send.c (198254B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6#include <linux/bsearch.h> 7#include <linux/fs.h> 8#include <linux/file.h> 9#include <linux/sort.h> 10#include <linux/mount.h> 11#include <linux/xattr.h> 12#include <linux/posix_acl_xattr.h> 13#include <linux/vmalloc.h> 14#include <linux/string.h> 15#include <linux/compat.h> 16#include <linux/crc32c.h> 17 18#include "send.h" 19#include "backref.h" 20#include "locking.h" 21#include "disk-io.h" 22#include "btrfs_inode.h" 23#include "transaction.h" 24#include "compression.h" 25#include "xattr.h" 26#include "print-tree.h" 27 28/* 29 * Maximum number of references an extent can have in order for us to attempt to 30 * issue clone operations instead of write operations. This currently exists to 31 * avoid hitting limitations of the backreference walking code (taking a lot of 32 * time and using too much memory for extents with large number of references). 33 */ 34#define SEND_MAX_EXTENT_REFS 64 35 36/* 37 * A fs_path is a helper to dynamically build path names with unknown size. 38 * It reallocates the internal buffer on demand. 39 * It allows fast adding of path elements on the right side (normal path) and 40 * fast adding to the left side (reversed path). A reversed path can also be 41 * unreversed if needed. 42 */ 43struct fs_path { 44 union { 45 struct { 46 char *start; 47 char *end; 48 49 char *buf; 50 unsigned short buf_len:15; 51 unsigned short reversed:1; 52 char inline_buf[]; 53 }; 54 /* 55 * Average path length does not exceed 200 bytes, we'll have 56 * better packing in the slab and higher chance to satisfy 57 * a allocation later during send. 58 */ 59 char pad[256]; 60 }; 61}; 62#define FS_PATH_INLINE_SIZE \ 63 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 64 65 66/* reused for each extent */ 67struct clone_root { 68 struct btrfs_root *root; 69 u64 ino; 70 u64 offset; 71 72 u64 found_refs; 73}; 74 75#define SEND_CTX_MAX_NAME_CACHE_SIZE 128 76#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 77 78struct send_ctx { 79 struct file *send_filp; 80 loff_t send_off; 81 char *send_buf; 82 u32 send_size; 83 u32 send_max_size; 84 u64 total_send_size; 85 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 86 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 87 /* Protocol version compatibility requested */ 88 u32 proto; 89 90 struct btrfs_root *send_root; 91 struct btrfs_root *parent_root; 92 struct clone_root *clone_roots; 93 int clone_roots_cnt; 94 95 /* current state of the compare_tree call */ 96 struct btrfs_path *left_path; 97 struct btrfs_path *right_path; 98 struct btrfs_key *cmp_key; 99 100 /* 101 * Keep track of the generation of the last transaction that was used 102 * for relocating a block group. This is periodically checked in order 103 * to detect if a relocation happened since the last check, so that we 104 * don't operate on stale extent buffers for nodes (level >= 1) or on 105 * stale disk_bytenr values of file extent items. 106 */ 107 u64 last_reloc_trans; 108 109 /* 110 * infos of the currently processed inode. In case of deleted inodes, 111 * these are the values from the deleted inode. 112 */ 113 u64 cur_ino; 114 u64 cur_inode_gen; 115 int cur_inode_new; 116 int cur_inode_new_gen; 117 int cur_inode_deleted; 118 u64 cur_inode_size; 119 u64 cur_inode_mode; 120 u64 cur_inode_rdev; 121 u64 cur_inode_last_extent; 122 u64 cur_inode_next_write_offset; 123 bool ignore_cur_inode; 124 125 u64 send_progress; 126 127 struct list_head new_refs; 128 struct list_head deleted_refs; 129 130 struct xarray name_cache; 131 struct list_head name_cache_list; 132 int name_cache_size; 133 134 /* 135 * The inode we are currently processing. It's not NULL only when we 136 * need to issue write commands for data extents from this inode. 137 */ 138 struct inode *cur_inode; 139 struct file_ra_state ra; 140 u64 page_cache_clear_start; 141 bool clean_page_cache; 142 143 /* 144 * We process inodes by their increasing order, so if before an 145 * incremental send we reverse the parent/child relationship of 146 * directories such that a directory with a lower inode number was 147 * the parent of a directory with a higher inode number, and the one 148 * becoming the new parent got renamed too, we can't rename/move the 149 * directory with lower inode number when we finish processing it - we 150 * must process the directory with higher inode number first, then 151 * rename/move it and then rename/move the directory with lower inode 152 * number. Example follows. 153 * 154 * Tree state when the first send was performed: 155 * 156 * . 157 * |-- a (ino 257) 158 * |-- b (ino 258) 159 * | 160 * | 161 * |-- c (ino 259) 162 * | |-- d (ino 260) 163 * | 164 * |-- c2 (ino 261) 165 * 166 * Tree state when the second (incremental) send is performed: 167 * 168 * . 169 * |-- a (ino 257) 170 * |-- b (ino 258) 171 * |-- c2 (ino 261) 172 * |-- d2 (ino 260) 173 * |-- cc (ino 259) 174 * 175 * The sequence of steps that lead to the second state was: 176 * 177 * mv /a/b/c/d /a/b/c2/d2 178 * mv /a/b/c /a/b/c2/d2/cc 179 * 180 * "c" has lower inode number, but we can't move it (2nd mv operation) 181 * before we move "d", which has higher inode number. 182 * 183 * So we just memorize which move/rename operations must be performed 184 * later when their respective parent is processed and moved/renamed. 185 */ 186 187 /* Indexed by parent directory inode number. */ 188 struct rb_root pending_dir_moves; 189 190 /* 191 * Reverse index, indexed by the inode number of a directory that 192 * is waiting for the move/rename of its immediate parent before its 193 * own move/rename can be performed. 194 */ 195 struct rb_root waiting_dir_moves; 196 197 /* 198 * A directory that is going to be rm'ed might have a child directory 199 * which is in the pending directory moves index above. In this case, 200 * the directory can only be removed after the move/rename of its child 201 * is performed. Example: 202 * 203 * Parent snapshot: 204 * 205 * . (ino 256) 206 * |-- a/ (ino 257) 207 * |-- b/ (ino 258) 208 * |-- c/ (ino 259) 209 * | |-- x/ (ino 260) 210 * | 211 * |-- y/ (ino 261) 212 * 213 * Send snapshot: 214 * 215 * . (ino 256) 216 * |-- a/ (ino 257) 217 * |-- b/ (ino 258) 218 * |-- YY/ (ino 261) 219 * |-- x/ (ino 260) 220 * 221 * Sequence of steps that lead to the send snapshot: 222 * rm -f /a/b/c/foo.txt 223 * mv /a/b/y /a/b/YY 224 * mv /a/b/c/x /a/b/YY 225 * rmdir /a/b/c 226 * 227 * When the child is processed, its move/rename is delayed until its 228 * parent is processed (as explained above), but all other operations 229 * like update utimes, chown, chgrp, etc, are performed and the paths 230 * that it uses for those operations must use the orphanized name of 231 * its parent (the directory we're going to rm later), so we need to 232 * memorize that name. 233 * 234 * Indexed by the inode number of the directory to be deleted. 235 */ 236 struct rb_root orphan_dirs; 237}; 238 239struct pending_dir_move { 240 struct rb_node node; 241 struct list_head list; 242 u64 parent_ino; 243 u64 ino; 244 u64 gen; 245 struct list_head update_refs; 246}; 247 248struct waiting_dir_move { 249 struct rb_node node; 250 u64 ino; 251 /* 252 * There might be some directory that could not be removed because it 253 * was waiting for this directory inode to be moved first. Therefore 254 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 255 */ 256 u64 rmdir_ino; 257 u64 rmdir_gen; 258 bool orphanized; 259}; 260 261struct orphan_dir_info { 262 struct rb_node node; 263 u64 ino; 264 u64 gen; 265 u64 last_dir_index_offset; 266}; 267 268struct name_cache_entry { 269 struct list_head list; 270 /* 271 * On 32bit kernels, xarray has only 32bit indices, but we need to 272 * handle 64bit inums. We use the lower 32bit of the 64bit inum to store 273 * it in the tree. If more than one inum would fall into the same entry, 274 * we use inum_aliases to store the additional entries. inum_aliases is 275 * also used to store entries with the same inum but different generations. 276 */ 277 struct list_head inum_aliases; 278 u64 ino; 279 u64 gen; 280 u64 parent_ino; 281 u64 parent_gen; 282 int ret; 283 int need_later_update; 284 int name_len; 285 char name[]; 286}; 287 288#define ADVANCE 1 289#define ADVANCE_ONLY_NEXT -1 290 291enum btrfs_compare_tree_result { 292 BTRFS_COMPARE_TREE_NEW, 293 BTRFS_COMPARE_TREE_DELETED, 294 BTRFS_COMPARE_TREE_CHANGED, 295 BTRFS_COMPARE_TREE_SAME, 296}; 297 298__cold 299static void inconsistent_snapshot_error(struct send_ctx *sctx, 300 enum btrfs_compare_tree_result result, 301 const char *what) 302{ 303 const char *result_string; 304 305 switch (result) { 306 case BTRFS_COMPARE_TREE_NEW: 307 result_string = "new"; 308 break; 309 case BTRFS_COMPARE_TREE_DELETED: 310 result_string = "deleted"; 311 break; 312 case BTRFS_COMPARE_TREE_CHANGED: 313 result_string = "updated"; 314 break; 315 case BTRFS_COMPARE_TREE_SAME: 316 ASSERT(0); 317 result_string = "unchanged"; 318 break; 319 default: 320 ASSERT(0); 321 result_string = "unexpected"; 322 } 323 324 btrfs_err(sctx->send_root->fs_info, 325 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 326 result_string, what, sctx->cmp_key->objectid, 327 sctx->send_root->root_key.objectid, 328 (sctx->parent_root ? 329 sctx->parent_root->root_key.objectid : 0)); 330} 331 332__maybe_unused 333static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd) 334{ 335 switch (sctx->proto) { 336 case 1: return cmd < __BTRFS_SEND_C_MAX_V1; 337 case 2: return cmd < __BTRFS_SEND_C_MAX_V2; 338 default: return false; 339 } 340} 341 342static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 343 344static struct waiting_dir_move * 345get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 346 347static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); 348 349static int need_send_hole(struct send_ctx *sctx) 350{ 351 return (sctx->parent_root && !sctx->cur_inode_new && 352 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 353 S_ISREG(sctx->cur_inode_mode)); 354} 355 356static void fs_path_reset(struct fs_path *p) 357{ 358 if (p->reversed) { 359 p->start = p->buf + p->buf_len - 1; 360 p->end = p->start; 361 *p->start = 0; 362 } else { 363 p->start = p->buf; 364 p->end = p->start; 365 *p->start = 0; 366 } 367} 368 369static struct fs_path *fs_path_alloc(void) 370{ 371 struct fs_path *p; 372 373 p = kmalloc(sizeof(*p), GFP_KERNEL); 374 if (!p) 375 return NULL; 376 p->reversed = 0; 377 p->buf = p->inline_buf; 378 p->buf_len = FS_PATH_INLINE_SIZE; 379 fs_path_reset(p); 380 return p; 381} 382 383static struct fs_path *fs_path_alloc_reversed(void) 384{ 385 struct fs_path *p; 386 387 p = fs_path_alloc(); 388 if (!p) 389 return NULL; 390 p->reversed = 1; 391 fs_path_reset(p); 392 return p; 393} 394 395static void fs_path_free(struct fs_path *p) 396{ 397 if (!p) 398 return; 399 if (p->buf != p->inline_buf) 400 kfree(p->buf); 401 kfree(p); 402} 403 404static int fs_path_len(struct fs_path *p) 405{ 406 return p->end - p->start; 407} 408 409static int fs_path_ensure_buf(struct fs_path *p, int len) 410{ 411 char *tmp_buf; 412 int path_len; 413 int old_buf_len; 414 415 len++; 416 417 if (p->buf_len >= len) 418 return 0; 419 420 if (len > PATH_MAX) { 421 WARN_ON(1); 422 return -ENOMEM; 423 } 424 425 path_len = p->end - p->start; 426 old_buf_len = p->buf_len; 427 428 /* 429 * First time the inline_buf does not suffice 430 */ 431 if (p->buf == p->inline_buf) { 432 tmp_buf = kmalloc(len, GFP_KERNEL); 433 if (tmp_buf) 434 memcpy(tmp_buf, p->buf, old_buf_len); 435 } else { 436 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 437 } 438 if (!tmp_buf) 439 return -ENOMEM; 440 p->buf = tmp_buf; 441 /* 442 * The real size of the buffer is bigger, this will let the fast path 443 * happen most of the time 444 */ 445 p->buf_len = ksize(p->buf); 446 447 if (p->reversed) { 448 tmp_buf = p->buf + old_buf_len - path_len - 1; 449 p->end = p->buf + p->buf_len - 1; 450 p->start = p->end - path_len; 451 memmove(p->start, tmp_buf, path_len + 1); 452 } else { 453 p->start = p->buf; 454 p->end = p->start + path_len; 455 } 456 return 0; 457} 458 459static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 460 char **prepared) 461{ 462 int ret; 463 int new_len; 464 465 new_len = p->end - p->start + name_len; 466 if (p->start != p->end) 467 new_len++; 468 ret = fs_path_ensure_buf(p, new_len); 469 if (ret < 0) 470 goto out; 471 472 if (p->reversed) { 473 if (p->start != p->end) 474 *--p->start = '/'; 475 p->start -= name_len; 476 *prepared = p->start; 477 } else { 478 if (p->start != p->end) 479 *p->end++ = '/'; 480 *prepared = p->end; 481 p->end += name_len; 482 *p->end = 0; 483 } 484 485out: 486 return ret; 487} 488 489static int fs_path_add(struct fs_path *p, const char *name, int name_len) 490{ 491 int ret; 492 char *prepared; 493 494 ret = fs_path_prepare_for_add(p, name_len, &prepared); 495 if (ret < 0) 496 goto out; 497 memcpy(prepared, name, name_len); 498 499out: 500 return ret; 501} 502 503static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 504{ 505 int ret; 506 char *prepared; 507 508 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 509 if (ret < 0) 510 goto out; 511 memcpy(prepared, p2->start, p2->end - p2->start); 512 513out: 514 return ret; 515} 516 517static int fs_path_add_from_extent_buffer(struct fs_path *p, 518 struct extent_buffer *eb, 519 unsigned long off, int len) 520{ 521 int ret; 522 char *prepared; 523 524 ret = fs_path_prepare_for_add(p, len, &prepared); 525 if (ret < 0) 526 goto out; 527 528 read_extent_buffer(eb, prepared, off, len); 529 530out: 531 return ret; 532} 533 534static int fs_path_copy(struct fs_path *p, struct fs_path *from) 535{ 536 p->reversed = from->reversed; 537 fs_path_reset(p); 538 539 return fs_path_add_path(p, from); 540} 541 542static void fs_path_unreverse(struct fs_path *p) 543{ 544 char *tmp; 545 int len; 546 547 if (!p->reversed) 548 return; 549 550 tmp = p->start; 551 len = p->end - p->start; 552 p->start = p->buf; 553 p->end = p->start + len; 554 memmove(p->start, tmp, len + 1); 555 p->reversed = 0; 556} 557 558static struct btrfs_path *alloc_path_for_send(void) 559{ 560 struct btrfs_path *path; 561 562 path = btrfs_alloc_path(); 563 if (!path) 564 return NULL; 565 path->search_commit_root = 1; 566 path->skip_locking = 1; 567 path->need_commit_sem = 1; 568 return path; 569} 570 571static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 572{ 573 int ret; 574 u32 pos = 0; 575 576 while (pos < len) { 577 ret = kernel_write(filp, buf + pos, len - pos, off); 578 /* TODO handle that correctly */ 579 /*if (ret == -ERESTARTSYS) { 580 continue; 581 }*/ 582 if (ret < 0) 583 return ret; 584 if (ret == 0) { 585 return -EIO; 586 } 587 pos += ret; 588 } 589 590 return 0; 591} 592 593static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 594{ 595 struct btrfs_tlv_header *hdr; 596 int total_len = sizeof(*hdr) + len; 597 int left = sctx->send_max_size - sctx->send_size; 598 599 if (unlikely(left < total_len)) 600 return -EOVERFLOW; 601 602 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 603 put_unaligned_le16(attr, &hdr->tlv_type); 604 put_unaligned_le16(len, &hdr->tlv_len); 605 memcpy(hdr + 1, data, len); 606 sctx->send_size += total_len; 607 608 return 0; 609} 610 611#define TLV_PUT_DEFINE_INT(bits) \ 612 static int tlv_put_u##bits(struct send_ctx *sctx, \ 613 u##bits attr, u##bits value) \ 614 { \ 615 __le##bits __tmp = cpu_to_le##bits(value); \ 616 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 617 } 618 619TLV_PUT_DEFINE_INT(64) 620 621static int tlv_put_string(struct send_ctx *sctx, u16 attr, 622 const char *str, int len) 623{ 624 if (len == -1) 625 len = strlen(str); 626 return tlv_put(sctx, attr, str, len); 627} 628 629static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 630 const u8 *uuid) 631{ 632 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 633} 634 635static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 636 struct extent_buffer *eb, 637 struct btrfs_timespec *ts) 638{ 639 struct btrfs_timespec bts; 640 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 641 return tlv_put(sctx, attr, &bts, sizeof(bts)); 642} 643 644 645#define TLV_PUT(sctx, attrtype, data, attrlen) \ 646 do { \ 647 ret = tlv_put(sctx, attrtype, data, attrlen); \ 648 if (ret < 0) \ 649 goto tlv_put_failure; \ 650 } while (0) 651 652#define TLV_PUT_INT(sctx, attrtype, bits, value) \ 653 do { \ 654 ret = tlv_put_u##bits(sctx, attrtype, value); \ 655 if (ret < 0) \ 656 goto tlv_put_failure; \ 657 } while (0) 658 659#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 660#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 661#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 662#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 663#define TLV_PUT_STRING(sctx, attrtype, str, len) \ 664 do { \ 665 ret = tlv_put_string(sctx, attrtype, str, len); \ 666 if (ret < 0) \ 667 goto tlv_put_failure; \ 668 } while (0) 669#define TLV_PUT_PATH(sctx, attrtype, p) \ 670 do { \ 671 ret = tlv_put_string(sctx, attrtype, p->start, \ 672 p->end - p->start); \ 673 if (ret < 0) \ 674 goto tlv_put_failure; \ 675 } while(0) 676#define TLV_PUT_UUID(sctx, attrtype, uuid) \ 677 do { \ 678 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 679 if (ret < 0) \ 680 goto tlv_put_failure; \ 681 } while (0) 682#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 683 do { \ 684 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 685 if (ret < 0) \ 686 goto tlv_put_failure; \ 687 } while (0) 688 689static int send_header(struct send_ctx *sctx) 690{ 691 struct btrfs_stream_header hdr; 692 693 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 694 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 695 696 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 697 &sctx->send_off); 698} 699 700/* 701 * For each command/item we want to send to userspace, we call this function. 702 */ 703static int begin_cmd(struct send_ctx *sctx, int cmd) 704{ 705 struct btrfs_cmd_header *hdr; 706 707 if (WARN_ON(!sctx->send_buf)) 708 return -EINVAL; 709 710 BUG_ON(sctx->send_size); 711 712 sctx->send_size += sizeof(*hdr); 713 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 714 put_unaligned_le16(cmd, &hdr->cmd); 715 716 return 0; 717} 718 719static int send_cmd(struct send_ctx *sctx) 720{ 721 int ret; 722 struct btrfs_cmd_header *hdr; 723 u32 crc; 724 725 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 726 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 727 put_unaligned_le32(0, &hdr->crc); 728 729 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 730 put_unaligned_le32(crc, &hdr->crc); 731 732 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 733 &sctx->send_off); 734 735 sctx->total_send_size += sctx->send_size; 736 sctx->cmd_send_size[get_unaligned_le16(&hdr->cmd)] += sctx->send_size; 737 sctx->send_size = 0; 738 739 return ret; 740} 741 742/* 743 * Sends a move instruction to user space 744 */ 745static int send_rename(struct send_ctx *sctx, 746 struct fs_path *from, struct fs_path *to) 747{ 748 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 749 int ret; 750 751 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 752 753 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 754 if (ret < 0) 755 goto out; 756 757 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 758 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 759 760 ret = send_cmd(sctx); 761 762tlv_put_failure: 763out: 764 return ret; 765} 766 767/* 768 * Sends a link instruction to user space 769 */ 770static int send_link(struct send_ctx *sctx, 771 struct fs_path *path, struct fs_path *lnk) 772{ 773 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 774 int ret; 775 776 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 777 778 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 779 if (ret < 0) 780 goto out; 781 782 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 783 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 784 785 ret = send_cmd(sctx); 786 787tlv_put_failure: 788out: 789 return ret; 790} 791 792/* 793 * Sends an unlink instruction to user space 794 */ 795static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 796{ 797 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 798 int ret; 799 800 btrfs_debug(fs_info, "send_unlink %s", path->start); 801 802 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 803 if (ret < 0) 804 goto out; 805 806 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 807 808 ret = send_cmd(sctx); 809 810tlv_put_failure: 811out: 812 return ret; 813} 814 815/* 816 * Sends a rmdir instruction to user space 817 */ 818static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 819{ 820 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 821 int ret; 822 823 btrfs_debug(fs_info, "send_rmdir %s", path->start); 824 825 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 826 if (ret < 0) 827 goto out; 828 829 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 830 831 ret = send_cmd(sctx); 832 833tlv_put_failure: 834out: 835 return ret; 836} 837 838/* 839 * Helper function to retrieve some fields from an inode item. 840 */ 841static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 842 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 843 u64 *gid, u64 *rdev) 844{ 845 int ret; 846 struct btrfs_inode_item *ii; 847 struct btrfs_key key; 848 849 key.objectid = ino; 850 key.type = BTRFS_INODE_ITEM_KEY; 851 key.offset = 0; 852 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 853 if (ret) { 854 if (ret > 0) 855 ret = -ENOENT; 856 return ret; 857 } 858 859 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 860 struct btrfs_inode_item); 861 if (size) 862 *size = btrfs_inode_size(path->nodes[0], ii); 863 if (gen) 864 *gen = btrfs_inode_generation(path->nodes[0], ii); 865 if (mode) 866 *mode = btrfs_inode_mode(path->nodes[0], ii); 867 if (uid) 868 *uid = btrfs_inode_uid(path->nodes[0], ii); 869 if (gid) 870 *gid = btrfs_inode_gid(path->nodes[0], ii); 871 if (rdev) 872 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 873 874 return ret; 875} 876 877static int get_inode_info(struct btrfs_root *root, 878 u64 ino, u64 *size, u64 *gen, 879 u64 *mode, u64 *uid, u64 *gid, 880 u64 *rdev) 881{ 882 struct btrfs_path *path; 883 int ret; 884 885 path = alloc_path_for_send(); 886 if (!path) 887 return -ENOMEM; 888 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 889 rdev); 890 btrfs_free_path(path); 891 return ret; 892} 893 894typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 895 struct fs_path *p, 896 void *ctx); 897 898/* 899 * Helper function to iterate the entries in ONE btrfs_inode_ref or 900 * btrfs_inode_extref. 901 * The iterate callback may return a non zero value to stop iteration. This can 902 * be a negative value for error codes or 1 to simply stop it. 903 * 904 * path must point to the INODE_REF or INODE_EXTREF when called. 905 */ 906static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 907 struct btrfs_key *found_key, int resolve, 908 iterate_inode_ref_t iterate, void *ctx) 909{ 910 struct extent_buffer *eb = path->nodes[0]; 911 struct btrfs_inode_ref *iref; 912 struct btrfs_inode_extref *extref; 913 struct btrfs_path *tmp_path; 914 struct fs_path *p; 915 u32 cur = 0; 916 u32 total; 917 int slot = path->slots[0]; 918 u32 name_len; 919 char *start; 920 int ret = 0; 921 int num = 0; 922 int index; 923 u64 dir; 924 unsigned long name_off; 925 unsigned long elem_size; 926 unsigned long ptr; 927 928 p = fs_path_alloc_reversed(); 929 if (!p) 930 return -ENOMEM; 931 932 tmp_path = alloc_path_for_send(); 933 if (!tmp_path) { 934 fs_path_free(p); 935 return -ENOMEM; 936 } 937 938 939 if (found_key->type == BTRFS_INODE_REF_KEY) { 940 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 941 struct btrfs_inode_ref); 942 total = btrfs_item_size(eb, slot); 943 elem_size = sizeof(*iref); 944 } else { 945 ptr = btrfs_item_ptr_offset(eb, slot); 946 total = btrfs_item_size(eb, slot); 947 elem_size = sizeof(*extref); 948 } 949 950 while (cur < total) { 951 fs_path_reset(p); 952 953 if (found_key->type == BTRFS_INODE_REF_KEY) { 954 iref = (struct btrfs_inode_ref *)(ptr + cur); 955 name_len = btrfs_inode_ref_name_len(eb, iref); 956 name_off = (unsigned long)(iref + 1); 957 index = btrfs_inode_ref_index(eb, iref); 958 dir = found_key->offset; 959 } else { 960 extref = (struct btrfs_inode_extref *)(ptr + cur); 961 name_len = btrfs_inode_extref_name_len(eb, extref); 962 name_off = (unsigned long)&extref->name; 963 index = btrfs_inode_extref_index(eb, extref); 964 dir = btrfs_inode_extref_parent(eb, extref); 965 } 966 967 if (resolve) { 968 start = btrfs_ref_to_path(root, tmp_path, name_len, 969 name_off, eb, dir, 970 p->buf, p->buf_len); 971 if (IS_ERR(start)) { 972 ret = PTR_ERR(start); 973 goto out; 974 } 975 if (start < p->buf) { 976 /* overflow , try again with larger buffer */ 977 ret = fs_path_ensure_buf(p, 978 p->buf_len + p->buf - start); 979 if (ret < 0) 980 goto out; 981 start = btrfs_ref_to_path(root, tmp_path, 982 name_len, name_off, 983 eb, dir, 984 p->buf, p->buf_len); 985 if (IS_ERR(start)) { 986 ret = PTR_ERR(start); 987 goto out; 988 } 989 BUG_ON(start < p->buf); 990 } 991 p->start = start; 992 } else { 993 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 994 name_len); 995 if (ret < 0) 996 goto out; 997 } 998 999 cur += elem_size + name_len; 1000 ret = iterate(num, dir, index, p, ctx); 1001 if (ret) 1002 goto out; 1003 num++; 1004 } 1005 1006out: 1007 btrfs_free_path(tmp_path); 1008 fs_path_free(p); 1009 return ret; 1010} 1011 1012typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 1013 const char *name, int name_len, 1014 const char *data, int data_len, 1015 void *ctx); 1016 1017/* 1018 * Helper function to iterate the entries in ONE btrfs_dir_item. 1019 * The iterate callback may return a non zero value to stop iteration. This can 1020 * be a negative value for error codes or 1 to simply stop it. 1021 * 1022 * path must point to the dir item when called. 1023 */ 1024static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1025 iterate_dir_item_t iterate, void *ctx) 1026{ 1027 int ret = 0; 1028 struct extent_buffer *eb; 1029 struct btrfs_dir_item *di; 1030 struct btrfs_key di_key; 1031 char *buf = NULL; 1032 int buf_len; 1033 u32 name_len; 1034 u32 data_len; 1035 u32 cur; 1036 u32 len; 1037 u32 total; 1038 int slot; 1039 int num; 1040 1041 /* 1042 * Start with a small buffer (1 page). If later we end up needing more 1043 * space, which can happen for xattrs on a fs with a leaf size greater 1044 * then the page size, attempt to increase the buffer. Typically xattr 1045 * values are small. 