iterator leaf_uiter; 3400 struct ulist_node *ref_node = NULL; 3401 const u32 blocksize = fs_info->nodesize; 3402 int ret = 0; 3403 3404 btrfs_release_path(path); 3405 ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid, 3406 0, &leaves, NULL, true); 3407 if (ret < 0) 3408 return ret; 3409 3410 ULIST_ITER_INIT(&leaf_uiter); 3411 while ((ref_node = ulist_next(leaves, &leaf_uiter))) { 3412 struct extent_buffer *eb; 3413 3414 eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL); 3415 if (IS_ERR(eb)) { 3416 ret = PTR_ERR(eb); 3417 break; 3418 } 3419 ret = delete_v1_space_cache(eb, rc->block_group, 3420 extent_key->objectid); 3421 free_extent_buffer(eb); 3422 if (ret < 0) 3423 break; 3424 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks); 3425 if (ret < 0) 3426 break; 3427 } 3428 if (ret < 0) 3429 free_block_list(blocks); 3430 ulist_free(leaves); 3431 return ret; 3432} 3433 3434/* 3435 * helper to find next unprocessed extent 3436 */ 3437static noinline_for_stack 3438int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3439 struct btrfs_key *extent_key) 3440{ 3441 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3442 struct btrfs_key key; 3443 struct extent_buffer *leaf; 3444 u64 start, end, last; 3445 int ret; 3446 3447 last = rc->block_group->start + rc->block_group->length; 3448 while (1) { 3449 cond_resched(); 3450 if (rc->search_start >= last) { 3451 ret = 1; 3452 break; 3453 } 3454 3455 key.objectid = rc->search_start; 3456 key.type = BTRFS_EXTENT_ITEM_KEY; 3457 key.offset = 0; 3458 3459 path->search_commit_root = 1; 3460 path->skip_locking = 1; 3461 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3462 0, 0); 3463 if (ret < 0) 3464 break; 3465next: 3466 leaf = path->nodes[0]; 3467 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3468 ret = btrfs_next_leaf(rc->extent_root, path); 3469 if (ret != 0) 3470 break; 3471 leaf = path->nodes[0]; 3472 } 3473 3474 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3475 if (key.objectid >= last) { 3476 ret = 1; 3477 break; 3478 } 3479 3480 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3481 key.type != BTRFS_METADATA_ITEM_KEY) { 3482 path->slots[0]++; 3483 goto next; 3484 } 3485 3486 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3487 key.objectid + key.offset <= rc->search_start) { 3488 path->slots[0]++; 3489 goto next; 3490 } 3491 3492 if (key.type == BTRFS_METADATA_ITEM_KEY && 3493 key.objectid + fs_info->nodesize <= 3494 rc->search_start) { 3495 path->slots[0]++; 3496 goto next; 3497 } 3498 3499 ret = find_first_extent_bit(&rc->processed_blocks, 3500 key.objectid, &start, &end, 3501 EXTENT_DIRTY, NULL); 3502 3503 if (ret == 0 && start <= key.objectid) { 3504 btrfs_release_path(path); 3505 rc->search_start = end + 1; 3506 } else { 3507 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3508 rc->search_start = key.objectid + key.offset; 3509 else 3510 rc->search_start = key.objectid + 3511 fs_info->nodesize; 3512 memcpy(extent_key, &key, sizeof(key)); 3513 return 0; 3514 } 3515 } 3516 btrfs_release_path(path); 3517 return ret; 3518} 3519 3520static void set_reloc_control(struct reloc_control *rc) 3521{ 3522 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3523 3524 mutex_lock(&fs_info->reloc_mutex); 3525 fs_info->reloc_ctl = rc; 3526 mutex_unlock(&fs_info->reloc_mutex); 3527} 3528 3529static void unset_reloc_control(struct reloc_control *rc) 3530{ 3531 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3532 3533 mutex_lock(&fs_info->reloc_mutex); 3534 fs_info->reloc_ctl = NULL; 3535 mutex_unlock(&fs_info->reloc_mutex); 3536} 3537 3538static noinline_for_stack 3539int prepare_to_relocate(struct reloc_control *rc) 3540{ 3541 struct btrfs_trans_handle *trans; 3542 int ret; 3543 3544 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3545 