cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

subpage.c (24579B)


      1// SPDX-License-Identifier: GPL-2.0
      2
      3#include <linux/slab.h>
      4#include "ctree.h"
      5#include "subpage.h"
      6#include "btrfs_inode.h"
      7
      8/*
      9 * Subpage (sectorsize < PAGE_SIZE) support overview:
     10 *
     11 * Limitations:
     12 *
     13 * - Only support 64K page size for now
     14 *   This is to make metadata handling easier, as 64K page would ensure
     15 *   all nodesize would fit inside one page, thus we don't need to handle
     16 *   cases where a tree block crosses several pages.
     17 *
     18 * - Only metadata read-write for now
     19 *   The data read-write part is in development.
     20 *
     21 * - Metadata can't cross 64K page boundary
     22 *   btrfs-progs and kernel have done that for a while, thus only ancient
     23 *   filesystems could have such problem.  For such case, do a graceful
     24 *   rejection.
     25 *
     26 * Special behavior:
     27 *
     28 * - Metadata
     29 *   Metadata read is fully supported.
     30 *   Meaning when reading one tree block will only trigger the read for the
     31 *   needed range, other unrelated range in the same page will not be touched.
     32 *
     33 *   Metadata write support is partial.
     34 *   The writeback is still for the full page, but we will only submit
     35 *   the dirty extent buffers in the page.
     36 *
     37 *   This means, if we have a metadata page like this:
     38 *
     39 *   Page offset
     40 *   0         16K         32K         48K        64K
     41 *   |/////////|           |///////////|
     42 *        \- Tree block A        \- Tree block B
     43 *
     44 *   Even if we just want to writeback tree block A, we will also writeback
     45 *   tree block B if it's also dirty.
     46 *
     47 *   This may cause extra metadata writeback which results more COW.
     48 *
     49 * Implementation:
     50 *
     51 * - Common
     52 *   Both metadata and data will use a new structure, btrfs_subpage, to
     53 *   record the status of each sector inside a page.  This provides the extra
     54 *   granularity needed.
     55 *
     56 * - Metadata
     57 *   Since we have multiple tree blocks inside one page, we can't rely on page
     58 *   locking anymore, or we will have greatly reduced concurrency or even
     59 *   deadlocks (hold one tree lock while trying to lock another tree lock in
     60 *   the same page).
     61 *
     62 *   Thus for metadata locking, subpage support relies on io_tree locking only.
     63 *   This means a slightly higher tree locking latency.
     64 */
     65
     66bool btrfs_is_subpage(const struct btrfs_fs_info *fs_info, struct page *page)
     67{
     68	if (fs_info->sectorsize >= PAGE_SIZE)
     69		return false;
     70
     71	/*
     72	 * Only data pages (either through DIO or compression) can have no
     73	 * mapping. And if page->mapping->host is data inode, it's subpage.
     74	 * As we have ruled our sectorsize >= PAGE_SIZE case already.
     75	 */
     76	if (!page->mapping || !page->mapping->host ||
     77	    is_data_inode(page->mapping->host))
     78		return true;
     79
     80	/*
     81	 * Now the only remaining case is metadata, which we only go subpage
     82	 * routine if nodesize < PAGE_SIZE.
     83	 */
     84	if (fs_info->nodesize < PAGE_SIZE)
     85		return true;
     86	return false;
     87}
     88
     89void btrfs_init_subpage_info(struct btrfs_subpage_info *subpage_info, u32 sectorsize)
     90{
     91	unsigned int cur = 0;
     92	unsigned int nr_bits;
     93
     94	ASSERT(IS_ALIGNED(PAGE_SIZE, sectorsize));
     95
     96	nr_bits = PAGE_SIZE / sectorsize;
     97	subpage_info->bitmap_nr_bits = nr_bits;
     98
     99	subpage_info->uptodate_offset = cur;
    100	cur += nr_bits;
    101
    102	subpage_info->error_offset = cur;
    103	cur += nr_bits;
    104
    105	subpage_info->dirty_offset = cur;
    106	cur += nr_bits;
    107
    108	subpage_info->writeback_offset = cur;
    109	cur += nr_bits;
    110
    111	subpage_info->ordered_offset = cur;
    112	cur += nr_bits;
    113
    114	subpage_info->checked_offset = cur;
    115	cur += nr_bits;
    116
    117	subpage_info->total_nr_bits = cur;
    118}
    119
    120int btrfs_attach_subpage(const struct btrfs_fs_info *fs_info,
    121			 struct page *page, enum btrfs_subpage_type type)
    122{
    123	struct btrfs_subpage *subpage;
    124
    125	/*
    126	 * We have cases like a dummy extent buffer page, which is not mappped
    127	 * and doesn't need to be locked.
