space-info.c (53896B)
1// SPDX-License-Identifier: GPL-2.0 2 3#include "misc.h" 4#include "ctree.h" 5#include "space-info.h" 6#include "sysfs.h" 7#include "volumes.h" 8#include "free-space-cache.h" 9#include "ordered-data.h" 10#include "transaction.h" 11#include "block-group.h" 12 13/* 14 * HOW DOES SPACE RESERVATION WORK 15 * 16 * If you want to know about delalloc specifically, there is a separate comment 17 * for that with the delalloc code. This comment is about how the whole system 18 * works generally. 19 * 20 * BASIC CONCEPTS 21 * 22 * 1) space_info. This is the ultimate arbiter of how much space we can use. 23 * There's a description of the bytes_ fields with the struct declaration, 24 * refer to that for specifics on each field. Suffice it to say that for 25 * reservations we care about total_bytes - SUM(space_info->bytes_) when 26 * determining if there is space to make an allocation. There is a space_info 27 * for METADATA, SYSTEM, and DATA areas. 28 * 29 * 2) block_rsv's. These are basically buckets for every different type of 30 * metadata reservation we have. You can see the comment in the block_rsv 31 * code on the rules for each type, but generally block_rsv->reserved is how 32 * much space is accounted for in space_info->bytes_may_use. 33 * 34 * 3) btrfs_calc*_size. These are the worst case calculations we used based 35 * on the number of items we will want to modify. We have one for changing 36 * items, and one for inserting new items. Generally we use these helpers to 37 * determine the size of the block reserves, and then use the actual bytes 38 * values to adjust the space_info counters. 39 * 40 * MAKING RESERVATIONS, THE NORMAL CASE 41 * 42 * We call into either btrfs_reserve_data_bytes() or 43 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with 44 * num_bytes we want to reserve. 45 * 46 * ->reserve 47 * space_info->bytes_may_reserve += num_bytes 48 * 49 * ->extent allocation 50 * Call btrfs_add_reserved_bytes() which does 51 * space_info->bytes_may_reserve -= num_bytes 52 * space_info->bytes_reserved += extent_bytes 53 * 54 * ->insert reference 55 * Call btrfs_update_block_group() which does 56 * space_info->bytes_reserved -= extent_bytes 57 * space_info->bytes_used += extent_bytes 58 * 59 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) 60 * 61 * Assume we are unable to simply make the reservation because we do not have 62 * enough space 63 * 64 * -> __reserve_bytes 65 * create a reserve_ticket with ->bytes set to our reservation, add it to 66 * the tail of space_info->tickets, kick async flush thread 67 * 68 * ->handle_reserve_ticket 69 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set 70 * on the ticket. 71 * 72 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space 73 * Flushes various things attempting to free up space. 74 * 75 * -> btrfs_try_granting_tickets() 76 * This is called by anything that either subtracts space from 77 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the 78 * space_info->total_bytes. This loops through the ->priority_tickets and 79 * then the ->tickets list checking to see if the reservation can be 80 * completed. If it can the space is added to space_info->bytes_may_use and 81 * the ticket is woken up. 82 * 83 * -> ticket wakeup 84 * Check if ->bytes == 0, if it does we got our reservation and we can carry 85 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we 86 * were interrupted.) 87 * 88 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY 89 * 90 * Same as the above, except we add ourselves to the 91 * space_info->priority_tickets, and we do not use ticket->wait, we simply 92 * call flush_space() ourselves for the states that are safe for us to call 93 * without deadlocking and hope for the best. 94 * 95 * THE FLUSHING STATES 96 * 97 * Generally speaking we will have two cases for each state, a "nice" state 98 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to 99 * reduce the locking over head on the various trees, and even to keep from 100 * doing any work at all in the case of delayed refs. Each of these delayed 101 * things however hold reservations, and so letting them run allows us to 102 * reclaim space so we can make new reservations. 103 * 104 * FLUSH_DELAYED_ITEMS 105 * Every inode has a delayed item to update the inode. Take a simple write 106 * for example, we would update the inode item at write time to update the 107 * mtime, and then again at finish_ordered_io() time in order to update the 108 * isize or bytes. We keep these delayed items to coalesce these operations 109 * into a single operation done on demand. These are an easy way to reclaim 110 * metadata space. 111 * 112 * FLUSH_DELALLOC 113 * Look at the delalloc comment to get an idea of how much space is reserved 114 * for delayed allocation. We can reclaim some of this space simply by 115 * running delalloc, but usually we need to wait for ordered extents to 116 * reclaim the bulk of this space. 117 * 118 * FLUSH_DELAYED_REFS 119 * We have a block reserve for the outstanding delayed refs space, and every 120 * delayed ref operation holds a reservation. Running these is a quick way 121 * to reclaim space, but we want to hold this until the end because COW can 122 * churn a lot and we can avoid making some extent tree modifications if we 123 * are able to delay for as long as possible. 124 * 125 * ALLOC_CHUNK 126 * We will skip this the first time through space reservation, because of 127 * overcommit and we don't want to have a lot of useless metadata space when 128 * our worst case reservations will likely never come true. 129 * 130 * RUN_DELAYED_IPUTS 131 * If we're freeing inodes we're likely freeing checksums, file extent 132 * items, and extent tree items. Loads of space could be freed up by these 133 * operations, however they won't be usable until the transaction commits. 134 * 135 * COMMIT_TRANS 136 * This will commit the transaction. Historically we had a lot of logic 137 * surrounding whether or not we'd commit the transaction, but this waits born 138 * out of a pre-tickets era where we could end up committing the transaction 139 * thousands of times in a row without making progress. Now thanks to our 140 * ticketing system we know if we're not making progress and can error 141 * everybody out after a few commits rather than burning the disk hoping for 142 * a different answer. 143 * 144 * OVERCOMMIT 145 * 146 * Because we hold so many reservations for metadata we will allow you to 147 * reserve more space than is currently free in the currently allocate 148 * metadata space. This only happens with metadata, data does not allow 149 * overcommitting. 150 * 151 * You can see the current logic for when we allow overcommit in 152 * btrfs_can_overcommit(), but it only applies to unallocated space. If there 153 * is no unallocated space to be had, all reservations are kept within the 154 * free space in the allocated metadata chunks. 155 * 156 * Because of overcommitting, you generally want to use the 157 * btrfs_can_overcommit() logic for metadata allocations, as it does the right 158 * thing with or without extra unallocated space. 