BTRFS_BLOCK_RSV_TEMP); 3546 if (!rc->block_rsv) 3547 return -ENOMEM; 3548 3549 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3550 rc->search_start = rc->block_group->start; 3551 rc->extents_found = 0; 3552 rc->nodes_relocated = 0; 3553 rc->merging_rsv_size = 0; 3554 rc->reserved_bytes = 0; 3555 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3556 RELOCATION_RESERVED_NODES; 3557 ret = btrfs_block_rsv_refill(rc->extent_root->fs_info, 3558 rc->block_rsv, rc->block_rsv->size, 3559 BTRFS_RESERVE_FLUSH_ALL); 3560 if (ret) 3561 return ret; 3562 3563 rc->create_reloc_tree = 1; 3564 set_reloc_control(rc); 3565 3566 trans = btrfs_join_transaction(rc->extent_root); 3567 if (IS_ERR(trans)) { 3568 unset_reloc_control(rc); 3569 /* 3570 * extent tree is not a ref_cow tree and has no reloc_root to 3571 * cleanup. And callers are responsible to free the above 3572 * block rsv. 3573 */ 3574 return PTR_ERR(trans); 3575 } 3576 return btrfs_commit_transaction(trans); 3577} 3578 3579static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3580{ 3581 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3582 struct rb_root blocks = RB_ROOT; 3583 struct btrfs_key key; 3584 struct btrfs_trans_handle *trans = NULL; 3585 struct btrfs_path *path; 3586 struct btrfs_extent_item *ei; 3587 u64 flags; 3588 int ret; 3589 int err = 0; 3590 int progress = 0; 3591 3592 path = btrfs_alloc_path(); 3593 if (!path) 3594 return -ENOMEM; 3595 path->reada = READA_FORWARD; 3596 3597 ret = prepare_to_relocate(rc); 3598 if (ret) { 3599 err = ret; 3600 goto out_free; 3601 } 3602 3603 while (1) { 3604 rc->reserved_bytes = 0; 3605 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, 3606 rc->block_rsv->size, 3607 BTRFS_RESERVE_FLUSH_ALL); 3608 if (ret) { 3609 err = ret; 3610 break; 3611 } 3612 progress++; 3613 trans = btrfs_start_transaction(rc->extent_root, 0); 3614 if (IS_ERR(trans)) { 3615 err = PTR_ERR(trans); 3616 trans = NULL; 3617 break; 3618 } 3619restart: 3620 if (update_backref_cache(trans, &rc->backref_cache)) { 3621 btrfs_end_transaction(trans); 3622 trans = NULL; 3623 continue; 3624 } 3625 3626 ret = find_next_extent(rc, path, &key); 3627 if (ret < 0) 3628 err = ret; 3629 if (ret != 0) 3630 break; 3631 3632 rc->extents_found++; 3633 3634 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3635 struct btrfs_extent_item); 3636 flags = btrfs_extent_flags(path->nodes[0], ei); 3637 3638 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3639 ret = add_tree_block(rc, &key, path, &blocks); 3640 } else if (rc->stage == UPDATE_DATA_PTRS && 3641 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3642 ret = add_data_references(rc, &key, path, &blocks); 3643 } else { 3644 btrfs_release_path(path); 3645 ret = 0; 3646 } 3647 if (ret < 0) { 3648 err = ret; 3649 break; 3650 } 3651 3652 if (!RB_EMPTY_ROOT(&blocks)) { 3653 ret = relocate_tree_blocks(trans, rc, &blocks); 3654 if (ret < 0) { 3655 if (ret != -EAGAIN) { 3656 err = ret; 3657 break; 3658 } 3659 rc->extents_found--; 3660 rc->search_start = key.objectid; 3661 } 3662 } 3663 3664 btrfs_end_transaction_throttle(trans); 3665 btrfs_btree_balance_dirty(fs_info); 3666 trans = NULL; 3667 3668 if (rc->stage == MOVE_DATA_EXTENTS && 3669 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3670 rc->found_file_extent = 1; 3671 ret = relocate_data_extent(rc->data_inode, 3672 &key, &rc->cluster); 3673 if (ret < 0) { 3674 err = ret; 3675 break; 3676 } 3677 } 3678 if (btrfs_should_cancel_balance(fs_info)) { 3679 err = -ECANCELED; 3680 break; 3681 } 3682 } 3683 if (trans && progress && err == -ENOSPC) { 3684 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 3685 if (ret == 1) { 3686 err = 0; 3687 progress = 0; 3688 goto restart; 3689 } 3690 } 3691 3692 btrfs_release_path(path); 