verity.c (23038B)
1// SPDX-License-Identifier: GPL-2.0 2 3#include <linux/init.h> 4#include <linux/fs.h> 5#include <linux/slab.h> 6#include <linux/rwsem.h> 7#include <linux/xattr.h> 8#include <linux/security.h> 9#include <linux/posix_acl_xattr.h> 10#include <linux/iversion.h> 11#include <linux/fsverity.h> 12#include <linux/sched/mm.h> 13#include "ctree.h" 14#include "btrfs_inode.h" 15#include "transaction.h" 16#include "disk-io.h" 17#include "locking.h" 18 19/* 20 * Implementation of the interface defined in struct fsverity_operations. 21 * 22 * The main question is how and where to store the verity descriptor and the 23 * Merkle tree. We store both in dedicated btree items in the filesystem tree, 24 * together with the rest of the inode metadata. This means we'll need to do 25 * extra work to encrypt them once encryption is supported in btrfs, but btrfs 26 * has a lot of careful code around i_size and it seems better to make a new key 27 * type than try and adjust all of our expectations for i_size. 28 * 29 * Note that this differs from the implementation in ext4 and f2fs, where 30 * this data is stored as if it were in the file, but past EOF. However, btrfs 31 * does not have a widespread mechanism for caching opaque metadata pages, so we 32 * do pretend that the Merkle tree pages themselves are past EOF for the 33 * purposes of caching them (as opposed to creating a virtual inode). 34 * 35 * fs verity items are stored under two different key types on disk. 36 * The descriptor items: 37 * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ] 38 * 39 * At offset 0, we store a btrfs_verity_descriptor_item which tracks the 40 * size of the descriptor item and some extra data for encryption. 41 * Starting at offset 1, these hold the generic fs verity descriptor. 42 * The latter are opaque to btrfs, we just read and write them as a blob for 43 * the higher level verity code. The most common descriptor size is 256 bytes. 44 * 45 * The merkle tree items: 46 * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ] 47 * 48 * These also start at offset 0, and correspond to the merkle tree bytes. 49 * So when fsverity asks for page 0 of the merkle tree, we pull up one page 50 * starting at offset 0 for this key type. These are also opaque to btrfs, 51 * we're blindly storing whatever fsverity sends down. 52 * 53 * Another important consideration is the fact that the Merkle tree data scales 54 * linearly with the size of the file (with 4K pages/blocks and SHA-256, it's 55 * ~1/127th the size) so for large files, writing the tree can be a lengthy 56 * operation. For that reason, we guard the whole enable verity operation 57 * (between begin_enable_verity and end_enable_verity) with an orphan item. 58 * Again, because the data can be pretty large, it's quite possible that we 59 * could run out of space writing it, so we try our best to handle errors by 60 * stopping and rolling back rather than aborting the victim transaction. 61 */ 62 63#define MERKLE_START_ALIGN 65536 64 65/* 66 * Compute the logical file offset where we cache the Merkle tree. 67 * 68 * @inode: inode of the verity file 69 * 70 * For the purposes of caching the Merkle tree pages, as required by 71 * fs-verity, it is convenient to do size computations in terms of a file 72 * offset, rather than in terms of page indices. 73 * 74 * Use 64K to be sure it's past the last page in the file, even with 64K pages. 75 * That rounding operation itself can overflow loff_t, so we do it in u64 and 76 * check. 77 * 78 * Returns the file offset on success, negative error code on failure. 79 */ 80static loff_t merkle_file_pos(const struct inode *inode) 81{ 82 u64 sz = inode->i_size; 83 u64 rounded = round_up(sz, MERKLE_START_ALIGN); 84 85 if (rounded > inode->i_sb->s_maxbytes) 86 return -EFBIG; 87 88 return rounded; 89} 90 91/* 92 * Drop all the items for this inode with this key_type. 93 * 94 * @inode: inode to drop items for 95 * @key_type: type of items to drop (BTRFS_VERITY_DESC_ITEM or 96 * BTRFS_VERITY_MERKLE_ITEM) 97 * 98 * Before doing a verity enable we cleanup any existing verity items. 