1046 */ 1047 buf_len = PATH_MAX; 1048 buf = kmalloc(buf_len, GFP_KERNEL); 1049 if (!buf) { 1050 ret = -ENOMEM; 1051 goto out; 1052 } 1053 1054 eb = path->nodes[0]; 1055 slot = path->slots[0]; 1056 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1057 cur = 0; 1058 len = 0; 1059 total = btrfs_item_size(eb, slot); 1060 1061 num = 0; 1062 while (cur < total) { 1063 name_len = btrfs_dir_name_len(eb, di); 1064 data_len = btrfs_dir_data_len(eb, di); 1065 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1066 1067 if (btrfs_dir_type(eb, di) == BTRFS_FT_XATTR) { 1068 if (name_len > XATTR_NAME_MAX) { 1069 ret = -ENAMETOOLONG; 1070 goto out; 1071 } 1072 if (name_len + data_len > 1073 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1074 ret = -E2BIG; 1075 goto out; 1076 } 1077 } else { 1078 /* 1079 * Path too long 1080 */ 1081 if (name_len + data_len > PATH_MAX) { 1082 ret = -ENAMETOOLONG; 1083 goto out; 1084 } 1085 } 1086 1087 if (name_len + data_len > buf_len) { 1088 buf_len = name_len + data_len; 1089 if (is_vmalloc_addr(buf)) { 1090 vfree(buf); 1091 buf = NULL; 1092 } else { 1093 char *tmp = krealloc(buf, buf_len, 1094 GFP_KERNEL | __GFP_NOWARN); 1095 1096 if (!tmp) 1097 kfree(buf); 1098 buf = tmp; 1099 } 1100 if (!buf) { 1101 buf = kvmalloc(buf_len, GFP_KERNEL); 1102 if (!buf) { 1103 ret = -ENOMEM; 1104 goto out; 1105 } 1106 } 1107 } 1108 1109 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1110 name_len + data_len); 1111 1112 len = sizeof(*di) + name_len + data_len; 1113 di = (struct btrfs_dir_item *)((char *)di + len); 1114 cur += len; 1115 1116 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1117 data_len, ctx); 1118 if (ret < 0) 1119 goto out; 1120 if (ret) { 1121 ret = 0; 1122 goto out; 1123 } 1124 1125 num++; 1126 } 1127 1128out: 1129 kvfree(buf); 1130 return ret; 1131} 1132 1133static int __copy_first_ref(int num, u64 dir, int index, 1134 struct fs_path *p, void *ctx) 1135{ 1136 int ret; 1137 struct fs_path *pt = ctx; 1138 1139 ret = fs_path_copy(pt, p); 1140 if (ret < 0) 1141 return ret; 1142 1143 /* we want the first only */ 1144 return 1; 1145} 1146 1147/* 1148 * Retrieve the first path of an inode. If an inode has more then one 1149 * ref/hardlink, this is ignored. 1150 */ 1151static int get_inode_path(struct btrfs_root *root, 1152 u64 ino, struct fs_path *path) 1153{ 1154 int ret; 1155 struct btrfs_key key, found_key; 1156 struct btrfs_path *p; 1157 1158 p = alloc_path_for_send(); 1159 if (!p) 1160 return -ENOMEM; 1161 1162 fs_path_reset(path); 1163 1164 key.objectid = ino; 1165 key.type = BTRFS_INODE_REF_KEY; 1166 key.offset = 0; 1167 1168 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1169 if (ret < 0) 1170 goto out; 1171 if (ret) { 1172 ret = 1; 1173 goto out; 1174 } 1175 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1176 if (found_key.objectid != ino || 1177 (found_key.type != BTRFS_INODE_REF_KEY && 1178 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1179 ret = -ENOENT; 1180 goto out; 1181 } 1182 1183 ret = iterate_inode_ref(root, p, &found_key, 1, 1184 __copy_first_ref, path); 1185 if (ret < 0) 1186 goto out; 1187 ret = 0; 1188 1189out: 1190 btrfs_free_path(p); 1191 return ret; 1192} 1193 1194struct backref_ctx { 1195 struct send_ctx *sctx; 1196 1197 /* number of total found references */ 1198 u64 found; 1199 1200 /* 1201 * used for clones found in send_root. clones found behind cur_objectid 1202 * and cur_offset are not considered as allowed clones. 1203 */ 1204 u64 cur_objectid; 1205 u64 cur_offset; 1206 1207 /* may be truncated in case it's the last extent in a file */ 1208 u64 extent_len; 1209 1210 /* Just to check for bugs in backref resolving */ 1211 int found_itself; 1212}; 1213 1214static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1215{ 1216 u64 root = (u64)(uintptr_t)key; 1217 const struct clone_root *cr = elt; 1218 1219 if (root < cr->root->root_key.objectid) 1220 return -1; 1221 if (root > cr->root->root_key.objectid) 1222 return 1; 1223 return 0; 1224} 1225 1226static int __clone_root_cmp_sort(const void *e1, const void *e2) 1227{ 1228 const struct clone_root *cr1 = e1; 1229 const struct clone_root *cr2 = e2; 1230 1231 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid) 1232 return -1; 1233 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid) 1234 return 1; 1235 return 0; 1236} 1237 1238/* 1239 * Called for every backref that is found for the current extent. 1240 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1241 */ 1242static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1243{ 1244 struct backref_ctx *bctx = ctx_; 1245 struct clone_root *found; 1246 1247 /* First check if the root is in the list of accepted clone sources */ 1248 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1249 bctx->sctx->clone_roots_cnt, 1250 sizeof(struct clone_root), 1251 __clone_root_cmp_bsearch); 1252 if (!found) 1253 return 0; 1254 1255 if (found->root == bctx->sctx->send_root && 1256 ino == bctx->cur_objectid && 1257 offset == bctx->cur_offset) { 1258 bctx->found_itself = 1; 1259 } 1260 1261 /* 1262 * Make sure we don't consider clones from send_root that are 1263 * behind the current inode/offset. 1264 */ 1265 if (found->root == bctx->sctx->send_root) { 1266 /* 1267 * If the source inode was not yet processed we can't issue a 1268 * clone operation, as the source extent does not exist yet at 1269 * the destination of the stream. 1270 */ 1271 if (ino > bctx->cur_objectid) 1272 return 0; 1273 /* 1274 * We clone from the inode currently being sent as long as the 1275 * source extent is already processed, otherwise we could try 1276 * to clone from an extent that does not exist yet at the 1277 * destination of the stream. 1278 */ 1279 if (ino == bctx->cur_objectid && 1280 offset + bctx->extent_len > 1281 bctx->sctx->cur_inode_next_write_offset) 1282 return 0; 1283 } 1284 1285 bctx->found++; 1286 found->found_refs++; 1287 if (ino < found->ino) { 1288 found->ino = ino; 1289 found->offset = offset; 1290 } else if (found->ino == ino) { 1291 /* 1292 * same extent found more then once in the same file. 1293 */ 1294 if (found->offset > offset + bctx->extent_len) 1295 found->offset = offset; 1296 } 1297 1298 return 0; 1299} 1300 1301/* 1302 * Given an inode, offset and extent item, it finds a good clone for a clone 1303 * instruction. Returns -ENOENT when none could be found. The function makes 1304 * sure that the returned clone is usable at the point where sending is at the 1305 * moment. This means, that no clones are accepted which lie behind the current 1306 * inode+offset. 1307 * 1308 * path must point to the extent item when called. 1309 */ 1310static int find_extent_clone(struct send_ctx *sctx, 1311 struct btrfs_path *path, 1312 u64 ino, u64 data_offset, 1313 u64 ino_size, 1314 struct clone_root **found) 1315{ 1316 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1317 int ret; 1318 int extent_type; 1319 u64 logical; 1320 u64 disk_byte; 1321 u64 num_bytes; 1322 u64 extent_item_pos; 1323 u64 flags = 0; 1324 struct btrfs_file_extent_item *fi; 1325 struct extent_buffer *eb = path->nodes[0]; 1326 struct backref_ctx backref_ctx = {0}; 1327 struct clone_root *cur_clone_root; 1328 struct btrfs_key found_key; 1329 struct btrfs_path *tmp_path; 1330 struct btrfs_extent_item *ei; 1331 int compressed; 1332 u32 i; 1333 1334 tmp_path = alloc_path_for_send(); 1335 if (!tmp_path) 1336 return -ENOMEM; 1337 1338 /* We only use this path under the commit sem */ 1339 tmp_path->need_commit_sem = 0; 1340 1341 if (data_offset >= ino_size) { 1342 /* 1343 * There may be extents that lie behind the file's size. 1344 * I at least had this in combination with snapshotting while 1345 * writing large files. 1346 */ 1347 ret = 0; 1348 goto out; 1349 } 1350 1351 fi = btrfs_item_ptr(eb, path->slots[0], 1352 struct btrfs_file_extent_item); 1353 extent_type = btrfs_file_extent_type(eb, fi); 1354 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1355 ret = -ENOENT; 1356 goto out; 1357 } 1358 compressed = btrfs_file_extent_compression(eb, fi); 1359 1360 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1361 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1362 if (disk_byte == 0) { 1363 ret = -ENOENT; 1364 goto out; 1365 } 1366 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1367 1368 down_read(&fs_info->commit_root_sem); 1369 ret = extent_from_logical(fs_info, disk_byte, tmp_path, 1370 &found_key, &flags); 1371 up_read(&fs_info->commit_root_sem); 1372 1373 if (ret < 0) 1374 goto out; 1375 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1376 ret = -EIO; 1377 goto out; 1378 } 1379 1380 ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0], 1381 struct btrfs_extent_item); 1382 /* 1383 * Backreference walking (iterate_extent_inodes() below) is currently 1384 * too expensive when an extent has a large number of references, both 1385 * in time spent and used memory. So for now just fallback to write 1386 * operations instead of clone operations when an extent has more than 1387 * a certain amount of references. 1388 */ 1389 if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) { 1390 ret = -ENOENT; 1391 goto out; 1392 } 1393 btrfs_release_path(tmp_path); 1394 1395 /* 1396 * Setup the clone roots. 1397 */ 1398 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1399 cur_clone_root = sctx->clone_roots + i; 1400 cur_clone_root->ino = (u64)-1; 1401 cur_clone_root->offset = 0; 1402 cur_clone_root->found_refs = 0; 1403 } 1404 1405 backref_ctx.sctx = sctx; 1406 backref_ctx.found = 0; 1407 backref_ctx.cur_objectid = ino; 1408 backref_ctx.cur_offset = data_offset; 1409 backref_ctx.found_itself = 0; 1410 backref_ctx.extent_len = num_bytes; 1411 1412 /* 1413 * The last extent of a file may be too large due to page alignment. 1414 * We need to adjust extent_len in this case so that the checks in 1415 * __iterate_backrefs work. 1416 */ 1417 if (data_offset + num_bytes >= ino_size) 1418 backref_ctx.extent_len = ino_size - data_offset; 1419 1420 /* 1421 * Now collect all backrefs. 1422 */ 1423 if (compressed == BTRFS_COMPRESS_NONE) 1424 extent_item_pos = logical - found_key.objectid; 1425 else 1426 extent_item_pos = 0; 1427 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1428 extent_item_pos, 1, __iterate_backrefs, 1429 &backref_ctx, false); 1430 1431 if (ret < 0) 1432 goto out; 1433 1434 down_read(&fs_info->commit_root_sem); 1435 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 1436 /* 1437 * A transaction commit for a transaction in which block group 1438 * relocation was done just happened. 1439 * The disk_bytenr of the file extent item we processed is 1440 * possibly stale, referring to the extent's location before 1441 * relocation. So act as if we haven't found any clone sources 1442 * and fallback to write commands, which will read the correct 1443 * data from the new extent location. Otherwise we will fail 1444 * below because we haven't found our own back reference or we 1445 * could be getting incorrect sources in case the old extent 1446 * was already reallocated after the relocation. 1447 */ 1448 up_read(&fs_info->commit_root_sem); 1449 ret = -ENOENT; 1450 goto out; 1451 } 1452 up_read(&fs_info->commit_root_sem); 1453 1454 if (!backref_ctx.found_itself) { 1455 /* found a bug in backref code? */ 1456 ret = -EIO; 1457 btrfs_err(fs_info, 1458 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu", 1459 ino, data_offset, disk_byte, found_key.objectid); 1460 goto out; 1461 } 1462 1463 btrfs_debug(fs_info, 1464 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1465 data_offset, ino, num_bytes, logical); 1466 1467 if (!backref_ctx.found) 1468 btrfs_debug(fs_info, "no clones found"); 1469 1470 cur_clone_root = NULL; 1471 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1472 if (sctx->clone_roots[i].found_refs) { 1473 if (!cur_clone_root) 1474 cur_clone_root = sctx->clone_roots + i; 1475 else if (sctx->clone_roots[i].root == sctx->send_root) 1476 /* prefer clones from send_root over others */ 1477 cur_clone_root = sctx->clone_roots + i; 1478 } 1479 1480 } 1481 1482 if (cur_clone_root) { 1483 *found = cur_clone_root; 1484 ret = 0; 1485 } else { 1486 ret = -ENOENT; 1487 } 1488 1489out: 1490 btrfs_free_path(tmp_path); 1491 return ret; 1492} 1493 1494static int read_symlink(struct btrfs_root *root, 1495 u64 ino, 1496 struct fs_path *dest) 1497{ 1498 int ret; 1499 struct btrfs_path *path; 1500 struct btrfs_key key; 1501 struct btrfs_file_extent_item *ei; 1502 u8 type; 1503 u8 compression; 1504 unsigned long off; 1505 int len; 1506 1507 path = alloc_path_for_send(); 1508 if (!path) 1509 return -ENOMEM; 1510 1511 key.objectid = ino; 1512 key.type = BTRFS_EXTENT_DATA_KEY; 1513 key.offset = 0; 1514 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1515 if (ret < 0) 1516 goto out; 1517 if (ret) { 1518 /* 1519 * An empty symlink inode. Can happen in rare error paths when 1520 * creating a symlink (transaction committed before the inode 1521 * eviction handler removed the symlink inode items and a crash 1522 * happened in between or the subvol was snapshoted in between). 1523 * Print an informative message to dmesg/syslog so that the user 1524 * can delete the symlink. 1525 */ 1526 btrfs_err(root->fs_info, 1527 "Found empty symlink inode %llu at root %llu", 1528 ino, root->root_key.objectid); 1529 ret = -EIO; 1530 goto out; 1531 } 1532 1533 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1534 struct btrfs_file_extent_item); 1535 type = btrfs_file_extent_type(path->nodes[0], ei); 1536 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1537 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1538 BUG_ON(compression); 1539 1540 off = btrfs_file_extent_inline_start(ei); 1541 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1542 1543 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1544 1545out: 1546 btrfs_free_path(path); 1547 return ret; 1548} 1549 1550/* 1551 * Helper function to generate a file name that is unique in the root of 1552 * send_root and parent_root. This is used to generate names for orphan inodes. 1553 */ 1554static int gen_unique_name(struct send_ctx *sctx, 1555 u64 ino, u64 gen, 1556 struct fs_path *dest) 1557{ 1558 int ret = 0; 1559 struct btrfs_path *path; 1560 struct btrfs_dir_item *di; 1561 char tmp[64]; 1562 int len; 1563 u64 idx = 0; 1564 1565 path = alloc_path_for_send(); 1566 if (!path) 1567 return -ENOMEM; 1568 1569 while (1) { 1570 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1571 ino, gen, idx); 1572 ASSERT(len < sizeof(tmp)); 1573 1574 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1575 path, BTRFS_FIRST_FREE_OBJECTID, 1576 tmp, strlen(tmp), 0); 1577 btrfs_release_path(path); 1578 if (IS_ERR(di)) { 1579 ret = PTR_ERR(di); 1580 goto out; 1581 } 1582 if (di) { 1583 /* not unique, try again */ 1584 idx++; 1585 continue; 1586 } 1587 1588 if (!sctx->parent_root) { 1589 /* unique */ 1590 ret = 0; 1591 break; 1592 } 1593 1594 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1595 path, BTRFS_FIRST_FREE_OBJECTID, 1596 tmp, strlen(tmp), 0); 1597 btrfs_release_path(path); 1598 if (IS_ERR(di)) { 1599 ret = PTR_ERR(di); 1600 goto out; 1601 } 1602 if (di) { 1603 /* not unique, try again */ 1604 idx++; 1605 continue; 1606 } 1607 /* unique */ 1608 break; 1609 } 1610 1611 ret = fs_path_add(dest, tmp, strlen(tmp)); 1612 1613out: 1614 btrfs_free_path(path); 1615 return ret; 1616} 1617 1618enum inode_state { 1619 inode_state_no_change, 1620 inode_state_will_create, 1621 inode_state_did_create, 1622 inode_state_will_delete, 1623 inode_state_did_delete, 1624}; 1625 1626static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1627{ 1628 int ret; 1629 int left_ret; 1630 int right_ret; 1631 u64 left_gen; 1632 u64 right_gen; 1633 1634 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1635 NULL, NULL); 1636 if (ret < 0 && ret != -ENOENT) 1637 goto out; 1638 left_ret = ret; 1639 1640 if (!sctx->parent_root) { 1641 right_ret = -ENOENT; 1642 } else { 1643 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1644 NULL, NULL, NULL, NULL); 1645 if (ret < 0 && ret != -ENOENT) 1646 goto out; 1647 right_ret = ret; 1648 } 1649 1650 if (!left_ret && !right_ret) { 1651 if (left_gen == gen && right_gen == gen) { 1652 ret = inode_state_no_change; 1653 } else if (left_gen == gen) { 1654 if (ino < sctx->send_progress) 1655 ret = inode_state_did_create; 1656 else 1657 ret = inode_state_will_create; 1658 } else if (right_gen == gen) { 1659 if (ino < sctx->send_progress) 1660 ret = inode_state_did_delete; 1661 else 1662 ret = inode_state_will_delete; 1663 } else { 1664 ret = -ENOENT; 1665 } 1666 } else if (!left_ret) { 1667 if (left_gen == gen) { 1668 if (ino < sctx->send_progress) 1669 ret = inode_state_did_create; 1670 else 1671 ret = inode_state_will_create; 1672 } else { 1673 ret = -ENOENT; 1674 } 1675 } else if (!right_ret) { 1676 if (right_gen == gen) { 1677 if (ino < sctx->send_progress) 1678 ret = inode_state_did_delete; 1679 else 1680 ret = inode_state_will_delete; 1681 } else { 1682 ret = -ENOENT; 1683 } 1684 } else { 1685 ret = -ENOENT; 1686 } 1687 1688out: 1689 return ret; 1690} 1691 1692static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1693{ 1694 int ret; 1695 1696 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1697 return 1; 1698 1699 ret = get_cur_inode_state(sctx, ino, gen); 1700 if (ret < 0) 1701 goto out; 1702 1703 if (ret == inode_state_no_change || 1704 ret == inode_state_did_create || 1705 ret == inode_state_will_delete) 1706 ret = 1; 1707 else 1708 ret = 0; 1709 1710out: 1711 return ret; 1712} 1713 1714/* 1715 * Helper function to lookup a dir item in a dir. 1716 */ 1717static int lookup_dir_item_inode(struct btrfs_root *root, 1718 u64 dir, const char *name, int name_len, 1719 u64 *found_inode) 1720{ 1721 int ret = 0; 1722 struct btrfs_dir_item *di; 1723 struct btrfs_key key; 1724 struct btrfs_path *path; 1725 1726 path = alloc_path_for_send(); 1727 if (!path) 1728 return -ENOMEM; 1729 1730 di = btrfs_lookup_dir_item(NULL, root, path, 1731 dir, name, name_len, 0); 1732 if (IS_ERR_OR_NULL(di)) { 1733 ret = di ? PTR_ERR(di) : -ENOENT; 1734 goto out; 1735 } 1736 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1737 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1738 ret = -ENOENT; 1739 goto out; 1740 } 1741 *found_inode = key.objectid; 1742 1743out: 1744 btrfs_free_path(path); 1745 return ret; 1746} 1747 1748/* 1749 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1750 * generation of the parent dir and the name of the dir entry. 1751 */ 1752static int get_first_ref(struct btrfs_root *root, u64 ino, 1753 u64 *dir, u64 *dir_gen, struct fs_path *name) 1754{ 1755 int ret; 1756 struct btrfs_key key; 1757 struct btrfs_key found_key; 1758 struct btrfs_path *path; 1759 int len; 1760 u64 parent_dir; 1761 1762 path = alloc_path_for_send(); 1763 if (!path) 1764 return -ENOMEM; 1765 1766 key.objectid = ino; 1767 key.type = BTRFS_INODE_REF_KEY; 1768 key.offset = 0; 1769 1770 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1771 if (ret < 0) 1772 goto out; 1773 if (!ret) 1774 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1775 path->slots[0]); 1776 if (ret || found_key.objectid != ino || 1777 (found_key.type != BTRFS_INODE_REF_KEY && 1778 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1779 ret = -ENOENT; 1780 goto out; 1781 } 1782 1783 if (found_key.type == BTRFS_INODE_REF_KEY) { 1784 struct btrfs_inode_ref *iref; 1785 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1786 struct btrfs_inode_ref); 1787 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1788 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1789 (unsigned long)(iref + 1), 1790 len); 1791 parent_dir = found_key.offset; 1792 } else { 1793 struct btrfs_inode_extref *extref; 1794 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1795 struct btrfs_inode_extref); 1796 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1797 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1798 (unsigned long)&extref->name, len); 1799 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1800 } 1801 if (ret < 0) 1802 goto out; 1803 btrfs_release_path(path); 1804 1805 if (dir_gen) { 1806 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1807 NULL, NULL, NULL); 1808 if (ret < 0) 1809 goto out; 1810 } 1811 1812 *dir = parent_dir; 1813 1814out: 1815 btrfs_free_path(path); 1816 return ret; 1817} 1818 1819static int is_first_ref(struct btrfs_root *root, 1820 u64 ino, u64 dir, 1821 const char *name, int name_len) 1822{ 1823 int ret; 1824 struct fs_path *tmp_name; 1825 u64 tmp_dir; 1826 1827 tmp_name = fs_path_alloc(); 1828 if (!tmp_name) 1829 return -ENOMEM; 1830 1831 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1832 if (ret < 0) 1833 goto out; 1834 1835 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1836 ret = 0; 1837 goto out; 1838 } 1839 1840 ret = !memcmp(tmp_name->start, name, name_len); 1841 1842out: 1843 fs_path_free(tmp_name); 1844 return ret; 1845} 1846 1847/* 1848 * Used by process_recorded_refs to determine if a new ref would overwrite an 1849 * already existing ref. In case it detects an overwrite, it returns the 1850 * inode/gen in who_ino/who_gen. 1851 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1852 * to make sure later references to the overwritten inode are possible. 1853 * Orphanizing is however only required for the first ref of an inode. 1854 * process_recorded_refs does an additional is_first_ref check to see if 1855 * orphanizing is really required. 1856 */ 1857static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1858 const char *name, int name_len, 1859 u64 *who_ino, u64 *who_gen, u64 *who_mode) 1860{ 1861 int ret = 0; 1862 u64 gen; 1863 u64 other_inode = 0; 1864 1865 if (!sctx->parent_root) 1866 goto out; 1867 1868 ret = is_inode_existent(sctx, dir, dir_gen); 1869 if (ret <= 0) 1870 goto out; 1871 1872 /* 1873 * If we have a parent root we need to verify that the parent dir was 1874 * not deleted and then re-created, if it was then we have no overwrite 1875 * and we can just unlink this entry. 1876 */ 1877 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) { 1878 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1879 NULL, NULL, NULL); 1880 if (ret < 0 && ret != -ENOENT) 1881 goto out; 1882 if (ret) { 1883 ret = 0; 1884 goto out; 1885 } 1886 if (gen != dir_gen) 1887 goto out; 1888 } 1889 1890 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1891 &other_inode); 1892 if (ret < 0 && ret != -ENOENT) 1893 goto out; 1894 if (ret) { 1895 ret = 0; 1896 goto out; 1897 } 1898 1899 /* 1900 * Check if the overwritten ref was already processed. If yes, the ref 1901 * was already unlinked/moved, so we can safely assume that we will not 1902 * overwrite anything at this point in time. 1903 */ 1904 if (other_inode > sctx->send_progress || 1905 is_waiting_for_move(sctx, other_inode)) { 1906 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1907 who_gen, who_mode, NULL, NULL, NULL); 1908 if (ret < 0) 1909 goto out; 1910 1911 ret = 1; 1912 *who_ino = other_inode; 1913 } else { 1914 ret = 0; 1915 } 1916 1917out: 1918 return ret; 1919} 1920 1921/* 1922 * Checks if the ref was overwritten by an already processed inode. This is 1923 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1924 * thus the orphan name needs be used. 1925 * process_recorded_refs also uses it to avoid unlinking of refs that were 1926 * overwritten. 1927 */ 1928static int did_overwrite_ref(struct send_ctx *sctx, 1929 u64 dir, u64 dir_gen, 1930 u64 ino, u64 ino_gen, 1931 const char *name, int name_len) 1932{ 1933 int ret = 0; 1934 u64 gen; 1935 u64 ow_inode; 1936 1937 if (!sctx->parent_root) 1938 goto out; 1939 1940 ret = is_inode_existent(sctx, dir, dir_gen); 1941 if (ret <= 0) 1942 goto out; 1943 1944 if (dir != BTRFS_FIRST_FREE_OBJECTID) { 1945 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, 1946 NULL, NULL, NULL); 1947 if (ret < 0 && ret != -ENOENT) 1948 goto out; 1949 if (ret) { 1950 ret = 0; 1951 goto out; 1952 } 1953 if (gen != dir_gen) 1954 goto out; 1955 } 1956 1957 /* check if the ref was overwritten by another ref */ 1958 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1959 &ow_inode); 1960 if (ret < 0 && ret != -ENOENT) 1961 goto out; 1962 if (ret) { 1963 /* was never and will never be overwritten */ 1964 ret = 0; 1965 goto out; 1966 } 1967 1968 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1969 NULL, NULL); 1970 if (ret < 0) 1971 goto out; 1972 1973 if (ow_inode == ino && gen == ino_gen) { 1974 ret = 0; 1975 goto out; 1976 } 1977 1978 /* 1979 * We know that it is or will be overwritten. Check this now. 1980 * The current inode being processed might have been the one that caused 1981 * inode 'ino' to be orphanized, therefore check if ow_inode matches 1982 * the current inode being processed. 1983 */ 1984 if ((ow_inode < sctx->send_progress) || 1985 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 1986 gen == sctx->cur_inode_gen)) 1987 ret = 1; 1988 else 1989 ret = 0; 1990 1991out: 1992 return ret; 1993} 1994 1995/* 1996 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1997 * that got overwritten. This is used by process_recorded_refs to determine 1998 * if it has to use the path as returned by get_cur_path or the orphan name. 1999 */ 2000static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 2001{ 2002 int ret = 0; 2003 struct fs_path *name = NULL; 2004 u64 dir; 2005 u64 dir_gen; 2006 2007 if (!sctx->parent_root) 2008 goto out; 2009 2010 name = fs_path_alloc(); 2011 if (!name) 2012 return -ENOMEM; 2013 2014 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2015 if (ret < 0) 2016 goto out; 2017 2018 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2019 name->start, fs_path_len(name)); 2020 2021out: 2022 fs_path_free(name); 2023 return ret; 2024} 2025 2026/* 2027 * Insert a name cache entry. On 32bit kernels the xarray index is 32bit, 2028 * so we need to do some special handling in case we have clashes. This function 2029 * takes care of this with the help of name_cache_entry::inum_aliases. 2030 * In case of error, nce is kfreed. 