cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

verity.c (23038B)


      1// SPDX-License-Identifier: GPL-2.0
      2
      3#include <linux/init.h>
      4#include <linux/fs.h>
      5#include <linux/slab.h>
      6#include <linux/rwsem.h>
      7#include <linux/xattr.h>
      8#include <linux/security.h>
      9#include <linux/posix_acl_xattr.h>
     10#include <linux/iversion.h>
     11#include <linux/fsverity.h>
     12#include <linux/sched/mm.h>
     13#include "ctree.h"
     14#include "btrfs_inode.h"
     15#include "transaction.h"
     16#include "disk-io.h"
     17#include "locking.h"
     18
     19/*
     20 * Implementation of the interface defined in struct fsverity_operations.
     21 *
     22 * The main question is how and where to store the verity descriptor and the
     23 * Merkle tree. We store both in dedicated btree items in the filesystem tree,
     24 * together with the rest of the inode metadata. This means we'll need to do
     25 * extra work to encrypt them once encryption is supported in btrfs, but btrfs
     26 * has a lot of careful code around i_size and it seems better to make a new key
     27 * type than try and adjust all of our expectations for i_size.
     28 *
     29 * Note that this differs from the implementation in ext4 and f2fs, where
     30 * this data is stored as if it were in the file, but past EOF. However, btrfs
     31 * does not have a widespread mechanism for caching opaque metadata pages, so we
     32 * do pretend that the Merkle tree pages themselves are past EOF for the
     33 * purposes of caching them (as opposed to creating a virtual inode).
     34 *
     35 * fs verity items are stored under two different key types on disk.
     36 * The descriptor items:
     37 * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ]
     38 *
     39 * At offset 0, we store a btrfs_verity_descriptor_item which tracks the
     40 * size of the descriptor item and some extra data for encryption.
     41 * Starting at offset 1, these hold the generic fs verity descriptor.
     42 * The latter are opaque to btrfs, we just read and write them as a blob for
     43 * the higher level verity code.  The most common descriptor size is 256 bytes.
     44 *
     45 * The merkle tree items:
     46 * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ]
     47 *
     48 * These also start at offset 0, and correspond to the merkle tree bytes.
     49 * So when fsverity asks for page 0 of the merkle tree, we pull up one page
     50 * starting at offset 0 for this key type.  These are also opaque to btrfs,
     51 * we're blindly storing whatever fsverity sends down.
     52 *
     53 * Another important consideration is the fact that the Merkle tree data scales
     54 * linearly with the size of the file (with 4K pages/blocks and SHA-256, it's
     55 * ~1/127th the size) so for large files, writing the tree can be a lengthy
     56 * operation. For that reason, we guard the whole enable verity operation
     57 * (between begin_enable_verity and end_enable_verity) with an orphan item.
     58 * Again, because the data can be pretty large, it's quite possible that we
     59 * could run out of space writing it, so we try our best to handle errors by
     60 * stopping and rolling back rather than aborting the victim transaction.
     61 */
     62
     63#define MERKLE_START_ALIGN			65536
     64
     65/*
     66 * Compute the logical file offset where we cache the Merkle tree.
     67 *
     68 * @inode:  inode of the verity file
     69 *
     70 * For the purposes of caching the Merkle tree pages, as required by
     71 * fs-verity, it is convenient to do size computations in terms of a file
     72 * offset, rather than in terms of page indices.
     73 *
     74 * Use 64K to be sure it's past the last page in the file, even with 64K pages.
     75 * That rounding operation itself can overflow loff_t, so we do it in u64 and
     76 * check.
     77 *
     78 * Returns the file offset on success, negative error code on failure.
     79 */
     80static loff_t merkle_file_pos(const struct inode *inode)
     81{
     82	u64 sz = inode->i_size;
     83	u64 rounded = round_up(sz, MERKLE_START_ALIGN);
     84
     85	if (rounded > inode->i_sb->s_maxbytes)
     86		return -EFBIG;
     87
     88	return rounded;
     89}
     90
     91/*
     92 * Drop all the items for this inode with this key_type.