99 * This is also used to clean up if a verity enable failed half way through. 100 * 101 * Returns number of dropped items on success, negative error code on failure. 102 */ 103static int drop_verity_items(struct btrfs_inode *inode, u8 key_type) 104{ 105 struct btrfs_trans_handle *trans; 106 struct btrfs_root *root = inode->root; 107 struct btrfs_path *path; 108 struct btrfs_key key; 109 int count = 0; 110 int ret; 111 112 path = btrfs_alloc_path(); 113 if (!path) 114 return -ENOMEM; 115 116 while (1) { 117 /* 1 for the item being dropped */ 118 trans = btrfs_start_transaction(root, 1); 119 if (IS_ERR(trans)) { 120 ret = PTR_ERR(trans); 121 goto out; 122 } 123 124 /* 125 * Walk backwards through all the items until we find one that 126 * isn't from our key type or objectid 127 */ 128 key.objectid = btrfs_ino(inode); 129 key.type = key_type; 130 key.offset = (u64)-1; 131 132 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 133 if (ret > 0) { 134 ret = 0; 135 /* No more keys of this type, we're done */ 136 if (path->slots[0] == 0) 137 break; 138 path->slots[0]--; 139 } else if (ret < 0) { 140 btrfs_end_transaction(trans); 141 goto out; 142 } 143 144 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 145 146 /* No more keys of this type, we're done */ 147 if (key.objectid != btrfs_ino(inode) || key.type != key_type) 148 break; 149 150 /* 151 * This shouldn't be a performance sensitive function because 152 * it's not used as part of truncate. If it ever becomes 153 * perf sensitive, change this to walk forward and bulk delete 154 * items 155 */ 156 ret = btrfs_del_items(trans, root, path, path->slots[0], 1); 157 if (ret) { 158 btrfs_end_transaction(trans); 159 goto out; 160 } 161 count++; 162 btrfs_release_path(path); 163 btrfs_end_transaction(trans); 164 } 165 ret = count; 166 btrfs_end_transaction(trans); 167out: 168 btrfs_free_path(path); 169 return ret; 170} 171 172/* 173 * Drop all verity items 174 * 175 * @inode: inode to drop verity items for 176 * 177 * In most contexts where we are dropping verity items, we want to do it for all 178 * the types of verity items, not a particular one. 179 * 180 * Returns: 0 on success, negative error code on failure. 181 */ 182int btrfs_drop_verity_items(struct btrfs_inode *inode) 183{ 184 int ret; 185 186 ret = drop_verity_items(inode, BTRFS_VERITY_DESC_ITEM_KEY); 187 if (ret < 0) 188 return ret; 189 ret = drop_verity_items(inode, BTRFS_VERITY_MERKLE_ITEM_KEY); 190 if (ret < 0) 191 return ret; 192 193 return 0; 194} 195 196/* 197 * Insert and write inode items with a given key type and offset. 198 * 199 * @inode: inode to insert for 200 * @key_type: key type to insert 201 * @offset: item offset to insert at 202 * @src: source data to write 203 * @len: length of source data to write 204 * 205 * Write len bytes from src into items of up to 2K length. 206 * The inserted items will have key (ino, key_type, offset + off) where off is 207 * consecutively increasing from 0 up to the last item ending at offset + len. 208 * 209 * Returns 0 on success and a negative error code on failure. 210 */ 211static int write_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset, 212 const char *src, u64 len) 213{ 214 struct btrfs_trans_handle *trans; 215 struct btrfs_path *path; 216 struct btrfs_root *root = inode->root; 217 struct extent_buffer *leaf; 218 struct btrfs_key key; 219 unsigned long copy_bytes; 220 unsigned long src_offset = 0; 221 void *data; 222 int ret = 0; 223 224 path = btrfs_alloc_path(); 225 if (!path) 226 return -ENOMEM; 227 228 while (len > 0) { 229 /* 1 for the new item being inserted */ 230 trans = btrfs_start_transaction(root, 1); 231 if (IS_ERR(trans)) { 232 ret = PTR_ERR(trans); 233 break; 234 } 235 236 key.objectid = btrfs_ino(inode); 237 key.type = key_type; 238 key.offset = offset; 239 240 /* 241 * Insert 2K at a time mostly to be friendly for smaller leaf 242 * size filesystems 243 */ 244 copy_bytes = min_t(u64, len, 2048); 245 246 ret = btrfs_insert_empty_item(trans, root, path, &key, copy_bytes); 247 if (ret) { 248 btrfs_end_transaction(trans); 249 break; 250 } 251 252 leaf = path->nodes[0]; 253 254 data = btrfs_item_ptr(leaf, path->slots[0], void); 255 write_extent_buffer(leaf, src + src_offset, 256 (unsigned long)data, copy_bytes); 257 offset += copy_bytes; 258 src_offset += copy_bytes; 259 len -= copy_bytes; 260 261 btrfs_release_path(path); 262 btrfs_end_transaction(trans); 263 } 264 265 btrfs_free_path(path); 266 return ret; 267} 268 269/* 270 * Read inode items of the given key type and offset from the btree. 