2031 */ 2032static int name_cache_insert(struct send_ctx *sctx, 2033 struct name_cache_entry *nce) 2034{ 2035 int ret = 0; 2036 struct list_head *nce_head; 2037 2038 nce_head = xa_load(&sctx->name_cache, (unsigned long)nce->ino); 2039 if (!nce_head) { 2040 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 2041 if (!nce_head) { 2042 kfree(nce); 2043 return -ENOMEM; 2044 } 2045 INIT_LIST_HEAD(nce_head); 2046 2047 ret = xa_insert(&sctx->name_cache, nce->ino, nce_head, GFP_KERNEL); 2048 if (ret < 0) { 2049 kfree(nce_head); 2050 kfree(nce); 2051 return ret; 2052 } 2053 } 2054 list_add_tail(&nce->inum_aliases, nce_head); 2055 list_add_tail(&nce->list, &sctx->name_cache_list); 2056 sctx->name_cache_size++; 2057 2058 return ret; 2059} 2060 2061static void name_cache_delete(struct send_ctx *sctx, 2062 struct name_cache_entry *nce) 2063{ 2064 struct list_head *nce_head; 2065 2066 nce_head = xa_load(&sctx->name_cache, (unsigned long)nce->ino); 2067 if (!nce_head) { 2068 btrfs_err(sctx->send_root->fs_info, 2069 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2070 nce->ino, sctx->name_cache_size); 2071 } 2072 2073 list_del(&nce->inum_aliases); 2074 list_del(&nce->list); 2075 sctx->name_cache_size--; 2076 2077 /* 2078 * We may not get to the final release of nce_head if the lookup fails 2079 */ 2080 if (nce_head && list_empty(nce_head)) { 2081 xa_erase(&sctx->name_cache, (unsigned long)nce->ino); 2082 kfree(nce_head); 2083 } 2084} 2085 2086static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2087 u64 ino, u64 gen) 2088{ 2089 struct list_head *nce_head; 2090 struct name_cache_entry *cur; 2091 2092 nce_head = xa_load(&sctx->name_cache, (unsigned long)ino); 2093 if (!nce_head) 2094 return NULL; 2095 2096 list_for_each_entry(cur, nce_head, inum_aliases) { 2097 if (cur->ino == ino && cur->gen == gen) 2098 return cur; 2099 } 2100 return NULL; 2101} 2102 2103/* 2104 * Remove some entries from the beginning of name_cache_list. 2105 */ 2106static void name_cache_clean_unused(struct send_ctx *sctx) 2107{ 2108 struct name_cache_entry *nce; 2109 2110 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2111 return; 2112 2113 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2114 nce = list_entry(sctx->name_cache_list.next, 2115 struct name_cache_entry, list); 2116 name_cache_delete(sctx, nce); 2117 kfree(nce); 2118 } 2119} 2120 2121static void name_cache_free(struct send_ctx *sctx) 2122{ 2123 struct name_cache_entry *nce; 2124 2125 while (!list_empty(&sctx->name_cache_list)) { 2126 nce = list_entry(sctx->name_cache_list.next, 2127 struct name_cache_entry, list); 2128 name_cache_delete(sctx, nce); 2129 kfree(nce); 2130 } 2131} 2132 2133/* 2134 * Used by get_cur_path for each ref up to the root. 2135 * Returns 0 if it succeeded. 2136 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2137 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2138 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2139 * Returns <0 in case of error. 2140 */ 2141static int __get_cur_name_and_parent(struct send_ctx *sctx, 2142 u64 ino, u64 gen, 2143 u64 *parent_ino, 2144 u64 *parent_gen, 2145 struct fs_path *dest) 2146{ 2147 int ret; 2148 int nce_ret; 2149 struct name_cache_entry *nce = NULL; 2150 2151 /* 2152 * First check if we already did a call to this function with the same 2153 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2154 * return the cached result. 2155 */ 2156 nce = name_cache_search(sctx, ino, gen); 2157 if (nce) { 2158 if (ino < sctx->send_progress && nce->need_later_update) { 2159 name_cache_delete(sctx, nce); 2160 kfree(nce); 2161 nce = NULL; 2162 } else { 2163 /* 2164 * Removes the entry from the list and adds it back to 2165 * the end. This marks the entry as recently used so 2166 * that name_cache_clean_unused does not remove it. 2167 */ 2168 list_move_tail(&nce->list, &sctx->name_cache_list); 2169 2170 *parent_ino = nce->parent_ino; 2171 *parent_gen = nce->parent_gen; 2172 ret = fs_path_add(dest, nce->name, nce->name_len); 2173 if (ret < 0) 2174 goto out; 2175 ret = nce->ret; 2176 goto out; 2177 } 2178 } 2179 2180 /* 2181 * If the inode is not existent yet, add the orphan name and return 1. 2182 * This should only happen for the parent dir that we determine in 2183 * __record_new_ref 2184 */ 2185 ret = is_inode_existent(sctx, ino, gen); 2186 if (ret < 0) 2187 goto out; 2188 2189 if (!ret) { 2190 ret = gen_unique_name(sctx, ino, gen, dest); 2191 if (ret < 0) 2192 goto out; 2193 ret = 1; 2194 goto out_cache; 2195 } 2196 2197 /* 2198 * Depending on whether the inode was already processed or not, use 2199 * send_root or parent_root for ref lookup. 2200 */ 2201 if (ino < sctx->send_progress) 2202 ret = get_first_ref(sctx->send_root, ino, 2203 parent_ino, parent_gen, dest); 2204 else 2205 ret = get_first_ref(sctx->parent_root, ino, 2206 parent_ino, parent_gen, dest); 2207 if (ret < 0) 2208 goto out; 2209 2210 /* 2211 * Check if the ref was overwritten by an inode's ref that was processed 2212 * earlier. If yes, treat as orphan and return 1. 2213 */ 2214 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2215 dest->start, dest->end - dest->start); 2216 if (ret < 0) 2217 goto out; 2218 if (ret) { 2219 fs_path_reset(dest); 2220 ret = gen_unique_name(sctx, ino, gen, dest); 2221 if (ret < 0) 2222 goto out; 2223 ret = 1; 2224 } 2225 2226out_cache: 2227 /* 2228 * Store the result of the lookup in the name cache. 2229 */ 2230 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2231 if (!nce) { 2232 ret = -ENOMEM; 2233 goto out; 2234 } 2235 2236 nce->ino = ino; 2237 nce->gen = gen; 2238 nce->parent_ino = *parent_ino; 2239 nce->parent_gen = *parent_gen; 2240 nce->name_len = fs_path_len(dest); 2241 nce->ret = ret; 2242 strcpy(nce->name, dest->start); 2243 2244 if (ino < sctx->send_progress) 2245 nce->need_later_update = 0; 2246 else 2247 nce->need_later_update = 1; 2248 2249 nce_ret = name_cache_insert(sctx, nce); 2250 if (nce_ret < 0) 2251 ret = nce_ret; 2252 name_cache_clean_unused(sctx); 2253 2254out: 2255 return ret; 2256} 2257 2258/* 2259 * Magic happens here. This function returns the first ref to an inode as it 2260 * would look like while receiving the stream at this point in time. 2261 * We walk the path up to the root. For every inode in between, we check if it 2262 * was already processed/sent. If yes, we continue with the parent as found 2263 * in send_root. If not, we continue with the parent as found in parent_root. 2264 * If we encounter an inode that was deleted at this point in time, we use the 2265 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2266 * that were not created yet and overwritten inodes/refs. 2267 * 2268 * When do we have orphan inodes: 2269 * 1. When an inode is freshly created and thus no valid refs are available yet 2270 * 2. When a directory lost all it's refs (deleted) but still has dir items 2271 * inside which were not processed yet (pending for move/delete). If anyone 2272 * tried to get the path to the dir items, it would get a path inside that 2273 * orphan directory. 2274 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2275 * of an unprocessed inode. If in that case the first ref would be 2276 * overwritten, the overwritten inode gets "orphanized". Later when we 2277 * process this overwritten inode, it is restored at a new place by moving 2278 * the orphan inode. 2279 * 2280 * sctx->send_progress tells this function at which point in time receiving 2281 * would be. 2282 */ 2283static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2284 struct fs_path *dest) 2285{ 2286 int ret = 0; 2287 struct fs_path *name = NULL; 2288 u64 parent_inode = 0; 2289 u64 parent_gen = 0; 2290 int stop = 0; 2291 2292 name = fs_path_alloc(); 2293 if (!name) { 2294 ret = -ENOMEM; 2295 goto out; 2296 } 2297 2298 dest->reversed = 1; 2299 fs_path_reset(dest); 2300 2301 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2302 struct waiting_dir_move *wdm; 2303 2304 fs_path_reset(name); 2305 2306 if (is_waiting_for_rm(sctx, ino, gen)) { 2307 ret = gen_unique_name(sctx, ino, gen, name); 2308 if (ret < 0) 2309 goto out; 2310 ret = fs_path_add_path(dest, name); 2311 break; 2312 } 2313 2314 wdm = get_waiting_dir_move(sctx, ino); 2315 if (wdm && wdm->orphanized) { 2316 ret = gen_unique_name(sctx, ino, gen, name); 2317 stop = 1; 2318 } else if (wdm) { 2319 ret = get_first_ref(sctx->parent_root, ino, 2320 &parent_inode, &parent_gen, name); 2321 } else { 2322 ret = __get_cur_name_and_parent(sctx, ino, gen, 2323 &parent_inode, 2324 &parent_gen, name); 2325 if (ret) 2326 stop = 1; 2327 } 2328 2329 if (ret < 0) 2330 goto out; 2331 2332 ret = fs_path_add_path(dest, name); 2333 if (ret < 0) 2334 goto out; 2335 2336 ino = parent_inode; 2337 gen = parent_gen; 2338 } 2339 2340out: 2341 fs_path_free(name); 2342 if (!ret) 2343 fs_path_unreverse(dest); 2344 return ret; 2345} 2346 2347/* 2348 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2349 */ 2350static int send_subvol_begin(struct send_ctx *sctx) 2351{ 2352 int ret; 2353 struct btrfs_root *send_root = sctx->send_root; 2354 struct btrfs_root *parent_root = sctx->parent_root; 2355 struct btrfs_path *path; 2356 struct btrfs_key key; 2357 struct btrfs_root_ref *ref; 2358 struct extent_buffer *leaf; 2359 char *name = NULL; 2360 int namelen; 2361 2362 path = btrfs_alloc_path(); 2363 if (!path) 2364 return -ENOMEM; 2365 2366 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2367 if (!name) { 2368 btrfs_free_path(path); 2369 return -ENOMEM; 2370 } 2371 2372 key.objectid = send_root->root_key.objectid; 2373 key.type = BTRFS_ROOT_BACKREF_KEY; 2374 key.offset = 0; 2375 2376 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2377 &key, path, 1, 0); 2378 if (ret < 0) 2379 goto out; 2380 if (ret) { 2381 ret = -ENOENT; 2382 goto out; 2383 } 2384 2385 leaf = path->nodes[0]; 2386 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2387 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2388 key.objectid != send_root->root_key.objectid) { 2389 ret = -ENOENT; 2390 goto out; 2391 } 2392 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2393 namelen = btrfs_root_ref_name_len(leaf, ref); 2394 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2395 btrfs_release_path(path); 2396 2397 if (parent_root) { 2398 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2399 if (ret < 0) 2400 goto out; 2401 } else { 2402 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2403 if (ret < 0) 2404 goto out; 2405 } 2406 2407 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2408 2409 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2410 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2411 sctx->send_root->root_item.received_uuid); 2412 else 2413 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2414 sctx->send_root->root_item.uuid); 2415 2416 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2417 btrfs_root_ctransid(&sctx->send_root->root_item)); 2418 if (parent_root) { 2419 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2420 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2421 parent_root->root_item.received_uuid); 2422 else 2423 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2424 parent_root->root_item.uuid); 2425 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2426 btrfs_root_ctransid(&sctx->parent_root->root_item)); 2427 } 2428 2429 ret = send_cmd(sctx); 2430 2431tlv_put_failure: 2432out: 2433 btrfs_free_path(path); 2434 kfree(name); 2435 return ret; 2436} 2437 2438static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2439{ 2440 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2441 int ret = 0; 2442 struct fs_path *p; 2443 2444 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2445 2446 p = fs_path_alloc(); 2447 if (!p) 2448 return -ENOMEM; 2449 2450 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2451 if (ret < 0) 2452 goto out; 2453 2454 ret = get_cur_path(sctx, ino, gen, p); 2455 if (ret < 0) 2456 goto out; 2457 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2458 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2459 2460 ret = send_cmd(sctx); 2461 2462tlv_put_failure: 2463out: 2464 fs_path_free(p); 2465 return ret; 2466} 2467 2468static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2469{ 2470 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2471 int ret = 0; 2472 struct fs_path *p; 2473 2474 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2475 2476 p = fs_path_alloc(); 2477 if (!p) 2478 return -ENOMEM; 2479 2480 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2481 if (ret < 0) 2482 goto out; 2483 2484 ret = get_cur_path(sctx, ino, gen, p); 2485 if (ret < 0) 2486 goto out; 2487 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2488 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2489 2490 ret = send_cmd(sctx); 2491 2492tlv_put_failure: 2493out: 2494 fs_path_free(p); 2495 return ret; 2496} 2497 2498static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2499{ 2500 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2501 int ret = 0; 2502 struct fs_path *p; 2503 2504 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2505 ino, uid, gid); 2506 2507 p = fs_path_alloc(); 2508 if (!p) 2509 return -ENOMEM; 2510 2511 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2512 if (ret < 0) 2513 goto out; 2514 2515 ret = get_cur_path(sctx, ino, gen, p); 2516 if (ret < 0) 2517 goto out; 2518 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2519 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2520 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2521 2522 ret = send_cmd(sctx); 2523 2524tlv_put_failure: 2525out: 2526 fs_path_free(p); 2527 return ret; 2528} 2529 2530static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2531{ 2532 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2533 int ret = 0; 2534 struct fs_path *p = NULL; 2535 struct btrfs_inode_item *ii; 2536 struct btrfs_path *path = NULL; 2537 struct extent_buffer *eb; 2538 struct btrfs_key key; 2539 int slot; 2540 2541 btrfs_debug(fs_info, "send_utimes %llu", ino); 2542 2543 p = fs_path_alloc(); 2544 if (!p) 2545 return -ENOMEM; 2546 2547 path = alloc_path_for_send(); 2548 if (!path) { 2549 ret = -ENOMEM; 2550 goto out; 2551 } 2552 2553 key.objectid = ino; 2554 key.type = BTRFS_INODE_ITEM_KEY; 2555 key.offset = 0; 2556 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2557 if (ret > 0) 2558 ret = -ENOENT; 2559 if (ret < 0) 2560 goto out; 2561 2562 eb = path->nodes[0]; 2563 slot = path->slots[0]; 2564 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2565 2566 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2567 if (ret < 0) 2568 goto out; 2569 2570 ret = get_cur_path(sctx, ino, gen, p); 2571 if (ret < 0) 2572 goto out; 2573 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2574 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2575 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2576 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2577 /* TODO Add otime support when the otime patches get into upstream */ 2578 2579 ret = send_cmd(sctx); 2580 2581tlv_put_failure: 2582out: 2583 fs_path_free(p); 2584 btrfs_free_path(path); 2585 return ret; 2586} 2587 2588/* 2589 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2590 * a valid path yet because we did not process the refs yet. So, the inode 2591 * is created as orphan. 2592 */ 2593static int send_create_inode(struct send_ctx *sctx, u64 ino) 2594{ 2595 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2596 int ret = 0; 2597 struct fs_path *p; 2598 int cmd; 2599 u64 gen; 2600 u64 mode; 2601 u64 rdev; 2602 2603 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2604 2605 p = fs_path_alloc(); 2606 if (!p) 2607 return -ENOMEM; 2608 2609 if (ino != sctx->cur_ino) { 2610 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2611 NULL, NULL, &rdev); 2612 if (ret < 0) 2613 goto out; 2614 } else { 2615 gen = sctx->cur_inode_gen; 2616 mode = sctx->cur_inode_mode; 2617 rdev = sctx->cur_inode_rdev; 2618 } 2619 2620 if (S_ISREG(mode)) { 2621 cmd = BTRFS_SEND_C_MKFILE; 2622 } else if (S_ISDIR(mode)) { 2623 cmd = BTRFS_SEND_C_MKDIR; 2624 } else if (S_ISLNK(mode)) { 2625 cmd = BTRFS_SEND_C_SYMLINK; 2626 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2627 cmd = BTRFS_SEND_C_MKNOD; 2628 } else if (S_ISFIFO(mode)) { 2629 cmd = BTRFS_SEND_C_MKFIFO; 2630 } else if (S_ISSOCK(mode)) { 2631 cmd = BTRFS_SEND_C_MKSOCK; 2632 } else { 2633 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2634 (int)(mode & S_IFMT)); 2635 ret = -EOPNOTSUPP; 2636 goto out; 2637 } 2638 2639 ret = begin_cmd(sctx, cmd); 2640 if (ret < 0) 2641 goto out; 2642 2643 ret = gen_unique_name(sctx, ino, gen, p); 2644 if (ret < 0) 2645 goto out; 2646 2647 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2648 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2649 2650 if (S_ISLNK(mode)) { 2651 fs_path_reset(p); 2652 ret = read_symlink(sctx->send_root, ino, p); 2653 if (ret < 0) 2654 goto out; 2655 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2656 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2657 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2658 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2659 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2660 } 2661 2662 ret = send_cmd(sctx); 2663 if (ret < 0) 2664 goto out; 2665 2666 2667tlv_put_failure: 2668out: 2669 fs_path_free(p); 2670 return ret; 2671} 2672 2673/* 2674 * We need some special handling for inodes that get processed before the parent 2675 * directory got created. See process_recorded_refs for details. 2676 * This function does the check if we already created the dir out of order. 2677 */ 2678static int did_create_dir(struct send_ctx *sctx, u64 dir) 2679{ 2680 int ret = 0; 2681 int iter_ret = 0; 2682 struct btrfs_path *path = NULL; 2683 struct btrfs_key key; 2684 struct btrfs_key found_key; 2685 struct btrfs_key di_key; 2686 struct btrfs_dir_item *di; 2687 2688 path = alloc_path_for_send(); 2689 if (!path) 2690 return -ENOMEM; 2691 2692 key.objectid = dir; 2693 key.type = BTRFS_DIR_INDEX_KEY; 2694 key.offset = 0; 2695 2696 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) { 2697 struct extent_buffer *eb = path->nodes[0]; 2698 2699 if (found_key.objectid != key.objectid || 2700 found_key.type != key.type) { 2701 ret = 0; 2702 break; 2703 } 2704 2705 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item); 2706 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2707 2708 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2709 di_key.objectid < sctx->send_progress) { 2710 ret = 1; 2711 break; 2712 } 2713 } 2714 /* Catch error found during iteration */ 2715 if (iter_ret < 0) 2716 ret = iter_ret; 2717 2718 btrfs_free_path(path); 2719 return ret; 2720} 2721 2722/* 2723 * Only creates the inode if it is: 2724 * 1. Not a directory 2725 * 2. Or a directory which was not created already due to out of order 2726 * directories. See did_create_dir and process_recorded_refs for details. 2727 */ 2728static int send_create_inode_if_needed(struct send_ctx *sctx) 2729{ 2730 int ret; 2731 2732 if (S_ISDIR(sctx->cur_inode_mode)) { 2733 ret = did_create_dir(sctx, sctx->cur_ino); 2734 if (ret < 0) 2735 return ret; 2736 else if (ret > 0) 2737 return 0; 2738 } 2739 2740 return send_create_inode(sctx, sctx->cur_ino); 2741} 2742 2743struct recorded_ref { 2744 struct list_head list; 2745 char *name; 2746 struct fs_path *full_path; 2747 u64 dir; 2748 u64 dir_gen; 2749 int name_len; 2750}; 2751 2752static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 2753{ 2754 ref->full_path = path; 2755 ref->name = (char *)kbasename(ref->full_path->start); 2756 ref->name_len = ref->full_path->end - ref->name; 2757} 2758 2759/* 2760 * We need to process new refs before deleted refs, but compare_tree gives us 2761 * everything mixed. So we first record all refs and later process them. 2762 * This function is a helper to record one ref. 2763 */ 2764static int __record_ref(struct list_head *head, u64 dir, 2765 u64 dir_gen, struct fs_path *path) 2766{ 2767 struct recorded_ref *ref; 2768 2769 ref = kmalloc(sizeof(*ref), GFP_KERNEL); 2770 if (!ref) 2771 return -ENOMEM; 2772 2773 ref->dir = dir; 2774 ref->dir_gen = dir_gen; 2775 set_ref_path(ref, path); 2776 list_add_tail(&ref->list, head); 2777 return 0; 2778} 2779 2780static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2781{ 2782 struct recorded_ref *new; 2783 2784 new = kmalloc(sizeof(*ref), GFP_KERNEL); 2785 if (!new) 2786 return -ENOMEM; 2787 2788 new->dir = ref->dir; 2789 new->dir_gen = ref->dir_gen; 2790 new->full_path = NULL; 2791 INIT_LIST_HEAD(&new->list); 2792 list_add_tail(&new->list, list); 2793 return 0; 2794} 2795 2796static void __free_recorded_refs(struct list_head *head) 2797{ 2798 struct recorded_ref *cur; 2799 2800 while (!list_empty(head)) { 2801 cur = list_entry(head->next, struct recorded_ref, list); 2802 fs_path_free(cur->full_path); 2803 list_del(&cur->list); 2804 kfree(cur); 2805 } 2806} 2807 2808static void free_recorded_refs(struct send_ctx *sctx) 2809{ 2810 __free_recorded_refs(&sctx->new_refs); 2811 __free_recorded_refs(&sctx->deleted_refs); 2812} 2813 2814/* 2815 * Renames/moves a file/dir to its orphan name. Used when the first 2816 * ref of an unprocessed inode gets overwritten and for all non empty 2817 * directories. 2818 */ 2819static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2820 struct fs_path *path) 2821{ 2822 int ret; 2823 struct fs_path *orphan; 2824 2825 orphan = fs_path_alloc(); 2826 if (!orphan) 2827 return -ENOMEM; 2828 2829 ret = gen_unique_name(sctx, ino, gen, orphan); 2830 if (ret < 0) 2831 goto out; 2832 2833 ret = send_rename(sctx, path, orphan); 2834 2835out: 2836 fs_path_free(orphan); 2837 return ret; 2838} 2839 2840static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, 2841 u64 dir_ino, u64 dir_gen) 2842{ 2843 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2844 struct rb_node *parent = NULL; 2845 struct orphan_dir_info *entry, *odi; 2846 2847 while (*p) { 2848 parent = *p; 2849 entry = rb_entry(parent, struct orphan_dir_info, node); 2850 if (dir_ino < entry->ino) 2851 p = &(*p)->rb_left; 2852 else if (dir_ino > entry->ino) 2853 p = &(*p)->rb_right; 2854 else if (dir_gen < entry->gen) 2855 p = &(*p)->rb_left; 2856 else if (dir_gen > entry->gen) 2857 p = &(*p)->rb_right; 2858 else 2859 return entry; 2860 } 2861 2862 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 2863 if (!odi) 2864 return ERR_PTR(-ENOMEM); 2865 odi->ino = dir_ino; 2866 odi->gen = dir_gen; 2867 odi->last_dir_index_offset = 0; 2868 2869 rb_link_node(&odi->node, parent, p); 2870 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2871 return odi; 2872} 2873 2874static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, 2875 u64 dir_ino, u64 gen) 2876{ 2877 struct rb_node *n = sctx->orphan_dirs.rb_node; 2878 struct orphan_dir_info *entry; 2879 2880 while (n) { 2881 entry = rb_entry(n, struct orphan_dir_info, node); 2882 if (dir_ino < entry->ino) 2883 n = n->rb_left; 2884 else if (dir_ino > entry->ino) 2885 n = n->rb_right; 2886 else if (gen < entry->gen) 2887 n = n->rb_left; 2888 else if (gen > entry->gen) 2889 n = n->rb_right; 2890 else 2891 return entry; 2892 } 2893 return NULL; 2894} 2895 2896static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) 2897{ 2898 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); 2899 2900 return odi != NULL; 2901} 2902 2903static void free_orphan_dir_info(struct send_ctx *sctx, 2904 struct orphan_dir_info *odi) 2905{ 2906 if (!odi) 2907 return; 2908 rb_erase(&odi->node, &sctx->orphan_dirs); 2909 kfree(odi); 2910} 2911 2912/* 2913 * Returns 1 if a directory can be removed at this point in time. 2914 * We check this by iterating all dir items and checking if the inode behind 2915 * the dir item was already processed. 2916 */ 2917static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2918 u64 send_progress) 2919{ 2920 int ret = 0; 2921 int iter_ret = 0; 2922 struct btrfs_root *root = sctx->parent_root; 2923 struct btrfs_path *path; 2924 struct btrfs_key key; 2925 struct btrfs_key found_key; 2926 struct btrfs_key loc; 2927 struct btrfs_dir_item *di; 2928 struct orphan_dir_info *odi = NULL; 2929 2930 /* 2931 * Don't try to rmdir the top/root subvolume dir. 2932 */ 2933 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2934 return 0; 2935 2936 path = alloc_path_for_send(); 2937 if (!path) 2938 return -ENOMEM; 2939 2940 key.objectid = dir; 2941 key.type = BTRFS_DIR_INDEX_KEY; 2942 key.offset = 0; 2943 2944 odi = get_orphan_dir_info(sctx, dir, dir_gen); 2945 if (odi) 2946 key.offset = odi->last_dir_index_offset; 2947 2948 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 2949 struct waiting_dir_move *dm; 2950 2951 if (found_key.objectid != key.objectid || 2952 found_key.type != key.type) 2953 break; 2954 2955 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2956 struct btrfs_dir_item); 2957 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2958 2959 dm = get_waiting_dir_move(sctx, loc.objectid); 2960 if (dm) { 2961 odi = add_orphan_dir_info(sctx, dir, dir_gen); 2962 if (IS_ERR(odi)) { 2963 ret = PTR_ERR(odi); 2964 goto out; 2965 } 2966 odi->gen = dir_gen; 2967 odi->last_dir_index_offset = found_key.offset; 2968 dm->rmdir_ino = dir; 2969 dm->rmdir_gen = dir_gen; 2970 ret = 0; 2971 goto out; 2972 } 2973 2974 if (loc.objectid > send_progress) { 2975 odi = add_orphan_dir_info(sctx, dir, dir_gen); 2976 if (IS_ERR(odi)) { 2977 ret = PTR_ERR(odi); 2978 goto out; 2979 } 2980 odi->gen = dir_gen; 2981 odi->last_dir_index_offset = found_key.offset; 2982 ret = 0; 2983 goto out; 2984 } 2985 } 2986 if (iter_ret < 0) { 2987 ret = iter_ret; 2988 goto out; 2989 } 2990 free_orphan_dir_info(sctx, odi); 2991 2992 ret = 1; 2993 2994out: 2995 btrfs_free_path(path); 2996 return ret; 2997} 2998 2999static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3000{ 3001 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3002 3003 return entry != NULL; 3004} 3005 3006static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3007{ 3008 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3009 struct rb_node *parent = NULL; 3010 struct waiting_dir_move *entry, *dm; 3011 3012 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3013 if (!dm) 3014 return -ENOMEM; 3015 dm->ino = ino; 3016 dm->rmdir_ino = 0; 3017 dm->rmdir_gen = 0; 3018 dm->orphanized = orphanized; 3019 3020 while (*p) { 3021 parent = *p; 3022 entry = rb_entry(parent, struct waiting_dir_move, node); 3023 if (ino < entry->ino) { 3024 p = &(*p)->rb_left; 3025 } else if (ino > entry->ino) { 3026 p = &(*p)->rb_right; 3027 } else { 3028 kfree(dm); 3029 return -EEXIST; 3030 } 3031 } 3032 3033 rb_link_node(&dm->node, parent, p); 3034 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3035 return 0; 3036} 3037 3038static struct waiting_dir_move * 3039get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3040{ 3041 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3042 struct waiting_dir_move *entry; 3043 3044 while (n) { 3045 entry = rb_entry(n, struct waiting_dir_move, node); 3046 if (ino < entry->ino) 3047 n = n->rb_left; 3048 else if (ino > entry->ino) 3049 n = n->rb_right; 3050 else 3051 return entry; 3052 } 3053 return NULL; 3054} 3055 3056static void free_waiting_dir_move(struct send_ctx *sctx, 3057 struct waiting_dir_move *dm) 3058{ 3059 if (!dm) 3060 return; 3061 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3062 kfree(dm); 3063} 3064 3065static int add_pending_dir_move(struct send_ctx *sctx, 3066 u64 ino, 3067 u64 ino_gen, 3068 u64 parent_ino, 3069 struct list_head *new_refs, 3070 struct list_head *deleted_refs, 3071 const bool is_orphan) 3072{ 3073 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3074 struct rb_node *parent = NULL; 3075 struct pending_dir_move *entry = NULL, *pm; 3076 struct recorded_ref *cur; 3077 int exists = 0; 3078 int ret; 3079 3080 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3081 if (!pm) 3082 return -ENOMEM; 3083 pm->parent_ino = parent_ino; 3084 pm->ino = ino; 3085 pm->gen = ino_gen; 3086 INIT_LIST_HEAD(&pm->list); 3087 INIT_LIST_HEAD(&pm->update_refs); 3088 RB_CLEAR_NODE(&pm->node); 3089 3090 while (*p) { 3091 parent = *p; 3092 entry = rb_entry(parent, struct pending_dir_move, node); 3093 if (parent_ino < entry->parent_ino) { 3094 p = &(*p)->rb_left; 3095 } else if (parent_ino > entry->parent_ino) { 3096 p = &(*p)->rb_right; 3097 } else { 3098 exists = 1; 3099 break; 3100 } 3101 } 3102 3103 list_for_each_entry(cur, deleted_refs, list) { 3104 ret = dup_ref(cur, &pm->update_refs); 3105 if (ret < 0) 3106 goto out; 3107 } 3108 list_for_each_entry(cur, new_refs, list) { 3109 ret = dup_ref(cur, &pm->update_refs); 3110 if (ret < 0) 3111 goto out; 3112 } 3113 3114 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3115 if (ret) 3116 goto out; 3117 3118 if (exists) { 3119 list_add_tail(&pm->list, &entry->list); 3120 } else { 3121 rb_link_node(&pm->node, parent, p); 3122 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3123 } 3124 ret = 0; 3125out: 3126 if (ret) { 3127 __free_recorded_refs(&pm->update_refs); 3128 kfree(pm); 3129 } 3130 return ret; 3131} 3132 3133static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3134 u64 parent_ino) 3135{ 3136 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3137 struct pending_dir_move *entry; 3138 3139 while (n) { 3140 entry = rb_entry(n, struct pending_dir_move, node); 3141 if (parent_ino < entry->parent_ino) 3142 n = n->rb_left; 3143 else if (parent_ino > entry->parent_ino) 3144 n = n->rb_right; 3145 else 3146 return entry; 3147 } 3148 return NULL; 3149} 3150 3151static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3152 u64 ino, u64 gen, u64 *ancestor_ino) 3153{ 3154 int ret = 0; 3155 u64 parent_inode = 0; 3156 u64 parent_gen = 0; 3157 u64 start_ino = ino; 3158 3159 *ancestor_ino = 0; 3160 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3161 fs_path_reset(name); 3162 3163 if (is_waiting_for_rm(sctx, ino, gen)) 3164 break; 3165 if (is_waiting_for_move(sctx, ino)) { 3166 if (*ancestor_ino == 0) 3167 *ancestor_ino = ino; 3168 ret = get_first_ref(sctx->parent_root, ino, 3169 &parent_inode, &parent_gen, name); 3170 } else { 3171 ret = __get_cur_name_and_parent(sctx, ino, gen, 3172 &parent_inode, 3173 &parent_gen, name); 3174 if (ret > 0) { 3175 ret = 0; 3176 break; 3177 } 3178 } 3179 if (ret < 0) 3180 break; 3181 if (parent_inode == start_ino) { 3182 ret = 1; 3183 if (*ancestor_ino == 0) 3184 *ancestor_ino = ino; 3185 break; 3186 } 3187 ino = parent_inode; 3188 gen = parent_gen; 3189 } 3190 return ret; 3191} 3192 3193static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3194{ 3195 struct fs_path *from_path = NULL; 3196 struct fs_path *to_path = NULL; 3197 struct fs_path *name = NULL; 3198 u64 orig_progress = sctx->send_progress; 3199 struct recorded_ref *cur; 3200 u64 parent_ino, parent_gen; 3201 struct waiting_dir_move *dm = NULL; 3202 u64 rmdir_ino = 0; 3203 u64 rmdir_gen; 3204 u64 ancestor; 3205 bool is_orphan; 3206 int ret; 3207 3208 name = fs_path_alloc(); 3209 from_path = fs_path_alloc(); 3210 if (!name || !from_path) { 3211 ret = -ENOMEM; 3212 goto out; 3213 } 3214 3215 dm = get_waiting_dir_move(sctx, pm->ino); 3216 ASSERT(dm); 3217 rmdir_ino = dm->rmdir_ino; 3218 rmdir_gen = dm->rmdir_gen; 3219 is_orphan = dm->orphanized; 3220 free_waiting_dir_move(sctx, dm); 3221 3222 if (is_orphan) { 3223 ret = gen_unique_name(sctx, pm->ino, 3224 pm->gen, from_path); 3225 } else { 3226 ret = get_first_ref(sctx->parent_root, pm->ino, 3227 &parent_ino, &parent_gen, name); 3228 if (ret < 0) 3229 goto out; 3230 ret = get_cur_path(sctx, parent_ino, parent_gen, 3231 from_path); 3232 if (ret < 0) 3233 goto out; 3234 ret = fs_path_add_path(from_path, name); 3235 } 3236 if (ret < 0) 3237 goto out; 3238 3239 sctx->send_progress = sctx->cur_ino + 1; 3240 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3241 if (ret < 0) 3242 goto out; 3243 if (ret) { 3244 LIST_HEAD(deleted_refs); 3245 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3246 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3247 &pm->update_refs, &deleted_refs, 3248 is_orphan); 3249 if (ret < 0) 3250 goto out; 3251 if (rmdir_ino) { 3252 dm = get_waiting_dir_move(sctx, pm->ino); 3253 ASSERT(dm); 3254 dm->rmdir_ino = rmdir_ino; 3255 dm->rmdir_gen = rmdir_gen; 3256 } 3257 goto out; 3258 } 3259 fs_path_reset(name); 3260 to_path = name; 3261 name = NULL; 3262 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3263 if (ret < 0) 3264 goto out; 3265 3266 ret = send_rename(sctx, from_path, to_path); 3267 if (ret < 0) 3268 goto out; 3269 3270 if (rmdir_ino) { 3271 struct orphan_dir_info *odi; 3272 u64 gen; 3273 3274 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); 3275 if (!odi) { 3276 /* already deleted */ 3277 goto finish; 3278 } 3279 gen = odi->gen; 3280 3281 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino); 3282 if (ret < 0) 3283 goto out; 3284 if (!ret) 3285 goto finish; 3286 3287 name = fs_path_alloc(); 3288 if (!name) { 3289 ret = -ENOMEM; 3290 goto out; 3291 } 3292 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3293 if (ret < 0) 3294 goto out; 3295 ret = send_rmdir(sctx, name); 3296 if (ret < 0) 3297 goto out; 3298 } 3299 3300finish: 3301 ret = send_utimes(sctx, pm->ino, pm->gen); 3302 if (ret < 0) 3303 goto out; 3304 3305 /* 3306 * After rename/move, need to update the utimes of both new parent(s) 3307 * and old parent(s). 3308 */ 3309 list_for_each_entry(cur, &pm->update_refs, list) { 3310 /* 3311 * The parent inode might have been deleted in the send snapshot 3312 */ 3313 ret = get_inode_info(sctx->send_root, cur->dir, NULL, 3314 NULL, NULL, NULL, NULL, NULL); 3315 if (ret == -ENOENT) { 3316 ret = 0; 3317 continue; 3318 } 3319 if (ret < 0) 3320 goto out; 3321 3322 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3323 if (ret < 0) 3324 goto out; 3325 } 3326 3327out: 3328 fs_path_free(name); 3329 fs_path_free(from_path); 3330 fs_path_free(to_path); 3331 sctx->send_progress = orig_progress; 3332 3333 return ret; 3334} 3335 3336static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3337{ 3338 if (!list_empty(&m->list)) 3339 list_del(&m->list); 3340 if (!RB_EMPTY_NODE(&m->node)) 3341 rb_erase(&m->node, &sctx->pending_dir_moves); 3342 __free_recorded_refs(&m->update_refs); 3343 kfree(m); 3344} 3345 3346static void tail_append_pending_moves(struct send_ctx *sctx, 3347 struct pending_dir_move *moves, 3348 struct list_head *stack) 3349{ 3350 if (list_empty(&moves->list)) { 3351 list_add_tail(&moves->list, stack); 3352 } else { 3353 LIST_HEAD(list); 3354 list_splice_init(&moves->list, &list); 3355 list_add_tail(&moves->list, stack); 3356 list_splice_tail(&list, stack); 3357 } 3358 if (!RB_EMPTY_NODE(&moves->node)) { 3359 rb_erase(&moves->node, &sctx->pending_dir_moves); 3360 RB_CLEAR_NODE(&moves->node); 3361 } 3362} 3363 3364static int apply_children_dir_moves(struct send_ctx *sctx) 3365{ 3366 struct pending_dir_move *pm; 3367 struct list_head stack; 3368 u64 parent_ino = sctx->cur_ino; 3369 int ret = 0; 3370 3371 pm = get_pending_dir_moves(sctx, parent_ino); 3372 if (!pm) 3373 return 0; 3374 3375 INIT_LIST_HEAD(&stack); 3376 tail_append_pending_moves(sctx, pm, &stack); 3377 3378 while (!list_empty(&stack)) { 3379 pm = list_first_entry(&stack, struct pending_dir_move, list); 3380 parent_ino = pm->ino; 3381 ret = apply_dir_move(sctx, pm); 3382 free_pending_move(sctx, pm); 3383 if (ret) 3384 goto out; 3385 pm = get_pending_dir_moves(sctx, parent_ino); 3386 if (pm) 3387 tail_append_pending_moves(sctx, pm, &stack); 3388 } 3389 return 0; 3390 3391out: 3392 while (!list_empty(&stack)) { 3393 pm = list_first_entry(&stack, struct pending_dir_move, list); 3394 free_pending_move(sctx, pm); 3395 } 3396 return ret; 3397} 3398 3399/* 3400 * We might need to delay a directory rename even when no ancestor directory 3401 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3402 * renamed. This happens when we rename a directory to the old name (the name 3403 * in the parent root) of some other unrelated directory that got its rename 3404 * delayed due to some ancestor with higher number that got renamed. 3405 * 3406 * Example: 3407 * 3408 * Parent snapshot: 3409 * . (ino 256) 3410 * |---- a/ (ino 257) 3411 * | |---- file (ino 260) 3412 * | 3413 * |---- b/ (ino 258) 3414 * |---- c/ (ino 259) 3415 * 3416 * Send snapshot: 3417 * . (ino 256) 3418 * |---- a/ (ino 258) 3419 * |---- x/ (ino 259) 3420 * |---- y/ (ino 257) 3421 * |----- file (ino 260) 3422 * 3423 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3424 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3425 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3426 * must issue is: 3427 * 3428 * 1 - rename 259 from 'c' to 'x' 3429 * 2 - rename 257 from 'a' to 'x/y' 3430 * 3 - rename 258 from 'b' to 'a' 3431 * 3432 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3433 * be done right away and < 0 on error. 3434 */ 3435static int wait_for_dest_dir_move(struct send_ctx *sctx, 3436 struct recorded_ref *parent_ref, 3437 const bool is_orphan) 3438{ 3439 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3440 struct btrfs_path *path; 3441 struct btrfs_key key; 3442 struct btrfs_key di_key; 3443 struct btrfs_dir_item *di; 3444 u64 left_gen; 3445 u64 right_gen; 3446 int ret = 0; 3447 struct waiting_dir_move *wdm; 3448 3449 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3450 return 0; 3451 3452 path = alloc_path_for_send(); 3453 if (!path) 3454 return -ENOMEM; 3455 3456 key.objectid = parent_ref->dir; 3457 key.type = BTRFS_DIR_ITEM_KEY; 3458 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3459 3460 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3461 if (ret < 0) { 3462 goto out; 3463 } else if (ret > 0) { 3464 ret = 0; 3465 goto out; 3466 } 3467 3468 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3469 parent_ref->name_len); 3470 if (!di) { 3471 ret = 0; 3472 goto out; 3473 } 3474 /* 3475 * di_key.objectid has the number of the inode that has a dentry in the 3476 * parent directory with the same name that sctx->cur_ino is being 3477 * renamed to. We need to check if that inode is in the send root as 3478 * well and if it is currently marked as an inode with a pending rename, 3479 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3480 * that it happens after that other inode is renamed. 3481 */ 3482 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3483 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3484 ret = 0; 3485 goto out; 3486 } 3487 3488 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3489 &left_gen, NULL, NULL, NULL, NULL); 3490 if (ret < 0) 3491 goto out; 3492 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3493 &right_gen, NULL, NULL, NULL, NULL); 3494 if (ret < 0) { 3495 if (ret == -ENOENT) 3496 ret = 0; 3497 goto out; 3498 } 3499 3500 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3501 if (right_gen != left_gen) { 3502 ret = 0; 3503 goto out; 3504 } 3505 3506 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3507 if (wdm && !wdm->orphanized) { 3508 ret = add_pending_dir_move(sctx, 3509 sctx->cur_ino, 3510 sctx->cur_inode_gen, 3511 di_key.objectid, 3512 &sctx->new_refs, 3513 &sctx->deleted_refs, 3514 is_orphan); 3515 if (!ret) 3516 ret = 1; 3517 } 3518out: 3519 btrfs_free_path(path); 3520 return ret; 3521} 3522 3523/* 3524 * Check if inode ino2, or any of its ancestors, is inode ino1. 3525 * Return 1 if true, 0 if false and < 0 on error. 3526 */ 3527static int check_ino_in_path(struct btrfs_root *root, 3528 const u64 ino1, 3529 const u64 ino1_gen, 3530 const u64 ino2, 3531 const u64 ino2_gen, 3532 struct fs_path *fs_path) 3533{ 3534 u64 ino = ino2; 3535 3536 if (ino1 == ino2) 3537 return ino1_gen == ino2_gen; 3538 3539 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3540 u64 parent; 3541 u64 parent_gen; 3542 int ret; 3543 3544 fs_path_reset(fs_path); 3545 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3546 if (ret < 0) 3547 return ret; 3548 if (parent == ino1) 3549 return parent_gen == ino1_gen; 3550 ino = parent; 3551 } 3552 return 0; 3553} 3554 3555/* 3556 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any 3557 * possible path (in case ino2 is not a directory and has multiple hard links). 3558 * Return 1 if true, 0 if false and < 0 on error. 3559 */ 3560static int is_ancestor(struct btrfs_root *root, 3561 const u64 ino1, 3562 const u64 ino1_gen, 3563 const u64 ino2, 3564 struct fs_path *fs_path) 3565{ 3566 bool free_fs_path = false; 3567 int ret = 0; 3568 int iter_ret = 0; 3569 struct btrfs_path *path = NULL; 3570 struct btrfs_key key; 3571 3572 if (!fs_path) { 3573 fs_path = fs_path_alloc(); 3574 if (!fs_path) 3575 return -ENOMEM; 3576 free_fs_path = true; 3577 } 3578 3579 path = alloc_path_for_send(); 3580 if (!path) { 3581 ret = -ENOMEM; 3582 goto out; 3583 } 3584 3585 key.objectid = ino2; 3586 key.type = BTRFS_INODE_REF_KEY; 3587 key.offset = 0; 3588 3589 btrfs_for_each_slot(root, &key, &key, path, iter_ret) { 3590 struct extent_buffer *leaf = path->nodes[0]; 3591 int slot = path->slots[0]; 3592 u32 cur_offset = 0; 3593 u32 item_size; 3594 3595 if (key.objectid != ino2) 3596 break; 3597 if (key.type != BTRFS_INODE_REF_KEY && 3598 key.type != BTRFS_INODE_EXTREF_KEY) 3599 break; 3600 3601 item_size = btrfs_item_size(leaf, slot); 3602 while (cur_offset < item_size) { 3603 u64 parent; 3604 u64 parent_gen; 3605 3606 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3607 unsigned long ptr; 3608 struct btrfs_inode_extref *extref; 3609 3610 ptr = btrfs_item_ptr_offset(leaf, slot); 3611 extref = (struct btrfs_inode_extref *) 3612 (ptr + cur_offset); 3613 parent = btrfs_inode_extref_parent(leaf, 3614 extref); 3615 cur_offset += sizeof(*extref); 3616 cur_offset += btrfs_inode_extref_name_len(leaf, 3617 extref); 3618 } else { 3619 parent = key.offset; 3620 cur_offset = item_size; 3621 } 3622 3623 ret = get_inode_info(root, parent, NULL, &parent_gen, 3624 NULL, NULL, NULL, NULL); 3625 if (ret < 0) 3626 goto out; 3627 ret = check_ino_in_path(root, ino1, ino1_gen, 3628 parent, parent_gen, fs_path); 3629 if (ret) 3630 goto out; 3631 } 3632 } 3633 ret = 0; 3634 if (iter_ret < 0) 3635 ret = iter_ret; 3636 3637out: 3638 btrfs_free_path(path); 3639 if (free_fs_path) 3640 fs_path_free(fs_path); 3641 return ret; 3642} 3643 3644static int wait_for_parent_move(struct send_ctx *sctx, 3645 struct recorded_ref *parent_ref, 3646 const bool is_orphan) 3647{ 3648 int ret = 0; 3649 u64 ino = parent_ref->dir; 3650 u64 ino_gen = parent_ref->dir_gen; 3651 u64 parent_ino_before, parent_ino_after; 3652 struct fs_path *path_before = NULL; 3653 struct fs_path *path_after = NULL; 3654 int len1, len2; 3655 3656 path_after = fs_path_alloc(); 3657 path_before = fs_path_alloc(); 3658 if (!path_after || !path_before) { 3659 ret = -ENOMEM; 3660 goto out; 3661 } 3662 3663 /* 3664 * Our current directory inode may not yet be renamed/moved because some 3665 * ancestor (immediate or not) has to be renamed/moved first. So find if 3666 * such ancestor exists and make sure our own rename/move happens after 3667 * that ancestor is processed to avoid path build infinite loops (done 3668 * at get_cur_path()). 3669 */ 3670 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3671 u64 parent_ino_after_gen; 3672 3673 if (is_waiting_for_move(sctx, ino)) { 3674 /* 3675 * If the current inode is an ancestor of ino in the 3676 * parent root, we need to delay the rename of the 3677 * current inode, otherwise don't delayed the rename 3678 * because we can end up with a circular dependency 3679 * of renames, resulting in some directories never 3680 * getting the respective rename operations issued in 3681 * the send stream or getting into infinite path build 3682 * loops. 3683 */ 3684 ret = is_ancestor(sctx->parent_root, 3685 sctx->cur_ino, sctx->cur_inode_gen, 3686 ino, path_before); 3687 if (ret) 3688 break; 3689 } 3690 3691 fs_path_reset(path_before); 3692 fs_path_reset(path_after); 3693 3694 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3695 &parent_ino_after_gen, path_after); 3696 if (ret < 0) 3697 goto out; 3698 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3699 NULL, path_before); 3700 if (ret < 0 && ret != -ENOENT) { 3701 goto out; 3702 } else if (ret == -ENOENT) { 3703 ret = 0; 3704 break; 3705 } 3706 3707 len1 = fs_path_len(path_before); 3708 len2 = fs_path_len(path_after); 3709 if (ino > sctx->cur_ino && 3710 (parent_ino_before != parent_ino_after || len1 != len2 || 3711 memcmp(path_before->start, path_after->start, len1))) { 3712 u64 parent_ino_gen; 3713 3714 ret = get_inode_info(sctx->parent_root, ino, NULL, 3715 &parent_ino_gen, NULL, NULL, NULL, 3716 NULL); 3717 if (ret < 0) 3718 goto out; 3719 if (ino_gen == parent_ino_gen) { 3720 ret = 1; 3721 break; 3722 } 3723 } 3724 ino = parent_ino_after; 3725 ino_gen = parent_ino_after_gen; 3726 } 3727 3728out: 3729 fs_path_free(path_before); 3730 fs_path_free(path_after); 3731 3732 if (ret == 1) { 3733 ret = add_pending_dir_move(sctx, 3734 sctx->cur_ino, 3735 sctx->cur_inode_gen, 3736 ino, 3737 &sctx->new_refs, 3738 &sctx->deleted_refs, 3739 is_orphan); 3740 if (!ret) 3741 ret = 1; 3742 } 3743 3744 return ret; 3745} 3746 3747static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3748{ 3749 int ret; 3750 struct fs_path *new_path; 3751 3752 /* 3753 * Our reference's name member points to its full_path member string, so 3754 * we use here a new path. 3755 */ 3756 new_path = fs_path_alloc(); 3757 if (!new_path) 3758 return -ENOMEM; 3759 3760 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 3761 if (ret < 0) { 3762 fs_path_free(new_path); 3763 return ret; 3764 } 3765 ret = fs_path_add(new_path, ref->name, ref->name_len); 3766 if (ret < 0) { 3767 fs_path_free(new_path); 3768 return ret; 3769 } 3770 3771 fs_path_free(ref->full_path); 3772 set_ref_path(ref, new_path); 3773 3774 return 0; 3775} 3776 3777/* 3778 * When processing the new references for an inode we may orphanize an existing 3779 * directory inode because its old name conflicts with one of the new references 3780 * of the current inode. Later, when processing another new reference of our 3781 * inode, we might need to orphanize another inode, but the path we have in the 3782 * reference reflects the pre-orphanization name of the directory we previously 3783 * orphanized. For example: 3784 * 3785 * parent snapshot looks like: 3786 * 3787 * . (ino 256) 3788 * |----- f1 (ino 257) 3789 * |----- f2 (ino 258) 3790 * |----- d1/ (ino 259) 3791 * |----- d2/ (ino 260) 3792 * 3793 * send snapshot looks like: 3794 * 3795 * . (ino 256) 3796 * |----- d1 (ino 258) 3797 * |----- f2/ (ino 259) 3798 * |----- f2_link/ (ino 260) 3799 * | |----- f1 (ino 257) 3800 * | 3801 * |----- d2 (ino 258) 3802 * 3803 * When processing inode 257 we compute the name for inode 259 as "d1", and we 3804 * cache it in the name cache. Later when we start processing inode 258, when 3805 * collecting all its new references we set a full path of "d1/d2" for its new 3806 * reference with name "d2". When we start processing the new references we 3807 * start by processing the new reference with name "d1", and this results in 3808 * orphanizing inode 259, since its old reference causes a conflict. Then we 3809 * move on the next new reference, with name "d2", and we find out we must 3810 * orphanize inode 260, as its old reference conflicts with ours - but for the 3811 * orphanization we use a source path corresponding to the path we stored in the 3812 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 3813 * receiver fail since the path component "d1/" no longer exists, it was renamed 3814 * to "o259-6-0/" when processing the previous new reference. So in this case we 3815 * must recompute the path in the new reference and use it for the new 3816 * orphanization operation. 3817 */ 3818static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3819{ 3820 char *name; 3821 int ret; 3822 3823 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 3824 if (!name) 3825 return -ENOMEM; 3826 3827 fs_path_reset(ref->full_path); 3828 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 3829 if (ret < 0) 3830 goto out; 3831 3832 ret = fs_path_add(ref->full_path, name, ref->name_len); 3833 if (ret < 0) 3834 goto out; 3835 3836 /* Update the reference's base name pointer. */ 3837 set_ref_path(ref, ref->full_path); 3838out: 3839 kfree(name); 3840 return ret; 3841} 3842 3843/* 3844 * This does all the move/link/unlink/rmdir magic. 3845 */ 3846static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3847{ 3848 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 3849 int ret = 0; 3850 struct recorded_ref *cur; 3851 struct recorded_ref *cur2; 3852 struct list_head check_dirs; 3853 struct fs_path *valid_path = NULL; 3854 u64 ow_inode = 0; 3855 u64 ow_gen; 3856 u64 ow_mode; 3857 int did_overwrite = 0; 3858 int is_orphan = 0; 3859 u64 last_dir_ino_rm = 0; 3860 bool can_rename = true; 3861 bool orphanized_dir = false; 3862 bool orphanized_ancestor = false; 3863 3864 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 3865 3866 /* 3867 * This should never happen as the root dir always has the same ref 3868 * which is always '..' 3869 */ 3870 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3871 INIT_LIST_HEAD(&check_dirs); 3872 3873 valid_path = fs_path_alloc(); 3874 if (!valid_path) { 3875 ret = -ENOMEM; 3876 goto out; 3877 } 3878 3879 /* 3880 * First, check if the first ref of the current inode was overwritten 3881 * before. If yes, we know that the current inode was already orphanized 3882 * and thus use the orphan name. If not, we can use get_cur_path to 3883 * get the path of the first ref as it would like while receiving at 3884 * this point in time. 3885 * New inodes are always orphan at the beginning, so force to use the 3886 * orphan name in this case. 3887 * The first ref is stored in valid_path and will be updated if it 3888 * gets moved around. 3889 */ 3890 if (!sctx->cur_inode_new) { 3891 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3892 sctx->cur_inode_gen); 3893 if (ret < 0) 3894 goto out; 3895 if (ret) 3896 did_overwrite = 1; 3897 } 3898 if (sctx->cur_inode_new || did_overwrite) { 3899 ret = gen_unique_name(sctx, sctx->cur_ino, 3900 sctx->cur_inode_gen, valid_path); 3901 if (ret < 0) 3902 goto out; 3903 is_orphan = 1; 3904 } else { 3905 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3906 valid_path); 3907 if (ret < 0) 3908 goto out; 3909 } 3910 3911 /* 3912 * Before doing any rename and link operations, do a first pass on the 3913 * new references to orphanize any unprocessed inodes that may have a 3914 * reference that conflicts with one of the new references of the current 3915 * inode. This needs to happen first because a new reference may conflict 3916 * with the old reference of a parent directory, so we must make sure 3917 * that the path used for link and rename commands don't use an 3918 * orphanized name when an ancestor was not yet orphanized. 3919 * 3920 * Example: 3921 * 3922 * Parent snapshot: 3923 * 3924 * . (ino 256) 3925 * |----- testdir/ (ino 259) 3926 * | |----- a (ino 257) 3927 * | 3928 * |----- b (ino 258) 3929 * 3930 * Send snapshot: 3931 * 3932 * . (ino 256) 3933 * |----- testdir_2/ (ino 259) 3934 * | |----- a (ino 260) 3935 * | 3936 * |----- testdir (ino 257) 3937 * |----- b (ino 257) 3938 * |----- b2 (ino 258) 3939 * 3940 * Processing the new reference for inode 257 with name "b" may happen 3941 * before processing the new reference with name "testdir". If so, we 3942 * must make sure that by the time we send a link command to create the 3943 * hard link "b", inode 259 was already orphanized, since the generated 3944 * path in "valid_path" already contains the orphanized name for 259. 3945 * We are processing inode 257, so only later when processing 259 we do 3946 * the rename operation to change its temporary (orphanized) name to 3947 * "testdir_2". 3948 */ 3949 list_for_each_entry(cur, &sctx->new_refs, list) { 3950 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3951 if (ret < 0) 3952 goto out; 3953 if (ret == inode_state_will_create) 3954 continue; 3955 3956 /* 3957 * Check if this new ref would overwrite the first ref of another 3958 * unprocessed inode. If yes, orphanize the overwritten inode. 3959 * If we find an overwritten ref that is not the first ref, 3960 * simply unlink it. 3961 */ 3962 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3963 cur->name, cur->name_len, 3964 &ow_inode, &ow_gen, &ow_mode); 3965 if (ret < 0) 3966 goto out; 3967 if (ret) { 3968 ret = is_first_ref(sctx->parent_root, 3969 ow_inode, cur->dir, cur->name, 3970 cur->name_len); 3971 if (ret < 0) 3972 goto out; 3973 if (ret) { 3974 struct name_cache_entry *nce; 3975 struct waiting_dir_move *wdm; 3976 3977 if (orphanized_dir) { 3978 ret = refresh_ref_path(sctx, cur); 3979 if (ret < 0) 3980 goto out; 3981 } 3982 3983 ret = orphanize_inode(sctx, ow_inode, ow_gen, 3984 cur->full_path); 3985 if (ret < 0) 3986 goto out; 3987 if (S_ISDIR(ow_mode)) 3988 orphanized_dir = true; 3989 3990 /* 3991 * If ow_inode has its rename operation delayed 3992 * make sure that its orphanized name is used in 3993 * the source path when performing its rename 3994 * operation. 3995 */ 3996 if (is_waiting_for_move(sctx, ow_inode)) { 3997 wdm = get_waiting_dir_move(sctx, 3998 ow_inode); 3999 ASSERT(wdm); 4000 wdm->orphanized = true; 4001 } 4002 4003 /* 4004 * Make sure we clear our orphanized inode's 4005 * name from the name cache. This is because the 4006 * inode ow_inode might be an ancestor of some 4007 * other inode that will be orphanized as well 4008 * later and has an inode number greater than 4009 * sctx->send_progress. We need to prevent 4010 * future name lookups from using the old name 4011 * and get instead the orphan name. 4012 */ 4013 nce = name_cache_search(sctx, ow_inode, ow_gen); 4014 if (nce) { 4015 name_cache_delete(sctx, nce); 4016 kfree(nce); 4017 } 4018 4019 /* 4020 * ow_inode might currently be an ancestor of 4021 * cur_ino, therefore compute valid_path (the 4022 * current path of cur_ino) again because it 4023 * might contain the pre-orphanization name of 4024 * ow_inode, which is no longer valid. 