cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

root-tree.c (14757B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (C) 2007 Oracle.  All rights reserved.
      4 */
      5
      6#include <linux/err.h>
      7#include <linux/uuid.h>
      8#include "ctree.h"
      9#include "transaction.h"
     10#include "disk-io.h"
     11#include "print-tree.h"
     12#include "qgroup.h"
     13#include "space-info.h"
     14
     15/*
     16 * Read a root item from the tree. In case we detect a root item smaller then
     17 * sizeof(root_item), we know it's an old version of the root structure and
     18 * initialize all new fields to zero. The same happens if we detect mismatching
     19 * generation numbers as then we know the root was once mounted with an older
     20 * kernel that was not aware of the root item structure change.
     21 */
     22static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
     23				struct btrfs_root_item *item)
     24{
     25	u32 len;
     26	int need_reset = 0;
     27
     28	len = btrfs_item_size(eb, slot);
     29	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
     30			   min_t(u32, len, sizeof(*item)));
     31	if (len < sizeof(*item))
     32		need_reset = 1;
     33	if (!need_reset && btrfs_root_generation(item)
     34		!= btrfs_root_generation_v2(item)) {
     35		if (btrfs_root_generation_v2(item) != 0) {
     36			btrfs_warn(eb->fs_info,
     37					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
     38		}
     39		need_reset = 1;
     40	}
     41	if (need_reset) {
     42		/* Clear all members from generation_v2 onwards. */
     43		memset_startat(item, 0, generation_v2);
     44		generate_random_guid(item->uuid);
     45	}
     46}
     47
     48/*
     49 * btrfs_find_root - lookup the root by the key.
     50 * root: the root of the root tree
     51 * search_key: the key to search
     52 * path: the path we search
     53 * root_item: the root item of the tree we look for
     54 * root_key: the root key of the tree we look for
     55 *
     56 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
     57 * of the search key, just lookup the root with the highest offset for a
     58 * given objectid.
     59 *
     60 * If we find something return 0, otherwise > 0, < 0 on error.
     61 */
     62int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
     63		    struct btrfs_path *path, struct btrfs_root_item *root_item,
     64		    struct btrfs_key *root_key)
     65{
     66	struct btrfs_key found_key;
     67	struct extent_buffer *l;
     68	int ret;
     69	int slot;
     70
     71	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
     72	if (ret < 0)
     73		return ret;
     74
     75	if (search_key->offset != -1ULL) {	/* the search key is exact */
     76		if (ret > 0)
     77			goto out;
     78	} else {
     79		BUG_ON(ret == 0);		/* Logical error */
     80		if (path->slots[0] == 0)
     81			goto out;
     82		path->slots[0]--;
     83		ret = 0;
     84	}
     85
     86	l = path->nodes[0];
     87	slot = path->slots[0];
     88
     89	btrfs_item_key_to_cpu(l, &found_key, slot);
     90	if (found_key.objectid != search_key->objectid ||
     91	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
     92		ret = 1;
     93		goto out;
     94	}
     95
     96	if (root_item)
     97		btrfs_read_root_item(l, slot, root_item);
     98	if (root_key)
     99		memcpy(root_key, &found_key, sizeof(found_key));
    100out:
    101	btrfs_release_path(path);
    102	return ret;
    103}
    104
    105void btrfs_set_root_node(struct btrfs_root_item *item,
    106			 struct extent_buffer *node)
    107{
    108	btrfs_set_root_bytenr(item, node->start);
    109	btrfs_set_root_level(item, btrfs_header_level(node));
    110	btrfs_set_root_generation(item, btrfs_header_generation(node));
    111}
    112
    113/*
    114 * copy the data in 'item' into the btree
    115 */
    116int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
    117		      *root, struct btrfs_key *key, struct btrfs_root_item
    118		      *item)
    119{
    120	struct btrfs_fs_info *fs_info = root->fs_info;
    121	struct btrfs_path *path;
    122	struct extent_buffer *l;
    123	int ret;
    124	int slot;
    125	unsigned long ptr;
    126	u32 old_len;
    127
    128	path = btrfs_alloc_path();
    129	if (!path)
    130		return -ENOMEM;
    131
    132	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
    133	if (ret < 0)
    134		goto out;
    135
    136	if (ret > 0) {
    137		btrfs_crit(fs_info,
    138			"unable to find root key (%llu %u %llu) in tree %llu",
    139			key->objectid, key->type, key->offset,
    140			root->root_key.objectid);
    141		ret = -EUCLEAN;
    142		btrfs_abort_transaction(trans, ret);
    143		goto out;
    144	}
    145
    146	l = path->nodes[0];
    147	slot = path->slots[0];
    148	ptr = btrfs_item_ptr_offset(l, slot);
    149	old_len = btrfs_item_size(l, slot);
    150
    151	/*
    152	 * If this is the first time we update the root item which originated
    153	 * from an older kernel, we need to enlarge the item size to make room
    154	 * for the added fields.