159 */ 160 161u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info, 162 bool may_use_included) 163{ 164 ASSERT(s_info); 165 return s_info->bytes_used + s_info->bytes_reserved + 166 s_info->bytes_pinned + s_info->bytes_readonly + 167 s_info->bytes_zone_unusable + 168 (may_use_included ? s_info->bytes_may_use : 0); 169} 170 171/* 172 * after adding space to the filesystem, we need to clear the full flags 173 * on all the space infos. 174 */ 175void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 176{ 177 struct list_head *head = &info->space_info; 178 struct btrfs_space_info *found; 179 180 list_for_each_entry(found, head, list) 181 found->full = 0; 182} 183 184/* 185 * Block groups with more than this value (percents) of unusable space will be 186 * scheduled for background reclaim. 187 */ 188#define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75) 189 190static int create_space_info(struct btrfs_fs_info *info, u64 flags) 191{ 192 193 struct btrfs_space_info *space_info; 194 int i; 195 int ret; 196 197 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 198 if (!space_info) 199 return -ENOMEM; 200 201 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 202 INIT_LIST_HEAD(&space_info->block_groups[i]); 203 init_rwsem(&space_info->groups_sem); 204 spin_lock_init(&space_info->lock); 205 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 206 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 207 INIT_LIST_HEAD(&space_info->ro_bgs); 208 INIT_LIST_HEAD(&space_info->tickets); 209 INIT_LIST_HEAD(&space_info->priority_tickets); 210 space_info->clamp = 1; 211 212 if (btrfs_is_zoned(info)) 213 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH; 214 215 ret = btrfs_sysfs_add_space_info_type(info, space_info); 216 if (ret) 217 return ret; 218 219 list_add(&space_info->list, &info->space_info); 220 if (flags & BTRFS_BLOCK_GROUP_DATA) 221 info->data_sinfo = space_info; 222 223 return ret; 224} 225 226int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 227{ 228 struct btrfs_super_block *disk_super; 229 u64 features; 230 u64 flags; 231 int mixed = 0; 232 int ret; 233 234 disk_super = fs_info->super_copy; 235 if (!btrfs_super_root(disk_super)) 236 return -EINVAL; 237 238 features = btrfs_super_incompat_flags(disk_super); 239 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 240 mixed = 1; 241 242 flags = BTRFS_BLOCK_GROUP_SYSTEM; 243 ret = create_space_info(fs_info, flags); 244 if (ret) 245 goto out; 246 247 if (mixed) { 248 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 249 ret = create_space_info(fs_info, flags); 250 } else { 251 flags = BTRFS_BLOCK_GROUP_METADATA; 252 ret = create_space_info(fs_info, flags); 253 if (ret) 254 goto out; 255 256 flags = BTRFS_BLOCK_GROUP_DATA; 257 ret = create_space_info(fs_info, flags); 258 } 259out: 260 return ret; 261} 262 263void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags, 264 u64 total_bytes, u64 bytes_used, 265 u64 bytes_readonly, u64 bytes_zone_unusable, 266 struct btrfs_space_info **space_info) 267{ 268 struct btrfs_space_info *found; 269 int factor; 270 271 factor = btrfs_bg_type_to_factor(flags); 272 273 found = btrfs_find_space_info(info, flags); 274 ASSERT(found); 275 spin_lock(&found->lock); 276 found->total_bytes += total_bytes; 277 found->disk_total += total_bytes * factor; 278 found->bytes_used += bytes_used; 279 found->disk_used += bytes_used * factor; 280 found->bytes_readonly += bytes_readonly; 281 found->bytes_zone_unusable += bytes_zone_unusable; 282 if (total_bytes > 0) 283 found->full = 0; 284 btrfs_try_granting_tickets(info, found); 285 spin_unlock(&found->lock); 286 *space_info = found; 287} 288 289struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 290 u64 flags) 291{ 292 struct list_head *head = &info->space_info; 293 struct btrfs_space_info *found; 294 295 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 296 297 list_for_each_entry(found, head, list) { 298 if (found->flags & flags) 299 return found; 300 } 301 return NULL; 302} 303 304static u64 calc_available_free_space(struct btrfs_fs_info *fs_info, 305 struct btrfs_space_info *space_info, 306 enum btrfs_reserve_flush_enum flush) 307{ 308 u64 profile; 309 u64 avail; 310 int factor; 311 312 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 313 profile = btrfs_system_alloc_profile(fs_info); 314 else 315 profile = btrfs_metadata_alloc_profile(fs_info); 316 317 avail = atomic64_read(&fs_info->free_chunk_space); 318 319 /* 320 * If we have dup, raid1 or raid10 then only half of the free 321 * space is actually usable. For raid56, the space info used 322 * doesn't include the parity drive, so we don't have to 323 * change the math 324 */ 325 factor = btrfs_bg_type_to_factor(profile); 326 avail = div_u64(avail, factor); 327 328 /* 329 * If we aren't flushing all things, let us overcommit up to 330 * 1/2th of the space. If we can flush, don't let us overcommit 331 * too much, let it overcommit up to 1/8 of the space. 332 */ 333 if (flush == BTRFS_RESERVE_FLUSH_ALL) 334 avail >>= 3; 335 else 336 avail >>= 1; 337 return avail; 338} 339 340int btrfs_can_overcommit(struct btrfs_fs_info *fs_info, 341 struct btrfs_space_info *space_info, u64 bytes, 342 enum btrfs_reserve_flush_enum flush) 343{ 344 u64 avail; 345 u64 used; 346 347 /* Don't overcommit when in mixed mode */ 348 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 349 return 0; 350 351 used = btrfs_space_info_used(space_info, true); 352 avail = calc_available_free_space(fs_info, space_info, flush); 353 354 if (used + bytes < space_info->total_bytes + avail) 355 return 1; 356 return 0; 357} 358 359static void remove_ticket(struct btrfs_space_info *space_info, 360 struct reserve_ticket *ticket) 361{ 362 if (!list_empty(&ticket->list)) { 363 list_del_init(&ticket->list); 364 ASSERT(space_info->reclaim_size >= ticket->bytes); 365 space_info->reclaim_size -= ticket->bytes; 366 } 367} 368 369/* 370 * This is for space we already have accounted in space_info->bytes_may_use, so 371 * basically when we're returning space from block_rsv's. 372 */ 373void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info, 374 struct btrfs_space_info *space_info) 375{ 376 struct list_head *head; 377 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 378 379 lockdep_assert_held(&space_info->lock); 380 381 head = &space_info->priority_tickets; 382again: 383 while (!list_empty(head)) { 384 struct reserve_ticket *ticket; 385 u64 used = btrfs_space_info_used(space_info, true); 386 387 ticket = list_first_entry(head, struct reserve_ticket, list); 388 389 /* Check and see if our ticket can be satisfied now. */ 390 if ((used + ticket->bytes <= space_info->total_bytes) || 391 btrfs_can_overcommit(fs_info, space_info, ticket->bytes, 392 flush)) { 393 btrfs_space_info_update_bytes_may_use(fs_info, 394 space_info, 395 ticket->bytes); 396 remove_ticket(space_info, ticket); 397 ticket->bytes = 0; 398 space_info->tickets_id++; 399 wake_up(&ticket->wait); 400 } else { 401 break; 402 } 403 } 404 405 if (head == &space_info->priority_tickets) { 406 head = &space_info->tickets; 407 flush = BTRFS_RESERVE_FLUSH_ALL; 408 goto again; 409 } 410} 411 412#define DUMP_BLOCK_RSV(fs_info, rsv_name) \ 413do { \ 414 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ 415 spin_lock(&__rsv->lock); \ 416 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ 417 __rsv->size, __rsv->reserved); \ 418 spin_unlock(&__rsv->lock); \ 419} while (0) 420 421static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 422 struct btrfs_space_info *info) 423{ 424 lockdep_assert_held(&info->lock); 425 426 /* The free space could be negative in case of overcommit */ 427 btrfs_info(fs_info, "space_info %llu has %lld free, is %sfull", 428 info->flags, 429 (s64)(info->total_bytes - btrfs_space_info_used(info, true)), 430 info->full ? "" : "not "); 431 btrfs_info(fs_info, 432 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu", 433 info->total_bytes, info->bytes_used, info->bytes_pinned, 434 info->bytes_reserved, info->bytes_may_use, 435 info->bytes_readonly, info->bytes_zone_unusable); 436 437 DUMP_BLOCK_RSV(fs_info, global_block_rsv); 438 DUMP_BLOCK_RSV(fs_info, trans_block_rsv); 439 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); 440 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); 441 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); 442 443} 444 445void btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 446 struct btrfs_space_info *info, u64 bytes, 447 int dump_block_groups) 448{ 449 struct btrfs_block_group *cache; 450 int index = 0; 451 452 spin_lock(&info->lock); 453 __btrfs_dump_space_info(fs_info, info); 454 spin_unlock(&info->lock); 455 456 if (!dump_block_groups) 457 return; 458 459 down_read(&info->groups_sem); 460again: 461 list_for_each_entry(cache, &info->block_groups[index], list) { 462 spin_lock(&cache->lock); 463 btrfs_info(fs_info, 464 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s", 465 cache->start, cache->length, cache->used, cache->pinned, 466 cache->reserved, cache->zone_unusable, 467 cache->ro ? "[readonly]" : ""); 468 spin_unlock(&cache->lock); 469 btrfs_dump_free_space(cache, bytes); 470 } 471 if (++index < BTRFS_NR_RAID_TYPES) 472 goto again; 473 up_read(&info->groups_sem); 474} 475 476static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 477 u64 to_reclaim) 478{ 479 u64 bytes; 480 u64 nr; 481 482 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 483 nr = div64_u64(to_reclaim, bytes); 484 if (!nr) 485 nr = 1; 486 return nr; 487} 488 489#define EXTENT_SIZE_PER_ITEM SZ_256K 490 491/* 492 * shrink metadata reservation for delalloc 493 */ 494static void shrink_delalloc(struct btrfs_fs_info *fs_info, 495 struct btrfs_space_info *space_info, 496 u64 to_reclaim, bool wait_ordered, 497 bool for_preempt) 498{ 499 struct btrfs_trans_handle *trans; 500 u64 delalloc_bytes; 501 u64 ordered_bytes; 502 u64 items; 503 long time_left; 504 int loops; 505 506 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 507 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes); 508 if (delalloc_bytes == 0 && ordered_bytes == 0) 509 return; 510 511 /* Calc the number of the pages we need flush for space reservation */ 512 if (to_reclaim == U64_MAX) { 513 items = U64_MAX; 514 } else { 515 /* 516 * to_reclaim is set to however much metadata we need to 517 * reclaim, but reclaiming that much data doesn't really track 518 * exactly. What we really want to do is reclaim full inode's 519 * worth of reservations, however that's not available to us 520 * here. We will take a fraction of the delalloc bytes for our 521 * flushing loops and hope for the best. Delalloc will expand 522 * the amount we write to cover an entire dirty extent, which 523 * will reclaim the metadata reservation for that range. If 524 * it's not enough subsequent flush stages will be more 525 * aggressive. 526 */ 527 to_reclaim = max(to_reclaim, delalloc_bytes >> 3); 528 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2; 529 } 530 531 trans = current->journal_info; 532 533 /* 534 * If we are doing more ordered than delalloc we need to just wait on 535 * ordered extents, otherwise we'll waste time trying to flush delalloc 536 * that likely won't give us the space back we need. 537 */ 538 if (ordered_bytes > delalloc_bytes && !for_preempt) 539 wait_ordered = true; 540 541 loops = 0; 542 while ((delalloc_bytes || ordered_bytes) && loops < 3) { 543 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; 544 long nr_pages = min_t(u64, temp, LONG_MAX); 545 int async_pages; 546 547 btrfs_start_delalloc_roots(fs_info, nr_pages, true); 548 549 /* 550 * We need to make sure any outstanding async pages are now 551 * processed before we continue. This is because things like 552 * sync_inode() try to be smart and skip writing if the inode is 553 * marked clean. We don't use filemap_fwrite for flushing 554 * because we want to control how many pages we write out at a 555 * time, thus this is the only safe way to make sure we've 556 * waited for outstanding compressed workers to have started 557 * their jobs and thus have ordered extents set up properly. 558 * 559 * This exists because we do not want to wait for each 560 * individual inode to finish its async work, we simply want to 561 * start the IO on everybody, and then come back here and wait 562 * for all of the async work to catch up. Once we're done with 563 * that we know we'll have ordered extents for everything and we 564 * can decide if we wait for that or not. 565 * 566 * If we choose to replace this in the future, make absolutely 567 * sure that the proper waiting is being done in the async case, 568 * as there have been bugs in that area before. 569 */ 570 async_pages = atomic_read(&fs_info->async_delalloc_pages); 571 if (!async_pages) 572 goto skip_async; 573 574 /* 575 * We don't want to wait forever, if we wrote less pages in this 576 * loop than we have outstanding, only wait for that number of 577 * pages, otherwise we can wait for all async pages to finish 578 * before continuing. 579 */ 580 if (async_pages > nr_pages) 581 async_pages -= nr_pages; 582 else 583 async_pages = 0; 584 wait_event(fs_info->async_submit_wait, 585 atomic_read(&fs_info->async_delalloc_pages) <= 586 async_pages); 587skip_async: 588 loops++; 589 if (wait_ordered && !trans) { 590 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 591 } else { 592 time_left = schedule_timeout_killable(1); 593 if (time_left) 594 break; 595 } 596 597 /* 598 * If we are for preemption we just want a one-shot of delalloc 599 * flushing so we can stop flushing if we decide we don't need 600 * to anymore. 601 */ 602 if (for_preempt) 603 break; 604 605 spin_lock(&space_info->lock); 606 if (list_empty(&space_info->tickets) && 607 list_empty(&space_info->priority_tickets)) { 608 spin_unlock(&space_info->lock); 609 break; 610 } 611 spin_unlock(&space_info->lock); 612 613 delalloc_bytes = percpu_counter_sum_positive( 614 &fs_info->delalloc_bytes); 615 ordered_bytes = percpu_counter_sum_positive( 616 &fs_info->ordered_bytes); 617 } 618} 619 620/* 621 * Try to flush some data based on policy set by @state. This is only advisory 622 * and may fail for various reasons. The caller is supposed to examine the 623 * state of @space_info to detect the outcome. 