4025 */ 4026 ret = is_ancestor(sctx->parent_root, 4027 ow_inode, ow_gen, 4028 sctx->cur_ino, NULL); 4029 if (ret > 0) { 4030 orphanized_ancestor = true; 4031 fs_path_reset(valid_path); 4032 ret = get_cur_path(sctx, sctx->cur_ino, 4033 sctx->cur_inode_gen, 4034 valid_path); 4035 } 4036 if (ret < 0) 4037 goto out; 4038 } else { 4039 /* 4040 * If we previously orphanized a directory that 4041 * collided with a new reference that we already 4042 * processed, recompute the current path because 4043 * that directory may be part of the path. 4044 */ 4045 if (orphanized_dir) { 4046 ret = refresh_ref_path(sctx, cur); 4047 if (ret < 0) 4048 goto out; 4049 } 4050 ret = send_unlink(sctx, cur->full_path); 4051 if (ret < 0) 4052 goto out; 4053 } 4054 } 4055 4056 } 4057 4058 list_for_each_entry(cur, &sctx->new_refs, list) { 4059 /* 4060 * We may have refs where the parent directory does not exist 4061 * yet. This happens if the parent directories inum is higher 4062 * than the current inum. To handle this case, we create the 4063 * parent directory out of order. But we need to check if this 4064 * did already happen before due to other refs in the same dir. 4065 */ 4066 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4067 if (ret < 0) 4068 goto out; 4069 if (ret == inode_state_will_create) { 4070 ret = 0; 4071 /* 4072 * First check if any of the current inodes refs did 4073 * already create the dir. 4074 */ 4075 list_for_each_entry(cur2, &sctx->new_refs, list) { 4076 if (cur == cur2) 4077 break; 4078 if (cur2->dir == cur->dir) { 4079 ret = 1; 4080 break; 4081 } 4082 } 4083 4084 /* 4085 * If that did not happen, check if a previous inode 4086 * did already create the dir. 4087 */ 4088 if (!ret) 4089 ret = did_create_dir(sctx, cur->dir); 4090 if (ret < 0) 4091 goto out; 4092 if (!ret) { 4093 ret = send_create_inode(sctx, cur->dir); 4094 if (ret < 0) 4095 goto out; 4096 } 4097 } 4098 4099 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4100 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4101 if (ret < 0) 4102 goto out; 4103 if (ret == 1) { 4104 can_rename = false; 4105 *pending_move = 1; 4106 } 4107 } 4108 4109 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4110 can_rename) { 4111 ret = wait_for_parent_move(sctx, cur, is_orphan); 4112 if (ret < 0) 4113 goto out; 4114 if (ret == 1) { 4115 can_rename = false; 4116 *pending_move = 1; 4117 } 4118 } 4119 4120 /* 4121 * link/move the ref to the new place. If we have an orphan 4122 * inode, move it and update valid_path. If not, link or move 4123 * it depending on the inode mode. 4124 */ 4125 if (is_orphan && can_rename) { 4126 ret = send_rename(sctx, valid_path, cur->full_path); 4127 if (ret < 0) 4128 goto out; 4129 is_orphan = 0; 4130 ret = fs_path_copy(valid_path, cur->full_path); 4131 if (ret < 0) 4132 goto out; 4133 } else if (can_rename) { 4134 if (S_ISDIR(sctx->cur_inode_mode)) { 4135 /* 4136 * Dirs can't be linked, so move it. For moved 4137 * dirs, we always have one new and one deleted 4138 * ref. The deleted ref is ignored later. 4139 */ 4140 ret = send_rename(sctx, valid_path, 4141 cur->full_path); 4142 if (!ret) 4143 ret = fs_path_copy(valid_path, 4144 cur->full_path); 4145 if (ret < 0) 4146 goto out; 4147 } else { 4148 /* 4149 * We might have previously orphanized an inode 4150 * which is an ancestor of our current inode, 4151 * so our reference's full path, which was 4152 * computed before any such orphanizations, must 4153 * be updated. 4154 */ 4155 if (orphanized_dir) { 4156 ret = update_ref_path(sctx, cur); 4157 if (ret < 0) 4158 goto out; 4159 } 4160 ret = send_link(sctx, cur->full_path, 4161 valid_path); 4162 if (ret < 0) 4163 goto out; 4164 } 4165 } 4166 ret = dup_ref(cur, &check_dirs); 4167 if (ret < 0) 4168 goto out; 4169 } 4170 4171 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4172 /* 4173 * Check if we can already rmdir the directory. If not, 4174 * orphanize it. For every dir item inside that gets deleted 4175 * later, we do this check again and rmdir it then if possible. 4176 * See the use of check_dirs for more details. 4177 */ 4178 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4179 sctx->cur_ino); 4180 if (ret < 0) 4181 goto out; 4182 if (ret) { 4183 ret = send_rmdir(sctx, valid_path); 4184 if (ret < 0) 4185 goto out; 4186 } else if (!is_orphan) { 4187 ret = orphanize_inode(sctx, sctx->cur_ino, 4188 sctx->cur_inode_gen, valid_path); 4189 if (ret < 0) 4190 goto out; 4191 is_orphan = 1; 4192 } 4193 4194 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4195 ret = dup_ref(cur, &check_dirs); 4196 if (ret < 0) 4197 goto out; 4198 } 4199 } else if (S_ISDIR(sctx->cur_inode_mode) && 4200 !list_empty(&sctx->deleted_refs)) { 4201 /* 4202 * We have a moved dir. Add the old parent to check_dirs 4203 */ 4204 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4205 list); 4206 ret = dup_ref(cur, &check_dirs); 4207 if (ret < 0) 4208 goto out; 4209 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4210 /* 4211 * We have a non dir inode. Go through all deleted refs and 4212 * unlink them if they were not already overwritten by other 4213 * inodes. 4214 */ 4215 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4216 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4217 sctx->cur_ino, sctx->cur_inode_gen, 4218 cur->name, cur->name_len); 4219 if (ret < 0) 4220 goto out; 4221 if (!ret) { 4222 /* 4223 * If we orphanized any ancestor before, we need 4224 * to recompute the full path for deleted names, 4225 * since any such path was computed before we 4226 * processed any references and orphanized any 4227 * ancestor inode. 4228 */ 4229 if (orphanized_ancestor) { 4230 ret = update_ref_path(sctx, cur); 4231 if (ret < 0) 4232 goto out; 4233 } 4234 ret = send_unlink(sctx, cur->full_path); 4235 if (ret < 0) 4236 goto out; 4237 } 4238 ret = dup_ref(cur, &check_dirs); 4239 if (ret < 0) 4240 goto out; 4241 } 4242 /* 4243 * If the inode is still orphan, unlink the orphan. This may 4244 * happen when a previous inode did overwrite the first ref 4245 * of this inode and no new refs were added for the current 4246 * inode. Unlinking does not mean that the inode is deleted in 4247 * all cases. There may still be links to this inode in other 4248 * places. 4249 */ 4250 if (is_orphan) { 4251 ret = send_unlink(sctx, valid_path); 4252 if (ret < 0) 4253 goto out; 4254 } 4255 } 4256 4257 /* 4258 * We did collect all parent dirs where cur_inode was once located. We 4259 * now go through all these dirs and check if they are pending for 4260 * deletion and if it's finally possible to perform the rmdir now. 4261 * We also update the inode stats of the parent dirs here. 4262 */ 4263 list_for_each_entry(cur, &check_dirs, list) { 4264 /* 4265 * In case we had refs into dirs that were not processed yet, 4266 * we don't need to do the utime and rmdir logic for these dirs. 4267 * The dir will be processed later. 4268 */ 4269 if (cur->dir > sctx->cur_ino) 4270 continue; 4271 4272 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4273 if (ret < 0) 4274 goto out; 4275 4276 if (ret == inode_state_did_create || 4277 ret == inode_state_no_change) { 4278 /* TODO delayed utimes */ 4279 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 4280 if (ret < 0) 4281 goto out; 4282 } else if (ret == inode_state_did_delete && 4283 cur->dir != last_dir_ino_rm) { 4284 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 4285 sctx->cur_ino); 4286 if (ret < 0) 4287 goto out; 4288 if (ret) { 4289 ret = get_cur_path(sctx, cur->dir, 4290 cur->dir_gen, valid_path); 4291 if (ret < 0) 4292 goto out; 4293 ret = send_rmdir(sctx, valid_path); 4294 if (ret < 0) 4295 goto out; 4296 last_dir_ino_rm = cur->dir; 4297 } 4298 } 4299 } 4300 4301 ret = 0; 4302 4303out: 4304 __free_recorded_refs(&check_dirs); 4305 free_recorded_refs(sctx); 4306 fs_path_free(valid_path); 4307 return ret; 4308} 4309 4310static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name, 4311 void *ctx, struct list_head *refs) 4312{ 4313 int ret = 0; 4314 struct send_ctx *sctx = ctx; 4315 struct fs_path *p; 4316 u64 gen; 4317 4318 p = fs_path_alloc(); 4319 if (!p) 4320 return -ENOMEM; 4321 4322 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 4323 NULL, NULL); 4324 if (ret < 0) 4325 goto out; 4326 4327 ret = get_cur_path(sctx, dir, gen, p); 4328 if (ret < 0) 4329 goto out; 4330 ret = fs_path_add_path(p, name); 4331 if (ret < 0) 4332 goto out; 4333 4334 ret = __record_ref(refs, dir, gen, p); 4335 4336out: 4337 if (ret) 4338 fs_path_free(p); 4339 return ret; 4340} 4341 4342static int __record_new_ref(int num, u64 dir, int index, 4343 struct fs_path *name, 4344 void *ctx) 4345{ 4346 struct send_ctx *sctx = ctx; 4347 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs); 4348} 4349 4350 4351static int __record_deleted_ref(int num, u64 dir, int index, 4352 struct fs_path *name, 4353 void *ctx) 4354{ 4355 struct send_ctx *sctx = ctx; 4356 return record_ref(sctx->parent_root, dir, name, ctx, 4357 &sctx->deleted_refs); 4358} 4359 4360static int record_new_ref(struct send_ctx *sctx) 4361{ 4362 int ret; 4363 4364 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4365 sctx->cmp_key, 0, __record_new_ref, sctx); 4366 if (ret < 0) 4367 goto out; 4368 ret = 0; 4369 4370out: 4371 return ret; 4372} 4373 4374static int record_deleted_ref(struct send_ctx *sctx) 4375{ 4376 int ret; 4377 4378 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4379 sctx->cmp_key, 0, __record_deleted_ref, sctx); 4380 if (ret < 0) 4381 goto out; 4382 ret = 0; 4383 4384out: 4385 return ret; 4386} 4387 4388struct find_ref_ctx { 4389 u64 dir; 4390 u64 dir_gen; 4391 struct btrfs_root *root; 4392 struct fs_path *name; 4393 int found_idx; 4394}; 4395 4396static int __find_iref(int num, u64 dir, int index, 4397 struct fs_path *name, 4398 void *ctx_) 4399{ 4400 struct find_ref_ctx *ctx = ctx_; 4401 u64 dir_gen; 4402 int ret; 4403 4404 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 4405 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 4406 /* 4407 * To avoid doing extra lookups we'll only do this if everything 4408 * else matches. 4409 */ 4410 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 4411 NULL, NULL, NULL); 4412 if (ret) 4413 return ret; 4414 if (dir_gen != ctx->dir_gen) 4415 return 0; 4416 ctx->found_idx = num; 4417 return 1; 4418 } 4419 return 0; 4420} 4421 4422static int find_iref(struct btrfs_root *root, 4423 struct btrfs_path *path, 4424 struct btrfs_key *key, 4425 u64 dir, u64 dir_gen, struct fs_path *name) 4426{ 4427 int ret; 4428 struct find_ref_ctx ctx; 4429 4430 ctx.dir = dir; 4431 ctx.name = name; 4432 ctx.dir_gen = dir_gen; 4433 ctx.found_idx = -1; 4434 ctx.root = root; 4435 4436 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 4437 if (ret < 0) 4438 return ret; 4439 4440 if (ctx.found_idx == -1) 4441 return -ENOENT; 4442 4443 return ctx.found_idx; 4444} 4445 4446static int __record_changed_new_ref(int num, u64 dir, int index, 4447 struct fs_path *name, 4448 void *ctx) 4449{ 4450 u64 dir_gen; 4451 int ret; 4452 struct send_ctx *sctx = ctx; 4453 4454 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 4455 NULL, NULL, NULL); 4456 if (ret) 4457 return ret; 4458 4459 ret = find_iref(sctx->parent_root, sctx->right_path, 4460 sctx->cmp_key, dir, dir_gen, name); 4461 if (ret == -ENOENT) 4462 ret = __record_new_ref(num, dir, index, name, sctx); 4463 else if (ret > 0) 4464 ret = 0; 4465 4466 return ret; 4467} 4468 4469static int __record_changed_deleted_ref(int num, u64 dir, int index, 4470 struct fs_path *name, 4471 void *ctx) 4472{ 4473 u64 dir_gen; 4474 int ret; 4475 struct send_ctx *sctx = ctx; 4476 4477 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 4478 NULL, NULL, NULL); 4479 if (ret) 4480 return ret; 4481 4482 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4483 dir, dir_gen, name); 4484 if (ret == -ENOENT) 4485 ret = __record_deleted_ref(num, dir, index, name, sctx); 4486 else if (ret > 0) 4487 ret = 0; 4488 4489 return ret; 4490} 4491 4492static int record_changed_ref(struct send_ctx *sctx) 4493{ 4494 int ret = 0; 4495 4496 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4497 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 4498 if (ret < 0) 4499 goto out; 4500 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4501 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 4502 if (ret < 0) 4503 goto out; 4504 ret = 0; 4505 4506out: 4507 return ret; 4508} 4509 4510/* 4511 * Record and process all refs at once. Needed when an inode changes the 4512 * generation number, which means that it was deleted and recreated. 4513 */ 4514static int process_all_refs(struct send_ctx *sctx, 4515 enum btrfs_compare_tree_result cmd) 4516{ 4517 int ret = 0; 4518 int iter_ret = 0; 4519 struct btrfs_root *root; 4520 struct btrfs_path *path; 4521 struct btrfs_key key; 4522 struct btrfs_key found_key; 4523 iterate_inode_ref_t cb; 4524 int pending_move = 0; 4525 4526 path = alloc_path_for_send(); 4527 if (!path) 4528 return -ENOMEM; 4529 4530 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4531 root = sctx->send_root; 4532 cb = __record_new_ref; 4533 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4534 root = sctx->parent_root; 4535 cb = __record_deleted_ref; 4536 } else { 4537 btrfs_err(sctx->send_root->fs_info, 4538 "Wrong command %d in process_all_refs", cmd); 4539 ret = -EINVAL; 4540 goto out; 4541 } 4542 4543 key.objectid = sctx->cmp_key->objectid; 4544 key.type = BTRFS_INODE_REF_KEY; 4545 key.offset = 0; 4546 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 4547 if (found_key.objectid != key.objectid || 4548 (found_key.type != BTRFS_INODE_REF_KEY && 4549 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4550 break; 4551 4552 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4553 if (ret < 0) 4554 goto out; 4555 } 4556 /* Catch error found during iteration */ 4557 if (iter_ret < 0) { 4558 ret = iter_ret; 4559 goto out; 4560 } 4561 btrfs_release_path(path); 4562 4563 /* 4564 * We don't actually care about pending_move as we are simply 4565 * re-creating this inode and will be rename'ing it into place once we 4566 * rename the parent directory. 4567 */ 4568 ret = process_recorded_refs(sctx, &pending_move); 4569out: 4570 btrfs_free_path(path); 4571 return ret; 4572} 4573 4574static int send_set_xattr(struct send_ctx *sctx, 4575 struct fs_path *path, 4576 const char *name, int name_len, 4577 const char *data, int data_len) 4578{ 4579 int ret = 0; 4580 4581 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4582 if (ret < 0) 4583 goto out; 4584 4585 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4586 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4587 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4588 4589 ret = send_cmd(sctx); 4590 4591tlv_put_failure: 4592out: 4593 return ret; 4594} 4595 4596static int send_remove_xattr(struct send_ctx *sctx, 4597 struct fs_path *path, 4598 const char *name, int name_len) 4599{ 4600 int ret = 0; 4601 4602 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4603 if (ret < 0) 4604 goto out; 4605 4606 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4607 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4608 4609 ret = send_cmd(sctx); 4610 4611tlv_put_failure: 4612out: 4613 return ret; 4614} 4615 4616static int __process_new_xattr(int num, struct btrfs_key *di_key, 4617 const char *name, int name_len, const char *data, 4618 int data_len, void *ctx) 4619{ 4620 int ret; 4621 struct send_ctx *sctx = ctx; 4622 struct fs_path *p; 4623 struct posix_acl_xattr_header dummy_acl; 4624 4625 /* Capabilities are emitted by finish_inode_if_needed */ 4626 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4627 return 0; 4628 4629 p = fs_path_alloc(); 4630 if (!p) 4631 return -ENOMEM; 4632 4633 /* 4634 * This hack is needed because empty acls are stored as zero byte 4635 * data in xattrs. Problem with that is, that receiving these zero byte 4636 * acls will fail later. To fix this, we send a dummy acl list that 4637 * only contains the version number and no entries. 4638 */ 4639 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4640 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4641 if (data_len == 0) { 4642 dummy_acl.a_version = 4643 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4644 data = (char *)&dummy_acl; 4645 data_len = sizeof(dummy_acl); 4646 } 4647 } 4648 4649 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4650 if (ret < 0) 4651 goto out; 4652 4653 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4654 4655out: 4656 fs_path_free(p); 4657 return ret; 4658} 4659 4660static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4661 const char *name, int name_len, 4662 const char *data, int data_len, void *ctx) 4663{ 4664 int ret; 4665 struct send_ctx *sctx = ctx; 4666 struct fs_path *p; 4667 4668 p = fs_path_alloc(); 4669 if (!p) 4670 return -ENOMEM; 4671 4672 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4673 if (ret < 0) 4674 goto out; 4675 4676 ret = send_remove_xattr(sctx, p, name, name_len); 4677 4678out: 4679 fs_path_free(p); 4680 return ret; 4681} 4682 4683static int process_new_xattr(struct send_ctx *sctx) 4684{ 4685 int ret = 0; 4686 4687 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4688 __process_new_xattr, sctx); 4689 4690 return ret; 4691} 4692 4693static int process_deleted_xattr(struct send_ctx *sctx) 4694{ 4695 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4696 __process_deleted_xattr, sctx); 4697} 4698 4699struct find_xattr_ctx { 4700 const char *name; 4701 int name_len; 4702 int found_idx; 4703 char *found_data; 4704 int found_data_len; 4705}; 4706 4707static int __find_xattr(int num, struct btrfs_key *di_key, const char *name, 4708 int name_len, const char *data, int data_len, void *vctx) 4709{ 4710 struct find_xattr_ctx *ctx = vctx; 4711 4712 if (name_len == ctx->name_len && 4713 strncmp(name, ctx->name, name_len) == 0) { 4714 ctx->found_idx = num; 4715 ctx->found_data_len = data_len; 4716 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4717 if (!ctx->found_data) 4718 return -ENOMEM; 4719 return 1; 4720 } 4721 return 0; 4722} 4723 4724static int find_xattr(struct btrfs_root *root, 4725 struct btrfs_path *path, 4726 struct btrfs_key *key, 4727 const char *name, int name_len, 4728 char **data, int *data_len) 4729{ 4730 int ret; 4731 struct find_xattr_ctx ctx; 4732 4733 ctx.name = name; 4734 ctx.name_len = name_len; 4735 ctx.found_idx = -1; 4736 ctx.found_data = NULL; 4737 ctx.found_data_len = 0; 4738 4739 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 4740 if (ret < 0) 4741 return ret; 4742 4743 if (ctx.found_idx == -1) 4744 return -ENOENT; 4745 if (data) { 4746 *data = ctx.found_data; 4747 *data_len = ctx.found_data_len; 4748 } else { 4749 kfree(ctx.found_data); 4750 } 4751 return ctx.found_idx; 4752} 4753 4754 4755static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4756 const char *name, int name_len, 4757 const char *data, int data_len, 4758 void *ctx) 4759{ 4760 int ret; 4761 struct send_ctx *sctx = ctx; 4762 char *found_data = NULL; 4763 int found_data_len = 0; 4764 4765 ret = find_xattr(sctx->parent_root, sctx->right_path, 4766 sctx->cmp_key, name, name_len, &found_data, 4767 &found_data_len); 4768 if (ret == -ENOENT) { 4769 ret = __process_new_xattr(num, di_key, name, name_len, data, 4770 data_len, ctx); 4771 } else if (ret >= 0) { 4772 if (data_len != found_data_len || 4773 memcmp(data, found_data, data_len)) { 4774 ret = __process_new_xattr(num, di_key, name, name_len, 4775 data, data_len, ctx); 4776 } else { 4777 ret = 0; 4778 } 4779 } 4780 4781 kfree(found_data); 4782 return ret; 4783} 4784 4785static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4786 const char *name, int name_len, 4787 const char *data, int data_len, 4788 void *ctx) 4789{ 4790 int ret; 4791 struct send_ctx *sctx = ctx; 4792 4793 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4794 name, name_len, NULL, NULL); 4795 if (ret == -ENOENT) 4796 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4797 data_len, ctx); 4798 else if (ret >= 0) 4799 ret = 0; 4800 4801 return ret; 4802} 4803 4804static int process_changed_xattr(struct send_ctx *sctx) 4805{ 4806 int ret = 0; 4807 4808 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4809 __process_changed_new_xattr, sctx); 4810 if (ret < 0) 4811 goto out; 4812 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4813 __process_changed_deleted_xattr, sctx); 4814 4815out: 4816 return ret; 4817} 4818 4819static int process_all_new_xattrs(struct send_ctx *sctx) 4820{ 4821 int ret = 0; 4822 int iter_ret = 0; 4823 struct btrfs_root *root; 4824 struct btrfs_path *path; 4825 struct btrfs_key key; 4826 struct btrfs_key found_key; 4827 4828 path = alloc_path_for_send(); 4829 if (!path) 4830 return -ENOMEM; 4831 4832 root = sctx->send_root; 4833 4834 key.objectid = sctx->cmp_key->objectid; 4835 key.type = BTRFS_XATTR_ITEM_KEY; 4836 key.offset = 0; 4837 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 4838 if (found_key.objectid != key.objectid || 4839 found_key.type != key.type) { 4840 ret = 0; 4841 break; 4842 } 4843 4844 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 4845 if (ret < 0) 4846 break; 4847 } 4848 /* Catch error found during iteration */ 4849 if (iter_ret < 0) 4850 ret = iter_ret; 4851 4852 btrfs_free_path(path); 4853 return ret; 4854} 4855 4856static inline u64 max_send_read_size(const struct send_ctx *sctx) 4857{ 4858 return sctx->send_max_size - SZ_16K; 4859} 4860 4861static int put_data_header(struct send_ctx *sctx, u32 len) 4862{ 4863 struct btrfs_tlv_header *hdr; 4864 4865 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) 4866 return -EOVERFLOW; 4867 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 4868 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 4869 put_unaligned_le16(len, &hdr->tlv_len); 4870 sctx->send_size += sizeof(*hdr); 4871 return 0; 4872} 4873 4874static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 4875{ 4876 struct btrfs_root *root = sctx->send_root; 4877 struct btrfs_fs_info *fs_info = root->fs_info; 4878 struct page *page; 4879 pgoff_t index = offset >> PAGE_SHIFT; 4880 pgoff_t last_index; 4881 unsigned pg_offset = offset_in_page(offset); 4882 int ret; 4883 4884 ret = put_data_header(sctx, len); 4885 if (ret) 4886 return ret; 4887 4888 last_index = (offset + len - 1) >> PAGE_SHIFT; 4889 4890 while (index <= last_index) { 4891 unsigned cur_len = min_t(unsigned, len, 4892 PAGE_SIZE - pg_offset); 4893 4894 page = find_lock_page(sctx->cur_inode->i_mapping, index); 4895 if (!page) { 4896 page_cache_sync_readahead(sctx->cur_inode->i_mapping, 4897 &sctx->ra, NULL, index, 4898 last_index + 1 - index); 4899 4900 page = find_or_create_page(sctx->cur_inode->i_mapping, 4901 index, GFP_KERNEL); 4902 if (!page) { 4903 ret = -ENOMEM; 4904 break; 4905 } 4906 } 4907 4908 if (PageReadahead(page)) 4909 page_cache_async_readahead(sctx->cur_inode->i_mapping, 4910 &sctx->ra, NULL, page_folio(page), 4911 index, last_index + 1 - index); 4912 4913 if (!PageUptodate(page)) { 4914 btrfs_read_folio(NULL, page_folio(page)); 4915 lock_page(page); 4916 if (!PageUptodate(page)) { 4917 unlock_page(page); 4918 btrfs_err(fs_info, 4919 "send: IO error at offset %llu for inode %llu root %llu", 4920 page_offset(page), sctx->cur_ino, 4921 sctx->send_root->root_key.objectid); 4922 put_page(page); 4923 ret = -EIO; 4924 break; 4925 } 4926 } 4927 4928 memcpy_from_page(sctx->send_buf + sctx->send_size, page, 4929 pg_offset, cur_len); 4930 unlock_page(page); 4931 put_page(page); 4932 index++; 4933 pg_offset = 0; 4934 len -= cur_len; 4935 sctx->send_size += cur_len; 4936 } 4937 4938 return ret; 4939} 4940 4941/* 4942 * Read some bytes from the current inode/file and send a write command to 4943 * user space. 4944 */ 4945static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 4946{ 4947 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4948 int ret = 0; 4949 struct fs_path *p; 4950 4951 p = fs_path_alloc(); 4952 if (!p) 4953 return -ENOMEM; 4954 4955 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 4956 4957 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4958 if (ret < 0) 4959 goto out; 4960 4961 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4962 if (ret < 0) 4963 goto out; 4964 4965 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4966 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4967 ret = put_file_data(sctx, offset, len); 4968 if (ret < 0) 4969 goto out; 4970 4971 ret = send_cmd(sctx); 4972 4973tlv_put_failure: 4974out: 4975 fs_path_free(p); 4976 return ret; 4977} 4978 4979/* 4980 * Send a clone command to user space. 4981 */ 4982static int send_clone(struct send_ctx *sctx, 4983 u64 offset, u32 len, 4984 struct clone_root *clone_root) 4985{ 4986 int ret = 0; 4987 struct fs_path *p; 4988 u64 gen; 4989 4990 btrfs_debug(sctx->send_root->fs_info, 4991 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 4992 offset, len, clone_root->root->root_key.objectid, 4993 clone_root->ino, clone_root->offset); 4994 4995 p = fs_path_alloc(); 4996 if (!p) 4997 return -ENOMEM; 4998 4999 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5000 if (ret < 0) 5001 goto out; 5002 5003 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5004 if (ret < 0) 5005 goto out; 5006 5007 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5008 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5009 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5010 5011 if (clone_root->root == sctx->send_root) { 5012 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 5013 &gen, NULL, NULL, NULL, NULL); 5014 if (ret < 0) 5015 goto out; 5016 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5017 } else { 5018 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5019 } 5020 if (ret < 0) 5021 goto out; 5022 5023 /* 5024 * If the parent we're using has a received_uuid set then use that as 5025 * our clone source as that is what we will look for when doing a 5026 * receive. 5027 * 5028 * This covers the case that we create a snapshot off of a received 5029 * subvolume and then use that as the parent and try to receive on a 5030 * different host. 5031 */ 5032 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5033 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5034 clone_root->root->root_item.received_uuid); 5035 else 5036 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5037 clone_root->root->root_item.uuid); 5038 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5039 btrfs_root_ctransid(&clone_root->root->root_item)); 5040 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5041 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5042 clone_root->offset); 5043 5044 ret = send_cmd(sctx); 5045 5046tlv_put_failure: 5047out: 5048 fs_path_free(p); 5049 return ret; 5050} 5051 5052/* 5053 * Send an update extent command to user space. 5054 */ 5055static int send_update_extent(struct send_ctx *sctx, 5056 u64 offset, u32 len) 5057{ 5058 int ret = 0; 5059 struct fs_path *p; 5060 5061 p = fs_path_alloc(); 5062 if (!p) 5063 return -ENOMEM; 5064 5065 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5066 if (ret < 0) 5067 goto out; 5068 5069 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5070 if (ret < 0) 5071 goto out; 5072 5073 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5074 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5075 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5076 5077 ret = send_cmd(sctx); 5078 5079tlv_put_failure: 5080out: 5081 fs_path_free(p); 5082 return ret; 5083} 5084 5085static int send_hole(struct send_ctx *sctx, u64 end) 5086{ 5087 struct fs_path *p = NULL; 5088 u64 read_size = max_send_read_size(sctx); 5089 u64 offset = sctx->cur_inode_last_extent; 5090 int ret = 0; 5091 5092 /* 5093 * A hole that starts at EOF or beyond it. Since we do not yet support 5094 * fallocate (for extent preallocation and hole punching), sending a 5095 * write of zeroes starting at EOF or beyond would later require issuing 5096 * a truncate operation which would undo the write and achieve nothing. 