    155	 */
    156	if (old_len < sizeof(*item)) {
    157		btrfs_release_path(path);
    158		ret = btrfs_search_slot(trans, root, key, path,
    159				-1, 1);
    160		if (ret < 0) {
    161			btrfs_abort_transaction(trans, ret);
    162			goto out;
    163		}
    164
    165		ret = btrfs_del_item(trans, root, path);
    166		if (ret < 0) {
    167			btrfs_abort_transaction(trans, ret);
    168			goto out;
    169		}
    170		btrfs_release_path(path);
    171		ret = btrfs_insert_empty_item(trans, root, path,
    172				key, sizeof(*item));
    173		if (ret < 0) {
    174			btrfs_abort_transaction(trans, ret);
    175			goto out;
    176		}
    177		l = path->nodes[0];
    178		slot = path->slots[0];
    179		ptr = btrfs_item_ptr_offset(l, slot);
    180	}
    181
    182	/*
    183	 * Update generation_v2 so at the next mount we know the new root
    184	 * fields are valid.
    185	 */
    186	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
    187
    188	write_extent_buffer(l, item, ptr, sizeof(*item));
    189	btrfs_mark_buffer_dirty(path->nodes[0]);
    190out:
    191	btrfs_free_path(path);
    192	return ret;
    193}
    194
    195int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
    196		      const struct btrfs_key *key, struct btrfs_root_item *item)
    197{
    198	/*
    199	 * Make sure generation v1 and v2 match. See update_root for details.
    200	 */
    201	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
    202	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
    203}
    204
    205int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
    206{
    207	struct btrfs_root *tree_root = fs_info->tree_root;
    208	struct extent_buffer *leaf;
    209	struct btrfs_path *path;
    210	struct btrfs_key key;
    211	struct btrfs_root *root;
    212	int err = 0;
    213	int ret;
    214
    215	path = btrfs_alloc_path();
    216	if (!path)
    217		return -ENOMEM;
    218
    219	key.objectid = BTRFS_ORPHAN_OBJECTID;
    220	key.type = BTRFS_ORPHAN_ITEM_KEY;
    221	key.offset = 0;
    222
    223	while (1) {
    224		u64 root_objectid;
    225
    226		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
    227		if (ret < 0) {
    228			err = ret;
    229			break;
    230		}
    231
    232		leaf = path->nodes[0];
    233		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
    234			ret = btrfs_next_leaf(tree_root, path);
    235			if (ret < 0)
    236				err = ret;
    237			if (ret != 0)
    238				break;
    239			leaf = path->nodes[0];
    240		}
    241
    242		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
    243		btrfs_release_path(path);
    244
    245		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
    246		    key.type != BTRFS_ORPHAN_ITEM_KEY)
    247			break;
    248
    249		root_objectid = key.offset;
    250		key.offset++;
    251
    252		root = btrfs_get_fs_root(fs_info, root_objectid, false);
    253		err = PTR_ERR_OR_ZERO(root);
    254		if (err && err != -ENOENT) {
    255			break;
    256		} else if (err == -ENOENT) {
    257			struct btrfs_trans_handle *trans;
    258
    259			btrfs_release_path(path);
    260
    261			trans = btrfs_join_transaction(tree_root);
    262			if (IS_ERR(trans)) {
    263				err = PTR_ERR(trans);
    264				btrfs_handle_fs_error(fs_info, err,
    265					    "Failed to start trans to delete orphan item");
    266				break;
    267			}
    268			err = btrfs_del_orphan_item(trans, tree_root,
    269						    root_objectid);
    270			btrfs_end_transaction(trans);
    271			if (err) {
    272				btrfs_handle_fs_error(fs_info, err,
    273					    "Failed to delete root orphan item");
    274				break;
    275			}
    276			continue;
    277		}
    278
    279		WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state));
    280		if (btrfs_root_refs(&root->root_item) == 0) {
    281			struct btrfs_key drop_key;
    282
    283			btrfs_disk_key_to_cpu(&drop_key, &root->root_item.drop_progress);
    284			/*
    285			 * If we have a non-zero drop_progress then we know we
    286			 * made it partly through deleting this snapshot, and
    287			 * thus we need to make sure we block any balance from
    288			 * happening until this snapshot is completely dropped.
