super.c (76669B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6#include <linux/blkdev.h> 7#include <linux/module.h> 8#include <linux/fs.h> 9#include <linux/pagemap.h> 10#include <linux/highmem.h> 11#include <linux/time.h> 12#include <linux/init.h> 13#include <linux/seq_file.h> 14#include <linux/string.h> 15#include <linux/backing-dev.h> 16#include <linux/mount.h> 17#include <linux/writeback.h> 18#include <linux/statfs.h> 19#include <linux/compat.h> 20#include <linux/parser.h> 21#include <linux/ctype.h> 22#include <linux/namei.h> 23#include <linux/miscdevice.h> 24#include <linux/magic.h> 25#include <linux/slab.h> 26#include <linux/ratelimit.h> 27#include <linux/crc32c.h> 28#include <linux/btrfs.h> 29#include "delayed-inode.h" 30#include "ctree.h" 31#include "disk-io.h" 32#include "transaction.h" 33#include "btrfs_inode.h" 34#include "print-tree.h" 35#include "props.h" 36#include "xattr.h" 37#include "volumes.h" 38#include "export.h" 39#include "compression.h" 40#include "rcu-string.h" 41#include "dev-replace.h" 42#include "free-space-cache.h" 43#include "backref.h" 44#include "space-info.h" 45#include "sysfs.h" 46#include "zoned.h" 47#include "tests/btrfs-tests.h" 48#include "block-group.h" 49#include "discard.h" 50#include "qgroup.h" 51#define CREATE_TRACE_POINTS 52#include <trace/events/btrfs.h> 53 54static const struct super_operations btrfs_super_ops; 55 56/* 57 * Types for mounting the default subvolume and a subvolume explicitly 58 * requested by subvol=/path. That way the callchain is straightforward and we 59 * don't have to play tricks with the mount options and recursive calls to 60 * btrfs_mount. 61 * 62 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder. 63 */ 64static struct file_system_type btrfs_fs_type; 65static struct file_system_type btrfs_root_fs_type; 66 67static int btrfs_remount(struct super_block *sb, int *flags, char *data); 68 69#ifdef CONFIG_PRINTK 70 71#define STATE_STRING_PREFACE ": state " 72#define STATE_STRING_BUF_LEN (sizeof(STATE_STRING_PREFACE) + BTRFS_FS_STATE_COUNT) 73 74/* 75 * Characters to print to indicate error conditions or uncommon filesystem sate. 76 * RO is not an error. 77 */ 78static const char fs_state_chars[] = { 79 [BTRFS_FS_STATE_ERROR] = 'E', 80 [BTRFS_FS_STATE_REMOUNTING] = 'M', 81 [BTRFS_FS_STATE_RO] = 0, 82 [BTRFS_FS_STATE_TRANS_ABORTED] = 'A', 83 [BTRFS_FS_STATE_DEV_REPLACING] = 'R', 84 [BTRFS_FS_STATE_DUMMY_FS_INFO] = 0, 85 [BTRFS_FS_STATE_NO_CSUMS] = 'C', 86 [BTRFS_FS_STATE_LOG_CLEANUP_ERROR] = 'L', 87}; 88 89static void btrfs_state_to_string(const struct btrfs_fs_info *info, char *buf) 90{ 91 unsigned int bit; 92 bool states_printed = false; 93 unsigned long fs_state = READ_ONCE(info->fs_state); 94 char *curr = buf; 95 96 memcpy(curr, STATE_STRING_PREFACE, sizeof(STATE_STRING_PREFACE)); 97 curr += sizeof(STATE_STRING_PREFACE) - 1; 98 99 for_each_set_bit(bit, &fs_state, sizeof(fs_state)) { 100 WARN_ON_ONCE(bit >= BTRFS_FS_STATE_COUNT); 101 if ((bit < BTRFS_FS_STATE_COUNT) && fs_state_chars[bit]) { 102 *curr++ = fs_state_chars[bit]; 103 states_printed = true; 104 } 105 } 106 107 /* If no states were printed, reset the buffer */ 108 if (!states_printed) 109 curr = buf; 110 111 *curr++ = 0; 112} 113#endif 114 115/* 116 * Generally the error codes correspond to their respective errors, but there 117 * are a few special cases. 118 * 119 * EUCLEAN: Any sort of corruption that we encounter. The tree-checker for 120 * instance will return EUCLEAN if any of the blocks are corrupted in 121 * a way that is problematic. We want to reserve EUCLEAN for these 122 * sort of corruptions. 123 * 124 * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we 125 * need to use EROFS for this case. We will have no idea of the 126 * original failure, that will have been reported at the time we tripped 127 * over the error. Each subsequent error that doesn't have any context 128 * of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR. 129 */ 130const char * __attribute_const__ btrfs_decode_error(int errno) 131{ 132 char *errstr = "unknown"; 133 134 switch (errno) { 135 case -ENOENT: /* -2 */ 136 errstr = "No such entry"; 137 break; 138 case -EIO: /* -5 */ 139 errstr = "IO failure"; 140 break; 141 case -ENOMEM: /* -12*/ 142 errstr = "Out of memory"; 143 break; 144 case -EEXIST: /* -17 */ 145 errstr = "Object already exists"; 146 break; 147 case -ENOSPC: /* -28 */ 148 errstr = "No space left"; 149 break; 150 case -EROFS: /* -30 */ 151 errstr = "Readonly filesystem"; 152 break; 153 case -EOPNOTSUPP: /* -95 */ 154 errstr = "Operation not supported"; 155 break; 156 case -EUCLEAN: /* -117 */ 157 errstr = "Filesystem corrupted"; 158 break; 159 case -EDQUOT: /* -122 */ 160 errstr = "Quota exceeded"; 161 break; 162 } 163 164 return errstr; 165} 166 167/* 168 * __btrfs_handle_fs_error decodes expected errors from the caller and 169 * invokes the appropriate error response. 170 */ 171__cold 172void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 173 unsigned int line, int errno, const char *fmt, ...) 174{ 175 struct super_block *sb = fs_info->sb; 176#ifdef CONFIG_PRINTK 177 char statestr[STATE_STRING_BUF_LEN]; 178 const char *errstr; 179#endif 180 181 /* 182 * Special case: if the error is EROFS, and we're already 183 * under SB_RDONLY, then it is safe here. 184 */ 185 if (errno == -EROFS && sb_rdonly(sb)) 186 return; 187 188#ifdef CONFIG_PRINTK 189 errstr = btrfs_decode_error(errno); 190 btrfs_state_to_string(fs_info, statestr); 191 if (fmt) { 192 struct va_format vaf; 193 va_list args; 194 195 va_start(args, fmt); 196 vaf.fmt = fmt; 197 vaf.va = &args; 198 199 pr_crit("BTRFS: error (device %s%s) in %s:%d: errno=%d %s (%pV)\n", 200 sb->s_id, statestr, function, line, errno, errstr, &vaf); 201 va_end(args); 202 } else { 203 pr_crit("BTRFS: error (device %s%s) in %s:%d: errno=%d %s\n", 204 sb->s_id, statestr, function, line, errno, errstr); 205 } 206#endif 207 208 /* 209 * Today we only save the error info to memory. Long term we'll 210 * also send it down to the disk 211 */ 212 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 213 214 /* Don't go through full error handling during mount */ 215 if (!(sb->s_flags & SB_BORN)) 216 return; 217 218 if (sb_rdonly(sb)) 219 return; 220 221 btrfs_discard_stop(fs_info); 222 223 /* btrfs handle error by forcing the filesystem readonly */ 224 btrfs_set_sb_rdonly(sb); 225 btrfs_info(fs_info, "forced readonly"); 226 /* 227 * Note that a running device replace operation is not canceled here 228 * although there is no way to update the progress. It would add the 229 * risk of a deadlock, therefore the canceling is omitted. The only 230 * penalty is that some I/O remains active until the procedure 231 * completes. The next time when the filesystem is mounted writable 232 * again, the device replace operation continues. 233 */ 234} 235 236#ifdef CONFIG_PRINTK 237static const char * const logtypes[] = { 238 "emergency", 239 "alert", 240 "critical", 241 "error", 242 "warning", 243 "notice", 244 "info", 245 "debug", 246}; 247 248 249/* 250 * Use one ratelimit state per log level so that a flood of less important 251 * messages doesn't cause more important ones to be dropped. 252 */ 253static struct ratelimit_state printk_limits[] = { 254 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 255 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 256 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 257 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 258 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 259 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 260 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 261 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 262}; 263 264void __cold _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 265{ 266 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 267 struct va_format vaf; 268 va_list args; 269 int kern_level; 270 const char *type = logtypes[4]; 271 struct ratelimit_state *ratelimit = &printk_limits[4]; 272 273 va_start(args, fmt); 274 275 while ((kern_level = printk_get_level(fmt)) != 0) { 276 size_t size = printk_skip_level(fmt) - fmt; 277 278 if (kern_level >= '0' && kern_level <= '7') { 279 memcpy(lvl, fmt, size); 280 lvl[size] = '\0'; 281 type = logtypes[kern_level - '0']; 282 ratelimit = &printk_limits[kern_level - '0']; 283 } 284 fmt += size; 285 } 286 287 vaf.fmt = fmt; 288 vaf.va = &args; 289 290 if (__ratelimit(ratelimit)) { 291 if (fs_info) { 292 char statestr[STATE_STRING_BUF_LEN]; 293 294 btrfs_state_to_string(fs_info, statestr); 295 _printk("%sBTRFS %s (device %s%s): %pV\n", lvl, type, 296 fs_info->sb->s_id, statestr, &vaf); 297 } else { 298 _printk("%sBTRFS %s: %pV\n", lvl, type, &vaf); 299 } 300 } 301 302 va_end(args); 303} 304#endif 305 306#if BITS_PER_LONG == 32 307void __cold btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info) 308{ 309 if (!test_and_set_bit(BTRFS_FS_32BIT_WARN, &fs_info->flags)) { 310 btrfs_warn(fs_info, "reaching 32bit limit for logical addresses"); 311 btrfs_warn(fs_info, 312"due to page cache limit on 32bit systems, btrfs can't access metadata at or beyond %lluT", 313 BTRFS_32BIT_MAX_FILE_SIZE >> 40); 314 btrfs_warn(fs_info, 315 "please consider upgrading to 64bit kernel/hardware"); 316 } 317} 318 319void __cold btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info) 320{ 321 if (!test_and_set_bit(BTRFS_FS_32BIT_ERROR, &fs_info->flags)) { 322 btrfs_err(fs_info, "reached 32bit limit for logical addresses"); 323 btrfs_err(fs_info, 324"due to page cache limit on 32bit systems, metadata beyond %lluT can't be accessed", 325 BTRFS_32BIT_MAX_FILE_SIZE >> 40); 326 btrfs_err(fs_info, 327 "please consider upgrading to 64bit kernel/hardware"); 328 } 329} 330#endif 331 332/* 333 * We only mark the transaction aborted and then set the file system read-only. 334 * This will prevent new transactions from starting or trying to join this 335 * one. 336 * 337 * This means that error recovery at the call site is limited to freeing 338 * any local memory allocations and passing the error code up without 339 * further cleanup. The transaction should complete as it normally would 340 * in the call path but will return -EIO. 341 * 342 * We'll complete the cleanup in btrfs_end_transaction and 343 * btrfs_commit_transaction. 