cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

coredump.c (29502B)


      1// SPDX-License-Identifier: GPL-2.0
      2#include <linux/slab.h>
      3#include <linux/file.h>
      4#include <linux/fdtable.h>
      5#include <linux/freezer.h>
      6#include <linux/mm.h>
      7#include <linux/stat.h>
      8#include <linux/fcntl.h>
      9#include <linux/swap.h>
     10#include <linux/ctype.h>
     11#include <linux/string.h>
     12#include <linux/init.h>
     13#include <linux/pagemap.h>
     14#include <linux/perf_event.h>
     15#include <linux/highmem.h>
     16#include <linux/spinlock.h>
     17#include <linux/key.h>
     18#include <linux/personality.h>
     19#include <linux/binfmts.h>
     20#include <linux/coredump.h>
     21#include <linux/sched/coredump.h>
     22#include <linux/sched/signal.h>
     23#include <linux/sched/task_stack.h>
     24#include <linux/utsname.h>
     25#include <linux/pid_namespace.h>
     26#include <linux/module.h>
     27#include <linux/namei.h>
     28#include <linux/mount.h>
     29#include <linux/security.h>
     30#include <linux/syscalls.h>
     31#include <linux/tsacct_kern.h>
     32#include <linux/cn_proc.h>
     33#include <linux/audit.h>
     34#include <linux/kmod.h>
     35#include <linux/fsnotify.h>
     36#include <linux/fs_struct.h>
     37#include <linux/pipe_fs_i.h>
     38#include <linux/oom.h>
     39#include <linux/compat.h>
     40#include <linux/fs.h>
     41#include <linux/path.h>
     42#include <linux/timekeeping.h>
     43#include <linux/sysctl.h>
     44#include <linux/elf.h>
     45
     46#include <linux/uaccess.h>
     47#include <asm/mmu_context.h>
     48#include <asm/tlb.h>
     49#include <asm/exec.h>
     50
     51#include <trace/events/task.h>
     52#include "internal.h"
     53
     54#include <trace/events/sched.h>
     55
     56static bool dump_vma_snapshot(struct coredump_params *cprm);
     57static void free_vma_snapshot(struct coredump_params *cprm);
     58
     59static int core_uses_pid;
     60static unsigned int core_pipe_limit;
     61static char core_pattern[CORENAME_MAX_SIZE] = "core";
     62static int core_name_size = CORENAME_MAX_SIZE;
     63
     64struct core_name {
     65	char *corename;
     66	int used, size;
     67};
     68
     69static int expand_corename(struct core_name *cn, int size)
     70{
     71	char *corename = krealloc(cn->corename, size, GFP_KERNEL);
     72
     73	if (!corename)
     74		return -ENOMEM;
     75
     76	if (size > core_name_size) /* racy but harmless */
     77		core_name_size = size;
     78
     79	cn->size = ksize(corename);
     80	cn->corename = corename;
     81	return 0;
     82}
     83
     84static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
     85				     va_list arg)
     86{
     87	int free, need;
     88	va_list arg_copy;
     89
     90again:
     91	free = cn->size - cn->used;
     92
     93	va_copy(arg_copy, arg);
     94	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
     95	va_end(arg_copy);
     96
     97	if (need < free) {
     98		cn->used += need;
     99		return 0;
    100	}
    101
    102	if (!expand_corename(cn, cn->size + need - free + 1))
    103		goto again;
    104
    105	return -ENOMEM;
    106}
    107
    108static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
    109{
    110	va_list arg;
    111	int ret;
    112
    113	va_start(arg, fmt);
    114	ret = cn_vprintf(cn, fmt, arg);
    115	va_end(arg);
    116
    117	return ret;
    118}
    119
    120static __printf(2, 3)
    121int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
    122{
    123	int cur = cn->used;
    124	va_list arg;
    125	int ret;
    126
    127	va_start(arg, fmt);
    128	ret = cn_vprintf(cn, fmt, arg);
    129	va_end(arg);
    130
    131	if (ret == 0) {
    132		/*
    133		 * Ensure that this coredump name component can't cause the
    134		 * resulting corefile path to consist of a ".." or ".".
    135		 */
    136		if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
    137				(cn->used - cur == 2 && cn->corename[cur] == '.'