3693 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 3694 3695 if (trans) { 3696 btrfs_end_transaction_throttle(trans); 3697 btrfs_btree_balance_dirty(fs_info); 3698 } 3699 3700 if (!err) { 3701 ret = relocate_file_extent_cluster(rc->data_inode, 3702 &rc->cluster); 3703 if (ret < 0) 3704 err = ret; 3705 } 3706 3707 rc->create_reloc_tree = 0; 3708 set_reloc_control(rc); 3709 3710 btrfs_backref_release_cache(&rc->backref_cache); 3711 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3712 3713 /* 3714 * Even in the case when the relocation is cancelled, we should all go 3715 * through prepare_to_merge() and merge_reloc_roots(). 3716 * 3717 * For error (including cancelled balance), prepare_to_merge() will 3718 * mark all reloc trees orphan, then queue them for cleanup in 3719 * merge_reloc_roots() 3720 */ 3721 err = prepare_to_merge(rc, err); 3722 3723 merge_reloc_roots(rc); 3724 3725 rc->merge_reloc_tree = 0; 3726 unset_reloc_control(rc); 3727 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3728 3729 /* get rid of pinned extents */ 3730 trans = btrfs_join_transaction(rc->extent_root); 3731 if (IS_ERR(trans)) { 3732 err = PTR_ERR(trans); 3733 goto out_free; 3734 } 3735 ret = btrfs_commit_transaction(trans); 3736 if (ret && !err) 3737 err = ret; 3738out_free: 3739 ret = clean_dirty_subvols(rc); 3740 if (ret < 0 && !err) 3741 err = ret; 3742 btrfs_free_block_rsv(fs_info, rc->block_rsv); 3743 btrfs_free_path(path); 3744 return err; 3745} 3746 3747static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 3748 struct btrfs_root *root, u64 objectid) 3749{ 3750 struct btrfs_path *path; 3751 struct btrfs_inode_item *item; 3752 struct extent_buffer *leaf; 3753 int ret; 3754 3755 path = btrfs_alloc_path(); 3756 if (!path) 3757 return -ENOMEM; 3758 3759 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 3760 if (ret) 3761 goto out; 3762 3763 leaf = path->nodes[0]; 3764 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 3765 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3766 btrfs_set_inode_generation(leaf, item, 1); 3767 btrfs_set_inode_size(leaf, item, 0); 3768 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 3769 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 3770 BTRFS_INODE_PREALLOC); 3771 btrfs_mark_buffer_dirty(leaf); 3772out: 3773 btrfs_free_path(path); 3774 return ret; 3775} 3776 3777static void delete_orphan_inode(struct btrfs_trans_handle *trans, 3778 struct btrfs_root *root, u64 objectid) 3779{ 3780 struct btrfs_path *path; 3781 struct btrfs_key key; 3782 int ret = 0; 3783 3784 path = btrfs_alloc_path(); 3785 if (!path) { 3786 ret = -ENOMEM; 3787 goto out; 3788 } 3789 3790 key.objectid = objectid; 3791 key.type = BTRFS_INODE_ITEM_KEY; 3792 key.offset = 0; 3793 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3794 if (ret) { 3795 if (ret > 0) 3796 ret = -ENOENT; 3797 goto out; 3798 } 3799 ret = btrfs_del_item(trans, root, path); 3800out: 3801 if (ret) 3802 btrfs_abort_transaction(trans, ret); 3803 btrfs_free_path(path); 3804} 3805 3806/* 3807 * helper to create inode for data relocation. 3808 * the inode is in data relocation tree and its link count is 0 3809 */ 3810static noinline_for_stack 3811struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 3812 struct btrfs_block_group *group) 3813{ 3814 struct inode *inode = NULL; 3815 struct btrfs_trans_handle *trans; 3816 struct btrfs_root *root; 3817 u64 objectid; 3818 int err = 0; 3819 3820 root = btrfs_grab_root(fs_info->data_reloc_root); 3821 trans = btrfs_start_transaction(root, 6); 3822 if (IS_ERR(trans)) { 3823 btrfs_put_root(root); 3824 return ERR_CAST(trans); 3825 } 3826 3827 err = btrfs_get_free_objectid(root, &objectid); 3828 if (err) 3829 goto out; 3830 3831 err = __insert_orphan_inode(trans, root, objectid); 