624 */ 625static void flush_space(struct btrfs_fs_info *fs_info, 626 struct btrfs_space_info *space_info, u64 num_bytes, 627 enum btrfs_flush_state state, bool for_preempt) 628{ 629 struct btrfs_root *root = fs_info->tree_root; 630 struct btrfs_trans_handle *trans; 631 int nr; 632 int ret = 0; 633 634 switch (state) { 635 case FLUSH_DELAYED_ITEMS_NR: 636 case FLUSH_DELAYED_ITEMS: 637 if (state == FLUSH_DELAYED_ITEMS_NR) 638 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 639 else 640 nr = -1; 641 642 trans = btrfs_join_transaction(root); 643 if (IS_ERR(trans)) { 644 ret = PTR_ERR(trans); 645 break; 646 } 647 ret = btrfs_run_delayed_items_nr(trans, nr); 648 btrfs_end_transaction(trans); 649 break; 650 case FLUSH_DELALLOC: 651 case FLUSH_DELALLOC_WAIT: 652 case FLUSH_DELALLOC_FULL: 653 if (state == FLUSH_DELALLOC_FULL) 654 num_bytes = U64_MAX; 655 shrink_delalloc(fs_info, space_info, num_bytes, 656 state != FLUSH_DELALLOC, for_preempt); 657 break; 658 case FLUSH_DELAYED_REFS_NR: 659 case FLUSH_DELAYED_REFS: 660 trans = btrfs_join_transaction(root); 661 if (IS_ERR(trans)) { 662 ret = PTR_ERR(trans); 663 break; 664 } 665 if (state == FLUSH_DELAYED_REFS_NR) 666 nr = calc_reclaim_items_nr(fs_info, num_bytes); 667 else 668 nr = 0; 669 btrfs_run_delayed_refs(trans, nr); 670 btrfs_end_transaction(trans); 671 break; 672 case ALLOC_CHUNK: 673 case ALLOC_CHUNK_FORCE: 674 trans = btrfs_join_transaction(root); 675 if (IS_ERR(trans)) { 676 ret = PTR_ERR(trans); 677 break; 678 } 679 ret = btrfs_chunk_alloc(trans, 680 btrfs_get_alloc_profile(fs_info, space_info->flags), 681 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : 682 CHUNK_ALLOC_FORCE); 683 btrfs_end_transaction(trans); 684 if (ret > 0 || ret == -ENOSPC) 685 ret = 0; 686 break; 687 case RUN_DELAYED_IPUTS: 688 /* 689 * If we have pending delayed iputs then we could free up a 690 * bunch of pinned space, so make sure we run the iputs before 691 * we do our pinned bytes check below. 692 */ 693 btrfs_run_delayed_iputs(fs_info); 694 btrfs_wait_on_delayed_iputs(fs_info); 695 break; 696 case COMMIT_TRANS: 697 ASSERT(current->journal_info == NULL); 698 trans = btrfs_join_transaction(root); 699 if (IS_ERR(trans)) { 700 ret = PTR_ERR(trans); 701 break; 702 } 703 ret = btrfs_commit_transaction(trans); 704 break; 705 default: 706 ret = -ENOSPC; 707 break; 708 } 709 710 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 711 ret, for_preempt); 712 return; 713} 714 715static inline u64 716btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 717 struct btrfs_space_info *space_info) 718{ 719 u64 used; 720 u64 avail; 721 u64 to_reclaim = space_info->reclaim_size; 722 723 lockdep_assert_held(&space_info->lock); 724 725 avail = calc_available_free_space(fs_info, space_info, 726 BTRFS_RESERVE_FLUSH_ALL); 727 used = btrfs_space_info_used(space_info, true); 728 729 /* 730 * We may be flushing because suddenly we have less space than we had 731 * before, and now we're well over-committed based on our current free 732 * space. If that's the case add in our overage so we make sure to put 733 * appropriate pressure on the flushing state machine. 734 */ 735 if (space_info->total_bytes + avail < used) 736 to_reclaim += used - (space_info->total_bytes + avail); 737 738 return to_reclaim; 739} 740 741static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info, 742 struct btrfs_space_info *space_info) 743{ 744 u64 global_rsv_size = fs_info->global_block_rsv.reserved; 745 u64 ordered, delalloc; 746 u64 thresh = div_factor_fine(space_info->total_bytes, 90); 747 u64 used; 748 749 lockdep_assert_held(&space_info->lock); 750 751 /* If we're just plain full then async reclaim just slows us down. */ 752 if ((space_info->bytes_used + space_info->bytes_reserved + 753 global_rsv_size) >= thresh) 754 return false; 755 756 used = space_info->bytes_may_use + space_info->bytes_pinned; 757 758 /* The total flushable belongs to the global rsv, don't flush. */ 759 if (global_rsv_size >= used) 760 return false; 761 762 /* 763 * 128MiB is 1/4 of the maximum global rsv size. If we have less than 764 * that devoted to other reservations then there's no sense in flushing, 765 * we don't have a lot of things that need flushing. 766 */ 767 if (used - global_rsv_size <= SZ_128M) 768 return false; 769 770 /* 771 * We have tickets queued, bail so we don't compete with the async 772 * flushers. 773 */ 774 if (space_info->reclaim_size) 775 return false; 776 777 /* 778 * If we have over half of the free space occupied by reservations or 779 * pinned then we want to start flushing. 780 * 781 * We do not do the traditional thing here, which is to say 782 * 783 * if (used >= ((total_bytes + avail) / 2)) 784 * return 1; 785 * 786 * because this doesn't quite work how we want. If we had more than 50% 787 * of the space_info used by bytes_used and we had 0 available we'd just 788 * constantly run the background flusher. Instead we want it to kick in 789 * if our reclaimable space exceeds our clamped free space. 790 * 791 * Our clamping range is 2^1 -> 2^8. Practically speaking that means 792 * the following: 793 * 794 * Amount of RAM Minimum threshold Maximum threshold 795 * 796 * 256GiB 1GiB 128GiB 797 * 128GiB 512MiB 64GiB 798 * 64GiB 256MiB 32GiB 799 * 32GiB 128MiB 16GiB 800 * 16GiB 64MiB 8GiB 801 * 802 * These are the range our thresholds will fall in, corresponding to how 803 * much delalloc we need for the background flusher to kick in. 804 */ 805 806 thresh = calc_available_free_space(fs_info, space_info, 807 BTRFS_RESERVE_FLUSH_ALL); 808 used = space_info->bytes_used + space_info->bytes_reserved + 809 space_info->bytes_readonly + global_rsv_size; 810 if (used < space_info->total_bytes) 811 thresh += space_info->total_bytes - used; 812 thresh >>= space_info->clamp; 813 814 used = space_info->bytes_pinned; 815 816 /* 817 * If we have more ordered bytes than delalloc bytes then we're either 818 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting 819 * around. Preemptive flushing is only useful in that it can free up 820 * space before tickets need to wait for things to finish. In the case 821 * of ordered extents, preemptively waiting on ordered extents gets us 822 * nothing, if our reservations are tied up in ordered extents we'll 823 * simply have to slow down writers by forcing them to wait on ordered 824 * extents. 825 * 826 * In the case that ordered is larger than delalloc, only include the 827 * block reserves that we would actually be able to directly reclaim 828 * from. In this case if we're heavy on metadata operations this will 829 * clearly be heavy enough to warrant preemptive flushing. In the case 830 * of heavy DIO or ordered reservations, preemptive flushing will just 831 * waste time and cause us to slow down. 832 * 833 * We want to make sure we truly are maxed out on ordered however, so 834 * cut ordered in half, and if it's still higher than delalloc then we 835 * can keep flushing. This is to avoid the case where we start 836 * flushing, and now delalloc == ordered and we stop preemptively 837 * flushing when we could still have several gigs of delalloc to flush. 