5097 */ 5098 if (offset >= sctx->cur_inode_size) 5099 return 0; 5100 5101 /* 5102 * Don't go beyond the inode's i_size due to prealloc extents that start 5103 * after the i_size. 5104 */ 5105 end = min_t(u64, end, sctx->cur_inode_size); 5106 5107 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5108 return send_update_extent(sctx, offset, end - offset); 5109 5110 p = fs_path_alloc(); 5111 if (!p) 5112 return -ENOMEM; 5113 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5114 if (ret < 0) 5115 goto tlv_put_failure; 5116 while (offset < end) { 5117 u64 len = min(end - offset, read_size); 5118 5119 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5120 if (ret < 0) 5121 break; 5122 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5123 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5124 ret = put_data_header(sctx, len); 5125 if (ret < 0) 5126 break; 5127 memset(sctx->send_buf + sctx->send_size, 0, len); 5128 sctx->send_size += len; 5129 ret = send_cmd(sctx); 5130 if (ret < 0) 5131 break; 5132 offset += len; 5133 } 5134 sctx->cur_inode_next_write_offset = offset; 5135tlv_put_failure: 5136 fs_path_free(p); 5137 return ret; 5138} 5139 5140static int send_extent_data(struct send_ctx *sctx, 5141 const u64 offset, 5142 const u64 len) 5143{ 5144 const u64 end = offset + len; 5145 u64 read_size = max_send_read_size(sctx); 5146 u64 sent = 0; 5147 5148 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5149 return send_update_extent(sctx, offset, len); 5150 5151 if (sctx->cur_inode == NULL) { 5152 struct btrfs_root *root = sctx->send_root; 5153 5154 sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root); 5155 if (IS_ERR(sctx->cur_inode)) { 5156 int err = PTR_ERR(sctx->cur_inode); 5157 5158 sctx->cur_inode = NULL; 5159 return err; 5160 } 5161 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 5162 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping); 5163 5164 /* 5165 * It's very likely there are no pages from this inode in the page 5166 * cache, so after reading extents and sending their data, we clean 5167 * the page cache to avoid trashing the page cache (adding pressure 5168 * to the page cache and forcing eviction of other data more useful 5169 * for applications). 5170 * 5171 * We decide if we should clean the page cache simply by checking 5172 * if the inode's mapping nrpages is 0 when we first open it, and 5173 * not by using something like filemap_range_has_page() before 5174 * reading an extent because when we ask the readahead code to 5175 * read a given file range, it may (and almost always does) read 5176 * pages from beyond that range (see the documentation for 5177 * page_cache_sync_readahead()), so it would not be reliable, 5178 * because after reading the first extent future calls to 5179 * filemap_range_has_page() would return true because the readahead 5180 * on the previous extent resulted in reading pages of the current 5181 * extent as well. 5182 */ 5183 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0); 5184 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE); 5185 } 5186 5187 while (sent < len) { 5188 u64 size = min(len - sent, read_size); 5189 int ret; 5190 5191 ret = send_write(sctx, offset + sent, size); 5192 if (ret < 0) 5193 return ret; 5194 sent += size; 5195 } 5196 5197 if (sctx->clean_page_cache && IS_ALIGNED(end, PAGE_SIZE)) { 5198 /* 5199 * Always operate only on ranges that are a multiple of the page 5200 * size. This is not only to prevent zeroing parts of a page in 5201 * the case of subpage sector size, but also to guarantee we evict 5202 * pages, as passing a range that is smaller than page size does 5203 * not evict the respective page (only zeroes part of its content). 5204 * 5205 * Always start from the end offset of the last range cleared. 5206 * This is because the readahead code may (and very often does) 5207 * reads pages beyond the range we request for readahead. So if 5208 * we have an extent layout like this: 5209 * 5210 * [ extent A ] [ extent B ] [ extent C ] 5211 * 5212 * When we ask page_cache_sync_readahead() to read extent A, it 5213 * may also trigger reads for pages of extent B. If we are doing 5214 * an incremental send and extent B has not changed between the 5215 * parent and send snapshots, some or all of its pages may end 5216 * up being read and placed in the page cache. So when truncating 5217 * the page cache we always start from the end offset of the 5218 * previously processed extent up to the end of the current 5219 * extent. 5220 */ 5221 truncate_inode_pages_range(&sctx->cur_inode->i_data, 5222 sctx->page_cache_clear_start, 5223 end - 1); 5224 sctx->page_cache_clear_start = end; 5225 } 5226 5227 return 0; 5228} 5229 5230/* 5231 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5232 * found, call send_set_xattr function to emit it. 5233 * 5234 * Return 0 if there isn't a capability, or when the capability was emitted 5235 * successfully, or < 0 if an error occurred. 5236 */ 5237static int send_capabilities(struct send_ctx *sctx) 5238{ 5239 struct fs_path *fspath = NULL; 5240 struct btrfs_path *path; 5241 struct btrfs_dir_item *di; 5242 struct extent_buffer *leaf; 5243 unsigned long data_ptr; 5244 char *buf = NULL; 5245 int buf_len; 5246 int ret = 0; 5247 5248 path = alloc_path_for_send(); 5249 if (!path) 5250 return -ENOMEM; 5251 5252 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5253 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5254 if (!di) { 5255 /* There is no xattr for this inode */ 5256 goto out; 5257 } else if (IS_ERR(di)) { 5258 ret = PTR_ERR(di); 5259 goto out; 5260 } 5261 5262 leaf = path->nodes[0]; 5263 buf_len = btrfs_dir_data_len(leaf, di); 5264 5265 fspath = fs_path_alloc(); 5266 buf = kmalloc(buf_len, GFP_KERNEL); 5267 if (!fspath || !buf) { 5268 ret = -ENOMEM; 5269 goto out; 5270 } 5271 5272 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5273 if (ret < 0) 5274 goto out; 5275 5276 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5277 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5278 5279 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS, 5280 strlen(XATTR_NAME_CAPS), buf, buf_len); 5281out: 5282 kfree(buf); 5283 fs_path_free(fspath); 5284 btrfs_free_path(path); 5285 return ret; 5286} 5287 5288static int clone_range(struct send_ctx *sctx, 5289 struct clone_root *clone_root, 5290 const u64 disk_byte, 5291 u64 data_offset, 5292 u64 offset, 5293 u64 len) 5294{ 5295 struct btrfs_path *path; 5296 struct btrfs_key key; 5297 int ret; 5298 u64 clone_src_i_size = 0; 5299 5300 /* 5301 * Prevent cloning from a zero offset with a length matching the sector 5302 * size because in some scenarios this will make the receiver fail. 5303 * 5304 * For example, if in the source filesystem the extent at offset 0 5305 * has a length of sectorsize and it was written using direct IO, then 5306 * it can never be an inline extent (even if compression is enabled). 5307 * Then this extent can be cloned in the original filesystem to a non 5308 * zero file offset, but it may not be possible to clone in the 5309 * destination filesystem because it can be inlined due to compression 5310 * on the destination filesystem (as the receiver's write operations are 5311 * always done using buffered IO). The same happens when the original 5312 * filesystem does not have compression enabled but the destination 5313 * filesystem has. 5314 */ 5315 if (clone_root->offset == 0 && 5316 len == sctx->send_root->fs_info->sectorsize) 5317 return send_extent_data(sctx, offset, len); 5318 5319 path = alloc_path_for_send(); 5320 if (!path) 5321 return -ENOMEM; 5322 5323 /* 5324 * There are inodes that have extents that lie behind its i_size. Don't 5325 * accept clones from these extents. 5326 */ 5327 ret = __get_inode_info(clone_root->root, path, clone_root->ino, 5328 &clone_src_i_size, NULL, NULL, NULL, NULL, NULL); 5329 btrfs_release_path(path); 5330 if (ret < 0) 5331 goto out; 5332 5333 /* 5334 * We can't send a clone operation for the entire range if we find 5335 * extent items in the respective range in the source file that 5336 * refer to different extents or if we find holes. 5337 * So check for that and do a mix of clone and regular write/copy 5338 * operations if needed. 5339 * 5340 * Example: 5341 * 5342 * mkfs.btrfs -f /dev/sda 5343 * mount /dev/sda /mnt 5344 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5345 * cp --reflink=always /mnt/foo /mnt/bar 5346 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5347 * btrfs subvolume snapshot -r /mnt /mnt/snap 5348 * 5349 * If when we send the snapshot and we are processing file bar (which 5350 * has a higher inode number than foo) we blindly send a clone operation 5351 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5352 * a file bar that matches the content of file foo - iow, doesn't match 5353 * the content from bar in the original filesystem. 5354 */ 5355 key.objectid = clone_root->ino; 5356 key.type = BTRFS_EXTENT_DATA_KEY; 5357 key.offset = clone_root->offset; 5358 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5359 if (ret < 0) 5360 goto out; 5361 if (ret > 0 && path->slots[0] > 0) { 5362 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5363 if (key.objectid == clone_root->ino && 5364 key.type == BTRFS_EXTENT_DATA_KEY) 5365 path->slots[0]--; 5366 } 5367 5368 while (true) { 5369 struct extent_buffer *leaf = path->nodes[0]; 5370 int slot = path->slots[0]; 5371 struct btrfs_file_extent_item *ei; 5372 u8 type; 5373 u64 ext_len; 5374 u64 clone_len; 5375 u64 clone_data_offset; 5376 5377 if (slot >= btrfs_header_nritems(leaf)) { 5378 ret = btrfs_next_leaf(clone_root->root, path); 5379 if (ret < 0) 5380 goto out; 5381 else if (ret > 0) 5382 break; 5383 continue; 5384 } 5385 5386 btrfs_item_key_to_cpu(leaf, &key, slot); 5387 5388 /* 5389 * We might have an implicit trailing hole (NO_HOLES feature 5390 * enabled). We deal with it after leaving this loop. 5391 */ 5392 if (key.objectid != clone_root->ino || 5393 key.type != BTRFS_EXTENT_DATA_KEY) 5394 break; 5395 5396 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5397 type = btrfs_file_extent_type(leaf, ei); 5398 if (type == BTRFS_FILE_EXTENT_INLINE) { 5399 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5400 ext_len = PAGE_ALIGN(ext_len); 5401 } else { 5402 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5403 } 5404 5405 if (key.offset + ext_len <= clone_root->offset) 5406 goto next; 5407 5408 if (key.offset > clone_root->offset) { 5409 /* Implicit hole, NO_HOLES feature enabled. */ 5410 u64 hole_len = key.offset - clone_root->offset; 5411 5412 if (hole_len > len) 5413 hole_len = len; 5414 ret = send_extent_data(sctx, offset, hole_len); 5415 if (ret < 0) 5416 goto out; 5417 5418 len -= hole_len; 5419 if (len == 0) 5420 break; 5421 offset += hole_len; 5422 clone_root->offset += hole_len; 5423 data_offset += hole_len; 5424 } 5425 5426 if (key.offset >= clone_root->offset + len) 5427 break; 5428 5429 if (key.offset >= clone_src_i_size) 5430 break; 5431 5432 if (key.offset + ext_len > clone_src_i_size) 5433 ext_len = clone_src_i_size - key.offset; 5434 5435 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 5436 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 5437 clone_root->offset = key.offset; 5438 if (clone_data_offset < data_offset && 5439 clone_data_offset + ext_len > data_offset) { 5440 u64 extent_offset; 5441 5442 extent_offset = data_offset - clone_data_offset; 5443 ext_len -= extent_offset; 5444 clone_data_offset += extent_offset; 5445 clone_root->offset += extent_offset; 5446 } 5447 } 5448 5449 clone_len = min_t(u64, ext_len, len); 5450 5451 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5452 clone_data_offset == data_offset) { 5453 const u64 src_end = clone_root->offset + clone_len; 5454 const u64 sectorsize = SZ_64K; 5455 5456 /* 5457 * We can't clone the last block, when its size is not 5458 * sector size aligned, into the middle of a file. If we 5459 * do so, the receiver will get a failure (-EINVAL) when 5460 * trying to clone or will silently corrupt the data in 5461 * the destination file if it's on a kernel without the 5462 * fix introduced by commit ac765f83f1397646 5463 * ("Btrfs: fix data corruption due to cloning of eof 5464 * block). 5465 * 5466 * So issue a clone of the aligned down range plus a 5467 * regular write for the eof block, if we hit that case. 5468 * 5469 * Also, we use the maximum possible sector size, 64K, 5470 * because we don't know what's the sector size of the 5471 * filesystem that receives the stream, so we have to 5472 * assume the largest possible sector size. 5473 */ 5474 if (src_end == clone_src_i_size && 5475 !IS_ALIGNED(src_end, sectorsize) && 5476 offset + clone_len < sctx->cur_inode_size) { 5477 u64 slen; 5478 5479 slen = ALIGN_DOWN(src_end - clone_root->offset, 5480 sectorsize); 5481 if (slen > 0) { 5482 ret = send_clone(sctx, offset, slen, 5483 clone_root); 5484 if (ret < 0) 5485 goto out; 5486 } 5487 ret = send_extent_data(sctx, offset + slen, 5488 clone_len - slen); 5489 } else { 5490 ret = send_clone(sctx, offset, clone_len, 5491 clone_root); 5492 } 5493 } else { 5494 ret = send_extent_data(sctx, offset, clone_len); 5495 } 5496 5497 if (ret < 0) 5498 goto out; 5499 5500 len -= clone_len; 5501 if (len == 0) 5502 break; 5503 offset += clone_len; 5504 clone_root->offset += clone_len; 5505 5506 /* 5507 * If we are cloning from the file we are currently processing, 5508 * and using the send root as the clone root, we must stop once 5509 * the current clone offset reaches the current eof of the file 5510 * at the receiver, otherwise we would issue an invalid clone 5511 * operation (source range going beyond eof) and cause the 5512 * receiver to fail. So if we reach the current eof, bail out 5513 * and fallback to a regular write. 5514 */ 5515 if (clone_root->root == sctx->send_root && 5516 clone_root->ino == sctx->cur_ino && 5517 clone_root->offset >= sctx->cur_inode_next_write_offset) 5518 break; 5519 5520 data_offset += clone_len; 5521next: 5522 path->slots[0]++; 5523 } 5524 5525 if (len > 0) 5526 ret = send_extent_data(sctx, offset, len); 5527 else 5528 ret = 0; 5529out: 5530 btrfs_free_path(path); 5531 return ret; 5532} 5533 5534static int send_write_or_clone(struct send_ctx *sctx, 5535 struct btrfs_path *path, 5536 struct btrfs_key *key, 5537 struct clone_root *clone_root) 5538{ 5539 int ret = 0; 5540 u64 offset = key->offset; 5541 u64 end; 5542 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 5543 5544 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 5545 if (offset >= end) 5546 return 0; 5547 5548 if (clone_root && IS_ALIGNED(end, bs)) { 5549 struct btrfs_file_extent_item *ei; 5550 u64 disk_byte; 5551 u64 data_offset; 5552 5553 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5554 struct btrfs_file_extent_item); 5555 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 5556 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 5557 ret = clone_range(sctx, clone_root, disk_byte, data_offset, 5558 offset, end - offset); 5559 } else { 5560 ret = send_extent_data(sctx, offset, end - offset); 5561 } 5562 sctx->cur_inode_next_write_offset = end; 5563 return ret; 5564} 5565 5566static int is_extent_unchanged(struct send_ctx *sctx, 5567 struct btrfs_path *left_path, 5568 struct btrfs_key *ekey) 5569{ 5570 int ret = 0; 5571 struct btrfs_key key; 5572 struct btrfs_path *path = NULL; 5573 struct extent_buffer *eb; 5574 int slot; 5575 struct btrfs_key found_key; 5576 struct btrfs_file_extent_item *ei; 5577 u64 left_disknr; 5578 u64 right_disknr; 5579 u64 left_offset; 5580 u64 right_offset; 5581 u64 left_offset_fixed; 5582 u64 left_len; 5583 u64 right_len; 5584 u64 left_gen; 5585 u64 right_gen; 5586 u8 left_type; 5587 u8 right_type; 5588 5589 path = alloc_path_for_send(); 5590 if (!path) 5591 return -ENOMEM; 5592 5593 eb = left_path->nodes[0]; 5594 slot = left_path->slots[0]; 5595 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5596 left_type = btrfs_file_extent_type(eb, ei); 5597 5598 if (left_type != BTRFS_FILE_EXTENT_REG) { 5599 ret = 0; 5600 goto out; 5601 } 5602 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5603 left_len = btrfs_file_extent_num_bytes(eb, ei); 5604 left_offset = btrfs_file_extent_offset(eb, ei); 5605 left_gen = btrfs_file_extent_generation(eb, ei); 5606 5607 /* 5608 * Following comments will refer to these graphics. L is the left 5609 * extents which we are checking at the moment. 1-8 are the right 5610 * extents that we iterate. 5611 * 5612 * |-----L-----| 5613 * |-1-|-2a-|-3-|-4-|-5-|-6-| 5614 * 5615 * |-----L-----| 5616 * |--1--|-2b-|...(same as above) 5617 * 5618 * Alternative situation. Happens on files where extents got split. 5619 * |-----L-----| 5620 * |-----------7-----------|-6-| 5621 * 5622 * Alternative situation. Happens on files which got larger. 5623 * |-----L-----| 5624 * |-8-| 5625 * Nothing follows after 8. 5626 */ 5627 5628 key.objectid = ekey->objectid; 5629 key.type = BTRFS_EXTENT_DATA_KEY; 5630 key.offset = ekey->offset; 5631 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 5632 if (ret < 0) 5633 goto out; 5634 if (ret) { 5635 ret = 0; 5636 goto out; 5637 } 5638 5639 /* 5640 * Handle special case where the right side has no extents at all. 5641 */ 5642 eb = path->nodes[0]; 5643 slot = path->slots[0]; 5644 btrfs_item_key_to_cpu(eb, &found_key, slot); 5645 if (found_key.objectid != key.objectid || 5646 found_key.type != key.type) { 5647 /* If we're a hole then just pretend nothing changed */ 5648 ret = (left_disknr) ? 0 : 1; 5649 goto out; 5650 } 5651 5652 /* 5653 * We're now on 2a, 2b or 7. 5654 */ 5655 key = found_key; 5656 while (key.offset < ekey->offset + left_len) { 5657 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5658 right_type = btrfs_file_extent_type(eb, ei); 5659 if (right_type != BTRFS_FILE_EXTENT_REG && 5660 right_type != BTRFS_FILE_EXTENT_INLINE) { 5661 ret = 0; 5662 goto out; 5663 } 5664 5665 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5666 right_len = btrfs_file_extent_ram_bytes(eb, ei); 5667 right_len = PAGE_ALIGN(right_len); 5668 } else { 5669 right_len = btrfs_file_extent_num_bytes(eb, ei); 5670 } 5671 5672 /* 5673 * Are we at extent 8? If yes, we know the extent is changed. 5674 * This may only happen on the first iteration. 5675 */ 5676 if (found_key.offset + right_len <= ekey->offset) { 5677 /* If we're a hole just pretend nothing changed */ 5678 ret = (left_disknr) ? 0 : 1; 5679 goto out; 5680 } 5681 5682 /* 5683 * We just wanted to see if when we have an inline extent, what 5684 * follows it is a regular extent (wanted to check the above 5685 * condition for inline extents too). This should normally not 5686 * happen but it's possible for example when we have an inline 5687 * compressed extent representing data with a size matching 5688 * the page size (currently the same as sector size). 5689 */ 5690 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5691 ret = 0; 5692 goto out; 5693 } 5694 5695 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5696 right_offset = btrfs_file_extent_offset(eb, ei); 5697 right_gen = btrfs_file_extent_generation(eb, ei); 5698 5699 left_offset_fixed = left_offset; 5700 if (key.offset < ekey->offset) { 5701 /* Fix the right offset for 2a and 7. */ 5702 right_offset += ekey->offset - key.offset; 5703 } else { 5704 /* Fix the left offset for all behind 2a and 2b */ 5705 left_offset_fixed += key.offset - ekey->offset; 5706 } 5707 5708 /* 5709 * Check if we have the same extent. 5710 */ 5711 if (left_disknr != right_disknr || 5712 left_offset_fixed != right_offset || 5713 left_gen != right_gen) { 5714 ret = 0; 5715 goto out; 5716 } 5717 5718 /* 5719 * Go to the next extent. 5720 */ 5721 ret = btrfs_next_item(sctx->parent_root, path); 5722 if (ret < 0) 5723 goto out; 5724 if (!ret) { 5725 eb = path->nodes[0]; 5726 slot = path->slots[0]; 5727 btrfs_item_key_to_cpu(eb, &found_key, slot); 5728 } 5729 if (ret || found_key.objectid != key.objectid || 5730 found_key.type != key.type) { 5731 key.offset += right_len; 5732 break; 5733 } 5734 if (found_key.offset != key.offset + right_len) { 5735 ret = 0; 5736 goto out; 5737 } 5738 key = found_key; 5739 } 5740 5741 /* 5742 * We're now behind the left extent (treat as unchanged) or at the end 5743 * of the right side (treat as changed). 5744 */ 5745 if (key.offset >= ekey->offset + left_len) 5746 ret = 1; 5747 else 5748 ret = 0; 5749 5750 5751out: 5752 btrfs_free_path(path); 5753 return ret; 5754} 5755 5756static int get_last_extent(struct send_ctx *sctx, u64 offset) 5757{ 5758 struct btrfs_path *path; 5759 struct btrfs_root *root = sctx->send_root; 5760 struct btrfs_key key; 5761 int ret; 5762 5763 path = alloc_path_for_send(); 5764 if (!path) 5765 return -ENOMEM; 5766 5767 sctx->cur_inode_last_extent = 0; 5768 5769 key.objectid = sctx->cur_ino; 5770 key.type = BTRFS_EXTENT_DATA_KEY; 5771 key.offset = offset; 5772 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 5773 if (ret < 0) 5774 goto out; 5775 ret = 0; 5776 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 5777 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 5778 goto out; 5779 5780 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 5781out: 5782 btrfs_free_path(path); 5783 return ret; 5784} 5785 5786static int range_is_hole_in_parent(struct send_ctx *sctx, 5787 const u64 start, 5788 const u64 end) 5789{ 5790 struct btrfs_path *path; 5791 struct btrfs_key key; 5792 struct btrfs_root *root = sctx->parent_root; 5793 u64 search_start = start; 5794 int ret; 5795 5796 path = alloc_path_for_send(); 5797 if (!path) 5798 return -ENOMEM; 5799 5800 key.objectid = sctx->cur_ino; 5801 key.type = BTRFS_EXTENT_DATA_KEY; 5802 key.offset = search_start; 5803 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5804 if (ret < 0) 5805 goto out; 5806 if (ret > 0 && path->slots[0] > 0) 5807 path->slots[0]--; 5808 5809 while (search_start < end) { 5810 struct extent_buffer *leaf = path->nodes[0]; 5811 int slot = path->slots[0]; 5812 struct btrfs_file_extent_item *fi; 5813 u64 extent_end; 5814 5815 if (slot >= btrfs_header_nritems(leaf)) { 5816 ret = btrfs_next_leaf(root, path); 5817 if (ret < 0) 5818 goto out; 5819 else if (ret > 0) 5820 break; 5821 continue; 5822 } 5823 5824 btrfs_item_key_to_cpu(leaf, &key, slot); 5825 if (key.objectid < sctx->cur_ino || 5826 key.type < BTRFS_EXTENT_DATA_KEY) 5827 goto next; 5828 if (key.objectid > sctx->cur_ino || 5829 key.type > BTRFS_EXTENT_DATA_KEY || 5830 key.offset >= end) 5831 break; 5832 5833 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5834 extent_end = btrfs_file_extent_end(path); 5835 if (extent_end <= start) 5836 goto next; 5837 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 5838 search_start = extent_end; 5839 goto next; 5840 } 5841 ret = 0; 5842 goto out; 5843next: 5844 path->slots[0]++; 5845 } 5846 ret = 1; 5847out: 5848 btrfs_free_path(path); 5849 return ret; 5850} 5851 5852static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 5853 struct btrfs_key *key) 5854{ 5855 int ret = 0; 5856 5857 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 5858 return 0; 5859 5860 if (sctx->cur_inode_last_extent == (u64)-1) { 5861 ret = get_last_extent(sctx, key->offset - 1); 5862 if (ret) 5863 return ret; 5864 } 5865 5866 if (path->slots[0] == 0 && 5867 sctx->cur_inode_last_extent < key->offset) { 5868 /* 5869 * We might have skipped entire leafs that contained only 5870 * file extent items for our current inode. These leafs have 5871 * a generation number smaller (older) than the one in the 5872 * current leaf and the leaf our last extent came from, and 5873 * are located between these 2 leafs. 5874 */ 5875 ret = get_last_extent(sctx, key->offset - 1); 5876 if (ret) 5877 return ret; 5878 } 5879 5880 if (sctx->cur_inode_last_extent < key->offset) { 5881 ret = range_is_hole_in_parent(sctx, 5882 sctx->cur_inode_last_extent, 5883 key->offset); 5884 if (ret < 0) 5885 return ret; 5886 else if (ret == 0) 5887 ret = send_hole(sctx, key->offset); 5888 else 5889 ret = 0; 5890 } 5891 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 5892 return ret; 5893} 5894 5895static int process_extent(struct send_ctx *sctx, 5896 struct btrfs_path *path, 5897 struct btrfs_key *key) 5898{ 5899 struct clone_root *found_clone = NULL; 5900 int ret = 0; 5901 5902 if (S_ISLNK(sctx->cur_inode_mode)) 5903 return 0; 5904 5905 if (sctx->parent_root && !sctx->cur_inode_new) { 5906 ret = is_extent_unchanged(sctx, path, key); 5907 if (ret < 0) 5908 goto out; 5909 if (ret) { 5910 ret = 0; 5911 goto out_hole; 5912 } 5913 } else { 5914 struct btrfs_file_extent_item *ei; 5915 u8 type; 5916 5917 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5918 struct btrfs_file_extent_item); 5919 type = btrfs_file_extent_type(path->nodes[0], ei); 5920 if (type == BTRFS_FILE_EXTENT_PREALLOC || 5921 type == BTRFS_FILE_EXTENT_REG) { 5922 /* 5923 * The send spec does not have a prealloc command yet, 5924 * so just leave a hole for prealloc'ed extents until 5925 * we have enough commands queued up to justify rev'ing 5926 * the send spec. 5927 */ 5928 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 5929 ret = 0; 5930 goto out; 5931 } 5932 5933 /* Have a hole, just skip it. */ 5934 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 5935 ret = 0; 5936 goto out; 5937 } 5938 } 5939 } 5940 5941 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 5942 sctx->cur_inode_size, &found_clone); 5943 if (ret != -ENOENT && ret < 0) 5944 goto out; 5945 5946 ret = send_write_or_clone(sctx, path, key, found_clone); 5947 if (ret) 5948 goto out; 5949out_hole: 5950 ret = maybe_send_hole(sctx, path, key); 5951out: 5952 return ret; 5953} 5954 5955static int process_all_extents(struct send_ctx *sctx) 5956{ 5957 int ret = 0; 5958 int iter_ret = 0; 5959 struct btrfs_root *root; 5960 struct btrfs_path *path; 5961 struct btrfs_key key; 5962 struct btrfs_key found_key; 5963 5964 root = sctx->send_root; 5965 path = alloc_path_for_send(); 5966 if (!path) 5967 return -ENOMEM; 5968 5969 key.objectid = sctx->cmp_key->objectid; 5970 key.type = BTRFS_EXTENT_DATA_KEY; 5971 key.offset = 0; 5972 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 5973 if (found_key.objectid != key.objectid || 5974 found_key.type != key.type) { 5975 ret = 0; 5976 break; 5977 } 5978 5979 ret = process_extent(sctx, path, &found_key); 5980 if (ret < 0) 5981 break; 5982 } 5983 /* Catch error found during iteration */ 5984 if (iter_ret < 0) 5985 ret = iter_ret; 5986 5987 btrfs_free_path(path); 5988 return ret; 5989} 5990 5991static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 5992 int *pending_move, 5993 int *refs_processed) 5994{ 5995 int ret = 0; 5996 5997 if (sctx->cur_ino == 0) 5998 goto out; 5999 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 6000 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 6001 goto out; 6002 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 6003 goto out; 6004 6005 ret = process_recorded_refs(sctx, pending_move); 6006 if (ret < 0) 6007 goto out; 6008 6009 *refs_processed = 1; 6010out: 6011 return ret; 6012} 6013 6014static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 6015{ 6016 int ret = 0; 6017 u64 left_mode; 6018 u64 left_uid; 6019 u64 left_gid; 6020 u64 right_mode; 6021 u64 right_uid; 6022 u64 right_gid; 6023 int need_chmod = 0; 6024 int need_chown = 0; 6025 int need_truncate = 1; 6026 int pending_move = 0; 6027 int refs_processed = 0; 6028 6029 if (sctx->ignore_cur_inode) 6030 return 0; 6031 6032 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 6033 &refs_processed); 6034 if (ret < 0) 6035 goto out; 6036 6037 /* 6038 * We have processed the refs and thus need to advance send_progress. 