271 * 272 * @inode: inode to read items of 273 * @key_type: key type to read 274 * @offset: item offset to read from 275 * @dest: Buffer to read into. This parameter has slightly tricky 276 * semantics. If it is NULL, the function will not do any copying 277 * and will just return the size of all the items up to len bytes. 278 * If dest_page is passed, then the function will kmap_local the 279 * page and ignore dest, but it must still be non-NULL to avoid the 280 * counting-only behavior. 281 * @len: length in bytes to read 282 * @dest_page: copy into this page instead of the dest buffer 283 * 284 * Helper function to read items from the btree. This returns the number of 285 * bytes read or < 0 for errors. We can return short reads if the items don't 286 * exist on disk or aren't big enough to fill the desired length. Supports 287 * reading into a provided buffer (dest) or into the page cache 288 * 289 * Returns number of bytes read or a negative error code on failure. 290 */ 291static int read_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset, 292 char *dest, u64 len, struct page *dest_page) 293{ 294 struct btrfs_path *path; 295 struct btrfs_root *root = inode->root; 296 struct extent_buffer *leaf; 297 struct btrfs_key key; 298 u64 item_end; 299 u64 copy_end; 300 int copied = 0; 301 u32 copy_offset; 302 unsigned long copy_bytes; 303 unsigned long dest_offset = 0; 304 void *data; 305 char *kaddr = dest; 306 int ret; 307 308 path = btrfs_alloc_path(); 309 if (!path) 310 return -ENOMEM; 311 312 if (dest_page) 313 path->reada = READA_FORWARD; 314 315 key.objectid = btrfs_ino(inode); 316 key.type = key_type; 317 key.offset = offset; 318 319 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 320 if (ret < 0) { 321 goto out; 322 } else if (ret > 0) { 323 ret = 0; 324 if (path->slots[0] == 0) 325 goto out; 326 path->slots[0]--; 327 } 328 329 while (len > 0) { 330 leaf = path->nodes[0]; 331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 332 333 if (key.objectid != btrfs_ino(inode) || key.type != key_type) 334 break; 335 336 item_end = btrfs_item_size(leaf, path->slots[0]) + key.offset; 337 338 if (copied > 0) { 339 /* 340 * Once we've copied something, we want all of the items 341 * to be sequential 342 */ 343 if (key.offset != offset) 344 break; 345 } else { 346 /* 347 * Our initial offset might be in the middle of an 348 * item. Make sure it all makes sense. 349 */ 350 if (key.offset > offset) 351 break; 352 if (item_end <= offset) 353 break; 354 } 355 356 /* desc = NULL to just sum all the item lengths */ 357 if (!dest) 358 copy_end = item_end; 359 else 360 copy_end = min(offset + len, item_end); 361 362 /* Number of bytes in this item we want to copy */ 363 copy_bytes = copy_end - offset; 364 365 /* Offset from the start of item for copying */ 366 copy_offset = offset - key.offset; 367 368 if (dest) { 369 if (dest_page) 370 kaddr = kmap_local_page(dest_page); 371 372 data = btrfs_item_ptr(leaf, path->slots[0], void); 373 read_extent_buffer(leaf, kaddr + dest_offset, 374 (unsigned long)data + copy_offset, 375 copy_bytes); 376 377 if (dest_page) 378 kunmap_local(kaddr); 379 } 380 381 offset += copy_bytes; 382 dest_offset += copy_bytes; 383 len -= copy_bytes; 384 copied += copy_bytes; 385 386 path->slots[0]++; 387 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 388 /* 389 * We've reached the last slot in this leaf and we need 390 * to go to the next leaf. 391 */ 392 ret = btrfs_next_leaf(root, path); 393 if (ret < 0) { 394 break; 395 } else if (ret > 0) { 396 ret = 0; 397 break; 398 } 399 } 400 } 401out: 402 btrfs_free_path(path); 403 if (!ret) 404 ret = copied; 405 return ret; 406} 407 408/* 409 * Delete an fsverity orphan 410 * 411 * @trans: transaction to do the delete in 412 * @inode: inode to orphan 413 * 414 * Capture verity orphan specific logic that is repeated in the couple places 415 * we delete verity orphans. Specifically, handling ENOENT and ignoring inodes 416 * with 0 links. 