344 */ 345__cold 346void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 347 const char *function, 348 unsigned int line, int errno) 349{ 350 struct btrfs_fs_info *fs_info = trans->fs_info; 351 352 WRITE_ONCE(trans->aborted, errno); 353 WRITE_ONCE(trans->transaction->aborted, errno); 354 /* Wake up anybody who may be waiting on this transaction */ 355 wake_up(&fs_info->transaction_wait); 356 wake_up(&fs_info->transaction_blocked_wait); 357 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 358} 359/* 360 * __btrfs_panic decodes unexpected, fatal errors from the caller, 361 * issues an alert, and either panics or BUGs, depending on mount options. 362 */ 363__cold 364void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 365 unsigned int line, int errno, const char *fmt, ...) 366{ 367 char *s_id = "<unknown>"; 368 const char *errstr; 369 struct va_format vaf = { .fmt = fmt }; 370 va_list args; 371 372 if (fs_info) 373 s_id = fs_info->sb->s_id; 374 375 va_start(args, fmt); 376 vaf.va = &args; 377 378 errstr = btrfs_decode_error(errno); 379 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) 380 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 381 s_id, function, line, &vaf, errno, errstr); 382 383 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 384 function, line, &vaf, errno, errstr); 385 va_end(args); 386 /* Caller calls BUG() */ 387} 388 389static void btrfs_put_super(struct super_block *sb) 390{ 391 close_ctree(btrfs_sb(sb)); 392} 393 394enum { 395 Opt_acl, Opt_noacl, 396 Opt_clear_cache, 397 Opt_commit_interval, 398 Opt_compress, 399 Opt_compress_force, 400 Opt_compress_force_type, 401 Opt_compress_type, 402 Opt_degraded, 403 Opt_device, 404 Opt_fatal_errors, 405 Opt_flushoncommit, Opt_noflushoncommit, 406 Opt_max_inline, 407 Opt_barrier, Opt_nobarrier, 408 Opt_datacow, Opt_nodatacow, 409 Opt_datasum, Opt_nodatasum, 410 Opt_defrag, Opt_nodefrag, 411 Opt_discard, Opt_nodiscard, 412 Opt_discard_mode, 413 Opt_norecovery, 414 Opt_ratio, 415 Opt_rescan_uuid_tree, 416 Opt_skip_balance, 417 Opt_space_cache, Opt_no_space_cache, 418 Opt_space_cache_version, 419 Opt_ssd, Opt_nossd, 420 Opt_ssd_spread, Opt_nossd_spread, 421 Opt_subvol, 422 Opt_subvol_empty, 423 Opt_subvolid, 424 Opt_thread_pool, 425 Opt_treelog, Opt_notreelog, 426 Opt_user_subvol_rm_allowed, 427 428 /* Rescue options */ 429 Opt_rescue, 430 Opt_usebackuproot, 431 Opt_nologreplay, 432 Opt_ignorebadroots, 433 Opt_ignoredatacsums, 434 Opt_rescue_all, 435 436 /* Deprecated options */ 437 Opt_recovery, 438 Opt_inode_cache, Opt_noinode_cache, 439 440 /* Debugging options */ 441 Opt_check_integrity, 442 Opt_check_integrity_including_extent_data, 443 Opt_check_integrity_print_mask, 444 Opt_enospc_debug, Opt_noenospc_debug, 445#ifdef CONFIG_BTRFS_DEBUG 446 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 447#endif 448#ifdef CONFIG_BTRFS_FS_REF_VERIFY 449 Opt_ref_verify, 450#endif 451 Opt_err, 452}; 453 454static const match_table_t tokens = { 455 {Opt_acl, "acl"}, 456 {Opt_noacl, "noacl"}, 457 {Opt_clear_cache, "clear_cache"}, 458 {Opt_commit_interval, "commit=%u"}, 459 {Opt_compress, "compress"}, 460 {Opt_compress_type, "compress=%s"}, 461 {Opt_compress_force, "compress-force"}, 462 {Opt_compress_force_type, "compress-force=%s"}, 463 {Opt_degraded, "degraded"}, 464 {Opt_device, "device=%s"}, 465 {Opt_fatal_errors, "fatal_errors=%s"}, 466 {Opt_flushoncommit, "flushoncommit"}, 467 {Opt_noflushoncommit, "noflushoncommit"}, 468 {Opt_inode_cache, "inode_cache"}, 469 {Opt_noinode_cache, "noinode_cache"}, 470 {Opt_max_inline, "max_inline=%s"}, 471 {Opt_barrier, "barrier"}, 472 {Opt_nobarrier, "nobarrier"}, 473 {Opt_datacow, "datacow"}, 474 {Opt_nodatacow, "nodatacow"}, 475 {Opt_datasum, "datasum"}, 476 {Opt_nodatasum, "nodatasum"}, 477 {Opt_defrag, "autodefrag"}, 478 {Opt_nodefrag, "noautodefrag"}, 479 {Opt_discard, "discard"}, 480 {Opt_discard_mode, "discard=%s"}, 481 {Opt_nodiscard, "nodiscard"}, 482 {Opt_norecovery, "norecovery"}, 483 {Opt_ratio, "metadata_ratio=%u"}, 484 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 485 {Opt_skip_balance, "skip_balance"}, 486 {Opt_space_cache, "space_cache"}, 487 {Opt_no_space_cache, "nospace_cache"}, 488 {Opt_space_cache_version, "space_cache=%s"}, 489 {Opt_ssd, "ssd"}, 490 {Opt_nossd, "nossd"}, 491 {Opt_ssd_spread, "ssd_spread"}, 492 {Opt_nossd_spread, "nossd_spread"}, 493 {Opt_subvol, "subvol=%s"}, 494 {Opt_subvol_empty, "subvol="}, 495 {Opt_subvolid, "subvolid=%s"}, 496 {Opt_thread_pool, "thread_pool=%u"}, 497 {Opt_treelog, "treelog"}, 498 {Opt_notreelog, "notreelog"}, 499 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 500 501 /* Rescue options */ 502 {Opt_rescue, "rescue=%s"}, 503 /* Deprecated, with alias rescue=nologreplay */ 504 {Opt_nologreplay, "nologreplay"}, 505 /* Deprecated, with alias rescue=usebackuproot */ 506 {Opt_usebackuproot, "usebackuproot"}, 507 508 /* Deprecated options */ 509 {Opt_recovery, "recovery"}, 510 511 /* Debugging options */ 512 {Opt_check_integrity, "check_int"}, 513 {Opt_check_integrity_including_extent_data, "check_int_data"}, 514 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"}, 515 {Opt_enospc_debug, "enospc_debug"}, 516 {Opt_noenospc_debug, "noenospc_debug"}, 517#ifdef CONFIG_BTRFS_DEBUG 518 {Opt_fragment_data, "fragment=data"}, 519 {Opt_fragment_metadata, "fragment=metadata"}, 520 {Opt_fragment_all, "fragment=all"}, 521#endif 522#ifdef CONFIG_BTRFS_FS_REF_VERIFY 523 {Opt_ref_verify, "ref_verify"}, 524#endif 525 {Opt_err, NULL}, 526}; 527 528static const match_table_t rescue_tokens = { 529 {Opt_usebackuproot, "usebackuproot"}, 530 {Opt_nologreplay, "nologreplay"}, 531 {Opt_ignorebadroots, "ignorebadroots"}, 532 {Opt_ignorebadroots, "ibadroots"}, 533 {Opt_ignoredatacsums, "ignoredatacsums"}, 534 {Opt_ignoredatacsums, "idatacsums"}, 535 {Opt_rescue_all, "all"}, 536 {Opt_err, NULL}, 537}; 538 539static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt, 540 const char *opt_name) 541{ 542 if (fs_info->mount_opt & opt) { 543 btrfs_err(fs_info, "%s must be used with ro mount option", 544 opt_name); 545 return true; 546 } 547 return false; 548} 549 550static int parse_rescue_options(struct btrfs_fs_info *info, const char *options) 551{ 552 char *opts; 553 char *orig; 554 char *p; 555 substring_t args[MAX_OPT_ARGS]; 556 int ret = 0; 557 558 opts = kstrdup(options, GFP_KERNEL); 559 if (!opts) 560 return -ENOMEM; 561 orig = opts; 562 563 while ((p = strsep(&opts, ":")) != NULL) { 564 int token; 565 566 if (!*p) 567 continue; 568 token = match_token(p, rescue_tokens, args); 569 switch (token){ 570 case Opt_usebackuproot: 571 btrfs_info(info, 572 "trying to use backup root at mount time"); 573 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 574 break; 575 case Opt_nologreplay: 576 btrfs_set_and_info(info, NOLOGREPLAY, 577 "disabling log replay at mount time"); 578 break; 579 case Opt_ignorebadroots: 580 btrfs_set_and_info(info, IGNOREBADROOTS, 581 "ignoring bad roots"); 582 break; 583 case Opt_ignoredatacsums: 584 btrfs_set_and_info(info, IGNOREDATACSUMS, 585 "ignoring data csums"); 586 break; 587 case Opt_rescue_all: 588 btrfs_info(info, "enabling all of the rescue options"); 589 btrfs_set_and_info(info, IGNOREDATACSUMS, 590 "ignoring data csums"); 591 btrfs_set_and_info(info, IGNOREBADROOTS, 592 "ignoring bad roots"); 593 btrfs_set_and_info(info, NOLOGREPLAY, 594 "disabling log replay at mount time"); 595 break; 596 case Opt_err: 597 btrfs_info(info, "unrecognized rescue option '%s'", p); 598 ret = -EINVAL; 599 goto out; 600 default: 601 break; 602 } 603 604 } 605out: 606 kfree(orig); 607 return ret; 608} 609 610/* 611 * Regular mount options parser. Everything that is needed only when 612 * reading in a new superblock is parsed here. 613 * XXX JDM: This needs to be cleaned up for remount. 614 */ 615int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 616 unsigned long new_flags) 617{ 618 substring_t args[MAX_OPT_ARGS]; 619 char *p, *num; 620 int intarg; 621 int ret = 0; 622 char *compress_type; 623 bool compress_force = false; 624 enum btrfs_compression_type saved_compress_type; 625 int saved_compress_level; 626 bool saved_compress_force; 627 int no_compress = 0; 628 629 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 630 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 631 else if (btrfs_free_space_cache_v1_active(info)) { 632 if (btrfs_is_zoned(info)) { 633 btrfs_info(info, 634 "zoned: clearing existing space cache"); 635 btrfs_set_super_cache_generation(info->super_copy, 0); 636 } else { 637 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 638 } 639 } 640 641 /* 642 * Even the options are empty, we still need to do extra check 643 * against new flags 644 */ 645 if (!options) 646 goto check; 647 648 while ((p = strsep(&options, ",")) != NULL) { 649 int token; 650 if (!*p) 651 continue; 652 653 token = match_token(p, tokens, args); 654 switch (token) { 655 case Opt_degraded: 656 btrfs_info(info, "allowing degraded mounts"); 657 btrfs_set_opt(info->mount_opt, DEGRADED); 658 break; 659 case Opt_subvol: 660 case Opt_subvol_empty: 661 case Opt_subvolid: 662 case Opt_device: 663 /* 664 * These are parsed by btrfs_parse_subvol_options or 665 * btrfs_parse_device_options and can be ignored here. 666 */ 667 break; 668 case Opt_nodatasum: 669 btrfs_set_and_info(info, NODATASUM, 670 "setting nodatasum"); 671 break; 672 case Opt_datasum: 673 if (btrfs_test_opt(info, NODATASUM)) { 674 if (btrfs_test_opt(info, NODATACOW)) 675 btrfs_info(info, 676 "setting datasum, datacow enabled"); 677 else 678 btrfs_info(info, "setting datasum"); 679 } 680 btrfs_clear_opt(info->mount_opt, NODATACOW); 681 btrfs_clear_opt(info->mount_opt, NODATASUM); 682 break; 683 case Opt_nodatacow: 684 if (!btrfs_test_opt(info, NODATACOW)) { 685 if (!btrfs_test_opt(info, COMPRESS) || 686 !btrfs_test_opt(info, FORCE_COMPRESS)) { 687 btrfs_info(info, 688 "setting nodatacow, compression disabled"); 689 } else { 690 btrfs_info(info, "setting nodatacow"); 691 } 692 } 693 btrfs_clear_opt(info->mount_opt, COMPRESS); 694 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 695 btrfs_set_opt(info->mount_opt, NODATACOW); 696 btrfs_set_opt(info->mount_opt, NODATASUM); 697 break; 698 case Opt_datacow: 699 btrfs_clear_and_info(info, NODATACOW, 700 "setting datacow"); 701 break; 702 case Opt_compress_force: 703 case Opt_compress_force_type: 704 compress_force = true; 705 fallthrough; 706 case Opt_compress: 707 case Opt_compress_type: 708 saved_compress_type = btrfs_test_opt(info, 709 COMPRESS) ? 