    138				&& cn->corename[cur+1] == '.'))
    139			cn->corename[cur] = '!';
    140
    141		/*
    142		 * Empty names are fishy and could be used to create a "//" in a
    143		 * corefile name, causing the coredump to happen one directory
    144		 * level too high. Enforce that all components of the core
    145		 * pattern are at least one character long.
    146		 */
    147		if (cn->used == cur)
    148			ret = cn_printf(cn, "!");
    149	}
    150
    151	for (; cur < cn->used; ++cur) {
    152		if (cn->corename[cur] == '/')
    153			cn->corename[cur] = '!';
    154	}
    155	return ret;
    156}
    157
    158static int cn_print_exe_file(struct core_name *cn, bool name_only)
    159{
    160	struct file *exe_file;
    161	char *pathbuf, *path, *ptr;
    162	int ret;
    163
    164	exe_file = get_mm_exe_file(current->mm);
    165	if (!exe_file)
    166		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
    167
    168	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
    169	if (!pathbuf) {
    170		ret = -ENOMEM;
    171		goto put_exe_file;
    172	}
    173
    174	path = file_path(exe_file, pathbuf, PATH_MAX);
    175	if (IS_ERR(path)) {
    176		ret = PTR_ERR(path);
    177		goto free_buf;
    178	}
    179
    180	if (name_only) {
    181		ptr = strrchr(path, '/');
    182		if (ptr)
    183			path = ptr + 1;
    184	}
    185	ret = cn_esc_printf(cn, "%s", path);
    186
    187free_buf:
    188	kfree(pathbuf);
    189put_exe_file:
    190	fput(exe_file);
    191	return ret;
    192}
    193
    194/* format_corename will inspect the pattern parameter, and output a
    195 * name into corename, which must have space for at least
    196 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
    197 */
    198static int format_corename(struct core_name *cn, struct coredump_params *cprm,
    199			   size_t **argv, int *argc)
    200{
    201	const struct cred *cred = current_cred();
    202	const char *pat_ptr = core_pattern;
    203	int ispipe = (*pat_ptr == '|');
    204	bool was_space = false;
    205	int pid_in_pattern = 0;
    206	int err = 0;
    207
    208	cn->used = 0;
    209	cn->corename = NULL;
    210	if (expand_corename(cn, core_name_size))
    211		return -ENOMEM;
    212	cn->corename[0] = '\0';
    213
    214	if (ispipe) {
    215		int argvs = sizeof(core_pattern) / 2;
    216		(*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
    217		if (!(*argv))
    218			return -ENOMEM;
    219		(*argv)[(*argc)++] = 0;
    220		++pat_ptr;
    221		if (!(*pat_ptr))
    222			return -ENOMEM;
    223	}
    224
    225	/* Repeat as long as we have more pattern to process and more output
    226	   space */
    227	while (*pat_ptr) {
    228		/*
    229		 * Split on spaces before doing template expansion so that
    230		 * %e and %E don't get split if they have spaces in them
    231		 */
    232		if (ispipe) {
    233			if (isspace(*pat_ptr)) {
    234				if (cn->used != 0)
    235					was_space = true;
    236				pat_ptr++;
    237				continue;
    238			} else if (was_space) {
    239				was_space = false;
    240				err = cn_printf(cn, "%c", '\0');
    241				if (err)
    242					return err;
    243				(*argv)[(*argc)++] = cn->used;
    244			}
    245		}
    246		if (*pat_ptr != '%') {
    247			err = cn_printf(cn, "%c", *pat_ptr++);
    248		} else {
    249			switch (*++pat_ptr) {
    250			/* single % at the end, drop that */
    251			case 0:
    252				goto out;
    253			/* Double percent, output one percent */
    254			case '%':
    255				err = cn_printf(cn, "%c", '%');
    256				break;
    257			/* pid */
    258			case 'p':
    259				pid_in_pattern = 1;
    260				err = cn_printf(cn, "%d",
    261					      task_tgid_vnr(current));
    262				break;
    263			/* global pid */
    264			case 'P':
    265				err = cn_printf(cn, "%d",
    266					      task_tgid_nr(current));
    267				break;
    268			case 'i':
    269				err = cn_printf(cn, "%d",
    270					      task_pid_vnr(current));
    271				break;
    272			case 'I':
    273				err = cn_printf(cn, "%d",
    274					      task_pid_nr(current));
    275				break;
    276			/* uid */
    277			case 'u':
    278				err = cn_printf(cn, "%u",