3832 if (err) 3833 goto out; 3834 3835 inode = btrfs_iget(fs_info->sb, objectid, root); 3836 if (IS_ERR(inode)) { 3837 delete_orphan_inode(trans, root, objectid); 3838 err = PTR_ERR(inode); 3839 inode = NULL; 3840 goto out; 3841 } 3842 BTRFS_I(inode)->index_cnt = group->start; 3843 3844 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 3845out: 3846 btrfs_put_root(root); 3847 btrfs_end_transaction(trans); 3848 btrfs_btree_balance_dirty(fs_info); 3849 if (err) { 3850 iput(inode); 3851 inode = ERR_PTR(err); 3852 } 3853 return inode; 3854} 3855 3856/* 3857 * Mark start of chunk relocation that is cancellable. Check if the cancellation 3858 * has been requested meanwhile and don't start in that case. 3859 * 3860 * Return: 3861 * 0 success 3862 * -EINPROGRESS operation is already in progress, that's probably a bug 3863 * -ECANCELED cancellation request was set before the operation started 3864 */ 3865static int reloc_chunk_start(struct btrfs_fs_info *fs_info) 3866{ 3867 if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) { 3868 /* This should not happen */ 3869 btrfs_err(fs_info, "reloc already running, cannot start"); 3870 return -EINPROGRESS; 3871 } 3872 3873 if (atomic_read(&fs_info->reloc_cancel_req) > 0) { 3874 btrfs_info(fs_info, "chunk relocation canceled on start"); 3875 /* 3876 * On cancel, clear all requests but let the caller mark 3877 * the end after cleanup operations. 3878 */ 3879 atomic_set(&fs_info->reloc_cancel_req, 0); 3880 return -ECANCELED; 3881 } 3882 return 0; 3883} 3884 3885/* 3886 * Mark end of chunk relocation that is cancellable and wake any waiters. 3887 */ 3888static void reloc_chunk_end(struct btrfs_fs_info *fs_info) 3889{ 3890 /* Requested after start, clear bit first so any waiters can continue */ 3891 if (atomic_read(&fs_info->reloc_cancel_req) > 0) 3892 btrfs_info(fs_info, "chunk relocation canceled during operation"); 3893 clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags); 3894 atomic_set(&fs_info->reloc_cancel_req, 0); 3895} 3896 3897static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 3898{ 3899 struct reloc_control *rc; 3900 3901 rc = kzalloc(sizeof(*rc), GFP_NOFS); 3902 if (!rc) 3903 return NULL; 3904 3905 INIT_LIST_HEAD(&rc->reloc_roots); 3906 INIT_LIST_HEAD(&rc->dirty_subvol_roots); 3907 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1); 3908 mapping_tree_init(&rc->reloc_root_tree); 3909 extent_io_tree_init(fs_info, &rc->processed_blocks, 3910 IO_TREE_RELOC_BLOCKS, NULL); 3911 return rc; 3912} 3913 3914static void free_reloc_control(struct reloc_control *rc) 3915{ 3916 struct mapping_node *node, *tmp; 3917 3918 free_reloc_roots(&rc->reloc_roots); 3919 rbtree_postorder_for_each_entry_safe(node, tmp, 3920 &rc->reloc_root_tree.rb_root, rb_node) 3921 kfree(node); 3922 3923 kfree(rc); 3924} 3925 3926/* 3927 * Print the block group being relocated 3928 */ 3929static void describe_relocation(struct btrfs_fs_info *fs_info, 3930 struct btrfs_block_group *block_group) 3931{ 3932 char buf[128] = {'\0'}; 3933 3934 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 3935 3936 btrfs_info(fs_info, 3937 "relocating block group %llu flags %s", 3938 block_group->start, buf); 3939} 3940 3941static const char *stage_to_string(int stage) 3942{ 3943 if (stage == MOVE_DATA_EXTENTS) 3944 return "move data extents"; 3945 if (stage == UPDATE_DATA_PTRS) 3946 return "update data pointers"; 3947 return "unknown"; 3948} 3949 3950/* 3951 * function to relocate all extents in a block group. 3952 */ 3953int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 3954{ 3955 struct btrfs_block_group *bg; 3956 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start); 3957 struct reloc_control *rc; 3958 struct inode *inode; 3959 struct btrfs_path *path; 3960 int ret; 3961 int rw = 0; 3962 int err = 0; 3963 3964 /* 3965 * This only gets set if we had a half-deleted snapshot on mount. We 3966 * cannot allow relocation to start while we're still trying to clean up 3967 * these pending deletions. 