    128	 */
    129	if (page->mapping)
    130		ASSERT(PageLocked(page));
    131
    132	/* Either not subpage, or the page already has private attached */
    133	if (!btrfs_is_subpage(fs_info, page) || PagePrivate(page))
    134		return 0;
    135
    136	subpage = btrfs_alloc_subpage(fs_info, type);
    137	if (IS_ERR(subpage))
    138		return  PTR_ERR(subpage);
    139
    140	attach_page_private(page, subpage);
    141	return 0;
    142}
    143
    144void btrfs_detach_subpage(const struct btrfs_fs_info *fs_info,
    145			  struct page *page)
    146{
    147	struct btrfs_subpage *subpage;
    148
    149	/* Either not subpage, or already detached */
    150	if (!btrfs_is_subpage(fs_info, page) || !PagePrivate(page))
    151		return;
    152
    153	subpage = detach_page_private(page);
    154	ASSERT(subpage);
    155	btrfs_free_subpage(subpage);
    156}
    157
    158struct btrfs_subpage *btrfs_alloc_subpage(const struct btrfs_fs_info *fs_info,
    159					  enum btrfs_subpage_type type)
    160{
    161	struct btrfs_subpage *ret;
    162	unsigned int real_size;
    163
    164	ASSERT(fs_info->sectorsize < PAGE_SIZE);
    165
    166	real_size = struct_size(ret, bitmaps,
    167			BITS_TO_LONGS(fs_info->subpage_info->total_nr_bits));
    168	ret = kzalloc(real_size, GFP_NOFS);
    169	if (!ret)
    170		return ERR_PTR(-ENOMEM);
    171
    172	spin_lock_init(&ret->lock);
    173	if (type == BTRFS_SUBPAGE_METADATA) {
    174		atomic_set(&ret->eb_refs, 0);
    175	} else {
    176		atomic_set(&ret->readers, 0);
    177		atomic_set(&ret->writers, 0);
    178	}
    179	return ret;
    180}
    181
    182void btrfs_free_subpage(struct btrfs_subpage *subpage)
    183{
    184	kfree(subpage);
    185}
    186
    187/*
    188 * Increase the eb_refs of current subpage.
    189 *
    190 * This is important for eb allocation, to prevent race with last eb freeing
    191 * of the same page.
    192 * With the eb_refs increased before the eb inserted into radix tree,
    193 * detach_extent_buffer_page() won't detach the page private while we're still
    194 * allocating the extent buffer.
    195 */
    196void btrfs_page_inc_eb_refs(const struct btrfs_fs_info *fs_info,
    197			    struct page *page)
    198{
    199	struct btrfs_subpage *subpage;
    200
    201	if (!btrfs_is_subpage(fs_info, page))
    202		return;
    203
    204	ASSERT(PagePrivate(page) && page->mapping);
    205	lockdep_assert_held(&page->mapping->private_lock);
    206
    207	subpage = (struct btrfs_subpage *)page->private;
    208	atomic_inc(&subpage->eb_refs);
    209}
    210
    211void btrfs_page_dec_eb_refs(const struct btrfs_fs_info *fs_info,
    212			    struct page *page)
    213{
    214	struct btrfs_subpage *subpage;
    215
    216	if (!btrfs_is_subpage(fs_info, page))
    217		return;
    218
    219	ASSERT(PagePrivate(page) && page->mapping);
    220	lockdep_assert_held(&page->mapping->private_lock);
    221
    222	subpage = (struct btrfs_subpage *)page->private;
    223	ASSERT(atomic_read(&subpage->eb_refs));
    224	atomic_dec(&subpage->eb_refs);
    225}
    226
    227static void btrfs_subpage_assert(const struct btrfs_fs_info *fs_info,
    228		struct page *page, u64 start, u32 len)
    229{
    230	/* Basic checks */
    231	ASSERT(PagePrivate(page) && page->private);
    232	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
    233	       IS_ALIGNED(len, fs_info->sectorsize));
    234	/*
    235	 * The range check only works for mapped page, we can still have
    236	 * unmapped page like dummy extent buffer pages.