    289			 */
    290			if (drop_key.objectid != 0 || drop_key.type != 0 ||
    291			    drop_key.offset != 0) {
    292				set_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
    293				set_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
    294			}
    295
    296			set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
    297			btrfs_add_dead_root(root);
    298		}
    299		btrfs_put_root(root);
    300	}
    301
    302	btrfs_free_path(path);
    303	return err;
    304}
    305
    306/* drop the root item for 'key' from the tree root */
    307int btrfs_del_root(struct btrfs_trans_handle *trans,
    308		   const struct btrfs_key *key)
    309{
    310	struct btrfs_root *root = trans->fs_info->tree_root;
    311	struct btrfs_path *path;
    312	int ret;
    313
    314	path = btrfs_alloc_path();
    315	if (!path)
    316		return -ENOMEM;
    317	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
    318	if (ret < 0)
    319		goto out;
    320
    321	BUG_ON(ret != 0);
    322
    323	ret = btrfs_del_item(trans, root, path);
    324out:
    325	btrfs_free_path(path);
    326	return ret;
    327}
    328
    329int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
    330		       u64 ref_id, u64 dirid, u64 *sequence, const char *name,
    331		       int name_len)
    332
    333{
    334	struct btrfs_root *tree_root = trans->fs_info->tree_root;
    335	struct btrfs_path *path;
    336	struct btrfs_root_ref *ref;
    337	struct extent_buffer *leaf;
    338	struct btrfs_key key;
    339	unsigned long ptr;
    340	int err = 0;
    341	int ret;
    342
    343	path = btrfs_alloc_path();
    344	if (!path)
    345		return -ENOMEM;
    346
    347	key.objectid = root_id;
    348	key.type = BTRFS_ROOT_BACKREF_KEY;
    349	key.offset = ref_id;
    350again:
    351	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
    352	if (ret < 0)
    353		goto out;
    354	if (ret == 0) {
    355		leaf = path->nodes[0];
    356		ref = btrfs_item_ptr(leaf, path->slots[0],
    357				     struct btrfs_root_ref);
    358		ptr = (unsigned long)(ref + 1);
    359		if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
    360		    (btrfs_root_ref_name_len(leaf, ref) != name_len) ||
    361		    memcmp_extent_buffer(leaf, name, ptr, name_len)) {
    362			err = -ENOENT;
    363			goto out;
    364		}
    365		*sequence = btrfs_root_ref_sequence(leaf, ref);
    366
    367		ret = btrfs_del_item(trans, tree_root, path);
    368		if (ret) {
    369			err = ret;
    370			goto out;
    371		}
    372	} else
    373		err = -ENOENT;
    374
    375	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
    376		btrfs_release_path(path);
    377		key.objectid = ref_id;
    378		key.type = BTRFS_ROOT_REF_KEY;
    379		key.offset = root_id;
    380		goto again;
    381	}
    382
    383out:
    384	btrfs_free_path(path);
    385	return err;
    386}
    387
    388/*
    389 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
    390 * or BTRFS_ROOT_BACKREF_KEY.
    391 *
    392 * The dirid, sequence, name and name_len refer to the directory entry
    393 * that is referencing the root.
    394 *
    395 * For a forward ref, the root_id is the id of the tree referencing
    396 * the root and ref_id is the id of the subvol  or snapshot.
    397 *
    398 * For a back ref the root_id is the id of the subvol or snapshot and
    399 * ref_id is the id of the tree referencing it.