     93 *
     94 * @inode:     inode to drop items for
     95 * @key_type:  type of items to drop (BTRFS_VERITY_DESC_ITEM or
     96 *             BTRFS_VERITY_MERKLE_ITEM)
     97 *
     98 * Before doing a verity enable we cleanup any existing verity items.
     99 * This is also used to clean up if a verity enable failed half way through.
    100 *
    101 * Returns number of dropped items on success, negative error code on failure.
    102 */
    103static int drop_verity_items(struct btrfs_inode *inode, u8 key_type)
    104{
    105	struct btrfs_trans_handle *trans;
    106	struct btrfs_root *root = inode->root;
    107	struct btrfs_path *path;
    108	struct btrfs_key key;
    109	int count = 0;
    110	int ret;
    111
    112	path = btrfs_alloc_path();
    113	if (!path)
    114		return -ENOMEM;
    115
    116	while (1) {
    117		/* 1 for the item being dropped */
    118		trans = btrfs_start_transaction(root, 1);
    119		if (IS_ERR(trans)) {
    120			ret = PTR_ERR(trans);
    121			goto out;
    122		}
    123
    124		/*
    125		 * Walk backwards through all the items until we find one that
    126		 * isn't from our key type or objectid
    127		 */
    128		key.objectid = btrfs_ino(inode);
    129		key.type = key_type;
    130		key.offset = (u64)-1;
    131
    132		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
    133		if (ret > 0) {
    134			ret = 0;
    135			/* No more keys of this type, we're done */
    136			if (path->slots[0] == 0)
    137				break;
    138			path->slots[0]--;
    139		} else if (ret < 0) {
    140			btrfs_end_transaction(trans);
    141			goto out;
    142		}
    143
    144		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
    145
    146		/* No more keys of this type, we're done */
    147		if (key.objectid != btrfs_ino(inode) || key.type != key_type)
    148			break;
    149
    150		/*
    151		 * This shouldn't be a performance sensitive function because
    152		 * it's not used as part of truncate.  If it ever becomes
    153		 * perf sensitive, change this to walk forward and bulk delete
    154		 * items
    155		 */
    156		ret = btrfs_del_items(trans, root, path, path->slots[0], 1);
    157		if (ret) {
    158			btrfs_end_transaction(trans);
    159			goto out;
    160		}
    161		count++;
    162		btrfs_release_path(path);
    163		btrfs_end_transaction(trans);
    164	}
    165	ret = count;
    166	btrfs_end_transaction(trans);
    167out:
    168	btrfs_free_path(path);
    169	return ret;
    170}
    171
    172/*
    173 * Drop all verity items
    174 *
    175 * @inode:  inode to drop verity items for
    176 *
    177 * In most contexts where we are dropping verity items, we want to do it for all
    178 * the types of verity items, not a particular one.
    179 *
    180 * Returns: 0 on success, negative error code on failure.
    181 */
    182int btrfs_drop_verity_items(struct btrfs_inode *inode)
    183{
    184	int ret;
    185
    186	ret = drop_verity_items(inode, BTRFS_VERITY_DESC_ITEM_KEY);
    187	if (ret < 0)
    188		return ret;
    189	ret = drop_verity_items(inode, BTRFS_VERITY_MERKLE_ITEM_KEY);
    190	if (ret < 0)
    191		return ret;
    192
    193	return 0;
    194}
    195
    196/*
    197 * Insert and write inode items with a given key type and offset.
    198 *
    199 * @inode:     inode to insert for
    200 * @key_type:  key type to insert
    201 * @offset:    item offset to insert at
    202 * @src:       source data to write
    203 * @len:       length of source data to write
    204 *
    205 * Write len bytes from src into items of up to 2K length.
    206 * The inserted items will have key (ino, key_type, offset + off) where off is
    207 * consecutively increasing from 0 up to the last item ending at offset + len.
    208 *
    209 * Returns 0 on success and a negative error code on failure.