    237	 */
    238	if (page->mapping)
    239		ASSERT(page_offset(page) <= start &&
    240		       start + len <= page_offset(page) + PAGE_SIZE);
    241}
    242
    243void btrfs_subpage_start_reader(const struct btrfs_fs_info *fs_info,
    244		struct page *page, u64 start, u32 len)
    245{
    246	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
    247	const int nbits = len >> fs_info->sectorsize_bits;
    248
    249	btrfs_subpage_assert(fs_info, page, start, len);
    250
    251	atomic_add(nbits, &subpage->readers);
    252}
    253
    254void btrfs_subpage_end_reader(const struct btrfs_fs_info *fs_info,
    255		struct page *page, u64 start, u32 len)
    256{
    257	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
    258	const int nbits = len >> fs_info->sectorsize_bits;
    259	bool is_data;
    260	bool last;
    261
    262	btrfs_subpage_assert(fs_info, page, start, len);
    263	is_data = is_data_inode(page->mapping->host);
    264	ASSERT(atomic_read(&subpage->readers) >= nbits);
    265	last = atomic_sub_and_test(nbits, &subpage->readers);
    266
    267	/*
    268	 * For data we need to unlock the page if the last read has finished.
    269	 *
    270	 * And please don't replace @last with atomic_sub_and_test() call
    271	 * inside if () condition.
    272	 * As we want the atomic_sub_and_test() to be always executed.
    273	 */
    274	if (is_data && last)
    275		unlock_page(page);
    276}
    277
    278static void btrfs_subpage_clamp_range(struct page *page, u64 *start, u32 *len)
    279{
    280	u64 orig_start = *start;
    281	u32 orig_len = *len;
    282
    283	*start = max_t(u64, page_offset(page), orig_start);
    284	/*
    285	 * For certain call sites like btrfs_drop_pages(), we may have pages
    286	 * beyond the target range. In that case, just set @len to 0, subpage
    287	 * helpers can handle @len == 0 without any problem.
    288	 */
    289	if (page_offset(page) >= orig_start + orig_len)
    290		*len = 0;
    291	else
    292		*len = min_t(u64, page_offset(page) + PAGE_SIZE,
    293			     orig_start + orig_len) - *start;
    294}
    295
    296void btrfs_subpage_start_writer(const struct btrfs_fs_info *fs_info,
    297		struct page *page, u64 start, u32 len)
    298{
    299	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
    300	const int nbits = (len >> fs_info->sectorsize_bits);
    301	int ret;
    302
    303	btrfs_subpage_assert(fs_info, page, start, len);
    304
    305	ASSERT(atomic_read(&subpage->readers) == 0);
    306	ret = atomic_add_return(nbits, &subpage->writers);
    307	ASSERT(ret == nbits);
    308}
    309
    310bool btrfs_subpage_end_and_test_writer(const struct btrfs_fs_info *fs_info,
    311		struct page *page, u64 start, u32 len)
    312{
    313	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
    314	const int nbits = (len >> fs_info->sectorsize_bits);
    315
    316	btrfs_subpage_assert(fs_info, page, start, len);
    317
    318	/*
    319	 * We have call sites passing @lock_page into
    320	 * extent_clear_unlock_delalloc() for compression path.
    321	 *
    322	 * This @locked_page is locked by plain lock_page(), thus its
    323	 * subpage::writers is 0.  Handle them in a special way.
    324	 */
    325	if (atomic_read(&subpage->writers) == 0)
    326		return true;
    327
    328	ASSERT(atomic_read(&subpage->writers) >= nbits);
    329	return atomic_sub_and_test(nbits, &subpage->writers);
    330}
    331
    332/*
    333 * Lock a page for delalloc page writeback.