710 info->compress_type : BTRFS_COMPRESS_NONE; 711 saved_compress_force = 712 btrfs_test_opt(info, FORCE_COMPRESS); 713 saved_compress_level = info->compress_level; 714 if (token == Opt_compress || 715 token == Opt_compress_force || 716 strncmp(args[0].from, "zlib", 4) == 0) { 717 compress_type = "zlib"; 718 719 info->compress_type = BTRFS_COMPRESS_ZLIB; 720 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 721 /* 722 * args[0] contains uninitialized data since 723 * for these tokens we don't expect any 724 * parameter. 725 */ 726 if (token != Opt_compress && 727 token != Opt_compress_force) 728 info->compress_level = 729 btrfs_compress_str2level( 730 BTRFS_COMPRESS_ZLIB, 731 args[0].from + 4); 732 btrfs_set_opt(info->mount_opt, COMPRESS); 733 btrfs_clear_opt(info->mount_opt, NODATACOW); 734 btrfs_clear_opt(info->mount_opt, NODATASUM); 735 no_compress = 0; 736 } else if (strncmp(args[0].from, "lzo", 3) == 0) { 737 compress_type = "lzo"; 738 info->compress_type = BTRFS_COMPRESS_LZO; 739 info->compress_level = 0; 740 btrfs_set_opt(info->mount_opt, COMPRESS); 741 btrfs_clear_opt(info->mount_opt, NODATACOW); 742 btrfs_clear_opt(info->mount_opt, NODATASUM); 743 btrfs_set_fs_incompat(info, COMPRESS_LZO); 744 no_compress = 0; 745 } else if (strncmp(args[0].from, "zstd", 4) == 0) { 746 compress_type = "zstd"; 747 info->compress_type = BTRFS_COMPRESS_ZSTD; 748 info->compress_level = 749 btrfs_compress_str2level( 750 BTRFS_COMPRESS_ZSTD, 751 args[0].from + 4); 752 btrfs_set_opt(info->mount_opt, COMPRESS); 753 btrfs_clear_opt(info->mount_opt, NODATACOW); 754 btrfs_clear_opt(info->mount_opt, NODATASUM); 755 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); 756 no_compress = 0; 757 } else if (strncmp(args[0].from, "no", 2) == 0) { 758 compress_type = "no"; 759 info->compress_level = 0; 760 info->compress_type = 0; 761 btrfs_clear_opt(info->mount_opt, COMPRESS); 762 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 763 compress_force = false; 764 no_compress++; 765 } else { 766 btrfs_err(info, "unrecognized compression value %s", 767 args[0].from); 768 ret = -EINVAL; 769 goto out; 770 } 771 772 if (compress_force) { 773 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 774 } else { 775 /* 776 * If we remount from compress-force=xxx to 777 * compress=xxx, we need clear FORCE_COMPRESS 778 * flag, otherwise, there is no way for users 779 * to disable forcible compression separately. 780 */ 781 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 782 } 783 if (no_compress == 1) { 784 btrfs_info(info, "use no compression"); 785 } else if ((info->compress_type != saved_compress_type) || 786 (compress_force != saved_compress_force) || 787 (info->compress_level != saved_compress_level)) { 788 btrfs_info(info, "%s %s compression, level %d", 789 (compress_force) ? "force" : "use", 790 compress_type, info->compress_level); 791 } 792 compress_force = false; 793 break; 794 case Opt_ssd: 795 btrfs_set_and_info(info, SSD, 796 "enabling ssd optimizations"); 797 btrfs_clear_opt(info->mount_opt, NOSSD); 798 break; 799 case Opt_ssd_spread: 800 btrfs_set_and_info(info, SSD, 801 "enabling ssd optimizations"); 802 btrfs_set_and_info(info, SSD_SPREAD, 803 "using spread ssd allocation scheme"); 804 btrfs_clear_opt(info->mount_opt, NOSSD); 805 break; 806 case Opt_nossd: 807 btrfs_set_opt(info->mount_opt, NOSSD); 808 btrfs_clear_and_info(info, SSD, 809 "not using ssd optimizations"); 810 fallthrough; 811 case Opt_nossd_spread: 812 btrfs_clear_and_info(info, SSD_SPREAD, 813 "not using spread ssd allocation scheme"); 814 break; 815 case Opt_barrier: 816 btrfs_clear_and_info(info, NOBARRIER, 817 "turning on barriers"); 818 break; 819 case Opt_nobarrier: 820 btrfs_set_and_info(info, NOBARRIER, 821 "turning off barriers"); 822 break; 823 case Opt_thread_pool: 824 ret = match_int(&args[0], &intarg); 825 if (ret) { 826 btrfs_err(info, "unrecognized thread_pool value %s", 827 args[0].from); 828 goto out; 829 } else if (intarg == 0) { 830 btrfs_err(info, "invalid value 0 for thread_pool"); 831 ret = -EINVAL; 832 goto out; 833 } 834 info->thread_pool_size = intarg; 835 break; 836 case Opt_max_inline: 837 num = match_strdup(&args[0]); 838 if (num) { 839 info->max_inline = memparse(num, NULL); 840 kfree(num); 841 842 if (info->max_inline) { 843 info->max_inline = min_t(u64, 844 info->max_inline, 845 info->sectorsize); 846 } 847 btrfs_info(info, "max_inline at %llu", 848 info->max_inline); 849 } else { 850 ret = -ENOMEM; 851 goto out; 852 } 853 break; 854 case Opt_acl: 855#ifdef CONFIG_BTRFS_FS_POSIX_ACL 856 info->sb->s_flags |= SB_POSIXACL; 857 break; 858#else 859 btrfs_err(info, "support for ACL not compiled in!"); 860 ret = -EINVAL; 861 goto out; 862#endif 863 case Opt_noacl: 864 info->sb->s_flags &= ~SB_POSIXACL; 865 break; 866 case Opt_notreelog: 867 btrfs_set_and_info(info, NOTREELOG, 868 "disabling tree log"); 869 break; 870 case Opt_treelog: 871 btrfs_clear_and_info(info, NOTREELOG, 872 "enabling tree log"); 873 break; 874 case Opt_norecovery: 875 case Opt_nologreplay: 876 btrfs_warn(info, 877 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead"); 878 btrfs_set_and_info(info, NOLOGREPLAY, 879 "disabling log replay at mount time"); 880 break; 881 case Opt_flushoncommit: 882 btrfs_set_and_info(info, FLUSHONCOMMIT, 883 "turning on flush-on-commit"); 884 break; 885 case Opt_noflushoncommit: 886 btrfs_clear_and_info(info, FLUSHONCOMMIT, 887 "turning off flush-on-commit"); 888 break; 889 case Opt_ratio: 890 ret = match_int(&args[0], &intarg); 891 if (ret) { 892 btrfs_err(info, "unrecognized metadata_ratio value %s", 893 args[0].from); 894 goto out; 895 } 896 info->metadata_ratio = intarg; 897 btrfs_info(info, "metadata ratio %u", 898 info->metadata_ratio); 899 break; 900 case Opt_discard: 901 case Opt_discard_mode: 902 if (token == Opt_discard || 903 strcmp(args[0].from, "sync") == 0) { 904 btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC); 905 btrfs_set_and_info(info, DISCARD_SYNC, 906 "turning on sync discard"); 907 } else if (strcmp(args[0].from, "async") == 0) { 908 btrfs_clear_opt(info->mount_opt, DISCARD_SYNC); 909 btrfs_set_and_info(info, DISCARD_ASYNC, 910 "turning on async discard"); 911 } else { 912 btrfs_err(info, "unrecognized discard mode value %s", 913 args[0].from); 914 ret = -EINVAL; 915 goto out; 916 } 917 break; 918 case Opt_nodiscard: 919 btrfs_clear_and_info(info, DISCARD_SYNC, 920 "turning off discard"); 921 btrfs_clear_and_info(info, DISCARD_ASYNC, 922 "turning off async discard"); 923 break; 924 case Opt_space_cache: 925 case Opt_space_cache_version: 926 /* 927 * We already set FREE_SPACE_TREE above because we have 928 * compat_ro(FREE_SPACE_TREE) set, and we aren't going 929 * to allow v1 to be set for extent tree v2, simply 930 * ignore this setting if we're extent tree v2. 931 */ 932 if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) 933 break; 934 if (token == Opt_space_cache || 935 strcmp(args[0].from, "v1") == 0) { 936 btrfs_clear_opt(info->mount_opt, 937 FREE_SPACE_TREE); 938 btrfs_set_and_info(info, SPACE_CACHE, 939 "enabling disk space caching"); 940 } else if (strcmp(args[0].from, "v2") == 0) { 941 btrfs_clear_opt(info->mount_opt, 942 SPACE_CACHE); 943 btrfs_set_and_info(info, FREE_SPACE_TREE, 944 "enabling free space tree"); 945 } else { 946 btrfs_err(info, "unrecognized space_cache value %s", 947 args[0].from); 948 ret = -EINVAL; 949 goto out; 950 } 951 break; 952 case Opt_rescan_uuid_tree: 953 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 954 break; 955 case Opt_no_space_cache: 956 /* 957 * We cannot operate without the free space tree with 958 * extent tree v2, ignore this option. 959 */ 960 if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) 961 break; 962 if (btrfs_test_opt(info, SPACE_CACHE)) { 963 btrfs_clear_and_info(info, SPACE_CACHE, 964 "disabling disk space caching"); 965 } 966 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 967 btrfs_clear_and_info(info, FREE_SPACE_TREE, 968 "disabling free space tree"); 969 } 970 break; 971 case Opt_inode_cache: 972 case Opt_noinode_cache: 973 btrfs_warn(info, 974 "the 'inode_cache' option is deprecated and has no effect since 5.11"); 975 break; 976 case Opt_clear_cache: 977 /* 978 * We cannot clear the free space tree with extent tree 979 * v2, ignore this option. 980 */ 981 if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) 982 break; 983 btrfs_set_and_info(info, CLEAR_CACHE, 984 "force clearing of disk cache"); 985 break; 986 case Opt_user_subvol_rm_allowed: 987 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 988 break; 989 case Opt_enospc_debug: 990 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 991 break; 992 case Opt_noenospc_debug: 993 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 994 break; 995 case Opt_defrag: 996 btrfs_set_and_info(info, AUTO_DEFRAG, 997 "enabling auto defrag"); 998 break; 999 case Opt_nodefrag: 1000 btrfs_clear_and_info(info, AUTO_DEFRAG, 1001 "disabling auto defrag"); 1002 break; 1003 case Opt_recovery: 1004 case Opt_usebackuproot: 1005 btrfs_warn(info, 1006 "'%s' is deprecated, use 'rescue=usebackuproot' instead", 1007 token == Opt_recovery ? "recovery" : 1008 "usebackuproot"); 1009 btrfs_info(info, 1010 "trying to use backup root at mount time"); 1011 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 1012 break; 1013 case Opt_skip_balance: 1014 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 1015 break; 1016#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1017 case Opt_check_integrity_including_extent_data: 1018 btrfs_info(info, 1019 "enabling check integrity including extent data"); 1020 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA); 1021 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 1022 break; 1023 case Opt_check_integrity: 1024 btrfs_info(info, "enabling check integrity"); 1025 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 1026 break; 1027 case Opt_check_integrity_print_mask: 1028 ret = match_int(&args[0], &intarg); 1029 if (ret) { 1030 btrfs_err(info, 1031 "unrecognized check_integrity_print_mask value %s", 1032 args[0].from); 1033 goto out; 1034 } 1035 info->check_integrity_print_mask = intarg; 1036 btrfs_info(info, "check_integrity_print_mask 0x%x", 1037 info->check_integrity_print_mask); 1038 break; 1039#else 1040 case Opt_check_integrity_including_extent_data: 