    279						from_kuid(&init_user_ns,
    280							  cred->uid));
    281				break;
    282			/* gid */
    283			case 'g':
    284				err = cn_printf(cn, "%u",
    285						from_kgid(&init_user_ns,
    286							  cred->gid));
    287				break;
    288			case 'd':
    289				err = cn_printf(cn, "%d",
    290					__get_dumpable(cprm->mm_flags));
    291				break;
    292			/* signal that caused the coredump */
    293			case 's':
    294				err = cn_printf(cn, "%d",
    295						cprm->siginfo->si_signo);
    296				break;
    297			/* UNIX time of coredump */
    298			case 't': {
    299				time64_t time;
    300
    301				time = ktime_get_real_seconds();
    302				err = cn_printf(cn, "%lld", time);
    303				break;
    304			}
    305			/* hostname */
    306			case 'h':
    307				down_read(&uts_sem);
    308				err = cn_esc_printf(cn, "%s",
    309					      utsname()->nodename);
    310				up_read(&uts_sem);
    311				break;
    312			/* executable, could be changed by prctl PR_SET_NAME etc */
    313			case 'e':
    314				err = cn_esc_printf(cn, "%s", current->comm);
    315				break;
    316			/* file name of executable */
    317			case 'f':
    318				err = cn_print_exe_file(cn, true);
    319				break;
    320			case 'E':
    321				err = cn_print_exe_file(cn, false);
    322				break;
    323			/* core limit size */
    324			case 'c':
    325				err = cn_printf(cn, "%lu",
    326					      rlimit(RLIMIT_CORE));
    327				break;
    328			default:
    329				break;
    330			}
    331			++pat_ptr;
    332		}
    333
    334		if (err)
    335			return err;
    336	}
    337
    338out:
    339	/* Backward compatibility with core_uses_pid:
    340	 *
    341	 * If core_pattern does not include a %p (as is the default)
    342	 * and core_uses_pid is set, then .%pid will be appended to
    343	 * the filename. Do not do this for piped commands. */
    344	if (!ispipe && !pid_in_pattern && core_uses_pid) {
    345		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
    346		if (err)
    347			return err;
    348	}
    349	return ispipe;
    350}
    351
    352static int zap_process(struct task_struct *start, int exit_code)
    353{
    354	struct task_struct *t;
    355	int nr = 0;
    356
    357	/* ignore all signals except SIGKILL, see prepare_signal() */
    358	start->signal->flags = SIGNAL_GROUP_EXIT;
    359	start->signal->group_exit_code = exit_code;
    360	start->signal->group_stop_count = 0;
    361
    362	for_each_thread(start, t) {
    363		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
    364		if (t != current && !(t->flags & PF_POSTCOREDUMP)) {
    365			sigaddset(&t->pending.signal, SIGKILL);
    366			signal_wake_up(t, 1);
    367			nr++;
    368		}
    369	}
    370
    371	return nr;
    372}
    373
    374static int zap_threads(struct task_struct *tsk,
    375			struct core_state *core_state, int exit_code)
    376{
    377	struct signal_struct *signal = tsk->signal;
    378	int nr = -EAGAIN;
    379
    380	spin_lock_irq(&tsk->sighand->siglock);
    381	if (!(signal->flags & SIGNAL_GROUP_EXIT) && !signal->group_exec_task) {
    382		signal->core_state = core_state;
    383		nr = zap_process(tsk, exit_code);
    384		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
    385		tsk->flags |= PF_DUMPCORE;
    386		atomic_set(&core_state->nr_threads, nr);
    387	}
    388	spin_unlock_irq(&tsk->sighand->siglock);
    389	return nr;
    390}
    391
    392static int coredump_wait(int exit_code, struct core_state *core_state)
    393{
    394	struct task_struct *tsk = current;
    395	int core_waiters = -EBUSY;
    396
    397	init_completion(&core_state->startup);
    398	core_state->dumper.task = tsk;
    399	core_state->dumper.next = NULL;
    400
    401	core_waiters = zap_threads(tsk, core_state, exit_code);
    402	if (core_waiters > 0) {
    403		struct core_thread *ptr;
    404
    405		freezer_do_not_count();
    406		wait_for_completion(&core_state->startup);
    407		freezer_count();
    408		/*
    409		 * Wait for all the threads to become inactive, so that
    410		 * all the thread context (extended register state, like
    411		 * fpu etc) gets copied to the memory.