    334 *
    335 * Return -EAGAIN if the page is not properly initialized.
    336 * Return 0 with the page locked, and writer counter updated.
    337 *
    338 * Even with 0 returned, the page still need extra check to make sure
    339 * it's really the correct page, as the caller is using
    340 * find_get_pages_contig(), which can race with page invalidating.
    341 */
    342int btrfs_page_start_writer_lock(const struct btrfs_fs_info *fs_info,
    343		struct page *page, u64 start, u32 len)
    344{
    345	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) {
    346		lock_page(page);
    347		return 0;
    348	}
    349	lock_page(page);
    350	if (!PagePrivate(page) || !page->private) {
    351		unlock_page(page);
    352		return -EAGAIN;
    353	}
    354	btrfs_subpage_clamp_range(page, &start, &len);
    355	btrfs_subpage_start_writer(fs_info, page, start, len);
    356	return 0;
    357}
    358
    359void btrfs_page_end_writer_lock(const struct btrfs_fs_info *fs_info,
    360		struct page *page, u64 start, u32 len)
    361{
    362	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page))
    363		return unlock_page(page);
    364	btrfs_subpage_clamp_range(page, &start, &len);
    365	if (btrfs_subpage_end_and_test_writer(fs_info, page, start, len))
    366		unlock_page(page);
    367}
    368
    369static bool bitmap_test_range_all_set(unsigned long *addr, unsigned int start,
    370				      unsigned int nbits)
    371{
    372	unsigned int found_zero;
    373
    374	found_zero = find_next_zero_bit(addr, start + nbits, start);
    375	if (found_zero == start + nbits)
    376		return true;
    377	return false;
    378}
    379
    380static bool bitmap_test_range_all_zero(unsigned long *addr, unsigned int start,
    381				       unsigned int nbits)
    382{
    383	unsigned int found_set;
    384
    385	found_set = find_next_bit(addr, start + nbits, start);
    386	if (found_set == start + nbits)
    387		return true;
    388	return false;
    389}
    390
    391#define subpage_calc_start_bit(fs_info, page, name, start, len)		\
    392({									\
    393	unsigned int start_bit;						\
    394									\
    395	btrfs_subpage_assert(fs_info, page, start, len);		\
    396	start_bit = offset_in_page(start) >> fs_info->sectorsize_bits;	\
    397	start_bit += fs_info->subpage_info->name##_offset;		\
    398	start_bit;							\
    399})
    400
    401#define subpage_test_bitmap_all_set(fs_info, subpage, name)		\
    402	bitmap_test_range_all_set(subpage->bitmaps,			\
    403			fs_info->subpage_info->name##_offset,		\
    404			fs_info->subpage_info->bitmap_nr_bits)
    405
    406#define subpage_test_bitmap_all_zero(fs_info, subpage, name)		\
    407	bitmap_test_range_all_zero(subpage->bitmaps,			\
    408			fs_info->subpage_info->name##_offset,		\
    409			fs_info->subpage_info->bitmap_nr_bits)
    410
    411void btrfs_subpage_set_uptodate(const struct btrfs_fs_info *fs_info,
    412		struct page *page, u64 start, u32 len)
    413{
    414	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
    415	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
    416							uptodate, start, len);
    417	unsigned long flags;
    418
    419	spin_lock_irqsave(&subpage->lock, flags);
    420	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
    421	if (subpage_test_bitmap_all_set(fs_info, subpage, uptodate))
    422		SetPageUptodate(page);
    423	spin_unlock_irqrestore(&subpage->lock, flags);
    424}
    425
    426void btrfs_subpage_clear_uptodate(const struct btrfs_fs_info *fs_info,
    427		struct page *page, u64 start, u32 len)
    428{
    429	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
    430	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
    431							uptodate, start, len);
    432	unsigned long flags;
    433
    434	spin_lock_irqsave(&subpage->lock, flags);
    435	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
    436	ClearPageUptodate(page);
    437	spin_unlock_irqrestore(&subpage->lock, flags);
    438}
    439
    440void btrfs_subpage_set_error(const struct btrfs_fs_info *fs_info,
    441		struct page *page, u64 start, u32 len)
    442{
    443	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
    444	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
    445							error, start, len);
    446	unsigned long flags;
    447
    448	spin_lock_irqsave(&subpage->lock, flags);