1041 case Opt_check_integrity: 1042 case Opt_check_integrity_print_mask: 1043 btrfs_err(info, 1044 "support for check_integrity* not compiled in!"); 1045 ret = -EINVAL; 1046 goto out; 1047#endif 1048 case Opt_fatal_errors: 1049 if (strcmp(args[0].from, "panic") == 0) { 1050 btrfs_set_opt(info->mount_opt, 1051 PANIC_ON_FATAL_ERROR); 1052 } else if (strcmp(args[0].from, "bug") == 0) { 1053 btrfs_clear_opt(info->mount_opt, 1054 PANIC_ON_FATAL_ERROR); 1055 } else { 1056 btrfs_err(info, "unrecognized fatal_errors value %s", 1057 args[0].from); 1058 ret = -EINVAL; 1059 goto out; 1060 } 1061 break; 1062 case Opt_commit_interval: 1063 intarg = 0; 1064 ret = match_int(&args[0], &intarg); 1065 if (ret) { 1066 btrfs_err(info, "unrecognized commit_interval value %s", 1067 args[0].from); 1068 ret = -EINVAL; 1069 goto out; 1070 } 1071 if (intarg == 0) { 1072 btrfs_info(info, 1073 "using default commit interval %us", 1074 BTRFS_DEFAULT_COMMIT_INTERVAL); 1075 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL; 1076 } else if (intarg > 300) { 1077 btrfs_warn(info, "excessive commit interval %d", 1078 intarg); 1079 } 1080 info->commit_interval = intarg; 1081 break; 1082 case Opt_rescue: 1083 ret = parse_rescue_options(info, args[0].from); 1084 if (ret < 0) { 1085 btrfs_err(info, "unrecognized rescue value %s", 1086 args[0].from); 1087 goto out; 1088 } 1089 break; 1090#ifdef CONFIG_BTRFS_DEBUG 1091 case Opt_fragment_all: 1092 btrfs_info(info, "fragmenting all space"); 1093 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 1094 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 1095 break; 1096 case Opt_fragment_metadata: 1097 btrfs_info(info, "fragmenting metadata"); 1098 btrfs_set_opt(info->mount_opt, 1099 FRAGMENT_METADATA); 1100 break; 1101 case Opt_fragment_data: 1102 btrfs_info(info, "fragmenting data"); 1103 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 1104 break; 1105#endif 1106#ifdef CONFIG_BTRFS_FS_REF_VERIFY 1107 case Opt_ref_verify: 1108 btrfs_info(info, "doing ref verification"); 1109 btrfs_set_opt(info->mount_opt, REF_VERIFY); 1110 break; 1111#endif 1112 case Opt_err: 1113 btrfs_err(info, "unrecognized mount option '%s'", p); 1114 ret = -EINVAL; 1115 goto out; 1116 default: 1117 break; 1118 } 1119 } 1120check: 1121 /* We're read-only, don't have to check. */ 1122 if (new_flags & SB_RDONLY) 1123 goto out; 1124 1125 if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") || 1126 check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") || 1127 check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums")) 1128 ret = -EINVAL; 1129out: 1130 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 1131 !btrfs_test_opt(info, FREE_SPACE_TREE) && 1132 !btrfs_test_opt(info, CLEAR_CACHE)) { 1133 btrfs_err(info, "cannot disable free space tree"); 1134 ret = -EINVAL; 1135 1136 } 1137 if (!ret) 1138 ret = btrfs_check_mountopts_zoned(info); 1139 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 1140 btrfs_info(info, "disk space caching is enabled"); 1141 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 1142 btrfs_info(info, "using free space tree"); 1143 return ret; 1144} 1145 1146/* 1147 * Parse mount options that are required early in the mount process. 1148 * 1149 * All other options will be parsed on much later in the mount process and 1150 * only when we need to allocate a new super block. 1151 */ 1152static int btrfs_parse_device_options(const char *options, fmode_t flags, 1153 void *holder) 1154{ 1155 substring_t args[MAX_OPT_ARGS]; 1156 char *device_name, *opts, *orig, *p; 1157 struct btrfs_device *device = NULL; 1158 int error = 0; 1159 1160 lockdep_assert_held(&uuid_mutex); 1161 1162 if (!options) 1163 return 0; 1164 1165 /* 1166 * strsep changes the string, duplicate it because btrfs_parse_options 1167 * gets called later 1168 */ 1169 opts = kstrdup(options, GFP_KERNEL); 1170 if (!opts) 1171 return -ENOMEM; 1172 orig = opts; 1173 1174 while ((p = strsep(&opts, ",")) != NULL) { 1175 int token; 1176 1177 if (!*p) 1178 continue; 1179 1180 token = match_token(p, tokens, args); 1181 if (token == Opt_device) { 1182 device_name = match_strdup(&args[0]); 1183 if (!device_name) { 1184 error = -ENOMEM; 1185 goto out; 1186 } 1187 device = btrfs_scan_one_device(device_name, flags, 1188 holder); 1189 kfree(device_name); 1190 if (IS_ERR(device)) { 1191 error = PTR_ERR(device); 1192 goto out; 1193 } 1194 } 1195 } 1196 1197out: 1198 kfree(orig); 1199 return error; 1200} 1201 1202/* 1203 * Parse mount options that are related to subvolume id 1204 * 1205 * The value is later passed to mount_subvol() 1206 */ 1207static int btrfs_parse_subvol_options(const char *options, char **subvol_name, 1208 u64 *subvol_objectid) 1209{ 1210 substring_t args[MAX_OPT_ARGS]; 1211 char *opts, *orig, *p; 1212 int error = 0; 1213 u64 subvolid; 1214 1215 if (!options) 1216 return 0; 1217 1218 /* 1219 * strsep changes the string, duplicate it because 1220 * btrfs_parse_device_options gets called later 1221 */ 1222 opts = kstrdup(options, GFP_KERNEL); 1223 if (!opts) 1224 return -ENOMEM; 1225 orig = opts; 1226 1227 while ((p = strsep(&opts, ",")) != NULL) { 1228 int token; 1229 if (!*p) 1230 continue; 1231 1232 token = match_token(p, tokens, args); 1233 switch (token) { 1234 case Opt_subvol: 1235 kfree(*subvol_name); 1236 *subvol_name = match_strdup(&args[0]); 1237 if (!*subvol_name) { 1238 error = -ENOMEM; 1239 goto out; 1240 } 1241 break; 1242 case Opt_subvolid: 1243 error = match_u64(&args[0], &subvolid); 1244 if (error) 1245 goto out; 1246 1247 /* we want the original fs_tree */ 1248 if (subvolid == 0) 1249 subvolid = BTRFS_FS_TREE_OBJECTID; 1250 1251 *subvol_objectid = subvolid; 1252 break; 1253 default: 1254 break; 1255 } 1256 } 1257 1258out: 1259 kfree(orig); 1260 return error; 1261} 1262 1263char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 1264 u64 subvol_objectid) 1265{ 1266 struct btrfs_root *root = fs_info->tree_root; 1267 struct btrfs_root *fs_root = NULL; 1268 struct btrfs_root_ref *root_ref; 1269 struct btrfs_inode_ref *inode_ref; 1270 struct btrfs_key key; 1271 struct btrfs_path *path = NULL; 1272 char *name = NULL, *ptr; 1273 u64 dirid; 1274 int len; 1275 int ret; 1276 1277 path = btrfs_alloc_path(); 1278 if (!path) { 1279 ret = -ENOMEM; 1280 goto err; 1281 } 1282 1283 name = kmalloc(PATH_MAX, GFP_KERNEL); 1284 if (!name) { 1285 ret = -ENOMEM; 1286 goto err; 1287 } 1288 ptr = name + PATH_MAX - 1; 1289 ptr[0] = '\0'; 1290 1291 /* 1292 * Walk up the subvolume trees in the tree of tree roots by root 1293 * backrefs until we hit the top-level subvolume. 1294 */ 1295 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1296 key.objectid = subvol_objectid; 1297 key.type = BTRFS_ROOT_BACKREF_KEY; 1298 key.offset = (u64)-1; 1299 1300 ret = btrfs_search_backwards(root, &key, path); 1301 if (ret < 0) { 1302 goto err; 1303 } else if (ret > 0) { 1304 ret = -ENOENT; 1305 goto err; 1306 } 1307 1308 subvol_objectid = key.offset; 1309 1310 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1311 struct btrfs_root_ref); 1312 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1313 ptr -= len + 1; 1314 if (ptr < name) { 1315 ret = -ENAMETOOLONG; 1316 goto err; 1317 } 1318 read_extent_buffer(path->nodes[0], ptr + 1, 1319 (unsigned long)(root_ref + 1), len); 1320 ptr[0] = '/'; 1321 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1322 btrfs_release_path(path); 1323 1324 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true); 1325 if (IS_ERR(fs_root)) { 1326 ret = PTR_ERR(fs_root); 1327 fs_root = NULL; 1328 goto err; 1329 } 1330 1331 /* 1332 * Walk up the filesystem tree by inode refs until we hit the 1333 * root directory. 1334 */ 1335 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1336 key.objectid = dirid; 1337 key.type = BTRFS_INODE_REF_KEY; 1338 key.offset = (u64)-1; 1339 1340 ret = btrfs_search_backwards(fs_root, &key, path); 1341 if (ret < 0) { 1342 goto err; 1343 } else if (ret > 0) { 1344 ret = -ENOENT; 1345 goto err; 1346 } 1347 1348 dirid = key.offset; 1349 1350 inode_ref = btrfs_item_ptr(path->nodes[0], 1351 path->slots[0], 1352 struct btrfs_inode_ref); 1353 len = btrfs_inode_ref_name_len(path->nodes[0], 1354 inode_ref); 1355 ptr -= len + 1; 1356 if (ptr < name) { 1357 ret = -ENAMETOOLONG; 1358 goto err; 1359 } 1360 read_extent_buffer(path->nodes[0], ptr + 1, 1361 (unsigned long)(inode_ref + 1), len); 1362 ptr[0] = '/'; 1363 btrfs_release_path(path); 1364 } 1365 btrfs_put_root(fs_root); 1366 fs_root = NULL; 1367 } 1368 1369 btrfs_free_path(path); 1370 if (ptr == name + PATH_MAX - 1) { 1371 name[0] = '/'; 1372 name[1] = '\0'; 1373 } else { 1374 memmove(name, ptr, name + PATH_MAX - ptr); 1375 } 1376 return name; 1377 1378err: 1379 btrfs_put_root(fs_root); 1380 btrfs_free_path(path); 1381 kfree(name); 1382 return ERR_PTR(ret); 1383} 1384 1385static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1386{ 1387 struct btrfs_root *root = fs_info->tree_root; 1388 struct btrfs_dir_item *di; 1389 struct btrfs_path *path; 1390 struct btrfs_key location; 1391 u64 dir_id; 1392 1393 path = btrfs_alloc_path(); 1394 if (!path) 1395 return -ENOMEM; 1396 1397 /* 1398 * Find the "default" dir item which points to the root item that we 1399 * will mount by default if we haven't been given a specific subvolume 1400 * to mount. 1401 */ 1402 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1403 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1404 if (IS_ERR(di)) { 1405 btrfs_free_path(path); 1406 return PTR_ERR(di); 1407 } 1408 if (!di) { 1409 /* 1410 * Ok the default dir item isn't there. This is weird since 1411 * it's always been there, but don't freak out, just try and 1412 * mount the top-level subvolume. 