417 * 418 * Returns zero on success or a negative error code on failure. 419 */ 420static int del_orphan(struct btrfs_trans_handle *trans, struct btrfs_inode *inode) 421{ 422 struct btrfs_root *root = inode->root; 423 int ret; 424 425 /* 426 * If the inode has no links, it is either already unlinked, or was 427 * created with O_TMPFILE. In either case, it should have an orphan from 428 * that other operation. Rather than reference count the orphans, we 429 * simply ignore them here, because we only invoke the verity path in 430 * the orphan logic when i_nlink is 1. 431 */ 432 if (!inode->vfs_inode.i_nlink) 433 return 0; 434 435 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 436 if (ret == -ENOENT) 437 ret = 0; 438 return ret; 439} 440 441/* 442 * Rollback in-progress verity if we encounter an error. 443 * 444 * @inode: inode verity had an error for 445 * 446 * We try to handle recoverable errors while enabling verity by rolling it back 447 * and just failing the operation, rather than having an fs level error no 448 * matter what. However, any error in rollback is unrecoverable. 449 * 450 * Returns 0 on success, negative error code on failure. 451 */ 452static int rollback_verity(struct btrfs_inode *inode) 453{ 454 struct btrfs_trans_handle *trans = NULL; 455 struct btrfs_root *root = inode->root; 456 int ret; 457 458 ASSERT(inode_is_locked(&inode->vfs_inode)); 459 truncate_inode_pages(inode->vfs_inode.i_mapping, inode->vfs_inode.i_size); 460 clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags); 461 ret = btrfs_drop_verity_items(inode); 462 if (ret) { 463 btrfs_handle_fs_error(root->fs_info, ret, 464 "failed to drop verity items in rollback %llu", 465 (u64)inode->vfs_inode.i_ino); 466 goto out; 467 } 468 469 /* 470 * 1 for updating the inode flag 471 * 1 for deleting the orphan 472 */ 473 trans = btrfs_start_transaction(root, 2); 474 if (IS_ERR(trans)) { 475 ret = PTR_ERR(trans); 476 trans = NULL; 477 btrfs_handle_fs_error(root->fs_info, ret, 478 "failed to start transaction in verity rollback %llu", 479 (u64)inode->vfs_inode.i_ino); 480 goto out; 481 } 482 inode->ro_flags &= ~BTRFS_INODE_RO_VERITY; 483 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 484 ret = btrfs_update_inode(trans, root, inode); 485 if (ret) { 486 btrfs_abort_transaction(trans, ret); 487 goto out; 488 } 489 ret = del_orphan(trans, inode); 490 if (ret) { 491 btrfs_abort_transaction(trans, ret); 492 goto out; 493 } 494out: 495 if (trans) 496 btrfs_end_transaction(trans); 497 return ret; 498} 499 500/* 501 * Finalize making the file a valid verity file 502 * 503 * @inode: inode to be marked as verity 504 * @desc: contents of the verity descriptor to write (not NULL) 505 * @desc_size: size of the verity descriptor 506 * 507 * Do the actual work of finalizing verity after successfully writing the Merkle 508 * tree: 509 * 510 * - write out the descriptor items 511 * - mark the inode with the verity flag 512 * - delete the orphan item 513 * - mark the ro compat bit 514 * - clear the in progress bit 515 * 516 * Returns 0 on success, negative error code on failure. 517 */ 518static int finish_verity(struct btrfs_inode *inode, const void *desc, 519 size_t desc_size) 520{ 521 struct btrfs_trans_handle *trans = NULL; 522 struct btrfs_root *root = inode->root; 523 struct btrfs_verity_descriptor_item item; 524 int ret; 525 526 /* Write out the descriptor item */ 527 memset(&item, 0, sizeof(item)); 528 btrfs_set_stack_verity_descriptor_size(&item, desc_size); 529 ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 0, 530 (const char *)&item, sizeof(item)); 531 if (ret) 532 goto out; 533 534 /* Write out the descriptor itself */ 535 ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 1, 536 desc, desc_size); 