    210 */
    211static int write_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset,
    212			   const char *src, u64 len)
    213{
    214	struct btrfs_trans_handle *trans;
    215	struct btrfs_path *path;
    216	struct btrfs_root *root = inode->root;
    217	struct extent_buffer *leaf;
    218	struct btrfs_key key;
    219	unsigned long copy_bytes;
    220	unsigned long src_offset = 0;
    221	void *data;
    222	int ret = 0;
    223
    224	path = btrfs_alloc_path();
    225	if (!path)
    226		return -ENOMEM;
    227
    228	while (len > 0) {
    229		/* 1 for the new item being inserted */
    230		trans = btrfs_start_transaction(root, 1);
    231		if (IS_ERR(trans)) {
    232			ret = PTR_ERR(trans);
    233			break;
    234		}
    235
    236		key.objectid = btrfs_ino(inode);
    237		key.type = key_type;
    238		key.offset = offset;
    239
    240		/*
    241		 * Insert 2K at a time mostly to be friendly for smaller leaf
    242		 * size filesystems
    243		 */
    244		copy_bytes = min_t(u64, len, 2048);
    245
    246		ret = btrfs_insert_empty_item(trans, root, path, &key, copy_bytes);
    247		if (ret) {
    248			btrfs_end_transaction(trans);
    249			break;
    250		}
    251
    252		leaf = path->nodes[0];
    253
    254		data = btrfs_item_ptr(leaf, path->slots[0], void);
    255		write_extent_buffer(leaf, src + src_offset,
    256				    (unsigned long)data, copy_bytes);
    257		offset += copy_bytes;
    258		src_offset += copy_bytes;
    259		len -= copy_bytes;
    260
    261		btrfs_release_path(path);
    262		btrfs_end_transaction(trans);
    263	}
    264
    265	btrfs_free_path(path);
    266	return ret;
    267}
    268
    269/*
    270 * Read inode items of the given key type and offset from the btree.
    271 *
    272 * @inode:      inode to read items of
    273 * @key_type:   key type to read
    274 * @offset:     item offset to read from
    275 * @dest:       Buffer to read into. This parameter has slightly tricky
    276 *              semantics.  If it is NULL, the function will not do any copying
    277 *              and will just return the size of all the items up to len bytes.
    278 *              If dest_page is passed, then the function will kmap_local the
    279 *              page and ignore dest, but it must still be non-NULL to avoid the
    280 *              counting-only behavior.
    281 * @len:        length in bytes to read
    282 * @dest_page:  copy into this page instead of the dest buffer
    283 *
    284 * Helper function to read items from the btree.  This returns the number of
    285 * bytes read or < 0 for errors.  We can return short reads if the items don't
    286 * exist on disk or aren't big enough to fill the desired length.  Supports
    287 * reading into a provided buffer (dest) or into the page cache
    288 *
    289 * Returns number of bytes read or a negative error code on failure.
    290 */
    291static int read_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset,
    292			  char *dest, u64 len, struct page *dest_page)
    293{
    294	struct btrfs_path *path;
    295	struct btrfs_root *root = inode->root;
    296	struct extent_buffer *leaf;
    297	struct btrfs_key key;
    298	u64 item_end;
    299	u64 copy_end;
    300	int copied = 0;
    301	u32 copy_offset;
    302	unsigned long copy_bytes;
    303	unsigned long dest_offset = 0;
    304	void *data;
    305	char *kaddr = dest;
    306	int ret;
    307
    308	path = btrfs_alloc_path();
    309	if (!path)
    310		return -ENOMEM;
    311
    312	if (dest_page)
    313		path->reada = READA_FORWARD;
    314
    315	key.objectid = btrfs_ino(inode);
    316	key.type = key_type;
    317	key.offset = offset;
    318
    319	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
    320	if (ret < 0) {
    321		goto out;
    322	} else if (ret > 0) {
    323		ret = 0;
    324		if (path->slots[0] == 0)
    325			goto out;
    326		path->slots[0]--;
    327	}
    328
    329	while (len > 0) {
    330		leaf = path->nodes[0];
    331		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
    332
    333		if (key.objectid != btrfs_ino(inode) || key.type != key_type)
    334			break;
    335
    336		item_end = btrfs_item_size(leaf, path->slots[0]) + key.offset;
    337
    338		if (copied > 0) {
    339			/*
    340			 * Once we've copied something, we want all of the items
    341			 * to be sequential
    342			 */
    343			if (key.offset != offset)
    344				break;
    345		} else {
    346			/*
    347			 * Our initial offset might be in the middle of an
    348			 * item.  Make sure it all makes sense.