1413 */ 1414 btrfs_free_path(path); 1415 *objectid = BTRFS_FS_TREE_OBJECTID; 1416 return 0; 1417 } 1418 1419 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1420 btrfs_free_path(path); 1421 *objectid = location.objectid; 1422 return 0; 1423} 1424 1425static int btrfs_fill_super(struct super_block *sb, 1426 struct btrfs_fs_devices *fs_devices, 1427 void *data) 1428{ 1429 struct inode *inode; 1430 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1431 int err; 1432 1433 sb->s_maxbytes = MAX_LFS_FILESIZE; 1434 sb->s_magic = BTRFS_SUPER_MAGIC; 1435 sb->s_op = &btrfs_super_ops; 1436 sb->s_d_op = &btrfs_dentry_operations; 1437 sb->s_export_op = &btrfs_export_ops; 1438#ifdef CONFIG_FS_VERITY 1439 sb->s_vop = &btrfs_verityops; 1440#endif 1441 sb->s_xattr = btrfs_xattr_handlers; 1442 sb->s_time_gran = 1; 1443#ifdef CONFIG_BTRFS_FS_POSIX_ACL 1444 sb->s_flags |= SB_POSIXACL; 1445#endif 1446 sb->s_flags |= SB_I_VERSION; 1447 sb->s_iflags |= SB_I_CGROUPWB; 1448 1449 err = super_setup_bdi(sb); 1450 if (err) { 1451 btrfs_err(fs_info, "super_setup_bdi failed"); 1452 return err; 1453 } 1454 1455 err = open_ctree(sb, fs_devices, (char *)data); 1456 if (err) { 1457 btrfs_err(fs_info, "open_ctree failed"); 1458 return err; 1459 } 1460 1461 inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root); 1462 if (IS_ERR(inode)) { 1463 err = PTR_ERR(inode); 1464 goto fail_close; 1465 } 1466 1467 sb->s_root = d_make_root(inode); 1468 if (!sb->s_root) { 1469 err = -ENOMEM; 1470 goto fail_close; 1471 } 1472 1473 sb->s_flags |= SB_ACTIVE; 1474 return 0; 1475 1476fail_close: 1477 close_ctree(fs_info); 1478 return err; 1479} 1480 1481int btrfs_sync_fs(struct super_block *sb, int wait) 1482{ 1483 struct btrfs_trans_handle *trans; 1484 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1485 struct btrfs_root *root = fs_info->tree_root; 1486 1487 trace_btrfs_sync_fs(fs_info, wait); 1488 1489 if (!wait) { 1490 filemap_flush(fs_info->btree_inode->i_mapping); 1491 return 0; 1492 } 1493 1494 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1495 1496 trans = btrfs_attach_transaction_barrier(root); 1497 if (IS_ERR(trans)) { 1498 /* no transaction, don't bother */ 1499 if (PTR_ERR(trans) == -ENOENT) { 1500 /* 1501 * Exit unless we have some pending changes 1502 * that need to go through commit 1503 */ 1504 if (fs_info->pending_changes == 0) 1505 return 0; 1506 /* 1507 * A non-blocking test if the fs is frozen. We must not 1508 * start a new transaction here otherwise a deadlock 1509 * happens. The pending operations are delayed to the 1510 * next commit after thawing. 1511 */ 1512 if (sb_start_write_trylock(sb)) 1513 sb_end_write(sb); 1514 else 1515 return 0; 1516 trans = btrfs_start_transaction(root, 0); 1517 } 1518 if (IS_ERR(trans)) 1519 return PTR_ERR(trans); 1520 } 1521 return btrfs_commit_transaction(trans); 1522} 1523 1524static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed) 1525{ 1526 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s); 1527 *printed = true; 1528} 1529 1530static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1531{ 1532 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1533 const char *compress_type; 1534 const char *subvol_name; 1535 bool printed = false; 1536 1537 if (btrfs_test_opt(info, DEGRADED)) 1538 seq_puts(seq, ",degraded"); 1539 if (btrfs_test_opt(info, NODATASUM)) 1540 seq_puts(seq, ",nodatasum"); 1541 if (btrfs_test_opt(info, NODATACOW)) 1542 seq_puts(seq, ",nodatacow"); 1543 if (btrfs_test_opt(info, NOBARRIER)) 1544 seq_puts(seq, ",nobarrier"); 1545 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1546 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1547 if (info->thread_pool_size != min_t(unsigned long, 1548 num_online_cpus() + 2, 8)) 1549 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1550 if (btrfs_test_opt(info, COMPRESS)) { 1551 compress_type = btrfs_compress_type2str(info->compress_type); 1552 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1553 seq_printf(seq, ",compress-force=%s", compress_type); 1554 else 1555 seq_printf(seq, ",compress=%s", compress_type); 1556 if (info->compress_level) 1557 seq_printf(seq, ":%d", info->compress_level); 1558 } 1559 if (btrfs_test_opt(info, NOSSD)) 1560 seq_puts(seq, ",nossd"); 1561 if (btrfs_test_opt(info, SSD_SPREAD)) 1562 seq_puts(seq, ",ssd_spread"); 1563 else if (btrfs_test_opt(info, SSD)) 1564 seq_puts(seq, ",ssd"); 1565 if (btrfs_test_opt(info, NOTREELOG)) 1566 seq_puts(seq, ",notreelog"); 1567 if (btrfs_test_opt(info, NOLOGREPLAY)) 1568 print_rescue_option(seq, "nologreplay", &printed); 1569 if (btrfs_test_opt(info, USEBACKUPROOT)) 1570 print_rescue_option(seq, "usebackuproot", &printed); 1571 if (btrfs_test_opt(info, IGNOREBADROOTS)) 1572 print_rescue_option(seq, "ignorebadroots", &printed); 1573 if (btrfs_test_opt(info, IGNOREDATACSUMS)) 1574 print_rescue_option(seq, "ignoredatacsums", &printed); 1575 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1576 seq_puts(seq, ",flushoncommit"); 1577 if (btrfs_test_opt(info, DISCARD_SYNC)) 1578 seq_puts(seq, ",discard"); 1579 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1580 seq_puts(seq, ",discard=async"); 1581 if (!(info->sb->s_flags & SB_POSIXACL)) 1582 seq_puts(seq, ",noacl"); 1583 if (btrfs_free_space_cache_v1_active(info)) 1584 seq_puts(seq, ",space_cache"); 1585 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 1586 seq_puts(seq, ",space_cache=v2"); 1587 else 1588 seq_puts(seq, ",nospace_cache"); 1589 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1590 seq_puts(seq, ",rescan_uuid_tree"); 1591 if (btrfs_test_opt(info, CLEAR_CACHE)) 1592 seq_puts(seq, ",clear_cache"); 1593 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1594 seq_puts(seq, ",user_subvol_rm_allowed"); 1595 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1596 seq_puts(seq, ",enospc_debug"); 1597 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1598 seq_puts(seq, ",autodefrag"); 1599 if (btrfs_test_opt(info, SKIP_BALANCE)) 1600 seq_puts(seq, ",skip_balance"); 1601#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1602 if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA)) 1603 seq_puts(seq, ",check_int_data"); 1604 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1605 seq_puts(seq, ",check_int"); 1606 if (info->check_integrity_print_mask) 1607 seq_printf(seq, ",check_int_print_mask=%d", 1608 info->check_integrity_print_mask); 1609#endif 1610 if (info->metadata_ratio) 1611 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1612 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1613 seq_puts(seq, ",fatal_errors=panic"); 1614 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1615 seq_printf(seq, ",commit=%u", info->commit_interval); 1616#ifdef CONFIG_BTRFS_DEBUG 1617 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1618 seq_puts(seq, ",fragment=data"); 1619 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1620 seq_puts(seq, ",fragment=metadata"); 1621#endif 1622 if (btrfs_test_opt(info, REF_VERIFY)) 1623 seq_puts(seq, ",ref_verify"); 1624 seq_printf(seq, ",subvolid=%llu", 1625 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1626 subvol_name = btrfs_get_subvol_name_from_objectid(info, 1627 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1628 if (!IS_ERR(subvol_name)) { 1629 seq_puts(seq, ",subvol="); 1630 seq_escape(seq, subvol_name, " \t\n\\"); 1631 kfree(subvol_name); 1632 } 1633 return 0; 1634} 1635 1636static int btrfs_test_super(struct super_block *s, void *data) 1637{ 1638 struct btrfs_fs_info *p = data; 1639 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1640 1641 return fs_info->fs_devices == p->fs_devices; 1642} 1643 1644static int btrfs_set_super(struct super_block *s, void *data) 1645{ 1646 int err = set_anon_super(s, data); 1647 if (!err) 1648 s->s_fs_info = data; 1649 return err; 1650} 1651 1652/* 1653 * subvolumes are identified by ino 256 1654 */ 1655static inline int is_subvolume_inode(struct inode *inode) 1656{ 1657 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1658 return 1; 1659 return 0; 1660} 1661 1662static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1663 struct vfsmount *mnt) 1664{ 1665 struct dentry *root; 1666 int ret; 1667 1668 if (!subvol_name) { 1669 if (!subvol_objectid) { 1670 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1671 &subvol_objectid); 1672 if (ret) { 1673 root = ERR_PTR(ret); 1674 goto out; 1675 } 1676 } 1677 subvol_name = btrfs_get_subvol_name_from_objectid( 1678 btrfs_sb(mnt->mnt_sb), subvol_objectid); 1679 if (IS_ERR(subvol_name)) { 1680 root = ERR_CAST(subvol_name); 1681 subvol_name = NULL; 1682 goto out; 1683 } 1684 1685 } 1686 1687 root = mount_subtree(mnt, subvol_name); 1688 /* mount_subtree() drops our reference on the vfsmount. */ 1689 mnt = NULL; 1690 1691 if (!IS_ERR(root)) { 1692 struct super_block *s = root->d_sb; 1693 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1694 struct inode *root_inode = d_inode(root); 1695 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1696 1697 ret = 0; 1698 if (!is_subvolume_inode(root_inode)) { 1699 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1700 subvol_name); 1701 ret = -EINVAL; 1702 } 1703 if (subvol_objectid && root_objectid != subvol_objectid) { 1704 /* 1705 * This will also catch a race condition where a 1706 * subvolume which was passed by ID is renamed and 1707 * another subvolume is renamed over the old location. 1708 */ 1709 btrfs_err(fs_info, 1710 "subvol '%s' does not match subvolid %llu", 1711 subvol_name, subvol_objectid); 1712 ret = -EINVAL; 1713 } 1714 if (ret) { 1715 dput(root); 1716 root = ERR_PTR(ret); 1717 deactivate_locked_super(s); 1718 } 1719 } 1720 1721out: 1722 mntput(mnt); 1723 kfree(subvol_name); 1724 return root; 1725} 1726 1727/* 1728 * Find a superblock for the given device / mount point. 1729 * 1730 * Note: This is based on mount_bdev from fs/super.c with a few additions 1731 * for multiple device setup. Make sure to keep it in sync. 1732 */ 1733static struct dentry *btrfs_mount_root(struct file_system_type *fs_type, 1734 int flags, const char *device_name, void *data) 1735{ 1736 struct block_device *bdev = NULL; 1737 struct super_block *s; 1738 struct btrfs_device *device = NULL; 1739 struct btrfs_fs_devices *fs_devices = NULL; 1740 struct btrfs_fs_info *fs_info = NULL; 1741 void *new_sec_opts = NULL; 1742 fmode_t mode = FMODE_READ; 1743 int error = 0; 1744 1745 if (!