838 */ 839 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1; 840 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes); 841 if (ordered >= delalloc) 842 used += fs_info->delayed_refs_rsv.reserved + 843 fs_info->delayed_block_rsv.reserved; 844 else 845 used += space_info->bytes_may_use - global_rsv_size; 846 847 return (used >= thresh && !btrfs_fs_closing(fs_info) && 848 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 849} 850 851static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info, 852 struct btrfs_space_info *space_info, 853 struct reserve_ticket *ticket) 854{ 855 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 856 u64 min_bytes; 857 858 if (!ticket->steal) 859 return false; 860 861 if (global_rsv->space_info != space_info) 862 return false; 863 864 spin_lock(&global_rsv->lock); 865 min_bytes = div_factor(global_rsv->size, 1); 866 if (global_rsv->reserved < min_bytes + ticket->bytes) { 867 spin_unlock(&global_rsv->lock); 868 return false; 869 } 870 global_rsv->reserved -= ticket->bytes; 871 remove_ticket(space_info, ticket); 872 ticket->bytes = 0; 873 wake_up(&ticket->wait); 874 space_info->tickets_id++; 875 if (global_rsv->reserved < global_rsv->size) 876 global_rsv->full = 0; 877 spin_unlock(&global_rsv->lock); 878 879 return true; 880} 881 882/* 883 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets 884 * @fs_info - fs_info for this fs 885 * @space_info - the space info we were flushing 886 * 887 * We call this when we've exhausted our flushing ability and haven't made 888 * progress in satisfying tickets. The reservation code handles tickets in 889 * order, so if there is a large ticket first and then smaller ones we could 890 * very well satisfy the smaller tickets. This will attempt to wake up any 891 * tickets in the list to catch this case. 892 * 893 * This function returns true if it was able to make progress by clearing out 894 * other tickets, or if it stumbles across a ticket that was smaller than the 895 * first ticket. 896 */ 897static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info, 898 struct btrfs_space_info *space_info) 899{ 900 struct reserve_ticket *ticket; 901 u64 tickets_id = space_info->tickets_id; 902 const bool aborted = BTRFS_FS_ERROR(fs_info); 903 904 trace_btrfs_fail_all_tickets(fs_info, space_info); 905 906 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 907 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); 908 __btrfs_dump_space_info(fs_info, space_info); 909 } 910 911 while (!list_empty(&space_info->tickets) && 912 tickets_id == space_info->tickets_id) { 913 ticket = list_first_entry(&space_info->tickets, 914 struct reserve_ticket, list); 915 916 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket)) 917 return true; 918 919 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 920 btrfs_info(fs_info, "failing ticket with %llu bytes", 921 ticket->bytes); 922 923 remove_ticket(space_info, ticket); 924 if (aborted) 925 ticket->error = -EIO; 926 else 927 ticket->error = -ENOSPC; 928 wake_up(&ticket->wait); 929 930 /* 931 * We're just throwing tickets away, so more flushing may not 932 * trip over btrfs_try_granting_tickets, so we need to call it 933 * here to see if we can make progress with the next ticket in 934 * the list. 935 */ 936 if (!aborted) 937 btrfs_try_granting_tickets(fs_info, space_info); 938 } 939 return (tickets_id != space_info->tickets_id); 940} 941 942/* 943 * This is for normal flushers, we can wait all goddamned day if we want to. We 944 * will loop and continuously try to flush as long as we are making progress. 945 * We count progress as clearing off tickets each time we have to loop. 946 */ 947static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 948{ 949 struct btrfs_fs_info *fs_info; 950 struct btrfs_space_info *space_info; 951 u64 to_reclaim; 952 enum btrfs_flush_state flush_state; 953 int commit_cycles = 0; 954 u64 last_tickets_id; 955 956 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 957 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 958 959 spin_lock(&space_info->lock); 960 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 961 if (!to_reclaim) { 962 space_info->flush = 0; 963 spin_unlock(&space_info->lock); 964 return; 965 } 966 last_tickets_id = space_info->tickets_id; 967 spin_unlock(&space_info->lock); 968 969 flush_state = FLUSH_DELAYED_ITEMS_NR; 970 do { 971 flush_space(fs_info, space_info, to_reclaim, flush_state, false); 972 spin_lock(&space_info->lock); 973 if (list_empty(&space_info->tickets)) { 974 space_info->flush = 0; 975 spin_unlock(&space_info->lock); 976 return; 977 } 978 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 979 space_info); 980 if (last_tickets_id == space_info->tickets_id) { 981 flush_state++; 982 } else { 983 last_tickets_id = space_info->tickets_id; 984 flush_state = FLUSH_DELAYED_ITEMS_NR; 985 if (commit_cycles) 986 commit_cycles--; 987 } 988 989 /* 990 * We do not want to empty the system of delalloc unless we're 991 * under heavy pressure, so allow one trip through the flushing 992 * logic before we start doing a FLUSH_DELALLOC_FULL. 993 */ 994 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles) 995 flush_state++; 996 997 /* 998 * We don't want to force a chunk allocation until we've tried 999 * pretty hard to reclaim space. Think of the case where we 1000 * freed up a bunch of space and so have a lot of pinned space 1001 * to reclaim. We would rather use that than possibly create a 1002 * underutilized metadata chunk. So if this is our first run 1003 * through the flushing state machine skip ALLOC_CHUNK_FORCE and 1004 * commit the transaction. If nothing has changed the next go 1005 * around then we can force a chunk allocation. 1006 */ 1007 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) 1008 flush_state++; 1009 1010 if (flush_state > COMMIT_TRANS) { 1011 commit_cycles++; 1012 if (commit_cycles > 2) { 1013 if (maybe_fail_all_tickets(fs_info, space_info)) { 1014 flush_state = FLUSH_DELAYED_ITEMS_NR; 1015 commit_cycles--; 1016 } else { 1017 space_info->flush = 0; 1018 } 1019 } else { 1020 flush_state = FLUSH_DELAYED_ITEMS_NR; 1021 } 1022 } 1023 spin_unlock(&space_info->lock); 1024 } while (flush_state <= COMMIT_TRANS); 1025} 1026 1027/* 1028 * This handles pre-flushing of metadata space before we get to the point that 1029 * we need to start blocking threads on tickets. The logic here is different 1030 * from the other flush paths because it doesn't rely on tickets to tell us how 1031 * much we need to flush, instead it attempts to keep us below the 80% full 1032 * watermark of space by flushing whichever reservation pool is currently the 1033 * largest. 