    349			 */
    350			if (key.offset > offset)
    351				break;
    352			if (item_end <= offset)
    353				break;
    354		}
    355
    356		/* desc = NULL to just sum all the item lengths */
    357		if (!dest)
    358			copy_end = item_end;
    359		else
    360			copy_end = min(offset + len, item_end);
    361
    362		/* Number of bytes in this item we want to copy */
    363		copy_bytes = copy_end - offset;
    364
    365		/* Offset from the start of item for copying */
    366		copy_offset = offset - key.offset;
    367
    368		if (dest) {
    369			if (dest_page)
    370				kaddr = kmap_local_page(dest_page);
    371
    372			data = btrfs_item_ptr(leaf, path->slots[0], void);
    373			read_extent_buffer(leaf, kaddr + dest_offset,
    374					   (unsigned long)data + copy_offset,
    375					   copy_bytes);
    376
    377			if (dest_page)
    378				kunmap_local(kaddr);
    379		}
    380
    381		offset += copy_bytes;
    382		dest_offset += copy_bytes;
    383		len -= copy_bytes;
    384		copied += copy_bytes;
    385
    386		path->slots[0]++;
    387		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
    388			/*
    389			 * We've reached the last slot in this leaf and we need
    390			 * to go to the next leaf.
    391			 */
    392			ret = btrfs_next_leaf(root, path);
    393			if (ret < 0) {
    394				break;
    395			} else if (ret > 0) {
    396				ret = 0;
    397				break;
    398			}
    399		}
    400	}
    401out:
    402	btrfs_free_path(path);
    403	if (!ret)
    404		ret = copied;
    405	return ret;
    406}
    407
    408/*
    409 * Delete an fsverity orphan
    410 *
    411 * @trans:  transaction to do the delete in
    412 * @inode:  inode to orphan
    413 *
    414 * Capture verity orphan specific logic that is repeated in the couple places
    415 * we delete verity orphans. Specifically, handling ENOENT and ignoring inodes
    416 * with 0 links.
    417 *
    418 * Returns zero on success or a negative error code on failure.
    419 */
    420static int del_orphan(struct btrfs_trans_handle *trans, struct btrfs_inode *inode)
    421{
    422	struct btrfs_root *root = inode->root;
    423	int ret;
    424
    425	/*
    426	 * If the inode has no links, it is either already unlinked, or was
    427	 * created with O_TMPFILE. In either case, it should have an orphan from
    428	 * that other operation. Rather than reference count the orphans, we
    429	 * simply ignore them here, because we only invoke the verity path in
    430	 * the orphan logic when i_nlink is 1.
    431	 */
    432	if (!inode->vfs_inode.i_nlink)
    433		return 0;
    434
    435	ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
    436	if (ret == -ENOENT)
    437		ret = 0;
    438	return ret;
    439}
    440
    441/*
    442 * Rollback in-progress verity if we encounter an error.
    443 *
    444 * @inode:  inode verity had an error for
    445 *
    446 * We try to handle recoverable errors while enabling verity by rolling it back
    447 * and just failing the operation, rather than having an fs level error no
    448 * matter what. However, any error in rollback is unrecoverable.
    449 *
    450 * Returns 0 on success, negative error code on failure.