3968 */ 3969 ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE); 3970 if (ret) 3971 return ret; 3972 3973 /* We may have been woken up by close_ctree, so bail if we're closing. */ 3974 if (btrfs_fs_closing(fs_info)) 3975 return -EINTR; 3976 3977 bg = btrfs_lookup_block_group(fs_info, group_start); 3978 if (!bg) 3979 return -ENOENT; 3980 3981 /* 3982 * Relocation of a data block group creates ordered extents. Without 3983 * sb_start_write(), we can freeze the filesystem while unfinished 3984 * ordered extents are left. Such ordered extents can cause a deadlock 3985 * e.g. when syncfs() is waiting for their completion but they can't 3986 * finish because they block when joining a transaction, due to the 3987 * fact that the freeze locks are being held in write mode. 3988 */ 3989 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) 3990 ASSERT(sb_write_started(fs_info->sb)); 3991 3992 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 3993 btrfs_put_block_group(bg); 3994 return -ETXTBSY; 3995 } 3996 3997 rc = alloc_reloc_control(fs_info); 3998 if (!rc) { 3999 btrfs_put_block_group(bg); 4000 return -ENOMEM; 4001 } 4002 4003 ret = reloc_chunk_start(fs_info); 4004 if (ret < 0) { 4005 err = ret; 4006 goto out_put_bg; 4007 } 4008 4009 rc->extent_root = extent_root; 4010 rc->block_group = bg; 4011 4012 ret = btrfs_inc_block_group_ro(rc->block_group, true); 4013 if (ret) { 4014 err = ret; 4015 goto out; 4016 } 4017 rw = 1; 4018 4019 path = btrfs_alloc_path(); 4020 if (!path) { 4021 err = -ENOMEM; 4022 goto out; 4023 } 4024 4025 inode = lookup_free_space_inode(rc->block_group, path); 4026 btrfs_free_path(path); 4027 4028 if (!IS_ERR(inode)) 4029 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 4030 else 4031 ret = PTR_ERR(inode); 4032 4033 if (ret && ret != -ENOENT) { 4034 err = ret; 4035 goto out; 4036 } 4037 4038 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4039 if (IS_ERR(rc->data_inode)) { 4040 err = PTR_ERR(rc->data_inode); 4041 rc->data_inode = NULL; 4042 goto out; 4043 } 4044 4045 describe_relocation(fs_info, rc->block_group); 4046 4047 btrfs_wait_block_group_reservations(rc->block_group); 4048 btrfs_wait_nocow_writers(rc->block_group); 4049 btrfs_wait_ordered_roots(fs_info, U64_MAX, 4050 rc->block_group->start, 4051 rc->block_group->length); 4052 4053 ret = btrfs_zone_finish(rc->block_group); 4054 WARN_ON(ret && ret != -EAGAIN); 4055 4056 while (1) { 4057 int finishes_stage; 4058 4059 mutex_lock(&fs_info->cleaner_mutex); 4060 ret = relocate_block_group(rc); 4061 mutex_unlock(&fs_info->cleaner_mutex); 4062 if (ret < 0) 4063 err = ret; 4064 4065 finishes_stage = rc->stage; 4066 /* 4067 * We may have gotten ENOSPC after we already dirtied some 4068 * extents. If writeout happens while we're relocating a 4069 * different block group we could end up hitting the 4070 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in 4071 * btrfs_reloc_cow_block. Make sure we write everything out 4072 * properly so we don't trip over this problem, and then break 4073 * out of the loop if we hit an error. 