1034 */ 1035static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work) 1036{ 1037 struct btrfs_fs_info *fs_info; 1038 struct btrfs_space_info *space_info; 1039 struct btrfs_block_rsv *delayed_block_rsv; 1040 struct btrfs_block_rsv *delayed_refs_rsv; 1041 struct btrfs_block_rsv *global_rsv; 1042 struct btrfs_block_rsv *trans_rsv; 1043 int loops = 0; 1044 1045 fs_info = container_of(work, struct btrfs_fs_info, 1046 preempt_reclaim_work); 1047 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1048 delayed_block_rsv = &fs_info->delayed_block_rsv; 1049 delayed_refs_rsv = &fs_info->delayed_refs_rsv; 1050 global_rsv = &fs_info->global_block_rsv; 1051 trans_rsv = &fs_info->trans_block_rsv; 1052 1053 spin_lock(&space_info->lock); 1054 while (need_preemptive_reclaim(fs_info, space_info)) { 1055 enum btrfs_flush_state flush; 1056 u64 delalloc_size = 0; 1057 u64 to_reclaim, block_rsv_size; 1058 u64 global_rsv_size = global_rsv->reserved; 1059 1060 loops++; 1061 1062 /* 1063 * We don't have a precise counter for the metadata being 1064 * reserved for delalloc, so we'll approximate it by subtracting 1065 * out the block rsv's space from the bytes_may_use. If that 1066 * amount is higher than the individual reserves, then we can 1067 * assume it's tied up in delalloc reservations. 1068 */ 1069 block_rsv_size = global_rsv_size + 1070 delayed_block_rsv->reserved + 1071 delayed_refs_rsv->reserved + 1072 trans_rsv->reserved; 1073 if (block_rsv_size < space_info->bytes_may_use) 1074 delalloc_size = space_info->bytes_may_use - block_rsv_size; 1075 1076 /* 1077 * We don't want to include the global_rsv in our calculation, 1078 * because that's space we can't touch. Subtract it from the 1079 * block_rsv_size for the next checks. 1080 */ 1081 block_rsv_size -= global_rsv_size; 1082 1083 /* 1084 * We really want to avoid flushing delalloc too much, as it 1085 * could result in poor allocation patterns, so only flush it if 1086 * it's larger than the rest of the pools combined. 1087 */ 1088 if (delalloc_size > block_rsv_size) { 1089 to_reclaim = delalloc_size; 1090 flush = FLUSH_DELALLOC; 1091 } else if (space_info->bytes_pinned > 1092 (delayed_block_rsv->reserved + 1093 delayed_refs_rsv->reserved)) { 1094 to_reclaim = space_info->bytes_pinned; 1095 flush = COMMIT_TRANS; 1096 } else if (delayed_block_rsv->reserved > 1097 delayed_refs_rsv->reserved) { 1098 to_reclaim = delayed_block_rsv->reserved; 1099 flush = FLUSH_DELAYED_ITEMS_NR; 1100 } else { 1101 to_reclaim = delayed_refs_rsv->reserved; 1102 flush = FLUSH_DELAYED_REFS_NR; 1103 } 1104 1105 spin_unlock(&space_info->lock); 1106 1107 /* 1108 * We don't want to reclaim everything, just a portion, so scale 1109 * down the to_reclaim by 1/4. If it takes us down to 0, 1110 * reclaim 1 items worth. 1111 */ 1112 to_reclaim >>= 2; 1113 if (!to_reclaim) 1114 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1); 1115 flush_space(fs_info, space_info, to_reclaim, flush, true); 1116 cond_resched(); 1117 spin_lock(&space_info->lock); 1118 } 1119 1120 /* We only went through once, back off our clamping. */ 1121 if (loops == 1 && !space_info->reclaim_size) 1122 space_info->clamp = max(1, space_info->clamp - 1); 1123 trace_btrfs_done_preemptive_reclaim(fs_info, space_info); 1124 spin_unlock(&space_info->lock); 1125} 1126 1127/* 1128 * FLUSH_DELALLOC_WAIT: 1129 * Space is freed from flushing delalloc in one of two ways. 1130 * 1131 * 1) compression is on and we allocate less space than we reserved 1132 * 2) we are overwriting existing space 1133 * 1134 * For #1 that extra space is reclaimed as soon as the delalloc pages are 1135 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent 1136 * length to ->bytes_reserved, and subtracts the reserved space from 1137 * ->bytes_may_use. 1138 * 1139 * For #2 this is trickier. Once the ordered extent runs we will drop the 1140 * extent in the range we are overwriting, which creates a delayed ref for 1141 * that freed extent. This however is not reclaimed until the transaction 1142 * commits, thus the next stages. 1143 * 1144 * RUN_DELAYED_IPUTS 1145 * If we are freeing inodes, we want to make sure all delayed iputs have 1146 * completed, because they could have been on an inode with i_nlink == 0, and 1147 * thus have been truncated and freed up space. But again this space is not 1148 * immediately re-usable, it comes in the form of a delayed ref, which must be 1149 * run and then the transaction must be committed. 1150 * 1151 * COMMIT_TRANS 1152 * This is where we reclaim all of the pinned space generated by running the 1153 * iputs 1154 * 1155 * ALLOC_CHUNK_FORCE 1156 * For data we start with alloc chunk force, however we could have been full 1157 * before, and then the transaction commit could have freed new block groups, 1158 * so if we now have space to allocate do the force chunk allocation. 1159 */ 1160static const enum btrfs_flush_state data_flush_states[] = { 1161 FLUSH_DELALLOC_FULL, 1162 RUN_DELAYED_IPUTS, 1163 COMMIT_TRANS, 1164 ALLOC_CHUNK_FORCE, 1165}; 1166 1167static void btrfs_async_reclaim_data_space(struct work_struct *work) 1168{ 1169 struct btrfs_fs_info *fs_info; 1170 struct btrfs_space_info *space_info; 1171 u64 last_tickets_id; 1172 enum btrfs_flush_state flush_state = 0; 1173 1174 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work); 1175 space_info = fs_info->data_sinfo; 1176 1177 spin_lock(&space_info->lock); 1178 if (list_empty(&space_info->tickets)) { 1179 space_info->flush = 0; 1180 spin_unlock(&space_info->lock); 1181 return; 1182 } 1183 last_tickets_id = space_info->tickets_id; 1184 spin_unlock(&space_info->lock); 1185 1186 while (!space_info->full) { 1187 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1188 spin_lock(&space_info->lock); 1189 if (list_empty(&space_info->tickets)) { 1190 space_info->flush = 0; 1191 spin_unlock(&space_info->lock); 1192 return; 1193 } 1194 1195 /* Something happened, fail everything and bail. */ 1196 if (BTRFS_FS_ERROR(fs_info)) 1197 goto aborted_fs; 1198 last_tickets_id = space_info->tickets_id; 1199 spin_unlock(&space_info->lock); 1200 } 1201 1202 while (flush_state < ARRAY_SIZE(data_flush_states)) { 1203 flush_space(fs_info, space_info, U64_MAX, 1204 data_flush_states[flush_state], false); 1205 spin_lock(&space_info->lock); 1206 if (list_empty(&space_info->tickets)) { 1207 space_info->flush = 0; 1208 spin_unlock(&space_info->lock); 1209 return; 1210 } 1211 1212 if (last_tickets_id == space_info->tickets_id) { 1213 flush_state++; 1214 } else { 1215 last_tickets_id = space_info->tickets_id; 1216 flush_state = 0; 1217 } 1218 1219 if (flush_state >= ARRAY_SIZE(data_flush_states)) { 1220 if (space_info->full) { 1221 if (maybe_fail_all_tickets(fs_info, space_info)) 1222 flush_state = 0; 1223 else 1224 space_info->flush = 0; 1225 } else { 1226 flush_state = 0; 1227 } 1228 1229 /* Something happened, fail everything and bail. */ 1230 if (BTRFS_FS_ERROR(fs_info)) 1231 goto aborted_fs; 1232 1233 } 1234 spin_unlock(&space_info->lock); 1235 } 1236 return; 1237 1238aborted_fs: 1239 maybe_fail_all_tickets(fs_info, space_info); 1240 space_info->flush = 0; 1241 spin_unlock(&space_info->lock); 1242} 1243 1244void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info) 1245{ 1246 