    451 */
    452static int rollback_verity(struct btrfs_inode *inode)
    453{
    454	struct btrfs_trans_handle *trans = NULL;
    455	struct btrfs_root *root = inode->root;
    456	int ret;
    457
    458	ASSERT(inode_is_locked(&inode->vfs_inode));
    459	truncate_inode_pages(inode->vfs_inode.i_mapping, inode->vfs_inode.i_size);
    460	clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
    461	ret = btrfs_drop_verity_items(inode);
    462	if (ret) {
    463		btrfs_handle_fs_error(root->fs_info, ret,
    464				"failed to drop verity items in rollback %llu",
    465				(u64)inode->vfs_inode.i_ino);
    466		goto out;
    467	}
    468
    469	/*
    470	 * 1 for updating the inode flag
    471	 * 1 for deleting the orphan
    472	 */
    473	trans = btrfs_start_transaction(root, 2);
    474	if (IS_ERR(trans)) {
    475		ret = PTR_ERR(trans);
    476		trans = NULL;
    477		btrfs_handle_fs_error(root->fs_info, ret,
    478			"failed to start transaction in verity rollback %llu",
    479			(u64)inode->vfs_inode.i_ino);
    480		goto out;
    481	}
    482	inode->ro_flags &= ~BTRFS_INODE_RO_VERITY;
    483	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
    484	ret = btrfs_update_inode(trans, root, inode);
    485	if (ret) {
    486		btrfs_abort_transaction(trans, ret);
    487		goto out;
    488	}
    489	ret = del_orphan(trans, inode);
    490	if (ret) {
    491		btrfs_abort_transaction(trans, ret);
    492		goto out;
    493	}
    494out:
    495	if (trans)
    496		btrfs_end_transaction(trans);
    497	return ret;
    498}
    499
    500/*
    501 * Finalize making the file a valid verity file
    502 *
    503 * @inode:      inode to be marked as verity
    504 * @desc:       contents of the verity descriptor to write (not NULL)
    505 * @desc_size:  size of the verity descriptor
    506 *
    507 * Do the actual work of finalizing verity after successfully writing the Merkle
    508 * tree:
    509 *
    510 * - write out the descriptor items
    511 * - mark the inode with the verity flag
    512 * - delete the orphan item
    513 * - mark the ro compat bit
    514 * - clear the in progress bit
    515 *
    516 * Returns 0 on success, negative error code on failure.
    517 */
    518static int finish_verity(struct btrfs_inode *inode, const void *desc,
    519			 size_t desc_size)
    520{
    521	struct btrfs_trans_handle *trans = NULL;
    522	struct btrfs_root *root = inode->root;
    523	struct btrfs_verity_descriptor_item item;
    524	int ret;
    525
    526	/* Write out the descriptor item */
    527	memset(&item, 0, sizeof(item));
    528	btrfs_set_stack_verity_descriptor_size(&item, desc_size);
    529	ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 0,
    530			      (const char *)&item, sizeof(item));
    531	if (ret)
    532		goto out;
    533
    534	/* Write out the descriptor itself */
    535	ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 1,
    536			      desc, desc_size);
    537	if (ret)
    538		goto out;
    539
    540	/*
    541	 * 1 for updating the inode flag
    542	 * 1 for deleting the orphan
    543	 */
    544	trans = btrfs_start_transaction(root, 2);
    545	if (IS_ERR(trans)) {
    546		ret = PTR_ERR(trans);
    547		goto out;
    548	}
    549	inode->ro_flags |= BTRFS_INODE_RO_VERITY;
    550	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
    551	ret = btrfs_update_inode(trans, root, inode);
    552	if (ret)
    553		goto end_trans;
    554	ret = del_orphan(trans, inode);
    555	if (ret)
    556		goto end_trans;
    557	clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
    558	btrfs_set_fs_compat_ro(root->fs_info, VERITY);
    559end_trans:
    560	btrfs_end_transaction(trans);
    561out:
    562	return ret;
    563
    564}
    565
    566/*
    567 * fsverity op that begins enabling verity.
    568 *
    569 * @filp:  file to enable verity on
    570 *
    571 * Begin enabling fsverity for the file. We drop any existing verity items, add
    572 * an orphan and set the in progress bit.
    573 *
    574 * Returns 0 on success, negative error code on failure.
    575 */
    576static int btrfs_begin_enable_verity(struct file *filp)
    577{
    578	struct btrfs_inode *inode = BTRFS_I(file_inode(filp));
    579	struct btrfs_root *root = inode->root;
    580	struct btrfs_trans_handle *trans;
    581	int ret;
    582
    583	ASSERT(inode_is_locked(file_inode(filp)));
    584
    585	if (test_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags))
    586		return -EBUSY;
    587
    588	/*
    589	 * This should almost never do anything, but theoretically, it's
    590	 * possible that we failed to enable verity on a file, then were
    591	 * interrupted or failed while rolling back, failed to cleanup the
    592	 * orphan, and finally attempt to enable verity again.