(flags & SB_RDONLY)) 1746 mode |= FMODE_WRITE; 1747 1748 if (data) { 1749 error = security_sb_eat_lsm_opts(data, &new_sec_opts); 1750 if (error) 1751 return ERR_PTR(error); 1752 } 1753 1754 /* 1755 * Setup a dummy root and fs_info for test/set super. This is because 1756 * we don't actually fill this stuff out until open_ctree, but we need 1757 * then open_ctree will properly initialize the file system specific 1758 * settings later. btrfs_init_fs_info initializes the static elements 1759 * of the fs_info (locks and such) to make cleanup easier if we find a 1760 * superblock with our given fs_devices later on at sget() time. 1761 */ 1762 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 1763 if (!fs_info) { 1764 error = -ENOMEM; 1765 goto error_sec_opts; 1766 } 1767 btrfs_init_fs_info(fs_info); 1768 1769 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1770 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1771 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1772 error = -ENOMEM; 1773 goto error_fs_info; 1774 } 1775 1776 mutex_lock(&uuid_mutex); 1777 error = btrfs_parse_device_options(data, mode, fs_type); 1778 if (error) { 1779 mutex_unlock(&uuid_mutex); 1780 goto error_fs_info; 1781 } 1782 1783 device = btrfs_scan_one_device(device_name, mode, fs_type); 1784 if (IS_ERR(device)) { 1785 mutex_unlock(&uuid_mutex); 1786 error = PTR_ERR(device); 1787 goto error_fs_info; 1788 } 1789 1790 fs_devices = device->fs_devices; 1791 fs_info->fs_devices = fs_devices; 1792 1793 error = btrfs_open_devices(fs_devices, mode, fs_type); 1794 mutex_unlock(&uuid_mutex); 1795 if (error) 1796 goto error_fs_info; 1797 1798 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1799 error = -EACCES; 1800 goto error_close_devices; 1801 } 1802 1803 bdev = fs_devices->latest_dev->bdev; 1804 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, 1805 fs_info); 1806 if (IS_ERR(s)) { 1807 error = PTR_ERR(s); 1808 goto error_close_devices; 1809 } 1810 1811 if (s->s_root) { 1812 btrfs_close_devices(fs_devices); 1813 btrfs_free_fs_info(fs_info); 1814 if ((flags ^ s->s_flags) & SB_RDONLY) 1815 error = -EBUSY; 1816 } else { 1817 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1818 btrfs_sb(s)->bdev_holder = fs_type; 1819 if (!strstr(crc32c_impl(), "generic")) 1820 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 1821 error = btrfs_fill_super(s, fs_devices, data); 1822 } 1823 if (!error) 1824 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL); 1825 security_free_mnt_opts(&new_sec_opts); 1826 if (error) { 1827 deactivate_locked_super(s); 1828 return ERR_PTR(error); 1829 } 1830 1831 return dget(s->s_root); 1832 1833error_close_devices: 1834 btrfs_close_devices(fs_devices); 1835error_fs_info: 1836 btrfs_free_fs_info(fs_info); 1837error_sec_opts: 1838 security_free_mnt_opts(&new_sec_opts); 1839 return ERR_PTR(error); 1840} 1841 1842/* 1843 * Mount function which is called by VFS layer. 1844 * 1845 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree() 1846 * which needs vfsmount* of device's root (/). This means device's root has to 1847 * be mounted internally in any case. 1848 * 1849 * Operation flow: 1850 * 1. Parse subvol id related options for later use in mount_subvol(). 1851 * 1852 * 2. Mount device's root (/) by calling vfs_kern_mount(). 1853 * 1854 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the 1855 * first place. In order to avoid calling btrfs_mount() again, we use 1856 * different file_system_type which is not registered to VFS by 1857 * register_filesystem() (btrfs_root_fs_type). As a result, 1858 * btrfs_mount_root() is called. The return value will be used by 1859 * mount_subtree() in mount_subvol(). 1860 * 1861 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is 1862 * "btrfs subvolume set-default", mount_subvol() is called always. 1863 */ 1864static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1865 const char *device_name, void *data) 1866{ 1867 struct vfsmount *mnt_root; 1868 struct dentry *root; 1869 char *subvol_name = NULL; 1870 u64 subvol_objectid = 0; 1871 int error = 0; 1872 1873 error = btrfs_parse_subvol_options(data, &subvol_name, 1874 &subvol_objectid); 1875 if (error) { 1876 kfree(subvol_name); 1877 return ERR_PTR(error); 1878 } 1879 1880 /* mount device's root (/) */ 1881 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data); 1882 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) { 1883 if (flags & SB_RDONLY) { 1884 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1885 flags & ~SB_RDONLY, device_name, data); 1886 } else { 1887 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1888 flags | SB_RDONLY, device_name, data); 1889 if (IS_ERR(mnt_root)) { 1890 root = ERR_CAST(mnt_root); 1891 kfree(subvol_name); 1892 goto out; 1893 } 1894 1895 down_write(&mnt_root->mnt_sb->s_umount); 1896 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL); 1897 up_write(&mnt_root->mnt_sb->s_umount); 1898 if (error < 0) { 1899 root = ERR_PTR(error); 1900 mntput(mnt_root); 1901 kfree(subvol_name); 1902 goto out; 1903 } 1904 } 1905 } 1906 if (IS_ERR(mnt_root)) { 1907 root = ERR_CAST(mnt_root); 1908 kfree(subvol_name); 1909 goto out; 1910 } 1911 1912 /* mount_subvol() will free subvol_name and mnt_root */ 1913 root = mount_subvol(subvol_name, subvol_objectid, mnt_root); 1914 1915out: 1916 return root; 1917} 1918 1919static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1920 u32 new_pool_size, u32 old_pool_size) 1921{ 1922 if (new_pool_size == old_pool_size) 1923 return; 1924 1925 fs_info->thread_pool_size = new_pool_size; 1926 1927 btrfs_info(fs_info, "resize thread pool %d -> %d", 1928 old_pool_size, new_pool_size); 1929 1930 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1931 btrfs_workqueue_set_max(fs_info->hipri_workers, new_pool_size); 1932 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1933 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1934 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1935 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1936 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1937 new_pool_size); 1938 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1939 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1940 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1941} 1942 1943static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1944 unsigned long old_opts, int flags) 1945{ 1946 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1947 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1948 (flags & SB_RDONLY))) { 1949 /* wait for any defraggers to finish */ 1950 wait_event(fs_info->transaction_wait, 1951 (atomic_read(&fs_info->defrag_running) == 0)); 1952 if (flags & SB_RDONLY) 1953 sync_filesystem(fs_info->sb); 1954 } 1955} 1956 1957static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1958 unsigned long old_opts) 1959{ 1960 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 1961 1962 /* 1963 * We need to cleanup all defragable inodes if the autodefragment is 1964 * close or the filesystem is read only. 1965 */ 1966 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1967 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1968 btrfs_cleanup_defrag_inodes(fs_info); 1969 } 1970 1971 /* If we toggled discard async */ 1972 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1973 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1974 btrfs_discard_resume(fs_info); 1975 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1976 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1977 btrfs_discard_cleanup(fs_info); 1978 1979 /* If we toggled space cache */ 1980 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) 1981 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 1982} 1983 1984static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1985{ 1986 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1987 unsigned old_flags = sb->s_flags; 1988 unsigned long old_opts = fs_info->mount_opt; 1989 unsigned long old_compress_type = fs_info->compress_type; 1990 u64 old_max_inline = fs_info->max_inline; 1991 u32 old_thread_pool_size = fs_info->thread_pool_size; 1992 u32 old_metadata_ratio = fs_info->metadata_ratio; 1993 int ret; 1994 1995 sync_filesystem(sb); 1996 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1997 1998 if (data) { 1999 void *new_sec_opts = NULL; 2000 2001 ret = security_sb_eat_lsm_opts(data, &new_sec_opts); 2002 if (!ret) 2003 ret = security_sb_remount(sb, new_sec_opts); 2004 security_free_mnt_opts(&new_sec_opts); 2005 if (ret) 2006 goto restore; 2007 } 2008 2009 ret = btrfs_parse_options(fs_info, data, *flags); 2010 if (ret) 2011 goto restore; 2012 2013 /* V1 cache is not supported for subpage mount. */ 2014 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 2015 btrfs_warn(fs_info, 2016 "v1 space cache is not supported for page size %lu with sectorsize %u", 2017 PAGE_SIZE, fs_info->sectorsize); 2018 ret = -EINVAL; 2019 goto restore; 2020 } 2021 btrfs_remount_begin(fs_info, old_opts, *flags); 2022 btrfs_resize_thread_pool(fs_info, 2023 fs_info->thread_pool_size, old_thread_pool_size); 2024 2025 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) != 2026 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2027 (!sb_rdonly(sb) || (*flags & SB_RDONLY))) { 2028 btrfs_warn(fs_info, 2029 "remount supports changing free space tree only from ro to rw"); 2030 /* Make sure free space cache options match the state on disk */ 2031 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2032 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 2033 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 2034 } 2035 if (btrfs_free_space_cache_v1_active(fs_info)) { 2036 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE); 2037 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 2038 } 2039 } 2040 2041 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 2042 goto out; 2043 2044 if (*flags & SB_RDONLY) { 2045 /* 2046 * this also happens on 'umount -rf' or on shutdown, when 2047 * the filesystem is busy. 2048 */ 2049 cancel_work_sync(&fs_info->async_reclaim_work); 2050 cancel_work_sync(&fs_info->async_data_reclaim_work); 2051 2052 btrfs_discard_cleanup(fs_info); 2053 2054 /* wait for the uuid_scan task to finish */ 2055 down(&fs_info->uuid_tree_rescan_sem); 2056 /* avoid complains from lockdep et al. */ 2057 up(&fs_info->uuid_tree_rescan_sem); 2058 2059 btrfs_set_sb_rdonly(sb); 2060 2061 /* 2062 * Setting SB_RDONLY will put the cleaner thread to 2063 * sleep at the next loop if it's already active. 2064 * If it's already asleep, we'll leave unused block 2065 * groups on disk until we're mounted read-write again 2066 * unless we clean them up here. 2067 */ 2068 btrfs_delete_unused_bgs(fs_info); 2069 2070 /* 2071 * The cleaner task could be already running before we set the 2072 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock). 