    449	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
    450	SetPageError(page);
    451	spin_unlock_irqrestore(&subpage->lock, flags);
    452}
    453
    454void btrfs_subpage_clear_error(const struct btrfs_fs_info *fs_info,
    455		struct page *page, u64 start, u32 len)
    456{
    457	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
    458	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
    459							error, start, len);
    460	unsigned long flags;
    461
    462	spin_lock_irqsave(&subpage->lock, flags);
    463	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
    464	if (subpage_test_bitmap_all_zero(fs_info, subpage, error))
    465		ClearPageError(page);
    466	spin_unlock_irqrestore(&subpage->lock, flags);
    467}
    468
    469void btrfs_subpage_set_dirty(const struct btrfs_fs_info *fs_info,
    470		struct page *page, u64 start, u32 len)
    471{
    472	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
    473	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
    474							dirty, start, len);
    475	unsigned long flags;
    476
    477	spin_lock_irqsave(&subpage->lock, flags);
    478	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
    479	spin_unlock_irqrestore(&subpage->lock, flags);
    480	set_page_dirty(page);
    481}
    482
    483/*
    484 * Extra clear_and_test function for subpage dirty bitmap.
    485 *
    486 * Return true if we're the last bits in the dirty_bitmap and clear the
    487 * dirty_bitmap.
    488 * Return false otherwise.
    489 *
    490 * NOTE: Callers should manually clear page dirty for true case, as we have
    491 * extra handling for tree blocks.
    492 */
    493bool btrfs_subpage_clear_and_test_dirty(const struct btrfs_fs_info *fs_info,
    494		struct page *page, u64 start, u32 len)
    495{
    496	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
    497	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
    498							dirty, start, len);
    499	unsigned long flags;
    500	bool last = false;
    501
    502	spin_lock_irqsave(&subpage->lock, flags);
    503	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
    504	if (subpage_test_bitmap_all_zero(fs_info, subpage, dirty))
    505		last = true;
    506	spin_unlock_irqrestore(&subpage->lock, flags);
    507	return last;
    508}
    509
    510void btrfs_subpage_clear_dirty(const struct btrfs_fs_info *fs_info,
    511		struct page *page, u64 start, u32 len)
    512{
    513	bool last;
    514
    515	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, start, len);
    516	if (last)
    517		clear_page_dirty_for_io(page);
    518}
    519
    520void btrfs_subpage_set_writeback(const struct btrfs_fs_info *fs_info,
    521		struct page *page, u64 start, u32 len)
    522{
    523	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
    524	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
    525							writeback, start, len);
    526	unsigned long flags;
    527
    528	spin_lock_irqsave(&subpage->lock, flags);
    529	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
    530	set_page_writeback(page);
    531	spin_unlock_irqrestore(&subpage->lock, flags);
    532}
    533
    534void btrfs_subpage_clear_writeback(const struct btrfs_fs_info *fs_info,
    535		struct page *page, u64 start, u32 len)
    536{
    537	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
    538	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
    539							writeback, start, len);
    540	unsigned long flags;
    541
    542	spin_lock_irqsave(&subpage->lock, flags);
    543	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
    544	if (subpage_test_bitmap_all_zero(fs_info, subpage, writeback)) {
    545		ASSERT(PageWriteback(page));
    546		end_page_writeback(page);
    547	}
    548	spin_unlock_irqrestore(&subpage->lock, flags);
    549}
    550
    551void btrfs_subpage_set_ordered(const struct btrfs_fs_info *fs_info,
    552		struct page *page, u64 start, u32 len)
    553{
    554	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
    555	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
    556							ordered, start, len);
    557	unsigned long flags;
    558
    559	spin_lock_irqsave(&subpage->lock, flags);
    560	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
    561	SetPageOrdered(page);
    562	spin_unlock_irqrestore(&subpage->lock, flags);
    563}
    564