4074 */ 4075 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4076 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4077 (u64)-1); 4078 if (ret) 4079 err = ret; 4080 invalidate_mapping_pages(rc->data_inode->i_mapping, 4081 0, -1); 4082 rc->stage = UPDATE_DATA_PTRS; 4083 } 4084 4085 if (err < 0) 4086 goto out; 4087 4088 if (rc->extents_found == 0) 4089 break; 4090 4091 btrfs_info(fs_info, "found %llu extents, stage: %s", 4092 rc->extents_found, stage_to_string(finishes_stage)); 4093 } 4094 4095 WARN_ON(rc->block_group->pinned > 0); 4096 WARN_ON(rc->block_group->reserved > 0); 4097 WARN_ON(rc->block_group->used > 0); 4098out: 4099 if (err && rw) 4100 btrfs_dec_block_group_ro(rc->block_group); 4101 iput(rc->data_inode); 4102out_put_bg: 4103 btrfs_put_block_group(bg); 4104 reloc_chunk_end(fs_info); 4105 free_reloc_control(rc); 4106 return err; 4107} 4108 4109static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4110{ 4111 struct btrfs_fs_info *fs_info = root->fs_info; 4112 struct btrfs_trans_handle *trans; 4113 int ret, err; 4114 4115 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4116 if (IS_ERR(trans)) 4117 return PTR_ERR(trans); 4118 4119 memset(&root->root_item.drop_progress, 0, 4120 sizeof(root->root_item.drop_progress)); 4121 btrfs_set_root_drop_level(&root->root_item, 0); 4122 btrfs_set_root_refs(&root->root_item, 0); 4123 ret = btrfs_update_root(trans, fs_info->tree_root, 4124 &root->root_key, &root->root_item); 4125 4126 err = btrfs_end_transaction(trans); 4127 if (err) 4128 return err; 4129 return ret; 4130} 4131 4132/* 4133 * recover relocation interrupted by system crash. 4134 * 4135 * this function resumes merging reloc trees with corresponding fs trees. 4136 * this is important for keeping the sharing of tree blocks 4137 */ 4138int btrfs_recover_relocation(struct btrfs_fs_info *fs_info) 4139{ 4140 LIST_HEAD(reloc_roots); 4141 struct btrfs_key key; 4142 struct btrfs_root *fs_root; 4143 struct btrfs_root *reloc_root; 4144 struct btrfs_path *path; 4145 struct extent_buffer *leaf; 4146 struct reloc_control *rc = NULL; 4147 struct btrfs_trans_handle *trans; 4148 int ret; 4149 int err = 0; 4150 4151 path = btrfs_alloc_path(); 4152 if (!path) 4153 return -ENOMEM; 4154 path->reada = READA_BACK; 4155 4156 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4157 key.type = BTRFS_ROOT_ITEM_KEY; 4158 key.offset = (u64)-1; 4159 4160 while (1) { 4161 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 4162 path, 0, 0); 4163 if (ret < 0) { 4164 err = ret; 4165 goto out; 4166 } 4167 if (ret > 0) { 4168 if (path->slots[0] == 0) 4169 break; 4170 path->slots[0]--; 4171 } 4172 leaf = path->nodes[0]; 4173 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4174 btrfs_release_path(path); 4175 4176 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4177 key.type != BTRFS_ROOT_ITEM_KEY) 4178 break; 4179 4180 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key); 4181 if (IS_ERR(reloc_root)) { 4182 err = PTR_ERR(reloc_root); 4183 goto out; 4184 } 4185 4186 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 4187 list_add(&reloc_root->root_list, &reloc_roots); 4188 4189 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4190 fs_root = btrfs_get_fs_root(fs_info, 4191 reloc_root->root_key.offset, false); 4192 if (IS_ERR(fs_root)) { 4193 ret = PTR_ERR(fs_root); 4194 if (ret != -ENOENT) { 4195 err = ret; 4196 goto out; 4197 } 4198 ret = mark_garbage_root(reloc_root); 4199 if (ret < 0) { 4200 err = ret; 4201 goto out; 4202 } 4203 } else { 4204 btrfs_put_root(fs_root); 4205 } 4206 } 4207 4208 if (key.offset == 0) 4209 break; 4210 4211 key.offset--; 4212 } 4213 btrfs_release_path(path); 4214 4215 if (list_empty(&reloc_roots)) 4216 goto out; 4217 4218 rc = alloc_reloc_control(fs_info); 4219 if (!rc) { 4220 err = -ENOMEM; 4221 goto out; 4222 } 4223 4224 ret = reloc_chunk_start(fs_info); 4225 if (ret < 0) { 4226 err = ret; 4227 goto out_end; 4228 } 4229 4230 rc->extent_root = btrfs_extent_root(fs_info, 0); 4231 4232 set_reloc_control(rc); 4233 4234 trans = btrfs_join_transaction(rc->extent_root); 4235 if (IS_ERR(trans)) { 4236 err = PTR_ERR(trans); 4237 goto out_unset; 4238 } 4239 4240 rc->merge_reloc_tree = 1; 4241 4242 while (!list_empty(&reloc_roots)) { 4243 reloc_root = list_entry(reloc_roots.next, 