2073 * We must make sure that after we finish the remount, i.e. after 2074 * we call btrfs_commit_super(), the cleaner can no longer start 2075 * a transaction - either because it was dropping a dead root, 2076 * running delayed iputs or deleting an unused block group (the 2077 * cleaner picked a block group from the list of unused block 2078 * groups before we were able to in the previous call to 2079 * btrfs_delete_unused_bgs()). 2080 */ 2081 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, 2082 TASK_UNINTERRUPTIBLE); 2083 2084 /* 2085 * We've set the superblock to RO mode, so we might have made 2086 * the cleaner task sleep without running all pending delayed 2087 * iputs. Go through all the delayed iputs here, so that if an 2088 * unmount happens without remounting RW we don't end up at 2089 * finishing close_ctree() with a non-empty list of delayed 2090 * iputs. 2091 */ 2092 btrfs_run_delayed_iputs(fs_info); 2093 2094 btrfs_dev_replace_suspend_for_unmount(fs_info); 2095 btrfs_scrub_cancel(fs_info); 2096 btrfs_pause_balance(fs_info); 2097 2098 /* 2099 * Pause the qgroup rescan worker if it is running. We don't want 2100 * it to be still running after we are in RO mode, as after that, 2101 * by the time we unmount, it might have left a transaction open, 2102 * so we would leak the transaction and/or crash. 2103 */ 2104 btrfs_qgroup_wait_for_completion(fs_info, false); 2105 2106 ret = btrfs_commit_super(fs_info); 2107 if (ret) 2108 goto restore; 2109 } else { 2110 if (BTRFS_FS_ERROR(fs_info)) { 2111 btrfs_err(fs_info, 2112 "Remounting read-write after error is not allowed"); 2113 ret = -EINVAL; 2114 goto restore; 2115 } 2116 if (fs_info->fs_devices->rw_devices == 0) { 2117 ret = -EACCES; 2118 goto restore; 2119 } 2120 2121 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 2122 btrfs_warn(fs_info, 2123 "too many missing devices, writable remount is not allowed"); 2124 ret = -EACCES; 2125 goto restore; 2126 } 2127 2128 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 2129 btrfs_warn(fs_info, 2130 "mount required to replay tree-log, cannot remount read-write"); 2131 ret = -EINVAL; 2132 goto restore; 2133 } 2134 2135 /* 2136 * NOTE: when remounting with a change that does writes, don't 2137 * put it anywhere above this point, as we are not sure to be 2138 * safe to write until we pass the above checks. 2139 */ 2140 ret = btrfs_start_pre_rw_mount(fs_info); 2141 if (ret) 2142 goto restore; 2143 2144 btrfs_clear_sb_rdonly(sb); 2145 2146 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 2147 } 2148out: 2149 /* 2150 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS, 2151 * since the absence of the flag means it can be toggled off by remount. 2152 */ 2153 *flags |= SB_I_VERSION; 2154 2155 wake_up_process(fs_info->transaction_kthread); 2156 btrfs_remount_cleanup(fs_info, old_opts); 2157 btrfs_clear_oneshot_options(fs_info); 2158 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 2159 2160 return 0; 2161 2162restore: 2163 /* We've hit an error - don't reset SB_RDONLY */ 2164 if (sb_rdonly(sb)) 2165 old_flags |= SB_RDONLY; 2166 if (!(old_flags & SB_RDONLY)) 2167 clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2168 sb->s_flags = old_flags; 2169 fs_info->mount_opt = old_opts; 2170 fs_info->compress_type = old_compress_type; 2171 fs_info->max_inline = old_max_inline; 2172 btrfs_resize_thread_pool(fs_info, 2173 old_thread_pool_size, fs_info->thread_pool_size); 2174 fs_info->metadata_ratio = old_metadata_ratio; 2175 btrfs_remount_cleanup(fs_info, old_opts); 2176 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 2177 2178 return ret; 2179} 2180 2181/* Used to sort the devices by max_avail(descending sort) */ 2182static int btrfs_cmp_device_free_bytes(const void *a, const void *b) 2183{ 2184 const struct btrfs_device_info *dev_info1 = a; 2185 const struct btrfs_device_info *dev_info2 = b; 2186 2187 if (dev_info1->max_avail > dev_info2->max_avail) 2188 return -1; 2189 else if (dev_info1->max_avail < dev_info2->max_avail) 2190 return 1; 2191 return 0; 2192} 2193 2194/* 2195 * sort the devices by max_avail, in which max free extent size of each device 2196 * is stored.(Descending Sort) 2197 */ 2198static inline void btrfs_descending_sort_devices( 2199 struct btrfs_device_info *devices, 2200 size_t nr_devices) 2201{ 2202 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 2203 btrfs_cmp_device_free_bytes, NULL); 2204} 2205 2206/* 2207 * The helper to calc the free space on the devices that can be used to store 2208 * file data. 2209 */ 2210static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 2211 u64 *free_bytes) 2212{ 2213 struct btrfs_device_info *devices_info; 2214 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2215 struct btrfs_device *device; 2216 u64 type; 2217 u64 avail_space; 2218 u64 min_stripe_size; 2219 int num_stripes = 1; 2220 int i = 0, nr_devices; 2221 const struct btrfs_raid_attr *rattr; 2222 2223 /* 2224 * We aren't under the device list lock, so this is racy-ish, but good 2225 * enough for our purposes. 2226 */ 2227 nr_devices = fs_info->fs_devices->open_devices; 2228 if (!nr_devices) { 2229 smp_mb(); 2230 nr_devices = fs_info->fs_devices->open_devices; 2231 ASSERT(nr_devices); 2232 if (!nr_devices) { 2233 *free_bytes = 0; 2234 return 0; 2235 } 2236 } 2237 2238 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 2239 GFP_KERNEL); 2240 if (!devices_info) 2241 return -ENOMEM; 2242 2243 /* calc min stripe number for data space allocation */ 2244 type = btrfs_data_alloc_profile(fs_info); 2245 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 2246 2247 if (type & BTRFS_BLOCK_GROUP_RAID0) 2248 num_stripes = nr_devices; 2249 else if (type & BTRFS_BLOCK_GROUP_RAID1) 2250 num_stripes = 2; 2251 else if (type & BTRFS_BLOCK_GROUP_RAID1C3) 2252 num_stripes = 3; 2253 else if (type & BTRFS_BLOCK_GROUP_RAID1C4) 2254 num_stripes = 4; 2255 else if (type & BTRFS_BLOCK_GROUP_RAID10) 2256 num_stripes = 4; 2257 2258 /* Adjust for more than 1 stripe per device */ 2259 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 2260 2261 rcu_read_lock(); 2262 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2263 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2264 &device->dev_state) || 2265 !device->bdev || 2266 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2267 continue; 2268 2269 if (i >= nr_devices) 2270 break; 2271 2272 avail_space = device->total_bytes - device->bytes_used; 2273 2274 /* align with stripe_len */ 2275 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 2276 2277 /* 2278 * In order to avoid overwriting the superblock on the drive, 2279 * btrfs starts at an offset of at least 1MB when doing chunk 2280 * allocation. 2281 * 2282 * This ensures we have at least min_stripe_size free space 2283 * after excluding 1MB. 2284 */ 2285 if (avail_space <= SZ_1M + min_stripe_size) 2286 continue; 2287 2288 avail_space -= SZ_1M; 2289 2290 devices_info[i].dev = device; 2291 devices_info[i].max_avail = avail_space; 2292 2293 i++; 2294 } 2295 rcu_read_unlock(); 2296 2297 nr_devices = i; 2298 2299 btrfs_descending_sort_devices(devices_info, nr_devices); 2300 2301 i = nr_devices - 1; 2302 avail_space = 0; 2303 while (nr_devices >= rattr->devs_min) { 2304 num_stripes = min(num_stripes, nr_devices); 2305 2306 if (devices_info[i].max_avail >= min_stripe_size) { 2307 int j; 2308 u64 alloc_size; 2309 2310 avail_space += devices_info[i].max_avail * num_stripes; 2311 alloc_size = devices_info[i].max_avail; 2312 for (j = i + 1 - num_stripes; j <= i; j++) 2313 devices_info[j].max_avail -= alloc_size; 2314 } 2315 i--; 2316 nr_devices--; 2317 } 2318 2319 kfree(devices_info); 2320 *free_bytes = avail_space; 2321 return 0; 2322} 2323 2324/* 2325 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2326 * 2327 * If there's a redundant raid level at DATA block groups, use the respective 2328 * multiplier to scale the sizes. 2329 * 2330 * Unused device space usage is based on simulating the chunk allocator 2331 * algorithm that respects the device sizes and order of allocations. This is 2332 * a close approximation of the actual use but there are other factors that may 2333 * change the result (like a new metadata chunk). 2334 * 2335 * If metadata is exhausted, f_bavail will be 0. 2336 */ 2337static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2338{ 2339 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2340 struct btrfs_super_block *disk_super = fs_info->super_copy; 2341 struct btrfs_space_info *found; 2342 u64 total_used = 0; 2343 u64 total_free_data = 0; 2344 u64 total_free_meta = 0; 2345 u32 bits = fs_info->sectorsize_bits; 2346 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 2347 unsigned factor = 1; 2348 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2349 int ret; 2350 u64 thresh = 0; 2351 int mixed = 0; 2352 2353 list_for_each_entry(found, &fs_info->space_info, list) { 2354 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2355 int i; 2356 2357 total_free_data += found->disk_total - found->disk_used; 2358 total_free_data -= 2359 btrfs_account_ro_block_groups_free_space(found); 2360 2361 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2362 if (!list_empty(&found->block_groups[i])) 2363 factor = btrfs_bg_type_to_factor( 2364 btrfs_raid_array[i].bg_flag); 2365 } 2366 } 2367 2368 /* 2369 * Metadata in mixed block goup profiles are accounted in data 2370 */ 2371 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2372 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2373 mixed = 1; 2374 else 2375 total_free_meta += found->disk_total - 2376 found->disk_used; 2377 } 2378 2379 total_used += found->disk_used; 2380 } 2381 2382 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2383 buf->f_blocks >>= bits; 2384 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2385 2386 /* Account global block reserve as used, it's in logical size already */ 2387 spin_lock(&block_rsv->lock); 2388 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2389 if (buf->f_bfree >= block_rsv->size >> bits) 2390 buf->f_bfree -= block_rsv->size >> bits; 2391 else 2392 buf->f_bfree = 0; 2393 spin_unlock(&block_rsv->lock); 2394 2395 buf->f_bavail = div_u64(total_free_data, factor); 2396 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2397 if (ret) 2398 return ret; 2399 buf->f_bavail += div_u64(total_free_data, factor); 2400 buf->f_bavail = buf->f_bavail >> bits; 2401 2402 /* 2403 * We calculate the remaining metadata space minus global reserve. If 2404 * this is (supposedly) smaller than zero, there's no space. But this 2405 * does not hold in practice, the exhausted state happens where's still 2406 * some positive delta. So we apply some guesswork and compare the 2407 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2408 * 2409 * We probably cannot calculate the exact threshold value because this 2410 * depends on the internal reservations requested by various 2411 * operations, so some operations that consume a few metadata will 2412 * succeed even if the Avail is zero. But this is better than the other 2413 * way around. 