    412		 */
    413		ptr = core_state->dumper.next;
    414		while (ptr != NULL) {
    415			wait_task_inactive(ptr->task, 0);
    416			ptr = ptr->next;
    417		}
    418	}
    419
    420	return core_waiters;
    421}
    422
    423static void coredump_finish(bool core_dumped)
    424{
    425	struct core_thread *curr, *next;
    426	struct task_struct *task;
    427
    428	spin_lock_irq(&current->sighand->siglock);
    429	if (core_dumped && !__fatal_signal_pending(current))
    430		current->signal->group_exit_code |= 0x80;
    431	next = current->signal->core_state->dumper.next;
    432	current->signal->core_state = NULL;
    433	spin_unlock_irq(&current->sighand->siglock);
    434
    435	while ((curr = next) != NULL) {
    436		next = curr->next;
    437		task = curr->task;
    438		/*
    439		 * see coredump_task_exit(), curr->task must not see
    440		 * ->task == NULL before we read ->next.
    441		 */
    442		smp_mb();
    443		curr->task = NULL;
    444		wake_up_process(task);
    445	}
    446}
    447
    448static bool dump_interrupted(void)
    449{
    450	/*
    451	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
    452	 * can do try_to_freeze() and check __fatal_signal_pending(),
    453	 * but then we need to teach dump_write() to restart and clear
    454	 * TIF_SIGPENDING.
    455	 */
    456	return fatal_signal_pending(current) || freezing(current);
    457}
    458
    459static void wait_for_dump_helpers(struct file *file)
    460{
    461	struct pipe_inode_info *pipe = file->private_data;
    462
    463	pipe_lock(pipe);
    464	pipe->readers++;
    465	pipe->writers--;
    466	wake_up_interruptible_sync(&pipe->rd_wait);
    467	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
    468	pipe_unlock(pipe);
    469
    470	/*
    471	 * We actually want wait_event_freezable() but then we need
    472	 * to clear TIF_SIGPENDING and improve dump_interrupted().
    473	 */
    474	wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
    475
    476	pipe_lock(pipe);
    477	pipe->readers--;
    478	pipe->writers++;
    479	pipe_unlock(pipe);
    480}
    481
    482/*
    483 * umh_pipe_setup
    484 * helper function to customize the process used
    485 * to collect the core in userspace.  Specifically
    486 * it sets up a pipe and installs it as fd 0 (stdin)
    487 * for the process.  Returns 0 on success, or
    488 * PTR_ERR on failure.
    489 * Note that it also sets the core limit to 1.  This
    490 * is a special value that we use to trap recursive
    491 * core dumps
    492 */
    493static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
    494{
    495	struct file *files[2];
    496	struct coredump_params *cp = (struct coredump_params *)info->data;
    497	int err = create_pipe_files(files, 0);
    498	if (err)
    499		return err;
    500
    501	cp->file = files[1];
    502
    503	err = replace_fd(0, files[0], 0);
    504	fput(files[0]);
    505	/* and disallow core files too */
    506	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
    507
    508	return err;
    509}
    510
    511void do_coredump(const kernel_siginfo_t *siginfo)
    512{
    513	struct core_state core_state;
    514	struct core_name cn;
    515	struct mm_struct *mm = current->mm;
    516	struct linux_binfmt * binfmt;
    517	const struct cred *old_cred;
    518	struct cred *cred;
    519	int retval = 0;
    520	int ispipe;
    521	size_t *argv = NULL;
    522	int argc = 0;
    523	/* require nonrelative corefile path and be extra careful */
    524	bool need_suid_safe = false;
    525	bool core_dumped = false;
    526	static atomic_t core_dump_count = ATOMIC_INIT(0);
    527	struct coredump_params cprm = {
    528		.siginfo = siginfo,
    529		.regs = signal_pt_regs(),
    530		.limit = rlimit(RLIMIT_CORE),
    531		/*
    532		 * We must use the same mm->flags while dumping core to avoid
    533		 * inconsistency of bit flags, since this flag is not protected
    534		 * by any locks.