4244 struct btrfs_root, root_list); 4245 list_del(&reloc_root->root_list); 4246 4247 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4248 list_add_tail(&reloc_root->root_list, 4249 &rc->reloc_roots); 4250 continue; 4251 } 4252 4253 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 4254 false); 4255 if (IS_ERR(fs_root)) { 4256 err = PTR_ERR(fs_root); 4257 list_add_tail(&reloc_root->root_list, &reloc_roots); 4258 btrfs_end_transaction(trans); 4259 goto out_unset; 4260 } 4261 4262 err = __add_reloc_root(reloc_root); 4263 ASSERT(err != -EEXIST); 4264 if (err) { 4265 list_add_tail(&reloc_root->root_list, &reloc_roots); 4266 btrfs_put_root(fs_root); 4267 btrfs_end_transaction(trans); 4268 goto out_unset; 4269 } 4270 fs_root->reloc_root = btrfs_grab_root(reloc_root); 4271 btrfs_put_root(fs_root); 4272 } 4273 4274 err = btrfs_commit_transaction(trans); 4275 if (err) 4276 goto out_unset; 4277 4278 merge_reloc_roots(rc); 4279 4280 unset_reloc_control(rc); 4281 4282 trans = btrfs_join_transaction(rc->extent_root); 4283 if (IS_ERR(trans)) { 4284 err = PTR_ERR(trans); 4285 goto out_clean; 4286 } 4287 err = btrfs_commit_transaction(trans); 4288out_clean: 4289 ret = clean_dirty_subvols(rc); 4290 if (ret < 0 && !err) 4291 err = ret; 4292out_unset: 4293 unset_reloc_control(rc); 4294out_end: 4295 reloc_chunk_end(fs_info); 4296 free_reloc_control(rc); 4297out: 4298 free_reloc_roots(&reloc_roots); 4299 4300 btrfs_free_path(path); 4301 4302 if (err == 0) { 4303 /* cleanup orphan inode in data relocation tree */ 4304 fs_root = btrfs_grab_root(fs_info->data_reloc_root); 4305 ASSERT(fs_root); 4306 err = btrfs_orphan_cleanup(fs_root); 4307 btrfs_put_root(fs_root); 4308 } 4309 return err; 4310} 4311 4312/* 4313 * helper to add ordered checksum for data relocation. 4314 * 4315 * cloning checksum properly handles the nodatasum extents. 4316 * it also saves CPU time to re-calculate the checksum. 4317 */ 4318int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len) 4319{ 4320 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4321 struct btrfs_root *csum_root; 4322 struct btrfs_ordered_sum *sums; 4323 struct btrfs_ordered_extent *ordered; 4324 int ret; 4325 u64 disk_bytenr; 4326 u64 new_bytenr; 4327 LIST_HEAD(list); 4328 4329 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4330 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len); 4331 4332 disk_bytenr = file_pos + inode->index_cnt; 4333 csum_root = btrfs_csum_root(fs_info, disk_bytenr); 4334 ret = btrfs_lookup_csums_range(csum_root, disk_bytenr, 4335 disk_bytenr + len - 1, &list, 0); 4336 if (ret) 4337 goto out; 4338 4339 while (!list_empty(&list)) { 4340 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4341 list_del_init(&sums->list); 4342 4343 /* 4344 * We need to offset the new_bytenr based on where the csum is. 4345 * We need to do this because we will read in entire prealloc 4346 * extents but we may have written to say the middle of the 4347 * prealloc extent, so we need to make sure the csum goes with 4348 * the right disk offset. 4349 * 4350 * We can do this because the data reloc inode refers strictly 4351 * to the on disk bytes, so we don't have to worry about 4352 * disk_len vs real len like with real inodes since it's all 4353 * disk length. 