6039 * Now, calls to get_cur_xxx will take the updated refs of the current 6040 * inode into account. 6041 * 6042 * On the other hand, if our current inode is a directory and couldn't 6043 * be moved/renamed because its parent was renamed/moved too and it has 6044 * a higher inode number, we can only move/rename our current inode 6045 * after we moved/renamed its parent. Therefore in this case operate on 6046 * the old path (pre move/rename) of our current inode, and the 6047 * move/rename will be performed later. 6048 */ 6049 if (refs_processed && !pending_move) 6050 sctx->send_progress = sctx->cur_ino + 1; 6051 6052 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 6053 goto out; 6054 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 6055 goto out; 6056 6057 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 6058 &left_mode, &left_uid, &left_gid, NULL); 6059 if (ret < 0) 6060 goto out; 6061 6062 if (!sctx->parent_root || sctx->cur_inode_new) { 6063 need_chown = 1; 6064 if (!S_ISLNK(sctx->cur_inode_mode)) 6065 need_chmod = 1; 6066 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 6067 need_truncate = 0; 6068 } else { 6069 u64 old_size; 6070 6071 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 6072 &old_size, NULL, &right_mode, &right_uid, 6073 &right_gid, NULL); 6074 if (ret < 0) 6075 goto out; 6076 6077 if (left_uid != right_uid || left_gid != right_gid) 6078 need_chown = 1; 6079 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 6080 need_chmod = 1; 6081 if ((old_size == sctx->cur_inode_size) || 6082 (sctx->cur_inode_size > old_size && 6083 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 6084 need_truncate = 0; 6085 } 6086 6087 if (S_ISREG(sctx->cur_inode_mode)) { 6088 if (need_send_hole(sctx)) { 6089 if (sctx->cur_inode_last_extent == (u64)-1 || 6090 sctx->cur_inode_last_extent < 6091 sctx->cur_inode_size) { 6092 ret = get_last_extent(sctx, (u64)-1); 6093 if (ret) 6094 goto out; 6095 } 6096 if (sctx->cur_inode_last_extent < 6097 sctx->cur_inode_size) { 6098 ret = send_hole(sctx, sctx->cur_inode_size); 6099 if (ret) 6100 goto out; 6101 } 6102 } 6103 if (need_truncate) { 6104 ret = send_truncate(sctx, sctx->cur_ino, 6105 sctx->cur_inode_gen, 6106 sctx->cur_inode_size); 6107 if (ret < 0) 6108 goto out; 6109 } 6110 } 6111 6112 if (need_chown) { 6113 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6114 left_uid, left_gid); 6115 if (ret < 0) 6116 goto out; 6117 } 6118 if (need_chmod) { 6119 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6120 left_mode); 6121 if (ret < 0) 6122 goto out; 6123 } 6124 6125 ret = send_capabilities(sctx); 6126 if (ret < 0) 6127 goto out; 6128 6129 /* 6130 * If other directory inodes depended on our current directory 6131 * inode's move/rename, now do their move/rename operations. 6132 */ 6133 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6134 ret = apply_children_dir_moves(sctx); 6135 if (ret) 6136 goto out; 6137 /* 6138 * Need to send that every time, no matter if it actually 6139 * changed between the two trees as we have done changes to 6140 * the inode before. If our inode is a directory and it's 6141 * waiting to be moved/renamed, we will send its utimes when 6142 * it's moved/renamed, therefore we don't need to do it here. 6143 */ 6144 sctx->send_progress = sctx->cur_ino + 1; 6145 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6146 if (ret < 0) 6147 goto out; 6148 } 6149 6150out: 6151 return ret; 6152} 6153 6154struct parent_paths_ctx { 6155 struct list_head *refs; 6156 struct send_ctx *sctx; 6157}; 6158 6159static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name, 6160 void *ctx) 6161{ 6162 struct parent_paths_ctx *ppctx = ctx; 6163 6164 return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx, 6165 ppctx->refs); 6166} 6167 6168/* 6169 * Issue unlink operations for all paths of the current inode found in the 6170 * parent snapshot. 6171 */ 6172static int btrfs_unlink_all_paths(struct send_ctx *sctx) 6173{ 6174 LIST_HEAD(deleted_refs); 6175 struct btrfs_path *path; 6176 struct btrfs_root *root = sctx->parent_root; 6177 struct btrfs_key key; 6178 struct btrfs_key found_key; 6179 struct parent_paths_ctx ctx; 6180 int iter_ret = 0; 6181 int ret; 6182 6183 path = alloc_path_for_send(); 6184 if (!path) 6185 return -ENOMEM; 6186 6187 key.objectid = sctx->cur_ino; 6188 key.type = BTRFS_INODE_REF_KEY; 6189 key.offset = 0; 6190 6191 ctx.refs = &deleted_refs; 6192 ctx.sctx = sctx; 6193 6194 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 6195 if (found_key.objectid != key.objectid) 6196 break; 6197 if (found_key.type != key.type && 6198 found_key.type != BTRFS_INODE_EXTREF_KEY) 6199 break; 6200 6201 ret = iterate_inode_ref(root, path, &found_key, 1, 6202 record_parent_ref, &ctx); 6203 if (ret < 0) 6204 goto out; 6205 } 6206 /* Catch error found during iteration */ 6207 if (iter_ret < 0) { 6208 ret = iter_ret; 6209 goto out; 6210 } 6211 6212 while (!list_empty(&deleted_refs)) { 6213 struct recorded_ref *ref; 6214 6215 ref = list_first_entry(&deleted_refs, struct recorded_ref, list); 6216 ret = send_unlink(sctx, ref->full_path); 6217 if (ret < 0) 6218 goto out; 6219 fs_path_free(ref->full_path); 6220 list_del(&ref->list); 6221 kfree(ref); 6222 } 6223 ret = 0; 6224out: 6225 btrfs_free_path(path); 6226 if (ret) 6227 __free_recorded_refs(&deleted_refs); 6228 return ret; 6229} 6230 6231static void close_current_inode(struct send_ctx *sctx) 6232{ 6233 u64 i_size; 6234 6235 if (sctx->cur_inode == NULL) 6236 return; 6237 6238 i_size = i_size_read(sctx->cur_inode); 6239 6240 /* 6241 * If we are doing an incremental send, we may have extents between the 6242 * last processed extent and the i_size that have not been processed 6243 * because they haven't changed but we may have read some of their pages 6244 * through readahead, see the comments at send_extent_data(). 6245 */ 6246 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size) 6247 truncate_inode_pages_range(&sctx->cur_inode->i_data, 6248 sctx->page_cache_clear_start, 6249 round_up(i_size, PAGE_SIZE) - 1); 6250 6251 iput(sctx->cur_inode); 6252 sctx->cur_inode = NULL; 6253} 6254 6255static int changed_inode(struct send_ctx *sctx, 6256 enum btrfs_compare_tree_result result) 6257{ 6258 int ret = 0; 6259 struct btrfs_key *key = sctx->cmp_key; 6260 struct btrfs_inode_item *left_ii = NULL; 6261 struct btrfs_inode_item *right_ii = NULL; 6262 u64 left_gen = 0; 6263 u64 right_gen = 0; 6264 6265 close_current_inode(sctx); 6266 6267 sctx->cur_ino = key->objectid; 6268 sctx->cur_inode_new_gen = 0; 6269 sctx->cur_inode_last_extent = (u64)-1; 6270 sctx->cur_inode_next_write_offset = 0; 6271 sctx->ignore_cur_inode = false; 6272 6273 /* 6274 * Set send_progress to current inode. This will tell all get_cur_xxx 6275 * functions that the current inode's refs are not updated yet. Later, 6276 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6277 */ 6278 sctx->send_progress = sctx->cur_ino; 6279 6280 if (result == BTRFS_COMPARE_TREE_NEW || 6281 result == BTRFS_COMPARE_TREE_CHANGED) { 6282 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6283 sctx->left_path->slots[0], 6284 struct btrfs_inode_item); 6285 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6286 left_ii); 6287 } else { 6288 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6289 sctx->right_path->slots[0], 6290 struct btrfs_inode_item); 6291 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6292 right_ii); 6293 } 6294 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6295 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6296 sctx->right_path->slots[0], 6297 struct btrfs_inode_item); 6298 6299 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6300 right_ii); 6301 6302 /* 6303 * The cur_ino = root dir case is special here. We can't treat 6304 * the inode as deleted+reused because it would generate a 6305 * stream that tries to delete/mkdir the root dir. 6306 */ 6307 if (left_gen != right_gen && 6308 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6309 sctx->cur_inode_new_gen = 1; 6310 } 6311 6312 /* 6313 * Normally we do not find inodes with a link count of zero (orphans) 6314 * because the most common case is to create a snapshot and use it 6315 * for a send operation. However other less common use cases involve 6316 * using a subvolume and send it after turning it to RO mode just 6317 * after deleting all hard links of a file while holding an open 6318 * file descriptor against it or turning a RO snapshot into RW mode, 6319 * keep an open file descriptor against a file, delete it and then 6320 * turn the snapshot back to RO mode before using it for a send 6321 * operation. So if we find such cases, ignore the inode and all its 6322 * items completely if it's a new inode, or if it's a changed inode 6323 * make sure all its previous paths (from the parent snapshot) are all 6324 * unlinked and all other the inode items are ignored. 6325 */ 6326 if (result == BTRFS_COMPARE_TREE_NEW || 6327 result == BTRFS_COMPARE_TREE_CHANGED) { 6328 u32 nlinks; 6329 6330 nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6331 if (nlinks == 0) { 6332 sctx->ignore_cur_inode = true; 6333 if (result == BTRFS_COMPARE_TREE_CHANGED) 6334 ret = btrfs_unlink_all_paths(sctx); 6335 goto out; 6336 } 6337 } 6338 6339 if (result == BTRFS_COMPARE_TREE_NEW) { 6340 sctx->cur_inode_gen = left_gen; 6341 sctx->cur_inode_new = 1; 6342 sctx->cur_inode_deleted = 0; 6343 sctx->cur_inode_size = btrfs_inode_size( 6344 sctx->left_path->nodes[0], left_ii); 6345 sctx->cur_inode_mode = btrfs_inode_mode( 6346 sctx->left_path->nodes[0], left_ii); 6347 sctx->cur_inode_rdev = btrfs_inode_rdev( 6348 sctx->left_path->nodes[0], left_ii); 6349 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6350 ret = send_create_inode_if_needed(sctx); 6351 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6352 sctx->cur_inode_gen = right_gen; 6353 sctx->cur_inode_new = 0; 6354 sctx->cur_inode_deleted = 1; 6355 sctx->cur_inode_size = btrfs_inode_size( 6356 sctx->right_path->nodes[0], right_ii); 6357 sctx->cur_inode_mode = btrfs_inode_mode( 6358 sctx->right_path->nodes[0], right_ii); 6359 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6360 /* 6361 * We need to do some special handling in case the inode was 6362 * reported as changed with a changed generation number. This 6363 * means that the original inode was deleted and new inode 6364 * reused the same inum. So we have to treat the old inode as 6365 * deleted and the new one as new. 6366 */ 6367 if (sctx->cur_inode_new_gen) { 6368 /* 6369 * First, process the inode as if it was deleted. 6370 */ 6371 sctx->cur_inode_gen = right_gen; 6372 sctx->cur_inode_new = 0; 6373 sctx->cur_inode_deleted = 1; 6374 sctx->cur_inode_size = btrfs_inode_size( 6375 sctx->right_path->nodes[0], right_ii); 6376 sctx->cur_inode_mode = btrfs_inode_mode( 6377 sctx->right_path->nodes[0], right_ii); 6378 ret = process_all_refs(sctx, 6379 BTRFS_COMPARE_TREE_DELETED); 6380 if (ret < 0) 6381 goto out; 6382 6383 /* 6384 * Now process the inode as if it was new. 6385 */ 6386 sctx->cur_inode_gen = left_gen; 6387 sctx->cur_inode_new = 1; 6388 sctx->cur_inode_deleted = 0; 6389 sctx->cur_inode_size = btrfs_inode_size( 6390 sctx->left_path->nodes[0], left_ii); 6391 sctx->cur_inode_mode = btrfs_inode_mode( 6392 sctx->left_path->nodes[0], left_ii); 6393 sctx->cur_inode_rdev = btrfs_inode_rdev( 6394 sctx->left_path->nodes[0], left_ii); 6395 ret = send_create_inode_if_needed(sctx); 6396 if (ret < 0) 6397 goto out; 6398 6399 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 6400 if (ret < 0) 6401 goto out; 6402 /* 6403 * Advance send_progress now as we did not get into 6404 * process_recorded_refs_if_needed in the new_gen case. 6405 */ 6406 sctx->send_progress = sctx->cur_ino + 1; 6407 6408 /* 6409 * Now process all extents and xattrs of the inode as if 6410 * they were all new. 6411 */ 6412 ret = process_all_extents(sctx); 6413 if (ret < 0) 6414 goto out; 6415 ret = process_all_new_xattrs(sctx); 6416 if (ret < 0) 6417 goto out; 6418 } else { 6419 sctx->cur_inode_gen = left_gen; 6420 sctx->cur_inode_new = 0; 6421 sctx->cur_inode_new_gen = 0; 6422 sctx->cur_inode_deleted = 0; 6423 sctx->cur_inode_size = btrfs_inode_size( 6424 sctx->left_path->nodes[0], left_ii); 6425 sctx->cur_inode_mode = btrfs_inode_mode( 6426 sctx->left_path->nodes[0], left_ii); 6427 } 6428 } 6429 6430out: 6431 return ret; 6432} 6433 6434/* 6435 * We have to process new refs before deleted refs, but compare_trees gives us 6436 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 6437 * first and later process them in process_recorded_refs. 6438 * For the cur_inode_new_gen case, we skip recording completely because 6439 * changed_inode did already initiate processing of refs. The reason for this is 6440 * that in this case, compare_tree actually compares the refs of 2 different 6441 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 6442 * refs of the right tree as deleted and all refs of the left tree as new. 6443 */ 6444static int changed_ref(struct send_ctx *sctx, 6445 enum btrfs_compare_tree_result result) 6446{ 6447 int ret = 0; 6448 6449 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6450 inconsistent_snapshot_error(sctx, result, "reference"); 6451 return -EIO; 6452 } 6453 6454 if (!sctx->cur_inode_new_gen && 6455 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 6456 if (result == BTRFS_COMPARE_TREE_NEW) 6457 ret = record_new_ref(sctx); 6458 else if (result == BTRFS_COMPARE_TREE_DELETED) 6459 ret = record_deleted_ref(sctx); 6460 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6461 ret = record_changed_ref(sctx); 6462 } 6463 6464 return ret; 6465} 6466 6467/* 6468 * Process new/deleted/changed xattrs. We skip processing in the 6469 * cur_inode_new_gen case because changed_inode did already initiate processing 6470 * of xattrs. The reason is the same as in changed_ref 6471 */ 6472static int changed_xattr(struct send_ctx *sctx, 6473 enum btrfs_compare_tree_result result) 6474{ 6475 int ret = 0; 6476 6477 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6478 inconsistent_snapshot_error(sctx, result, "xattr"); 6479 return -EIO; 6480 } 6481 6482 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6483 if (result == BTRFS_COMPARE_TREE_NEW) 6484 ret = process_new_xattr(sctx); 6485 else if (result == BTRFS_COMPARE_TREE_DELETED) 6486 ret = process_deleted_xattr(sctx); 6487 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6488 ret = process_changed_xattr(sctx); 6489 } 6490 6491 return ret; 6492} 6493 6494/* 6495 * Process new/deleted/changed extents. We skip processing in the 6496 * cur_inode_new_gen case because changed_inode did already initiate processing 6497 * of extents. The reason is the same as in changed_ref 6498 */ 6499static int changed_extent(struct send_ctx *sctx, 6500 enum btrfs_compare_tree_result result) 6501{ 6502 int ret = 0; 6503 6504 /* 6505 * We have found an extent item that changed without the inode item 6506 * having changed. This can happen either after relocation (where the 6507 * disk_bytenr of an extent item is replaced at 6508 * relocation.c:replace_file_extents()) or after deduplication into a 6509 * file in both the parent and send snapshots (where an extent item can 6510 * get modified or replaced with a new one). Note that deduplication 6511 * updates the inode item, but it only changes the iversion (sequence 6512 * field in the inode item) of the inode, so if a file is deduplicated 6513 * the same amount of times in both the parent and send snapshots, its 6514 * iversion becomes the same in both snapshots, whence the inode item is 6515 * the same on both snapshots. 6516 */ 6517 if (sctx->cur_ino != sctx->cmp_key->objectid) 6518 return 0; 6519 6520 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6521 if (result != BTRFS_COMPARE_TREE_DELETED) 6522 ret = process_extent(sctx, sctx->left_path, 6523 sctx->cmp_key); 6524 } 6525 6526 return ret; 6527} 6528 6529static int dir_changed(struct send_ctx *sctx, u64 dir) 6530{ 6531 u64 orig_gen, new_gen; 6532 int ret; 6533 6534 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 6535 NULL, NULL); 6536 if (ret) 6537 return ret; 6538 6539 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 6540 NULL, NULL, NULL); 6541 if (ret) 6542 return ret; 6543 6544 return (orig_gen != new_gen) ? 1 : 0; 6545} 6546 6547static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 6548 struct btrfs_key *key) 6549{ 6550 struct btrfs_inode_extref *extref; 6551 struct extent_buffer *leaf; 6552 u64 dirid = 0, last_dirid = 0; 6553 unsigned long ptr; 6554 u32 item_size; 6555 u32 cur_offset = 0; 6556 int ref_name_len; 6557 int ret = 0; 6558 6559 /* Easy case, just check this one dirid */ 6560 if (key->type == BTRFS_INODE_REF_KEY) { 6561 dirid = key->offset; 6562 6563 ret = dir_changed(sctx, dirid); 6564 goto out; 6565 } 6566 6567 leaf = path->nodes[0]; 6568 item_size = btrfs_item_size(leaf, path->slots[0]); 6569 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 6570 while (cur_offset < item_size) { 6571 extref = (struct btrfs_inode_extref *)(ptr + 6572 cur_offset); 6573 dirid = btrfs_inode_extref_parent(leaf, extref); 6574 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 6575 cur_offset += ref_name_len + sizeof(*extref); 6576 if (dirid == last_dirid) 6577 continue; 6578 ret = dir_changed(sctx, dirid); 6579 if (ret) 6580 break; 6581 last_dirid = dirid; 6582 } 6583out: 6584 return ret; 6585} 6586 6587/* 6588 * Updates compare related fields in sctx and simply forwards to the actual 6589 * changed_xxx functions. 6590 */ 6591static int changed_cb(struct btrfs_path *left_path, 6592 struct btrfs_path *right_path, 6593 struct btrfs_key *key, 6594 enum btrfs_compare_tree_result result, 6595 struct send_ctx *sctx) 6596{ 6597 int ret = 0; 6598 6599 /* 6600 * We can not hold the commit root semaphore here. This is because in 6601 * the case of sending and receiving to the same filesystem, using a 6602 * pipe, could result in a deadlock: 6603 * 6604 * 1) The task running send blocks on the pipe because it's full; 6605 * 6606 * 2) The task running receive, which is the only consumer of the pipe, 6607 * is waiting for a transaction commit (for example due to a space 6608 * reservation when doing a write or triggering a transaction commit 6609 * when creating a subvolume); 6610 * 6611 * 3) The transaction is waiting to write lock the commit root semaphore, 6612 * but can not acquire it since it's being held at 1). 6613 * 6614 * Down this call chain we write to the pipe through kernel_write(). 6615 * The same type of problem can also happen when sending to a file that 6616 * is stored in the same filesystem - when reserving space for a write 6617 * into the file, we can trigger a transaction commit. 6618 * 6619 * Our caller has supplied us with clones of leaves from the send and 6620 * parent roots, so we're safe here from a concurrent relocation and 6621 * further reallocation of metadata extents while we are here. Below we 6622 * also assert that the leaves are clones. 6623 */ 6624 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem); 6625 6626 /* 6627 * We always have a send root, so left_path is never NULL. We will not 6628 * have a leaf when we have reached the end of the send root but have 6629 * not yet reached the end of the parent root. 6630 */ 6631 if (left_path->nodes[0]) 6632 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 6633 &left_path->nodes[0]->bflags)); 6634 /* 6635 * When doing a full send we don't have a parent root, so right_path is 6636 * NULL. When doing an incremental send, we may have reached the end of 6637 * the parent root already, so we don't have a leaf at right_path. 6638 */ 6639 if (right_path && right_path->nodes[0]) 6640 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 6641 &right_path->nodes[0]->bflags)); 6642 6643 if (result == BTRFS_COMPARE_TREE_SAME) { 6644 if (key->type == BTRFS_INODE_REF_KEY || 6645 key->type == BTRFS_INODE_EXTREF_KEY) { 6646 ret = compare_refs(sctx, left_path, key); 6647 if (!ret) 6648 return 0; 6649 if (ret < 0) 6650 return ret; 6651 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 6652 return maybe_send_hole(sctx, left_path, key); 6653 } else { 6654 return 0; 6655 } 6656 result = BTRFS_COMPARE_TREE_CHANGED; 6657 ret = 0; 6658 } 6659 6660 sctx->left_path = left_path; 6661 sctx->right_path = right_path; 6662 sctx->cmp_key = key; 6663 6664 ret = finish_inode_if_needed(sctx, 0); 6665 if (ret < 0) 6666 goto out; 6667 6668 /* Ignore non-FS objects */ 6669 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 6670 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 6671 goto out; 6672 6673 if (key->type == BTRFS_INODE_ITEM_KEY) { 6674 ret = changed_inode(sctx, result); 6675 } else if (!sctx->ignore_cur_inode) { 6676 if (key->type == BTRFS_INODE_REF_KEY || 6677 key->type == BTRFS_INODE_EXTREF_KEY) 6678 ret = changed_ref(sctx, result); 6679 else if (key->type == BTRFS_XATTR_ITEM_KEY) 6680 ret = changed_xattr(sctx, result); 6681 else if (key->type == BTRFS_EXTENT_DATA_KEY) 6682 ret = changed_extent(sctx, result); 6683 } 6684 6685out: 6686 return ret; 6687} 6688 6689static int search_key_again(const struct send_ctx *sctx, 6690 struct btrfs_root *root, 6691 struct btrfs_path *path, 6692 const struct btrfs_key *key) 6693{ 6694 int ret; 6695 6696 if (!path->need_commit_sem) 6697 lockdep_assert_held_read(&root->fs_info->commit_root_sem); 6698 6699 /* 6700 * Roots used for send operations are readonly and no one can add, 6701 * update or remove keys from them, so we should be able to find our 6702 * key again. The only exception is deduplication, which can operate on 6703 * readonly roots and add, update or remove keys to/from them - but at 6704 * the moment we don't allow it to run in parallel with send. 6705 */ 6706 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 6707 ASSERT(ret <= 0); 6708 if (ret > 0) { 6709 btrfs_print_tree(path->nodes[path->lowest_level], false); 6710 btrfs_err(root->fs_info, 6711"send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d", 6712 key->objectid, key->type, key->offset, 6713 (root == sctx->parent_root ? "parent" : "send"), 6714 root->root_key.objectid, path->lowest_level, 6715 path->slots[path->lowest_level]); 6716 return -EUCLEAN; 6717 } 6718 6719 return ret; 6720} 6721 6722static int full_send_tree(struct send_ctx *sctx) 6723{ 6724 int ret; 6725 struct btrfs_root *send_root = sctx->send_root; 6726 struct btrfs_key key; 6727 struct btrfs_fs_info *fs_info = send_root->fs_info; 6728 struct btrfs_path *path; 6729 6730 path = alloc_path_for_send(); 6731 if (!path) 6732 return -ENOMEM; 6733 path->reada = READA_FORWARD_ALWAYS; 6734 6735 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 6736 key.type = BTRFS_INODE_ITEM_KEY; 6737 key.offset = 0; 6738 6739 down_read(&fs_info->commit_root_sem); 6740 sctx->last_reloc_trans = fs_info->last_reloc_trans; 6741 up_read(&fs_info->commit_root_sem); 6742 6743 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 6744 if (ret < 0) 6745 goto out; 6746 if (ret) 6747 goto out_finish; 6748 6749 while (1) { 6750 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 6751 6752 ret = changed_cb(path, NULL, &key, 6753 BTRFS_COMPARE_TREE_NEW, sctx); 6754 if (ret < 0) 6755 goto out; 6756 6757 down_read(&fs_info->commit_root_sem); 6758 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 6759 sctx->last_reloc_trans = fs_info->last_reloc_trans; 6760 up_read(&fs_info->commit_root_sem); 6761 /* 6762 * A transaction used for relocating a block group was 6763 * committed or is about to finish its commit. Release 6764 * our path (leaf) and restart the search, so that we 6765 * avoid operating on any file extent items that are 6766 * stale, with a disk_bytenr that reflects a pre 6767 * relocation value. This way we avoid as much as 6768 * possible to fallback to regular writes when checking 6769 * if we can clone file ranges. 6770 */ 6771 btrfs_release_path(path); 6772 ret = search_key_again(sctx, send_root, path, &key); 6773 if (ret < 0) 6774 goto out; 6775 } else { 6776 up_read(&fs_info->commit_root_sem); 6777 } 6778 6779 ret = btrfs_next_item(send_root, path); 6780 if (ret < 0) 6781 goto out; 6782 if (ret) { 6783 ret = 0; 6784 break; 6785 } 6786 } 6787 6788out_finish: 6789 ret = finish_inode_if_needed(sctx, 1); 6790 6791out: 6792 btrfs_free_path(path); 6793 return ret; 6794} 6795 6796static int replace_node_with_clone(struct btrfs_path *path, int level) 6797{ 6798 struct extent_buffer *clone; 6799 6800 clone = btrfs_clone_extent_buffer(path->nodes[level]); 6801 if (!clone) 6802 return -ENOMEM; 6803 6804 free_extent_buffer(path->nodes[level]); 6805 path->nodes[level] = clone; 6806 6807 return 0; 6808} 6809 6810static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen) 6811{ 6812 struct extent_buffer *eb; 6813 struct extent_buffer *parent = path->nodes[*level]; 6814 int slot = path->slots[*level]; 6815 const int nritems = btrfs_header_nritems(parent); 6816 u64 reada_max; 6817 u64 reada_done = 0; 6818 6819 lockdep_assert_held_read(&parent->fs_info->commit_root_sem); 6820 6821 BUG_ON(*level == 0); 6822 eb = btrfs_read_node_slot(parent, slot); 6823 if (IS_ERR(eb)) 6824 return PTR_ERR(eb); 6825 6826 /* 6827 * Trigger readahead for the next leaves we will process, so that it is 6828 * very likely that when we need them they are already in memory and we 6829 * will not block on disk IO. For nodes we only do readahead for one, 6830 * since the time window between processing nodes is typically larger. 