    593	 */
    594	ret = btrfs_drop_verity_items(inode);
    595	if (ret)
    596		return ret;
    597
    598	/* 1 for the orphan item */
    599	trans = btrfs_start_transaction(root, 1);
    600	if (IS_ERR(trans))
    601		return PTR_ERR(trans);
    602
    603	ret = btrfs_orphan_add(trans, inode);
    604	if (!ret)
    605		set_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
    606	btrfs_end_transaction(trans);
    607
    608	return 0;
    609}
    610
    611/*
    612 * fsverity op that ends enabling verity.
    613 *
    614 * @filp:              file we are finishing enabling verity on
    615 * @desc:              verity descriptor to write out (NULL in error conditions)
    616 * @desc_size:         size of the verity descriptor (variable with signatures)
    617 * @merkle_tree_size:  size of the merkle tree in bytes
    618 *
    619 * If desc is null, then VFS is signaling an error occurred during verity
    620 * enable, and we should try to rollback. Otherwise, attempt to finish verity.
    621 *
    622 * Returns 0 on success, negative error code on error.
    623 */
    624static int btrfs_end_enable_verity(struct file *filp, const void *desc,
    625				   size_t desc_size, u64 merkle_tree_size)
    626{
    627	struct btrfs_inode *inode = BTRFS_I(file_inode(filp));
    628	int ret = 0;
    629	int rollback_ret;
    630
    631	ASSERT(inode_is_locked(file_inode(filp)));
    632
    633	if (desc == NULL)
    634		goto rollback;
    635
    636	ret = finish_verity(inode, desc, desc_size);
    637	if (ret)
    638		goto rollback;
    639	return ret;
    640
    641rollback:
    642	rollback_ret = rollback_verity(inode);
    643	if (rollback_ret)
    644		btrfs_err(inode->root->fs_info,
    645			  "failed to rollback verity items: %d", rollback_ret);
    646	return ret;
    647}
    648
    649/*
    650 * fsverity op that gets the struct fsverity_descriptor.
    651 *
    652 * @inode:     inode to get the descriptor of
    653 * @buf:       output buffer for the descriptor contents
    654 * @buf_size:  size of the output buffer. 0 to query the size
    655 *
    656 * fsverity does a two pass setup for reading the descriptor, in the first pass
    657 * it calls with buf_size = 0 to query the size of the descriptor, and then in
    658 * the second pass it actually reads the descriptor off disk.
    659 *
    660 * Returns the size on success or a negative error code on failure.
    661 */
    662static int btrfs_get_verity_descriptor(struct inode *inode, void *buf,
    663				       size_t buf_size)
    664{
    665	u64 true_size;
    666	int ret = 0;
    667	struct btrfs_verity_descriptor_item item;
    668
    669	memset(&item, 0, sizeof(item));
    670	ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 0,
    671			     (char *)&item, sizeof(item), NULL);
    672	if (ret < 0)
    673		return ret;
    674
    675	if (item.reserved[0] != 0 || item.reserved[1] != 0)
    676		return -EUCLEAN;
    677
    678	true_size = btrfs_stack_verity_descriptor_size(&item);
    679	if (true_size > INT_MAX)
    680		return -EUCLEAN;
    681
    682	if (buf_size == 0)
    683		return true_size;
    684	if (buf_size < true_size)
    685		return -ERANGE;
    686
    687	ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 1,
    688			     buf, buf_size, NULL);
    689	if (ret < 0)
    690		return ret;
    691	if (ret != true_size)
    692		return -EIO;
    693
    694	return true_size;
    695}
    696
    697/*
    698 * fsverity op that reads and caches a merkle tree page.
    699 *
    700 * @inode:         inode to read a merkle tree page for
    701 * @index:         page index relative to the start of the merkle tree
    702 * @num_ra_pages:  number of pages to readahead. Optional, we ignore it
    703 *
    704 * The Merkle tree is stored in the filesystem btree, but its pages are cached
    705 * with a logical position past EOF in the inode's mapping.