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space); 1247 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space); 1248 INIT_WORK(&fs_info->preempt_reclaim_work, 1249 btrfs_preempt_reclaim_metadata_space); 1250} 1251 1252static const enum btrfs_flush_state priority_flush_states[] = { 1253 FLUSH_DELAYED_ITEMS_NR, 1254 FLUSH_DELAYED_ITEMS, 1255 ALLOC_CHUNK, 1256}; 1257 1258static const enum btrfs_flush_state evict_flush_states[] = { 1259 FLUSH_DELAYED_ITEMS_NR, 1260 FLUSH_DELAYED_ITEMS, 1261 FLUSH_DELAYED_REFS_NR, 1262 FLUSH_DELAYED_REFS, 1263 FLUSH_DELALLOC, 1264 FLUSH_DELALLOC_WAIT, 1265 FLUSH_DELALLOC_FULL, 1266 ALLOC_CHUNK, 1267 COMMIT_TRANS, 1268}; 1269 1270static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 1271 struct btrfs_space_info *space_info, 1272 struct reserve_ticket *ticket, 1273 const enum btrfs_flush_state *states, 1274 int states_nr) 1275{ 1276 u64 to_reclaim; 1277 int flush_state = 0; 1278 1279 spin_lock(&space_info->lock); 1280 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1281 /* 1282 * This is the priority reclaim path, so to_reclaim could be >0 still 1283 * because we may have only satisified the priority tickets and still 1284 * left non priority tickets on the list. We would then have 1285 * to_reclaim but ->bytes == 0. 1286 */ 1287 if (ticket->bytes == 0) { 1288 spin_unlock(&space_info->lock); 1289 return; 1290 } 1291 1292 while (flush_state < states_nr) { 1293 spin_unlock(&space_info->lock); 1294 flush_space(fs_info, space_info, to_reclaim, states[flush_state], 1295 false); 1296 flush_state++; 1297 spin_lock(&space_info->lock); 1298 if (ticket->bytes == 0) { 1299 spin_unlock(&space_info->lock); 1300 return; 1301 } 1302 } 1303 1304 /* Attempt to steal from the global rsv if we can. */ 1305 if (!steal_from_global_rsv(fs_info, space_info, ticket)) { 1306 ticket->error = -ENOSPC; 1307 remove_ticket(space_info, ticket); 1308 } 1309 1310 /* 1311 * We must run try_granting_tickets here because we could be a large 1312 * ticket in front of a smaller ticket that can now be satisfied with 1313 * the available space. 1314 */ 1315 btrfs_try_granting_tickets(fs_info, space_info); 1316 spin_unlock(&space_info->lock); 1317} 1318 1319static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info, 1320 struct btrfs_space_info *space_info, 1321 struct reserve_ticket *ticket) 1322{ 1323 spin_lock(&space_info->lock); 1324 1325 /* We could have been granted before we got here. */ 1326 if (ticket->bytes == 0) { 1327 spin_unlock(&space_info->lock); 1328 return; 1329 } 1330 1331 while (!space_info->full) { 1332 spin_unlock(&space_info->lock); 1333 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1334 spin_lock(&space_info->lock); 1335 if (ticket->bytes == 0) { 1336 spin_unlock(&space_info->lock); 1337 return; 1338 } 1339 } 1340 1341 ticket->error = -ENOSPC; 1342 remove_ticket(space_info, ticket); 1343 btrfs_try_granting_tickets(fs_info, space_info); 1344 spin_unlock(&space_info->lock); 1345} 1346 1347static void wait_reserve_ticket(struct btrfs_fs_info *fs_info, 1348 struct btrfs_space_info *space_info, 1349 struct reserve_ticket *ticket) 1350 1351{ 1352 DEFINE_WAIT(wait); 1353 int ret = 0; 1354 1355 spin_lock(&space_info->lock); 1356 while (ticket->bytes > 0 && ticket->error == 0) { 1357 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 1358 if (ret) { 1359 /* 1360 * Delete us from the list. After we unlock the space 1361 * info, we don't want the async reclaim job to reserve 1362 * space for this ticket. If that would happen, then the 1363 * ticket's task would not known that space was reserved 1364 * despite getting an error, resulting in a space leak 1365 * (bytes_may_use counter of our space_info). 1366 */ 1367 remove_ticket(space_info, ticket); 1368 ticket->error = -EINTR; 1369 break; 1370 } 1371 spin_unlock(&space_info->lock); 1372 1373 schedule(); 1374 1375 finish_wait(&ticket->wait, &wait); 1376 spin_lock(&space_info->lock); 1377 } 1378 spin_unlock(&space_info->lock); 1379} 1380 1381/** 1382 * Do the appropriate flushing and waiting for a ticket 1383 * 1384 * @fs_info: the filesystem 1385 * @space_info: space info for the reservation 1386 * @ticket: ticket for the reservation 1387 * @start_ns: timestamp when the reservation started 1388 * @orig_bytes: amount of bytes originally reserved 1389 * @flush: how much we can flush 1390 * 1391 * This does the work of figuring out how to flush for the ticket, waiting for 1392 * the reservation, and returning the appropriate error if there is one. 1393 */ 1394static int handle_reserve_ticket(struct btrfs_fs_info *fs_info, 1395 struct btrfs_space_info *space_info, 1396 struct reserve_ticket *ticket, 1397 u64 start_ns, u64 orig_bytes, 1398 enum btrfs_reserve_flush_enum flush) 1399{ 1400 int ret; 1401 1402 switch (flush) { 1403 case BTRFS_RESERVE_FLUSH_DATA: 1404 case BTRFS_RESERVE_FLUSH_ALL: 1405 case BTRFS_RESERVE_FLUSH_ALL_STEAL: 1406 wait_reserve_ticket(fs_info, space_info, ticket); 1407 break; 1408 case BTRFS_RESERVE_FLUSH_LIMIT: 1409 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1410 priority_flush_states, 1411 ARRAY_SIZE(priority_flush_states)); 1412 break; 1413 case BTRFS_RESERVE_FLUSH_EVICT: 1414 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1415 evict_flush_states, 1416 ARRAY_SIZE(evict_flush_states)); 1417 break; 1418 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE: 1419 priority_reclaim_data_space(fs_info, space_info, ticket); 1420 break; 1421 default: 1422 ASSERT(0); 1423 break; 1424 } 1425 1426 ret = ticket->error; 1427 ASSERT(list_empty(&ticket->list)); 1428 /* 1429 * Check that we can't have an error set if the reservation succeeded, 1430 * as that would confuse tasks and lead them to error out without 1431 * releasing reserved space (if an error happens the expectation is that 1432 * space wasn't reserved at all). 1433 */ 1434 ASSERT(!(ticket->bytes == 0 && ticket->error)); 1435 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes, 1436 start_ns, flush, ticket->error); 1437 return ret; 1438} 1439 1440/* 1441 * This returns true if this flush state will go through the ordinary flushing 1442 * code. 1443 */ 1444static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush) 1445{ 1446 return (flush == BTRFS_RESERVE_FLUSH_ALL) || 1447 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1448} 1449 1450static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info, 1451 struct btrfs_space_info *space_info) 1452{ 1453 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes); 1454 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 1455 1456 /* 1457 * If we're heavy on ordered operations then clamping won't help us. We 1458 * need to clamp specifically to keep up with dirty'ing buffered 1459 * writers, because there's not a 1:1 correlation of writing delalloc 1460 * and freeing space, like there is with flushing delayed refs or 1461 * delayed nodes. If we're already more ordered than delalloc then 1462 * we're keeping up, otherwise we aren't and should probably clamp. 