6831 */ 6832 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize); 6833 6834 for (slot++; slot < nritems && reada_done < reada_max; slot++) { 6835 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) { 6836 btrfs_readahead_node_child(parent, slot); 6837 reada_done += eb->fs_info->nodesize; 6838 } 6839 } 6840 6841 path->nodes[*level - 1] = eb; 6842 path->slots[*level - 1] = 0; 6843 (*level)--; 6844 6845 if (*level == 0) 6846 return replace_node_with_clone(path, 0); 6847 6848 return 0; 6849} 6850 6851static int tree_move_next_or_upnext(struct btrfs_path *path, 6852 int *level, int root_level) 6853{ 6854 int ret = 0; 6855 int nritems; 6856 nritems = btrfs_header_nritems(path->nodes[*level]); 6857 6858 path->slots[*level]++; 6859 6860 while (path->slots[*level] >= nritems) { 6861 if (*level == root_level) { 6862 path->slots[*level] = nritems - 1; 6863 return -1; 6864 } 6865 6866 /* move upnext */ 6867 path->slots[*level] = 0; 6868 free_extent_buffer(path->nodes[*level]); 6869 path->nodes[*level] = NULL; 6870 (*level)++; 6871 path->slots[*level]++; 6872 6873 nritems = btrfs_header_nritems(path->nodes[*level]); 6874 ret = 1; 6875 } 6876 return ret; 6877} 6878 6879/* 6880 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 6881 * or down. 6882 */ 6883static int tree_advance(struct btrfs_path *path, 6884 int *level, int root_level, 6885 int allow_down, 6886 struct btrfs_key *key, 6887 u64 reada_min_gen) 6888{ 6889 int ret; 6890 6891 if (*level == 0 || !allow_down) { 6892 ret = tree_move_next_or_upnext(path, level, root_level); 6893 } else { 6894 ret = tree_move_down(path, level, reada_min_gen); 6895 } 6896 6897 /* 6898 * Even if we have reached the end of a tree, ret is -1, update the key 6899 * anyway, so that in case we need to restart due to a block group 6900 * relocation, we can assert that the last key of the root node still 6901 * exists in the tree. 6902 */ 6903 if (*level == 0) 6904 btrfs_item_key_to_cpu(path->nodes[*level], key, 6905 path->slots[*level]); 6906 else 6907 btrfs_node_key_to_cpu(path->nodes[*level], key, 6908 path->slots[*level]); 6909 6910 return ret; 6911} 6912 6913static int tree_compare_item(struct btrfs_path *left_path, 6914 struct btrfs_path *right_path, 6915 char *tmp_buf) 6916{ 6917 int cmp; 6918 int len1, len2; 6919 unsigned long off1, off2; 6920 6921 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]); 6922 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]); 6923 if (len1 != len2) 6924 return 1; 6925 6926 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 6927 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 6928 right_path->slots[0]); 6929 6930 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 6931 6932 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 6933 if (cmp) 6934 return 1; 6935 return 0; 6936} 6937 6938/* 6939 * A transaction used for relocating a block group was committed or is about to 6940 * finish its commit. Release our paths and restart the search, so that we are 6941 * not using stale extent buffers: 6942 * 6943 * 1) For levels > 0, we are only holding references of extent buffers, without 6944 * any locks on them, which does not prevent them from having been relocated 6945 * and reallocated after the last time we released the commit root semaphore. 6946 * The exception are the root nodes, for which we always have a clone, see 6947 * the comment at btrfs_compare_trees(); 6948 * 6949 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so 6950 * we are safe from the concurrent relocation and reallocation. However they 6951 * can have file extent items with a pre relocation disk_bytenr value, so we 6952 * restart the start from the current commit roots and clone the new leaves so 6953 * that we get the post relocation disk_bytenr values. Not doing so, could 6954 * make us clone the wrong data in case there are new extents using the old 6955 * disk_bytenr that happen to be shared. 6956 */ 6957static int restart_after_relocation(struct btrfs_path *left_path, 6958 struct btrfs_path *right_path, 6959 const struct btrfs_key *left_key, 6960 const struct btrfs_key *right_key, 6961 int left_level, 6962 int right_level, 6963 const struct send_ctx *sctx) 6964{ 6965 int root_level; 6966 int ret; 6967 6968 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem); 6969 6970 btrfs_release_path(left_path); 6971 btrfs_release_path(right_path); 6972 6973 /* 6974 * Since keys can not be added or removed to/from our roots because they 6975 * are readonly and we do not allow deduplication to run in parallel 6976 * (which can add, remove or change keys), the layout of the trees should 6977 * not change. 6978 */ 6979 left_path->lowest_level = left_level; 6980 ret = search_key_again(sctx, sctx->send_root, left_path, left_key); 6981 if (ret < 0) 6982 return ret; 6983 6984 right_path->lowest_level = right_level; 6985 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key); 6986 if (ret < 0) 6987 return ret; 6988 6989 /* 6990 * If the lowest level nodes are leaves, clone them so that they can be 6991 * safely used by changed_cb() while not under the protection of the 6992 * commit root semaphore, even if relocation and reallocation happens in 6993 * parallel. 6994 */ 6995 if (left_level == 0) { 6996 ret = replace_node_with_clone(left_path, 0); 6997 if (ret < 0) 6998 return ret; 6999 } 7000 7001 if (right_level == 0) { 7002 ret = replace_node_with_clone(right_path, 0); 7003 if (ret < 0) 7004 return ret; 7005 } 7006 7007 /* 7008 * Now clone the root nodes (unless they happen to be the leaves we have 7009 * already cloned). This is to protect against concurrent snapshotting of 7010 * the send and parent roots (see the comment at btrfs_compare_trees()). 7011 */ 7012 root_level = btrfs_header_level(sctx->send_root->commit_root); 7013 if (root_level > 0) { 7014 ret = replace_node_with_clone(left_path, root_level); 7015 if (ret < 0) 7016 return ret; 7017 } 7018 7019 root_level = btrfs_header_level(sctx->parent_root->commit_root); 7020 if (root_level > 0) { 7021 ret = replace_node_with_clone(right_path, root_level); 7022 if (ret < 0) 7023 return ret; 7024 } 7025 7026 return 0; 7027} 7028 7029/* 7030 * This function compares two trees and calls the provided callback for 7031 * every changed/new/deleted item it finds. 7032 * If shared tree blocks are encountered, whole subtrees are skipped, making 7033 * the compare pretty fast on snapshotted subvolumes. 7034 * 7035 * This currently works on commit roots only. As commit roots are read only, 7036 * we don't do any locking. The commit roots are protected with transactions. 7037 * Transactions are ended and rejoined when a commit is tried in between. 7038 * 7039 * This function checks for modifications done to the trees while comparing. 7040 * If it detects a change, it aborts immediately. 7041 */ 7042static int btrfs_compare_trees(struct btrfs_root *left_root, 7043 struct btrfs_root *right_root, struct send_ctx *sctx) 7044{ 7045 struct btrfs_fs_info *fs_info = left_root->fs_info; 7046 int ret; 7047 int cmp; 7048 struct btrfs_path *left_path = NULL; 7049 struct btrfs_path *right_path = NULL; 7050 struct btrfs_key left_key; 7051 struct btrfs_key right_key; 7052 char *tmp_buf = NULL; 7053 int left_root_level; 7054 int right_root_level; 7055 int left_level; 7056 int right_level; 7057 int left_end_reached = 0; 7058 int right_end_reached = 0; 7059 int advance_left = 0; 7060 int advance_right = 0; 7061 u64 left_blockptr; 7062 u64 right_blockptr; 7063 u64 left_gen; 7064 u64 right_gen; 7065 u64 reada_min_gen; 7066 7067 left_path = btrfs_alloc_path(); 7068 if (!left_path) { 7069 ret = -ENOMEM; 7070 goto out; 7071 } 7072 right_path = btrfs_alloc_path(); 7073 if (!right_path) { 7074 ret = -ENOMEM; 7075 goto out; 7076 } 7077 7078 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 7079 if (!tmp_buf) { 7080 ret = -ENOMEM; 7081 goto out; 7082 } 7083 7084 left_path->search_commit_root = 1; 7085 left_path->skip_locking = 1; 7086 right_path->search_commit_root = 1; 7087 right_path->skip_locking = 1; 7088 7089 /* 7090 * Strategy: Go to the first items of both trees. Then do 7091 * 7092 * If both trees are at level 0 7093 * Compare keys of current items 7094 * If left < right treat left item as new, advance left tree 7095 * and repeat 7096 * If left > right treat right item as deleted, advance right tree 7097 * and repeat 7098 * If left == right do deep compare of items, treat as changed if 7099 * needed, advance both trees and repeat 7100 * If both trees are at the same level but not at level 0 7101 * Compare keys of current nodes/leafs 7102 * If left < right advance left tree and repeat 7103 * If left > right advance right tree and repeat 7104 * If left == right compare blockptrs of the next nodes/leafs 7105 * If they match advance both trees but stay at the same level 7106 * and repeat 7107 * If they don't match advance both trees while allowing to go 7108 * deeper and repeat 7109 * If tree levels are different 7110 * Advance the tree that needs it and repeat 7111 * 7112 * Advancing a tree means: 7113 * If we are at level 0, try to go to the next slot. If that's not 7114 * possible, go one level up and repeat. Stop when we found a level 7115 * where we could go to the next slot. We may at this point be on a 7116 * node or a leaf. 7117 * 7118 * If we are not at level 0 and not on shared tree blocks, go one 7119 * level deeper. 7120 * 7121 * If we are not at level 0 and on shared tree blocks, go one slot to 7122 * the right if possible or go up and right. 7123 */ 7124 7125 down_read(&fs_info->commit_root_sem); 7126 left_level = btrfs_header_level(left_root->commit_root); 7127 left_root_level = left_level; 7128 /* 7129 * We clone the root node of the send and parent roots to prevent races 7130 * with snapshot creation of these roots. Snapshot creation COWs the 7131 * root node of a tree, so after the transaction is committed the old 7132 * extent can be reallocated while this send operation is still ongoing. 7133 * So we clone them, under the commit root semaphore, to be race free. 7134 */ 7135 left_path->nodes[left_level] = 7136 btrfs_clone_extent_buffer(left_root->commit_root); 7137 if (!left_path->nodes[left_level]) { 7138 ret = -ENOMEM; 7139 goto out_unlock; 7140 } 7141 7142 right_level = btrfs_header_level(right_root->commit_root); 7143 right_root_level = right_level; 7144 right_path->nodes[right_level] = 7145 btrfs_clone_extent_buffer(right_root->commit_root); 7146 if (!right_path->nodes[right_level]) { 7147 ret = -ENOMEM; 7148 goto out_unlock; 7149 } 7150 /* 7151 * Our right root is the parent root, while the left root is the "send" 7152 * root. We know that all new nodes/leaves in the left root must have 7153 * a generation greater than the right root's generation, so we trigger 7154 * readahead for those nodes and leaves of the left root, as we know we 7155 * will need to read them at some point. 7156 */ 7157 reada_min_gen = btrfs_header_generation(right_root->commit_root); 7158 7159 if (left_level == 0) 7160 btrfs_item_key_to_cpu(left_path->nodes[left_level], 7161 &left_key, left_path->slots[left_level]); 7162 else 7163 btrfs_node_key_to_cpu(left_path->nodes[left_level], 7164 &left_key, left_path->slots[left_level]); 7165 if (right_level == 0) 7166 btrfs_item_key_to_cpu(right_path->nodes[right_level], 7167 &right_key, right_path->slots[right_level]); 7168 else 7169 btrfs_node_key_to_cpu(right_path->nodes[right_level], 7170 &right_key, right_path->slots[right_level]); 7171 7172 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7173 7174 while (1) { 7175 if (need_resched() || 7176 rwsem_is_contended(&fs_info->commit_root_sem)) { 7177 up_read(&fs_info->commit_root_sem); 7178 cond_resched(); 7179 down_read(&fs_info->commit_root_sem); 7180 } 7181 7182 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7183 ret = restart_after_relocation(left_path, right_path, 7184 &left_key, &right_key, 7185 left_level, right_level, 7186 sctx); 7187 if (ret < 0) 7188 goto out_unlock; 7189 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7190 } 7191 7192 if (advance_left && !left_end_reached) { 7193 ret = tree_advance(left_path, &left_level, 7194 left_root_level, 7195 advance_left != ADVANCE_ONLY_NEXT, 7196 &left_key, reada_min_gen); 7197 if (ret == -1) 7198 left_end_reached = ADVANCE; 7199 else if (ret < 0) 7200 goto out_unlock; 7201 advance_left = 0; 7202 } 7203 if (advance_right && !right_end_reached) { 7204 ret = tree_advance(right_path, &right_level, 7205 right_root_level, 7206 advance_right != ADVANCE_ONLY_NEXT, 7207 &right_key, reada_min_gen); 7208 if (ret == -1) 7209 right_end_reached = ADVANCE; 7210 else if (ret < 0) 7211 goto out_unlock; 7212 advance_right = 0; 7213 } 7214 7215 if (left_end_reached && right_end_reached) { 7216 ret = 0; 7217 goto out_unlock; 7218 } else if (left_end_reached) { 7219 if (right_level == 0) { 7220 up_read(&fs_info->commit_root_sem); 7221 ret = changed_cb(left_path, right_path, 7222 &right_key, 7223 BTRFS_COMPARE_TREE_DELETED, 7224 sctx); 7225 if (ret < 0) 7226 goto out; 7227 down_read(&fs_info->commit_root_sem); 7228 } 7229 advance_right = ADVANCE; 7230 continue; 7231 } else if (right_end_reached) { 7232 if (left_level == 0) { 7233 up_read(&fs_info->commit_root_sem); 7234 ret = changed_cb(left_path, right_path, 7235 &left_key, 7236 BTRFS_COMPARE_TREE_NEW, 7237 sctx); 7238 if (ret < 0) 7239 goto out; 7240 down_read(&fs_info->commit_root_sem); 7241 } 7242 advance_left = ADVANCE; 7243 continue; 7244 } 7245 7246 if (left_level == 0 && right_level == 0) { 7247 up_read(&fs_info->commit_root_sem); 7248 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7249 if (cmp < 0) { 7250 ret = changed_cb(left_path, right_path, 7251 &left_key, 7252 BTRFS_COMPARE_TREE_NEW, 7253 sctx); 7254 advance_left = ADVANCE; 7255 } else if (cmp > 0) { 7256 ret = changed_cb(left_path, right_path, 7257 &right_key, 7258 BTRFS_COMPARE_TREE_DELETED, 7259 sctx); 7260 advance_right = ADVANCE; 7261 } else { 7262 enum btrfs_compare_tree_result result; 7263 7264 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 7265 ret = tree_compare_item(left_path, right_path, 7266 tmp_buf); 7267 if (ret) 7268 result = BTRFS_COMPARE_TREE_CHANGED; 7269 else 7270 result = BTRFS_COMPARE_TREE_SAME; 7271 ret = changed_cb(left_path, right_path, 7272 &left_key, result, sctx); 7273 advance_left = ADVANCE; 7274 advance_right = ADVANCE; 7275 } 7276 7277 if (ret < 0) 7278 goto out; 7279 down_read(&fs_info->commit_root_sem); 7280 } else if (left_level == right_level) { 7281 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7282 if (cmp < 0) { 7283 advance_left = ADVANCE; 7284 } else if (cmp > 0) { 7285 advance_right = ADVANCE; 7286 } else { 7287 left_blockptr = btrfs_node_blockptr( 7288 left_path->nodes[left_level], 7289 left_path->slots[left_level]); 7290 right_blockptr = btrfs_node_blockptr( 7291 right_path->nodes[right_level], 7292 right_path->slots[right_level]); 7293 left_gen = btrfs_node_ptr_generation( 7294 left_path->nodes[left_level], 7295 left_path->slots[left_level]); 7296 right_gen = btrfs_node_ptr_generation( 7297 right_path->nodes[right_level], 7298 right_path->slots[right_level]); 7299 if (left_blockptr == right_blockptr && 7300 left_gen == right_gen) { 7301 /* 7302 * As we're on a shared block, don't 7303 * allow to go deeper. 7304 */ 7305 advance_left = ADVANCE_ONLY_NEXT; 7306 advance_right = ADVANCE_ONLY_NEXT; 7307 } else { 7308 advance_left = ADVANCE; 7309 advance_right = ADVANCE; 7310 } 7311 } 7312 } else if (left_level < right_level) { 7313 advance_right = ADVANCE; 7314 } else { 7315 advance_left = ADVANCE; 7316 } 7317 } 7318 7319out_unlock: 7320 up_read(&fs_info->commit_root_sem); 7321out: 7322 btrfs_free_path(left_path); 7323 btrfs_free_path(right_path); 7324 kvfree(tmp_buf); 7325 return ret; 7326} 7327 7328static int send_subvol(struct send_ctx *sctx) 7329{ 7330 int ret; 7331 7332 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 7333 ret = send_header(sctx); 7334 if (ret < 0) 7335 goto out; 7336 } 7337 7338 ret = send_subvol_begin(sctx); 7339 if (ret < 0) 7340 goto out; 7341 7342 if (sctx->parent_root) { 7343 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); 7344 if (ret < 0) 7345 goto out; 7346 ret = finish_inode_if_needed(sctx, 1); 7347 if (ret < 0) 7348 goto out; 7349 } else { 7350 ret = full_send_tree(sctx); 7351 if (ret < 0) 7352 goto out; 7353 } 7354 7355out: 7356 free_recorded_refs(sctx); 7357 return ret; 7358} 7359 7360/* 7361 * If orphan cleanup did remove any orphans from a root, it means the tree 7362 * was modified and therefore the commit root is not the same as the current 7363 * root anymore. This is a problem, because send uses the commit root and 7364 * therefore can see inode items that don't exist in the current root anymore, 7365 * and for example make calls to btrfs_iget, which will do tree lookups based 7366 * on the current root and not on the commit root. Those lookups will fail, 7367 * returning a -ESTALE error, and making send fail with that error. So make 7368 * sure a send does not see any orphans we have just removed, and that it will 7369 * see the same inodes regardless of whether a transaction commit happened 7370 * before it started (meaning that the commit root will be the same as the 7371 * current root) or not. 7372 */ 7373static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 7374{ 7375 int i; 7376 struct btrfs_trans_handle *trans = NULL; 7377 7378again: 7379 if (sctx->parent_root && 7380 sctx->parent_root->node != sctx->parent_root->commit_root) 7381 goto commit_trans; 7382 7383 for (i = 0; i < sctx->clone_roots_cnt; i++) 7384 if (sctx->clone_roots[i].root->node != 7385 sctx->clone_roots[i].root->commit_root) 7386 goto commit_trans; 7387 7388 if (trans) 7389 return btrfs_end_transaction(trans); 7390 7391 return 0; 7392 7393commit_trans: 7394 /* Use any root, all fs roots will get their commit roots updated. */ 7395 if (!trans) { 7396 trans = btrfs_join_transaction(sctx->send_root); 7397 if (IS_ERR(trans)) 7398 return PTR_ERR(trans); 7399 goto again; 7400 } 7401 7402 return btrfs_commit_transaction(trans); 7403} 7404 7405/* 7406 * Make sure any existing dellaloc is flushed for any root used by a send 7407 * operation so that we do not miss any data and we do not race with writeback 7408 * finishing and changing a tree while send is using the tree. This could 7409 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 7410 * a send operation then uses the subvolume. 7411 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 7412 */ 7413static int flush_delalloc_roots(struct send_ctx *sctx) 7414{ 7415 struct btrfs_root *root = sctx->parent_root; 7416 int ret; 7417 int i; 7418 7419 if (root) { 7420 ret = btrfs_start_delalloc_snapshot(root, false); 7421 if (ret) 7422 return ret; 7423 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 7424 } 7425 7426 for (i = 0; i < sctx->clone_roots_cnt; i++) { 7427 root = sctx->clone_roots[i].root; 7428 ret = btrfs_start_delalloc_snapshot(root, false); 7429 if (ret) 7430 return ret; 7431 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 7432 } 7433 7434 return 0; 7435} 7436 7437static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 7438{ 7439 spin_lock(&root->root_item_lock); 7440 root->send_in_progress--; 7441 /* 7442 * Not much left to do, we don't know why it's unbalanced and 7443 * can't blindly reset it to 0. 7444 */ 7445 if (root->send_in_progress < 0) 7446 btrfs_err(root->fs_info, 7447 "send_in_progress unbalanced %d root %llu", 7448 root->send_in_progress, root->root_key.objectid); 7449 spin_unlock(&root->root_item_lock); 7450} 7451 7452static void dedupe_in_progress_warn(const struct btrfs_root *root) 7453{ 7454 btrfs_warn_rl(root->fs_info, 7455"cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 7456 root->root_key.objectid, root->dedupe_in_progress); 7457} 7458 7459long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg) 7460{ 7461 int ret = 0; 7462 struct btrfs_root *send_root = BTRFS_I(inode)->root; 7463 struct btrfs_fs_info *fs_info = send_root->fs_info; 7464 struct btrfs_root *clone_root; 7465 struct send_ctx *sctx = NULL; 7466 u32 i; 7467 u64 *clone_sources_tmp = NULL; 7468 int clone_sources_to_rollback = 0; 7469 size_t alloc_size; 7470 int sort_clone_roots = 0; 7471 7472 if (!capable(CAP_SYS_ADMIN)) 7473 return -EPERM; 7474 7475 /* 7476 * The subvolume must remain read-only during send, protect against 7477 * making it RW. This also protects against deletion. 7478 */ 7479 spin_lock(&send_root->root_item_lock); 7480 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) { 7481 dedupe_in_progress_warn(send_root); 7482 spin_unlock(&send_root->root_item_lock); 7483 return -EAGAIN; 7484 } 7485 send_root->send_in_progress++; 7486 spin_unlock(&send_root->root_item_lock); 7487 7488 /* 7489 * Userspace tools do the checks and warn the user if it's 7490 * not RO. 7491 */ 7492 if (!btrfs_root_readonly(send_root)) { 7493 ret = -EPERM; 7494 goto out; 7495 } 7496 7497 /* 7498 * Check that we don't overflow at later allocations, we request 7499 * clone_sources_count + 1 items, and compare to unsigned long inside 7500 * access_ok. 7501 */ 7502 if (arg->clone_sources_count > 7503 ULONG_MAX / sizeof(struct clone_root) - 1) { 7504 ret = -EINVAL; 7505 goto out; 7506 } 7507 7508 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 7509 ret = -EINVAL; 7510 goto out; 7511 } 7512 7513 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 7514 if (!sctx) { 7515 ret = -ENOMEM; 7516 goto out; 7517 } 7518 7519 INIT_LIST_HEAD(&sctx->new_refs); 7520 INIT_LIST_HEAD(&sctx->deleted_refs); 7521 xa_init_flags(&sctx->name_cache, GFP_KERNEL); 7522 INIT_LIST_HEAD(&sctx->name_cache_list); 7523 7524 sctx->flags = arg->flags; 7525 7526 if (arg->flags & BTRFS_SEND_FLAG_VERSION) { 7527 if (arg->version > BTRFS_SEND_STREAM_VERSION) { 7528 ret = -EPROTO; 7529 goto out; 7530 } 7531 /* Zero means "use the highest version" */ 7532 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION; 7533 } else { 7534 sctx->proto = 1; 7535 } 7536 7537 sctx->send_filp = fget(arg->send_fd); 7538 if (!sctx->send_filp) { 7539 ret = -EBADF; 7540 goto out; 7541 } 7542 7543 sctx->send_root = send_root; 7544 /* 7545 * Unlikely but possible, if the subvolume is marked for deletion but 7546 * is slow to remove the directory entry, send can still be started 7547 */ 7548 if (btrfs_root_dead(sctx->send_root)) { 7549 ret = -EPERM; 7550 goto out; 7551 } 7552 7553 sctx->clone_roots_cnt = arg->clone_sources_count; 7554 7555 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 7556 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 7557 if (!sctx->send_buf) { 7558 ret = -ENOMEM; 7559 goto out; 7560 } 7561 7562 sctx->pending_dir_moves = RB_ROOT; 7563 sctx->waiting_dir_moves = RB_ROOT; 7564 sctx->orphan_dirs = RB_ROOT; 7565 7566 sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots), 7567 arg->clone_sources_count + 1, 7568 GFP_KERNEL); 7569 if (!sctx->clone_roots) { 7570 ret = -ENOMEM; 7571 goto out; 7572 } 7573 7574 alloc_size = array_size(sizeof(*arg->clone_sources), 7575 arg->clone_sources_count); 7576 7577 if (arg->clone_sources_count) { 7578 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 7579 if (!clone_sources_tmp) { 7580 ret = -ENOMEM; 7581 goto out; 7582 } 7583 7584 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 7585 alloc_size); 7586 if (ret) { 7587 ret = -EFAULT; 7588 goto out; 7589 } 7590 7591 for (i = 0; i < arg->clone_sources_count; i++) { 7592 clone_root = btrfs_get_fs_root(fs_info, 7593 clone_sources_tmp[i], true); 7594 if (IS_ERR(clone_root)) { 7595 ret = PTR_ERR(clone_root); 7596 goto out; 7597 } 7598 spin_lock(&clone_root->root_item_lock); 7599 if (!btrfs_root_readonly(clone_root) || 7600 btrfs_root_dead(clone_root)) { 7601 spin_unlock(&clone_root->root_item_lock); 7602 btrfs_put_root(clone_root); 7603 ret = -EPERM; 7604 goto out; 7605 } 7606 if (clone_root->dedupe_in_progress) { 7607 dedupe_in_progress_warn(clone_root); 7608 spin_unlock(&clone_root->root_item_lock); 7609 btrfs_put_root(clone_root); 7610 ret = -EAGAIN; 7611 goto out; 7612 } 7613 clone_root->send_in_progress++; 7614 spin_unlock(&clone_root->root_item_lock); 7615 7616 sctx->clone_roots[i].root = clone_root; 7617 clone_sources_to_rollback = i + 1; 7618 } 7619 kvfree(clone_sources_tmp); 7620 clone_sources_tmp = NULL; 7621 } 7622 7623 if (arg->parent_root) { 7624 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, 7625 true); 7626 if (IS_ERR(sctx->parent_root)) { 7627 ret = PTR_ERR(sctx->parent_root); 7628 goto out; 7629 } 7630 7631 spin_lock(&sctx->parent_root->root_item_lock); 7632 sctx->parent_root->send_in_progress++; 7633 if (!btrfs_root_readonly(sctx->parent_root) || 7634 btrfs_root_dead(sctx->parent_root)) { 7635 spin_unlock(&sctx->parent_root->root_item_lock); 7636 ret = -EPERM; 7637 goto out; 7638 } 7639 if (sctx->parent_root->dedupe_in_progress) { 7640 dedupe_in_progress_warn(sctx->parent_root); 7641 spin_unlock(&sctx->parent_root->root_item_lock); 7642 ret = -EAGAIN; 7643 goto out; 7644 } 7645 spin_unlock(&sctx->parent_root->root_item_lock); 7646 } 7647 7648 /* 7649 * Clones from send_root are allowed, but only if the clone source 7650 * is behind the current send position. This is checked while searching 7651 * for possible clone sources. 7652 */ 7653 sctx->clone_roots[sctx->clone_roots_cnt++].root = 7654 btrfs_grab_root(sctx->send_root); 7655 7656 /* We do a bsearch later */ 7657 sort(sctx->clone_roots, sctx->clone_roots_cnt, 7658 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 7659 NULL); 7660 sort_clone_roots = 1; 7661 7662 ret = flush_delalloc_roots(sctx); 7663 if (ret) 7664 goto out; 7665 7666 ret = ensure_commit_roots_uptodate(sctx); 7667 if (ret) 7668 goto out; 7669 7670 ret = send_subvol(sctx); 7671 if (ret < 0) 7672 goto out; 7673 7674 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 7675 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 7676 if (ret < 0) 7677 goto out; 7678 ret = send_cmd(sctx); 7679 if (ret < 0) 7680 goto out; 7681 } 7682 7683out: 7684 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 7685 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 7686 struct rb_node *n; 7687 struct pending_dir_move *pm; 7688 7689 n = rb_first(&sctx->pending_dir_moves); 7690 pm = rb_entry(n, struct pending_dir_move, node); 7691 while (!list_empty(&pm->list)) { 7692 struct pending_dir_move *pm2; 7693 7694 pm2 = list_first_entry(&pm->list, 7695 struct pending_dir_move, list); 7696 free_pending_move(sctx, pm2); 7697 } 7698 free_pending_move(sctx, pm); 7699 } 7700 7701 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 7702 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 7703 struct rb_node *n; 7704 struct waiting_dir_move *dm; 7705 7706 n = rb_first(&sctx->waiting_dir_moves); 7707 dm = rb_entry(n, struct waiting_dir_move, node); 7708 rb_erase(&dm->node, &sctx->waiting_dir_moves); 7709 kfree(dm); 7710 } 7711 7712 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 7713 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 7714 struct rb_node *n; 7715 struct orphan_dir_info *odi; 7716 7717 n = rb_first(&sctx->orphan_dirs); 7718 odi = rb_entry(n, struct orphan_dir_info, node); 7719 free_orphan_dir_info(sctx, odi); 7720 } 7721 7722 if (sort_clone_roots) { 7723 for (i = 0; i < sctx->clone_roots_cnt; i++) { 7724 btrfs_root_dec_send_in_progress( 7725 sctx->clone_roots[i].root); 7726 btrfs_put_root(sctx->clone_roots[i].root); 7727 } 7728 } else { 7729 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 7730 btrfs_root_dec_send_in_progress( 7731 sctx->clone_roots[i].root); 7732 btrfs_put_root(sctx->clone_roots[i].root); 7733 } 7734 7735 btrfs_root_dec_send_in_progress(send_root); 7736 } 7737 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 7738 btrfs_root_dec_send_in_progress(sctx->parent_root); 7739 btrfs_put_root(sctx->parent_root); 7740 } 7741 7742 kvfree(clone_sources_tmp); 7743 7744 if (sctx) { 7745 if (sctx->send_filp) 7746 fput(sctx->send_filp); 7747 7748 kvfree(sctx->clone_roots); 7749 kvfree(sctx->send_buf); 7750 7751 name_cache_free(sctx); 7752 7753 close_current_inode(sctx); 7754 7755 kfree(sctx); 7756 } 7757 7758 return ret; 7759}