    565void btrfs_subpage_clear_ordered(const struct btrfs_fs_info *fs_info,
    566		struct page *page, u64 start, u32 len)
    567{
    568	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
    569	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
    570							ordered, start, len);
    571	unsigned long flags;
    572
    573	spin_lock_irqsave(&subpage->lock, flags);
    574	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
    575	if (subpage_test_bitmap_all_zero(fs_info, subpage, ordered))
    576		ClearPageOrdered(page);
    577	spin_unlock_irqrestore(&subpage->lock, flags);
    578}
    579
    580void btrfs_subpage_set_checked(const struct btrfs_fs_info *fs_info,
    581			       struct page *page, u64 start, u32 len)
    582{
    583	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
    584	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
    585							checked, start, len);
    586	unsigned long flags;
    587
    588	spin_lock_irqsave(&subpage->lock, flags);
    589	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
    590	if (subpage_test_bitmap_all_set(fs_info, subpage, checked))
    591		SetPageChecked(page);
    592	spin_unlock_irqrestore(&subpage->lock, flags);
    593}
    594
    595void btrfs_subpage_clear_checked(const struct btrfs_fs_info *fs_info,
    596				 struct page *page, u64 start, u32 len)
    597{
    598	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
    599	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
    600							checked, start, len);
    601	unsigned long flags;
    602
    603	spin_lock_irqsave(&subpage->lock, flags);
    604	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
    605	ClearPageChecked(page);
    606	spin_unlock_irqrestore(&subpage->lock, flags);
    607}
    608
    609/*
    610 * Unlike set/clear which is dependent on each page status, for test all bits
    611 * are tested in the same way.
    612 */
    613#define IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(name)				\
    614bool btrfs_subpage_test_##name(const struct btrfs_fs_info *fs_info,	\
    615		struct page *page, u64 start, u32 len)			\
    616{									\
    617	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; \
    618	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,	\
    619						name, start, len);	\
    620	unsigned long flags;						\
    621	bool ret;							\
    622									\
    623	spin_lock_irqsave(&subpage->lock, flags);			\
    624	ret = bitmap_test_range_all_set(subpage->bitmaps, start_bit,	\
    625				len >> fs_info->sectorsize_bits);	\
    626	spin_unlock_irqrestore(&subpage->lock, flags);			\
    627	return ret;							\
    628}
    629IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(uptodate);
    630IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(error);
    631IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(dirty);
    632IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(writeback);
    633IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(ordered);
    634IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(checked);
    635
    636/*
    637 * Note that, in selftests (extent-io-tests), we can have empty fs_info passed
    638 * in.  We only test sectorsize == PAGE_SIZE cases so far, thus we can fall
    639 * back to regular sectorsize branch.
    640 */
    641#define IMPLEMENT_BTRFS_PAGE_OPS(name, set_page_func, clear_page_func,	\
    642			       test_page_func)				\
    643void btrfs_page_set_##name(const struct btrfs_fs_info *fs_info,		\
    644		struct page *page, u64 start, u32 len)			\
    645{									\
    646	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) {	\
    647		set_page_func(page);					\
    648		return;							\
    649	}								\
    650	btrfs_subpage_set_##name(fs_info, page, start, len);		\
    651}									\
    652void btrfs_page_clear_##name(const struct btrfs_fs_info *fs_info,	\
    653		struct page *page, u64 start, u32 len)			\
    654{									\
    655	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) {	\
    656		clear_page_func(page);					\
    657		return;							\
    658	}								\
    659	btrfs_subpage_clear_##name(fs_info, page, start, len);		\
    660}									\
    661bool btrfs_page_test_##name(const struct btrfs_fs_info *fs_info,	\
    662		struct page *page, u64 start, u32 len)			\
    663{									\
    664	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page))	\
    665		return test_page_func(page);				\