4354 */ 4355 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr; 4356 sums->bytenr = new_bytenr; 4357 4358 btrfs_add_ordered_sum(ordered, sums); 4359 } 4360out: 4361 btrfs_put_ordered_extent(ordered); 4362 return ret; 4363} 4364 4365int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4366 struct btrfs_root *root, struct extent_buffer *buf, 4367 struct extent_buffer *cow) 4368{ 4369 struct btrfs_fs_info *fs_info = root->fs_info; 4370 struct reloc_control *rc; 4371 struct btrfs_backref_node *node; 4372 int first_cow = 0; 4373 int level; 4374 int ret = 0; 4375 4376 rc = fs_info->reloc_ctl; 4377 if (!rc) 4378 return 0; 4379 4380 BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root)); 4381 4382 level = btrfs_header_level(buf); 4383 if (btrfs_header_generation(buf) <= 4384 btrfs_root_last_snapshot(&root->root_item)) 4385 first_cow = 1; 4386 4387 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4388 rc->create_reloc_tree) { 4389 WARN_ON(!first_cow && level == 0); 4390 4391 node = rc->backref_cache.path[level]; 4392 BUG_ON(node->bytenr != buf->start && 4393 node->new_bytenr != buf->start); 4394 4395 btrfs_backref_drop_node_buffer(node); 4396 atomic_inc(&cow->refs); 4397 node->eb = cow; 4398 node->new_bytenr = cow->start; 4399 4400 if (!node->pending) { 4401 list_move_tail(&node->list, 4402 &rc->backref_cache.pending[level]); 4403 node->pending = 1; 4404 } 4405 4406 if (first_cow) 4407 mark_block_processed(rc, node); 4408 4409 if (first_cow && level > 0) 4410 rc->nodes_relocated += buf->len; 4411 } 4412 4413 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4414 ret = replace_file_extents(trans, rc, root, cow); 4415 return ret; 4416} 4417 4418/* 4419 * called before creating snapshot. it calculates metadata reservation 4420 * required for relocating tree blocks in the snapshot 4421 */ 4422void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4423 u64 *bytes_to_reserve) 4424{ 4425 struct btrfs_root *root = pending->root; 4426 struct reloc_control *rc = root->fs_info->reloc_ctl; 4427 4428 if (!rc || !have_reloc_root(root)) 4429 return; 4430 4431 if (!rc->merge_reloc_tree) 4432 return; 4433 4434 root = root->reloc_root; 4435 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4436 /* 4437 * relocation is in the stage of merging trees. the space 4438 * used by merging a reloc tree is twice the size of 4439 * relocated tree nodes in the worst case. half for cowing 4440 * the reloc tree, half for cowing the fs tree. the space 4441 * used by cowing the reloc tree will be freed after the 4442 * tree is dropped. if we create snapshot, cowing the fs 4443 * tree may use more space than it frees. so we need 4444 * reserve extra space. 4445 */ 4446 *bytes_to_reserve += rc->nodes_relocated; 4447} 4448 4449/* 4450 * called after snapshot is created. migrate block reservation 4451 * and create reloc root for the newly created snapshot 4452 * 4453 * This is similar to btrfs_init_reloc_root(), we come out of here with two 4454 * references held on the reloc_root, one for root->reloc_root and one for 4455 * rc->reloc_roots. 4456 */ 4457int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4458 struct btrfs_pending_snapshot *pending) 4459{ 4460 struct btrfs_root *root = pending->root; 4461 struct btrfs_root *reloc_root; 4462 struct btrfs_root *new_root; 4463 struct reloc_control *rc = root->fs_info->reloc_ctl; 4464 int ret; 4465 4466 if (!rc || !have_reloc_root(root)) 4467 return 0; 4468 4469 rc = root->fs_info->reloc_ctl; 4470 rc->merging_rsv_size += rc->nodes_relocated; 4471 4472 if (rc->merge_reloc_tree) { 4473 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4474 rc->block_rsv, 4475 rc->nodes_relocated, true); 4476 if (ret) 4477 return ret; 4478 } 4479 4480 new_root = pending->snap; 4481 reloc_root = create_reloc_root(trans, root->reloc_root, 4482 new_root->root_key.objectid); 4483 if (IS_ERR(reloc_root)) 4484 return PTR_ERR(reloc_root); 4485 4486 ret = __add_reloc_root(reloc_root); 4487 ASSERT(ret != -EEXIST); 4488 if (ret) { 4489 /* Pairs with create_reloc_root */ 4490 btrfs_put_root(reloc_root); 4491 return ret; 4492 } 4493 new_root->reloc_root = btrfs_grab_root(reloc_root); 4494 4495 if (rc->create_reloc_tree) 4496 ret = clone_backref_node(trans, rc, root, reloc_root); 4497 return ret; 4498}