1463 */ 1464 if (ordered < delalloc) 1465 space_info->clamp = min(space_info->clamp + 1, 8); 1466} 1467 1468static inline bool can_steal(enum btrfs_reserve_flush_enum flush) 1469{ 1470 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1471 flush == BTRFS_RESERVE_FLUSH_EVICT); 1472} 1473 1474/** 1475 * Try to reserve bytes from the block_rsv's space 1476 * 1477 * @fs_info: the filesystem 1478 * @space_info: space info we want to allocate from 1479 * @orig_bytes: number of bytes we want 1480 * @flush: whether or not we can flush to make our reservation 1481 * 1482 * This will reserve orig_bytes number of bytes from the space info associated 1483 * with the block_rsv. If there is not enough space it will make an attempt to 1484 * flush out space to make room. It will do this by flushing delalloc if 1485 * possible or committing the transaction. If flush is 0 then no attempts to 1486 * regain reservations will be made and this will fail if there is not enough 1487 * space already. 1488 */ 1489static int __reserve_bytes(struct btrfs_fs_info *fs_info, 1490 struct btrfs_space_info *space_info, u64 orig_bytes, 1491 enum btrfs_reserve_flush_enum flush) 1492{ 1493 struct work_struct *async_work; 1494 struct reserve_ticket ticket; 1495 u64 start_ns = 0; 1496 u64 used; 1497 int ret = 0; 1498 bool pending_tickets; 1499 1500 ASSERT(orig_bytes); 1501 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 1502 1503 if (flush == BTRFS_RESERVE_FLUSH_DATA) 1504 async_work = &fs_info->async_data_reclaim_work; 1505 else 1506 async_work = &fs_info->async_reclaim_work; 1507 1508 spin_lock(&space_info->lock); 1509 ret = -ENOSPC; 1510 used = btrfs_space_info_used(space_info, true); 1511 1512 /* 1513 * We don't want NO_FLUSH allocations to jump everybody, they can 1514 * generally handle ENOSPC in a different way, so treat them the same as 1515 * normal flushers when it comes to skipping pending tickets. 1516 */ 1517 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH)) 1518 pending_tickets = !list_empty(&space_info->tickets) || 1519 !list_empty(&space_info->priority_tickets); 1520 else 1521 pending_tickets = !list_empty(&space_info->priority_tickets); 1522 1523 /* 1524 * Carry on if we have enough space (short-circuit) OR call 1525 * can_overcommit() to ensure we can overcommit to continue. 1526 */ 1527 if (!pending_tickets && 1528 ((used + orig_bytes <= space_info->total_bytes) || 1529 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) { 1530 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1531 orig_bytes); 1532 ret = 0; 1533 } 1534 1535 /* 1536 * If we couldn't make a reservation then setup our reservation ticket 1537 * and kick the async worker if it's not already running. 1538 * 1539 * If we are a priority flusher then we just need to add our ticket to 1540 * the list and we will do our own flushing further down. 1541 */ 1542 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 1543 ticket.bytes = orig_bytes; 1544 ticket.error = 0; 1545 space_info->reclaim_size += ticket.bytes; 1546 init_waitqueue_head(&ticket.wait); 1547 ticket.steal = can_steal(flush); 1548 if (trace_btrfs_reserve_ticket_enabled()) 1549 start_ns = ktime_get_ns(); 1550 1551 if (flush == BTRFS_RESERVE_FLUSH_ALL || 1552 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1553 flush == BTRFS_RESERVE_FLUSH_DATA) { 1554 list_add_tail(&ticket.list, &space_info->tickets); 1555 if (!space_info->flush) { 1556 /* 1557 * We were forced to add a reserve ticket, so 1558 * our preemptive flushing is unable to keep 1559 * up. Clamp down on the threshold for the 1560 * preemptive flushing in order to keep up with 1561 * the workload. 1562 */ 1563 maybe_clamp_preempt(fs_info, space_info); 1564 1565 space_info->flush = 1; 1566 trace_btrfs_trigger_flush(fs_info, 1567 space_info->flags, 1568 orig_bytes, flush, 1569 "enospc"); 1570 queue_work(system_unbound_wq, async_work); 1571 } 1572 } else { 1573 list_add_tail(&ticket.list, 1574 &space_info->priority_tickets); 1575 } 1576 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 1577 used += orig_bytes; 1578 /* 1579 * We will do the space reservation dance during log replay, 1580 * which means we won't have fs_info->fs_root set, so don't do 1581 * the async reclaim as we will panic. 1582 */ 1583 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 1584 !work_busy(&fs_info->preempt_reclaim_work) && 1585 need_preemptive_reclaim(fs_info, space_info)) { 1586 trace_btrfs_trigger_flush(fs_info, space_info->flags, 1587 orig_bytes, flush, "preempt"); 1588 queue_work(system_unbound_wq, 1589 &fs_info->preempt_reclaim_work); 1590 } 1591 } 1592 spin_unlock(&space_info->lock); 1593 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 1594 return ret; 1595 1596 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns, 1597 orig_bytes, flush); 1598} 1599 1600/** 1601 * Trye to reserve metadata bytes from the block_rsv's space 1602 * 1603 * @fs_info: the filesystem 1604 * @block_rsv: block_rsv we're allocating for 1605 * @orig_bytes: number of bytes we want 1606 * @flush: whether or not we can flush to make our reservation 1607 * 1608 * This will reserve orig_bytes number of bytes from the space info associated 1609 * with the block_rsv. If there is not enough space it will make an attempt to 1610 * flush out space to make room. It will do this by flushing delalloc if 1611 * possible or committing the transaction. If flush is 0 then no attempts to 1612 * regain reservations will be made and this will fail if there is not enough 1613 * space already. 1614 */ 1615int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 1616 struct btrfs_block_rsv *block_rsv, 1617 u64 orig_bytes, 1618 enum btrfs_reserve_flush_enum flush) 1619{ 1620 int ret; 1621 1622 ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush); 1623 if (ret == -ENOSPC) { 1624 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1625 block_rsv->space_info->flags, 1626 orig_bytes, 1); 1627 1628 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1629 btrfs_dump_space_info(fs_info, block_rsv->space_info, 1630 orig_bytes, 0); 1631 } 1632 return ret; 1633} 1634 1635/** 1636 * Try to reserve data bytes for an allocation 1637 * 1638 * @fs_info: the filesystem 1639 * @bytes: number of bytes we need 1640 * @flush: how we are allowed to flush 1641 * 1642 * This will reserve bytes from the data space info. If there is not enough 1643 * space then we will attempt to flush space as specified by flush. 1644 */ 1645int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes, 1646 enum btrfs_reserve_flush_enum flush) 1647{ 1648 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 1649 int ret; 1650 1651 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA || 1652 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE); 1653 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA); 1654 1655 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush); 1656 if (ret == -ENOSPC) { 1657 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1658 data_sinfo->flags, bytes, 1); 1659 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1660 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0); 1661 } 1662 return ret; 1663}