    666	return btrfs_subpage_test_##name(fs_info, page, start, len);	\
    667}									\
    668void btrfs_page_clamp_set_##name(const struct btrfs_fs_info *fs_info,	\
    669		struct page *page, u64 start, u32 len)			\
    670{									\
    671	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) {	\
    672		set_page_func(page);					\
    673		return;							\
    674	}								\
    675	btrfs_subpage_clamp_range(page, &start, &len);			\
    676	btrfs_subpage_set_##name(fs_info, page, start, len);		\
    677}									\
    678void btrfs_page_clamp_clear_##name(const struct btrfs_fs_info *fs_info, \
    679		struct page *page, u64 start, u32 len)			\
    680{									\
    681	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) {	\
    682		clear_page_func(page);					\
    683		return;							\
    684	}								\
    685	btrfs_subpage_clamp_range(page, &start, &len);			\
    686	btrfs_subpage_clear_##name(fs_info, page, start, len);		\
    687}									\
    688bool btrfs_page_clamp_test_##name(const struct btrfs_fs_info *fs_info,	\
    689		struct page *page, u64 start, u32 len)			\
    690{									\
    691	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page))	\
    692		return test_page_func(page);				\
    693	btrfs_subpage_clamp_range(page, &start, &len);			\
    694	return btrfs_subpage_test_##name(fs_info, page, start, len);	\
    695}
    696IMPLEMENT_BTRFS_PAGE_OPS(uptodate, SetPageUptodate, ClearPageUptodate,
    697			 PageUptodate);
    698IMPLEMENT_BTRFS_PAGE_OPS(error, SetPageError, ClearPageError, PageError);
    699IMPLEMENT_BTRFS_PAGE_OPS(dirty, set_page_dirty, clear_page_dirty_for_io,
    700			 PageDirty);
    701IMPLEMENT_BTRFS_PAGE_OPS(writeback, set_page_writeback, end_page_writeback,
    702			 PageWriteback);
    703IMPLEMENT_BTRFS_PAGE_OPS(ordered, SetPageOrdered, ClearPageOrdered,
    704			 PageOrdered);
    705IMPLEMENT_BTRFS_PAGE_OPS(checked, SetPageChecked, ClearPageChecked, PageChecked);
    706
    707/*
    708 * Make sure not only the page dirty bit is cleared, but also subpage dirty bit
    709 * is cleared.
    710 */
    711void btrfs_page_assert_not_dirty(const struct btrfs_fs_info *fs_info,
    712				 struct page *page)
    713{
    714	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
    715
    716	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
    717		return;
    718
    719	ASSERT(!PageDirty(page));
    720	if (!btrfs_is_subpage(fs_info, page))
    721		return;
    722
    723	ASSERT(PagePrivate(page) && page->private);
    724	ASSERT(subpage_test_bitmap_all_zero(fs_info, subpage, dirty));
    725}
    726
    727/*
    728 * Handle different locked pages with different page sizes:
    729 *
    730 * - Page locked by plain lock_page()
    731 *   It should not have any subpage::writers count.
    732 *   Can be unlocked by unlock_page().
    733 *   This is the most common locked page for __extent_writepage() called
    734 *   inside extent_write_cache_pages() or extent_write_full_page().
    735 *   Rarer cases include the @locked_page from extent_write_locked_range().
    736 *
    737 * - Page locked by lock_delalloc_pages()
    738 *   There is only one caller, all pages except @locked_page for
    739 *   extent_write_locked_range().
    740 *   In this case, we have to call subpage helper to handle the case.
    741 */
    742void btrfs_page_unlock_writer(struct btrfs_fs_info *fs_info, struct page *page,
    743			      u64 start, u32 len)
    744{
    745	struct btrfs_subpage *subpage;
    746
    747	ASSERT(PageLocked(page));
    748	/* For non-subpage case, we just unlock the page */
    749	if (!btrfs_is_subpage(fs_info, page))
    750		return unlock_page(page);
    751
    752	ASSERT(PagePrivate(page) && page->private);
    753	subpage = (struct btrfs_subpage *)page->private;
    754
    755	/*
    756	 * For subpage case, there are two types of locked page.  With or
    757	 * without writers number.
    758	 *
    759	 * Since we own the page lock, no one else could touch subpage::writers
    760	 * and we are safe to do several atomic operations without spinlock.
    761	 */
    762	if (atomic_read(&subpage->writers) == 0)
    763		/* No writers, locked by plain lock_page() */
    764		return unlock_page(page);
    765
    766	/* Have writers, use proper subpage helper to end it */
    767	btrfs_page_end_writer_lock(fs_info, page, start, len);
    768}