    706 *
    707 * Returns the page we read, or an ERR_PTR on error.
    708 */
    709static struct page *btrfs_read_merkle_tree_page(struct inode *inode,
    710						pgoff_t index,
    711						unsigned long num_ra_pages)
    712{
    713	struct page *page;
    714	u64 off = (u64)index << PAGE_SHIFT;
    715	loff_t merkle_pos = merkle_file_pos(inode);
    716	int ret;
    717
    718	if (merkle_pos < 0)
    719		return ERR_PTR(merkle_pos);
    720	if (merkle_pos > inode->i_sb->s_maxbytes - off - PAGE_SIZE)
    721		return ERR_PTR(-EFBIG);
    722	index += merkle_pos >> PAGE_SHIFT;
    723again:
    724	page = find_get_page_flags(inode->i_mapping, index, FGP_ACCESSED);
    725	if (page) {
    726		if (PageUptodate(page))
    727			return page;
    728
    729		lock_page(page);
    730		/*
    731		 * We only insert uptodate pages, so !Uptodate has to be
    732		 * an error
    733		 */
    734		if (!PageUptodate(page)) {
    735			unlock_page(page);
    736			put_page(page);
    737			return ERR_PTR(-EIO);
    738		}
    739		unlock_page(page);
    740		return page;
    741	}
    742
    743	page = __page_cache_alloc(mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS));
    744	if (!page)
    745		return ERR_PTR(-ENOMEM);
    746
    747	/*
    748	 * Merkle item keys are indexed from byte 0 in the merkle tree.
    749	 * They have the form:
    750	 *
    751	 * [ inode objectid, BTRFS_MERKLE_ITEM_KEY, offset in bytes ]
    752	 */
    753	ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, off,
    754			     page_address(page), PAGE_SIZE, page);
    755	if (ret < 0) {
    756		put_page(page);
    757		return ERR_PTR(ret);
    758	}
    759	if (ret < PAGE_SIZE)
    760		memzero_page(page, ret, PAGE_SIZE - ret);
    761
    762	SetPageUptodate(page);
    763	ret = add_to_page_cache_lru(page, inode->i_mapping, index, GFP_NOFS);
    764
    765	if (!ret) {
    766		/* Inserted and ready for fsverity */
    767		unlock_page(page);
    768	} else {
    769		put_page(page);
    770		/* Did someone race us into inserting this page? */
    771		if (ret == -EEXIST)
    772			goto again;
    773		page = ERR_PTR(ret);
    774	}
    775	return page;
    776}
    777
    778/*
    779 * fsverity op that writes a Merkle tree block into the btree.
    780 *
    781 * @inode:          inode to write a Merkle tree block for
    782 * @buf:            Merkle tree data block to write
    783 * @index:          index of the block in the Merkle tree
    784 * @log_blocksize:  log base 2 of the Merkle tree block size
    785 *
    786 * Note that the block size could be different from the page size, so it is not
    787 * safe to assume that index is a page index.
    788 *
    789 * Returns 0 on success or negative error code on failure
    790 */
    791static int btrfs_write_merkle_tree_block(struct inode *inode, const void *buf,
    792					u64 index, int log_blocksize)
    793{
    794	u64 off = index << log_blocksize;
    795	u64 len = 1ULL << log_blocksize;
    796	loff_t merkle_pos = merkle_file_pos(inode);
    797
    798	if (merkle_pos < 0)
    799		return merkle_pos;
    800	if (merkle_pos > inode->i_sb->s_maxbytes - off - len)
    801		return -EFBIG;
    802
    803	return write_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY,
    804			       off, buf, len);
    805}
    806
    807const struct fsverity_operations btrfs_verityops = {
    808	.begin_enable_verity     = btrfs_begin_enable_verity,
    809	.end_enable_verity       = btrfs_end_enable_verity,
    810	.get_verity_descriptor   = btrfs_get_verity_descriptor,
    811	.read_merkle_tree_page   = btrfs_read_merkle_tree_page,
    812	.write_merkle_tree_block = btrfs_write_merkle_tree_block,
    813};