2414 */ 2415 thresh = SZ_4M; 2416 2417 /* 2418 * We only want to claim there's no available space if we can no longer 2419 * allocate chunks for our metadata profile and our global reserve will 2420 * not fit in the free metadata space. If we aren't ->full then we 2421 * still can allocate chunks and thus are fine using the currently 2422 * calculated f_bavail. 2423 */ 2424 if (!mixed && block_rsv->space_info->full && 2425 total_free_meta - thresh < block_rsv->size) 2426 buf->f_bavail = 0; 2427 2428 buf->f_type = BTRFS_SUPER_MAGIC; 2429 buf->f_bsize = dentry->d_sb->s_blocksize; 2430 buf->f_namelen = BTRFS_NAME_LEN; 2431 2432 /* We treat it as constant endianness (it doesn't matter _which_) 2433 because we want the fsid to come out the same whether mounted 2434 on a big-endian or little-endian host */ 2435 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2436 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2437 /* Mask in the root object ID too, to disambiguate subvols */ 2438 buf->f_fsid.val[0] ^= 2439 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32; 2440 buf->f_fsid.val[1] ^= 2441 BTRFS_I(d_inode(dentry))->root->root_key.objectid; 2442 2443 return 0; 2444} 2445 2446static void btrfs_kill_super(struct super_block *sb) 2447{ 2448 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2449 kill_anon_super(sb); 2450 btrfs_free_fs_info(fs_info); 2451} 2452 2453static struct file_system_type btrfs_fs_type = { 2454 .owner = THIS_MODULE, 2455 .name = "btrfs", 2456 .mount = btrfs_mount, 2457 .kill_sb = btrfs_kill_super, 2458 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2459}; 2460 2461static struct file_system_type btrfs_root_fs_type = { 2462 .owner = THIS_MODULE, 2463 .name = "btrfs", 2464 .mount = btrfs_mount_root, 2465 .kill_sb = btrfs_kill_super, 2466 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP, 2467}; 2468 2469MODULE_ALIAS_FS("btrfs"); 2470 2471static int btrfs_control_open(struct inode *inode, struct file *file) 2472{ 2473 /* 2474 * The control file's private_data is used to hold the 2475 * transaction when it is started and is used to keep 2476 * track of whether a transaction is already in progress. 2477 */ 2478 file->private_data = NULL; 2479 return 0; 2480} 2481 2482/* 2483 * Used by /dev/btrfs-control for devices ioctls. 2484 */ 2485static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2486 unsigned long arg) 2487{ 2488 struct btrfs_ioctl_vol_args *vol; 2489 struct btrfs_device *device = NULL; 2490 dev_t devt = 0; 2491 int ret = -ENOTTY; 2492 2493 if (!capable(CAP_SYS_ADMIN)) 2494 return -EPERM; 2495 2496 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2497 if (IS_ERR(vol)) 2498 return PTR_ERR(vol); 2499 vol->name[BTRFS_PATH_NAME_MAX] = '\0'; 2500 2501 switch (cmd) { 2502 case BTRFS_IOC_SCAN_DEV: 2503 mutex_lock(&uuid_mutex); 2504 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2505 &btrfs_root_fs_type); 2506 ret = PTR_ERR_OR_ZERO(device); 2507 mutex_unlock(&uuid_mutex); 2508 break; 2509 case BTRFS_IOC_FORGET_DEV: 2510 if (vol->name[0] != 0) { 2511 ret = lookup_bdev(vol->name, &devt); 2512 if (ret) 2513 break; 2514 } 2515 ret = btrfs_forget_devices(devt); 2516 break; 2517 case BTRFS_IOC_DEVICES_READY: 2518 mutex_lock(&uuid_mutex); 2519 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2520 &btrfs_root_fs_type); 2521 if (IS_ERR(device)) { 2522 mutex_unlock(&uuid_mutex); 2523 ret = PTR_ERR(device); 2524 break; 2525 } 2526 ret = !(device->fs_devices->num_devices == 2527 device->fs_devices->total_devices); 2528 mutex_unlock(&uuid_mutex); 2529 break; 2530 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2531 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2532 break; 2533 } 2534 2535 kfree(vol); 2536 return ret; 2537} 2538 2539static int btrfs_freeze(struct super_block *sb) 2540{ 2541 struct btrfs_trans_handle *trans; 2542 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2543 struct btrfs_root *root = fs_info->tree_root; 2544 2545 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2546 /* 2547 * We don't need a barrier here, we'll wait for any transaction that 2548 * could be in progress on other threads (and do delayed iputs that 2549 * we want to avoid on a frozen filesystem), or do the commit 2550 * ourselves. 2551 */ 2552 trans = btrfs_attach_transaction_barrier(root); 2553 if (IS_ERR(trans)) { 2554 /* no transaction, don't bother */ 2555 if (PTR_ERR(trans) == -ENOENT) 2556 return 0; 2557 return PTR_ERR(trans); 2558 } 2559 return btrfs_commit_transaction(trans); 2560} 2561 2562static int btrfs_unfreeze(struct super_block *sb) 2563{ 2564 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2565 2566 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2567 return 0; 2568} 2569 2570static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2571{ 2572 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2573 2574 /* 2575 * There should be always a valid pointer in latest_dev, it may be stale 2576 * for a short moment in case it's being deleted but still valid until 2577 * the end of RCU grace period. 2578 */ 2579 rcu_read_lock(); 2580 seq_escape(m, rcu_str_deref(fs_info->fs_devices->latest_dev->name), " \t\n\\"); 2581 rcu_read_unlock(); 2582 2583 return 0; 2584} 2585 2586static const struct super_operations btrfs_super_ops = { 2587 .drop_inode = btrfs_drop_inode, 2588 .evict_inode = btrfs_evict_inode, 2589 .put_super = btrfs_put_super, 2590 .sync_fs = btrfs_sync_fs, 2591 .show_options = btrfs_show_options, 2592 .show_devname = btrfs_show_devname, 2593 .alloc_inode = btrfs_alloc_inode, 2594 .destroy_inode = btrfs_destroy_inode, 2595 .free_inode = btrfs_free_inode, 2596 .statfs = btrfs_statfs, 2597 .remount_fs = btrfs_remount, 2598 .freeze_fs = btrfs_freeze, 2599 .unfreeze_fs = btrfs_unfreeze, 2600}; 2601 2602static const struct file_operations btrfs_ctl_fops = { 2603 .open = btrfs_control_open, 2604 .unlocked_ioctl = btrfs_control_ioctl, 2605 .compat_ioctl = compat_ptr_ioctl, 2606 .owner = THIS_MODULE, 2607 .llseek = noop_llseek, 2608}; 2609 2610static struct miscdevice btrfs_misc = { 2611 .minor = BTRFS_MINOR, 2612 .name = "btrfs-control", 2613 .fops = &btrfs_ctl_fops 2614}; 2615 2616MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2617MODULE_ALIAS("devname:btrfs-control"); 2618 2619static int __init btrfs_interface_init(void) 2620{ 2621 return misc_register(&btrfs_misc); 2622} 2623 2624static __cold void btrfs_interface_exit(void) 2625{ 2626 misc_deregister(&btrfs_misc); 2627} 2628 2629static void __init btrfs_print_mod_info(void) 2630{ 2631 static const char options[] = "" 2632#ifdef CONFIG_BTRFS_DEBUG 2633 ", debug=on" 2634#endif 2635#ifdef CONFIG_BTRFS_ASSERT 2636 ", assert=on" 2637#endif 2638#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2639 ", integrity-checker=on" 2640#endif 2641#ifdef CONFIG_BTRFS_FS_REF_VERIFY 2642 ", ref-verify=on" 2643#endif 2644#ifdef CONFIG_BLK_DEV_ZONED 2645 ", zoned=yes" 2646#else 2647 ", zoned=no" 2648#endif 2649#ifdef CONFIG_FS_VERITY 2650 ", fsverity=yes" 2651#else 2652 ", fsverity=no" 2653#endif 2654 ; 2655 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options); 2656} 2657 2658static int __init init_btrfs_fs(void) 2659{ 2660 int err; 2661 2662 btrfs_props_init(); 2663 2664 err = btrfs_init_sysfs(); 2665 if (err) 2666 return err; 2667 2668 btrfs_init_compress(); 2669 2670 err = btrfs_init_cachep(); 2671 if (err) 2672 goto free_compress; 2673 2674 err = extent_io_init(); 2675 if (err) 2676 goto free_cachep; 2677 2678 err = extent_state_cache_init(); 2679 if (err) 2680 goto free_extent_io; 2681 2682 err = extent_map_init(); 2683 if (err) 2684 goto free_extent_state_cache; 2685 2686 err = ordered_data_init(); 2687 if (err) 2688 goto free_extent_map; 2689 2690 err = btrfs_delayed_inode_init(); 2691 if (err) 2692 goto free_ordered_data; 2693 2694 err = btrfs_auto_defrag_init(); 2695 if (err) 2696 goto free_delayed_inode; 2697 2698 err = btrfs_delayed_ref_init(); 2699 if (err) 2700 goto free_auto_defrag; 2701 2702 err = btrfs_prelim_ref_init(); 2703 if (err) 2704 goto free_delayed_ref; 2705 2706 err = btrfs_end_io_wq_init(); 2707 if (err) 2708 goto free_prelim_ref; 2709 2710 err = btrfs_interface_init(); 2711 if (err) 2712 goto free_end_io_wq; 2713 2714 btrfs_print_mod_info(); 2715 2716 err = btrfs_run_sanity_tests(); 2717 if (err) 2718 goto unregister_ioctl; 2719 2720 err = register_filesystem(&btrfs_fs_type); 2721 if (err) 2722 goto unregister_ioctl; 2723 2724 return 0; 2725 2726unregister_ioctl: 2727 btrfs_interface_exit(); 2728free_end_io_wq: 2729 btrfs_end_io_wq_exit(); 2730free_prelim_ref: 2731 btrfs_prelim_ref_exit(); 2732free_delayed_ref: 2733 btrfs_delayed_ref_exit(); 2734free_auto_defrag: 2735 btrfs_auto_defrag_exit(); 2736free_delayed_inode: 2737 btrfs_delayed_inode_exit(); 2738free_ordered_data: 2739 ordered_data_exit(); 2740free_extent_map: 2741 extent_map_exit(); 2742free_extent_state_cache: 2743 extent_state_cache_exit(); 2744free_extent_io: 2745 extent_io_exit(); 2746free_cachep: 2747 btrfs_destroy_cachep(); 2748free_compress: 2749 btrfs_exit_compress(); 2750 btrfs_exit_sysfs(); 2751 2752 return err; 2753} 2754 2755static void __exit exit_btrfs_fs(void) 2756{ 2757 btrfs_destroy_cachep(); 2758 btrfs_delayed_ref_exit(); 2759 btrfs_auto_defrag_exit(); 2760 btrfs_delayed_inode_exit(); 2761 btrfs_prelim_ref_exit(); 2762 ordered_data_exit(); 2763 extent_map_exit(); 2764 extent_state_cache_exit(); 2765 extent_io_exit(); 2766 btrfs_interface_exit(); 2767 btrfs_end_io_wq_exit(); 2768 unregister_filesystem(&btrfs_fs_type); 2769 btrfs_exit_sysfs(); 2770 btrfs_cleanup_fs_uuids(); 2771 btrfs_exit_compress(); 2772} 2773 2774late_initcall(init_btrfs_fs); 2775module_exit(exit_btrfs_fs) 2776 2777MODULE_LICENSE("GPL"); 2778MODULE_SOFTDEP("pre: crc32c"); 2779MODULE_SOFTDEP("pre: xxhash64"); 2780MODULE_SOFTDEP("pre: sha256"); 2781MODULE_SOFTDEP("pre: blake2b-256");