537 if (ret) 538 goto out; 539 540 /* 541 * 1 for updating the inode flag 542 * 1 for deleting the orphan 543 */ 544 trans = btrfs_start_transaction(root, 2); 545 if (IS_ERR(trans)) { 546 ret = PTR_ERR(trans); 547 goto out; 548 } 549 inode->ro_flags |= BTRFS_INODE_RO_VERITY; 550 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 551 ret = btrfs_update_inode(trans, root, inode); 552 if (ret) 553 goto end_trans; 554 ret = del_orphan(trans, inode); 555 if (ret) 556 goto end_trans; 557 clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags); 558 btrfs_set_fs_compat_ro(root->fs_info, VERITY); 559end_trans: 560 btrfs_end_transaction(trans); 561out: 562 return ret; 563 564} 565 566/* 567 * fsverity op that begins enabling verity. 568 * 569 * @filp: file to enable verity on 570 * 571 * Begin enabling fsverity for the file. We drop any existing verity items, add 572 * an orphan and set the in progress bit. 573 * 574 * Returns 0 on success, negative error code on failure. 575 */ 576static int btrfs_begin_enable_verity(struct file *filp) 577{ 578 struct btrfs_inode *inode = BTRFS_I(file_inode(filp)); 579 struct btrfs_root *root = inode->root; 580 struct btrfs_trans_handle *trans; 581 int ret; 582 583 ASSERT(inode_is_locked(file_inode(filp))); 584 585 if (test_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags)) 586 return -EBUSY; 587 588 /* 589 * This should almost never do anything, but theoretically, it's 590 * possible that we failed to enable verity on a file, then were 591 * interrupted or failed while rolling back, failed to cleanup the 592 * orphan, and finally attempt to enable verity again. 593 */ 594 ret = btrfs_drop_verity_items(inode); 595 if (ret) 596 return ret; 597 598 /* 1 for the orphan item */ 599 trans = btrfs_start_transaction(root, 1); 600 if (IS_ERR(trans)) 601 return PTR_ERR(trans); 602 603 ret = btrfs_orphan_add(trans, inode); 604 if (!ret) 605 set_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags); 606 btrfs_end_transaction(trans); 607 608 return 0; 609} 610 611/* 612 * fsverity op that ends enabling verity. 613 * 614 * @filp: file we are finishing enabling verity on 615 * @desc: verity descriptor to write out (NULL in error conditions) 616 * @desc_size: size of the verity descriptor (variable with signatures) 617 * @merkle_tree_size: size of the merkle tree in bytes 618 * 619 * If desc is null, then VFS is signaling an error occurred during verity 620 * enable, and we should try to rollback. Otherwise, attempt to finish verity. 621 * 622 * Returns 0 on success, negative error code on error. 623 */ 624static int btrfs_end_enable_verity(struct file *filp, const void *desc, 625 size_t desc_size, u64 merkle_tree_size) 626{ 627 struct btrfs_inode *inode = BTRFS_I(file_inode(filp)); 628 int ret = 0; 629 int rollback_ret; 630 631 ASSERT(inode_is_locked(file_inode(filp))); 632 633 if (desc == NULL) 634 goto rollback; 635 636 ret = finish_verity(inode, desc, desc_size); 637 if (ret) 638 goto rollback; 639 return ret; 640 641rollback: 642 rollback_ret = rollback_verity(inode); 643 if (rollback_ret) 644 btrfs_err(inode->root->fs_info, 645 "failed to rollback verity items: %d", rollback_ret); 646 return ret; 647} 648 649/* 650 * fsverity op that gets the struct fsverity_descriptor. 651 * 652 * @inode: inode to get the descriptor of 653 * @buf: output buffer for the descriptor contents 654 * @buf_size: size of the output buffer. 0 to query the size 655 * 656 * fsverity does a two pass setup for reading the descriptor, in the first pass 657 * it calls with buf_size = 0 to query the size of the descriptor, and then in 658 * the second pass it actually reads the descriptor off disk. 659 * 660 * Returns the size on success or a negative error code on failure. 