    400 *
    401 * Will return 0, -ENOMEM, or anything from the CoW path
    402 */
    403int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
    404		       u64 ref_id, u64 dirid, u64 sequence, const char *name,
    405		       int name_len)
    406{
    407	struct btrfs_root *tree_root = trans->fs_info->tree_root;
    408	struct btrfs_key key;
    409	int ret;
    410	struct btrfs_path *path;
    411	struct btrfs_root_ref *ref;
    412	struct extent_buffer *leaf;
    413	unsigned long ptr;
    414
    415	path = btrfs_alloc_path();
    416	if (!path)
    417		return -ENOMEM;
    418
    419	key.objectid = root_id;
    420	key.type = BTRFS_ROOT_BACKREF_KEY;
    421	key.offset = ref_id;
    422again:
    423	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
    424				      sizeof(*ref) + name_len);
    425	if (ret) {
    426		btrfs_abort_transaction(trans, ret);
    427		btrfs_free_path(path);
    428		return ret;
    429	}
    430
    431	leaf = path->nodes[0];
    432	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
    433	btrfs_set_root_ref_dirid(leaf, ref, dirid);
    434	btrfs_set_root_ref_sequence(leaf, ref, sequence);
    435	btrfs_set_root_ref_name_len(leaf, ref, name_len);
    436	ptr = (unsigned long)(ref + 1);
    437	write_extent_buffer(leaf, name, ptr, name_len);
    438	btrfs_mark_buffer_dirty(leaf);
    439
    440	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
    441		btrfs_release_path(path);
    442		key.objectid = ref_id;
    443		key.type = BTRFS_ROOT_REF_KEY;
    444		key.offset = root_id;
    445		goto again;
    446	}
    447
    448	btrfs_free_path(path);
    449	return 0;
    450}
    451
    452/*
    453 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
    454 * for subvolumes. To work around this problem, we steal a bit from
    455 * root_item->inode_item->flags, and use it to indicate if those fields
    456 * have been properly initialized.
    457 */
    458void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
    459{
    460	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
    461
    462	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
    463		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
    464		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
    465		btrfs_set_root_flags(root_item, 0);
    466		btrfs_set_root_limit(root_item, 0);
    467	}
    468}
    469
    470void btrfs_update_root_times(struct btrfs_trans_handle *trans,
    471			     struct btrfs_root *root)
    472{
    473	struct btrfs_root_item *item = &root->root_item;
    474	struct timespec64 ct;
    475
    476	ktime_get_real_ts64(&ct);
    477	spin_lock(&root->root_item_lock);
    478	btrfs_set_root_ctransid(item, trans->transid);
    479	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
    480	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
    481	spin_unlock(&root->root_item_lock);
    482}
    483
    484/*
    485 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
    486 * root: the root of the parent directory
    487 * rsv: block reservation
    488 * items: the number of items that we need do reservation
    489 * use_global_rsv: allow fallback to the global block reservation
    490 *
    491 * This function is used to reserve the space for snapshot/subvolume
    492 * creation and deletion. Those operations are different with the
    493 * common file/directory operations, they change two fs/file trees
    494 * and root tree, the number of items that the qgroup reserves is
    495 * different with the free space reservation. So we can not use
    496 * the space reservation mechanism in start_transaction().
    497 */
    498int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
    499				     struct btrfs_block_rsv *rsv, int items,
    500				     bool use_global_rsv)
    501{
    502	u64 qgroup_num_bytes = 0;
    503	u64 num_bytes;
    504	int ret;
    505	struct btrfs_fs_info *fs_info = root->fs_info;
    506	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
    507
    508	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
    509		/* One for parent inode, two for dir entries */
    510		qgroup_num_bytes = 3 * fs_info->nodesize;
    511		ret = btrfs_qgroup_reserve_meta_prealloc(root,
    512							 qgroup_num_bytes, true,
    513							 false);
    514		if (ret)
    515			return ret;
    516	}
    517
    518	num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
    519	rsv->space_info = btrfs_find_space_info(fs_info,
    520					    BTRFS_BLOCK_GROUP_METADATA);
    521	ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes,
    522				  BTRFS_RESERVE_FLUSH_ALL);
    523
    524	if (ret == -ENOSPC && use_global_rsv)
    525		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
    526
    527	if (ret && qgroup_num_bytes)
    528		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
    529
    530	if (!ret) {
    531		spin_lock(&rsv->lock);
    532		rsv->qgroup_rsv_reserved += qgroup_num_bytes;
    533		spin_unlock(&rsv->lock);
    534	}
    535	return ret;
    536}
    537
    538void btrfs_subvolume_release_metadata(struct btrfs_root *root,
    539				      struct btrfs_block_rsv *rsv)
    540{
    541	struct btrfs_fs_info *fs_info = root->fs_info;
    542	u64 qgroup_to_release;
    543
    544	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, &qgroup_to_release);
    545	btrfs_qgroup_convert_reserved_meta(root, qgroup_to_release);
    546}