661 */ 662static int btrfs_get_verity_descriptor(struct inode *inode, void *buf, 663 size_t buf_size) 664{ 665 u64 true_size; 666 int ret = 0; 667 struct btrfs_verity_descriptor_item item; 668 669 memset(&item, 0, sizeof(item)); 670 ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 0, 671 (char *)&item, sizeof(item), NULL); 672 if (ret < 0) 673 return ret; 674 675 if (item.reserved[0] != 0 || item.reserved[1] != 0) 676 return -EUCLEAN; 677 678 true_size = btrfs_stack_verity_descriptor_size(&item); 679 if (true_size > INT_MAX) 680 return -EUCLEAN; 681 682 if (buf_size == 0) 683 return true_size; 684 if (buf_size < true_size) 685 return -ERANGE; 686 687 ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 1, 688 buf, buf_size, NULL); 689 if (ret < 0) 690 return ret; 691 if (ret != true_size) 692 return -EIO; 693 694 return true_size; 695} 696 697/* 698 * fsverity op that reads and caches a merkle tree page. 699 * 700 * @inode: inode to read a merkle tree page for 701 * @index: page index relative to the start of the merkle tree 702 * @num_ra_pages: number of pages to readahead. Optional, we ignore it 703 * 704 * The Merkle tree is stored in the filesystem btree, but its pages are cached 705 * with a logical position past EOF in the inode's mapping. 706 * 707 * Returns the page we read, or an ERR_PTR on error. 708 */ 709static struct page *btrfs_read_merkle_tree_page(struct inode *inode, 710 pgoff_t index, 711 unsigned long num_ra_pages) 712{ 713 struct page *page; 714 u64 off = (u64)index << PAGE_SHIFT; 715 loff_t merkle_pos = merkle_file_pos(inode); 716 int ret; 717 718 if (merkle_pos < 0) 719 return ERR_PTR(merkle_pos); 720 if (merkle_pos > inode->i_sb->s_maxbytes - off - PAGE_SIZE) 721 return ERR_PTR(-EFBIG); 722 index += merkle_pos >> PAGE_SHIFT; 723again: 724 page = find_get_page_flags(inode->i_mapping, index, FGP_ACCESSED); 725 if (page) { 726 if (PageUptodate(page)) 727 return page; 728 729 lock_page(page); 730 /* 731 * We only insert uptodate pages, so !Uptodate has to be 732 * an error 733 */ 734 if (!PageUptodate(page)) { 735 unlock_page(page); 736 put_page(page); 737 return ERR_PTR(-EIO); 738 } 739 unlock_page(page); 740 return page; 741 } 742 743 page = __page_cache_alloc(mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS)); 744 if (!page) 745 return ERR_PTR(-ENOMEM); 746 747 /* 748 * Merkle item keys are indexed from byte 0 in the merkle tree. 749 * They have the form: 750 * 751 * [ inode objectid, BTRFS_MERKLE_ITEM_KEY, offset in bytes ] 752 */ 753 ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, off, 754 page_address(page), PAGE_SIZE, page); 755 if (ret < 0) { 756 put_page(page); 757 return ERR_PTR(ret); 758 } 759 if (ret < PAGE_SIZE) 760 memzero_page(page, ret, PAGE_SIZE - ret); 761 762 SetPageUptodate(page); 763 ret = add_to_page_cache_lru(page, inode->i_mapping, index, GFP_NOFS); 764 765 if (!ret) { 766 /* Inserted and ready for fsverity */ 767 unlock_page(page); 768 } else { 769 put_page(page); 770 /* Did someone race us into inserting this page? */ 771 if (ret == -EEXIST) 772 goto again; 773 page = ERR_PTR(ret); 774 } 775 return page; 776} 777 778/* 779 * fsverity op that writes a Merkle tree block into the btree. 780 * 781 * @inode: inode to write a Merkle tree block for 782 * @buf: Merkle tree data block to write 783 * @index: index of the block in the Merkle tree 784 * @log_blocksize: log base 2 of the Merkle tree block size 785 * 786 * Note that the block size could be different from the page size, so it is not 787 * safe to assume that index is a page index. 788 * 789 * Returns 0 on success or negative error code on failure 790 */ 791static int btrfs_write_merkle_tree_block(struct inode *inode, const void *buf, 792 u64 index, int log_blocksize) 793{ 794 u64 off = index << log_blocksize; 795 u64 len = 1ULL << log_blocksize; 796 loff_t merkle_pos = merkle_file_pos(inode); 797 798 if (merkle_pos < 0) 799 return merkle_pos; 800 if (merkle_pos > inode->i_sb->s_maxbytes - off - len) 801 return -EFBIG; 802 803 return write_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, 804 off, buf, len); 805} 806 807const struct fsverity_operations btrfs_verityops = { 808 .begin_enable_verity = btrfs_begin_enable_verity, 809 .end_enable_verity = btrfs_end_enable_verity, 810 .get_verity_descriptor = btrfs_get_verity_descriptor, 811 .read_merkle_tree_page = btrfs_read_merkle_tree_page, 812 .write_merkle_tree_block = btrfs_write_merkle_tree_block, 813};