    535		 */
    536		.mm_flags = mm->flags,
    537		.vma_meta = NULL,
    538	};
    539
    540	audit_core_dumps(siginfo->si_signo);
    541
    542	binfmt = mm->binfmt;
    543	if (!binfmt || !binfmt->core_dump)
    544		goto fail;
    545	if (!__get_dumpable(cprm.mm_flags))
    546		goto fail;
    547
    548	cred = prepare_creds();
    549	if (!cred)
    550		goto fail;
    551	/*
    552	 * We cannot trust fsuid as being the "true" uid of the process
    553	 * nor do we know its entire history. We only know it was tainted
    554	 * so we dump it as root in mode 2, and only into a controlled
    555	 * environment (pipe handler or fully qualified path).
    556	 */
    557	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
    558		/* Setuid core dump mode */
    559		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
    560		need_suid_safe = true;
    561	}
    562
    563	retval = coredump_wait(siginfo->si_signo, &core_state);
    564	if (retval < 0)
    565		goto fail_creds;
    566
    567	old_cred = override_creds(cred);
    568
    569	ispipe = format_corename(&cn, &cprm, &argv, &argc);
    570
    571	if (ispipe) {
    572		int argi;
    573		int dump_count;
    574		char **helper_argv;
    575		struct subprocess_info *sub_info;
    576
    577		if (ispipe < 0) {
    578			printk(KERN_WARNING "format_corename failed\n");
    579			printk(KERN_WARNING "Aborting core\n");
    580			goto fail_unlock;
    581		}
    582
    583		if (cprm.limit == 1) {
    584			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
    585			 *
    586			 * Normally core limits are irrelevant to pipes, since
    587			 * we're not writing to the file system, but we use
    588			 * cprm.limit of 1 here as a special value, this is a
    589			 * consistent way to catch recursive crashes.
    590			 * We can still crash if the core_pattern binary sets
    591			 * RLIM_CORE = !1, but it runs as root, and can do
    592			 * lots of stupid things.
    593			 *
    594			 * Note that we use task_tgid_vnr here to grab the pid
    595			 * of the process group leader.  That way we get the
    596			 * right pid if a thread in a multi-threaded
    597			 * core_pattern process dies.
    598			 */
    599			printk(KERN_WARNING
    600				"Process %d(%s) has RLIMIT_CORE set to 1\n",
    601				task_tgid_vnr(current), current->comm);
    602			printk(KERN_WARNING "Aborting core\n");
    603			goto fail_unlock;
    604		}
    605		cprm.limit = RLIM_INFINITY;
    606
    607		dump_count = atomic_inc_return(&core_dump_count);
    608		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
    609			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
    610			       task_tgid_vnr(current), current->comm);
    611			printk(KERN_WARNING "Skipping core dump\n");
    612			goto fail_dropcount;
    613		}
    614
    615		helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
    616					    GFP_KERNEL);
    617		if (!helper_argv) {
    618			printk(KERN_WARNING "%s failed to allocate memory\n",
    619			       __func__);
    620			goto fail_dropcount;
    621		}
    622		for (argi = 0; argi < argc; argi++)
    623			helper_argv[argi] = cn.corename + argv[argi];
    624		helper_argv[argi] = NULL;
    625
    626		retval = -ENOMEM;
    627		sub_info = call_usermodehelper_setup(helper_argv[0],
    628						helper_argv, NULL, GFP_KERNEL,
    629						umh_pipe_setup, NULL, &cprm);
    630		if (sub_info)
    631			retval = call_usermodehelper_exec(sub_info,
    632							  UMH_WAIT_EXEC);
    633
    634		kfree(helper_argv);
    635		if (retval) {
    636			printk(KERN_INFO "Core dump to |%s pipe failed\n",
    637			       cn.corename);
    638			goto close_fail;
    639		}
    640	} else {
    641		struct user_namespace *mnt_userns;
    642		struct inode *inode;
    643		int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
    644				 O_LARGEFILE | O_EXCL;
    645
    646		if (cprm.limit < binfmt->min_coredump)
    647			goto fail_unlock;
    648
    649		if (need_suid_safe && cn.corename[0] != '/') {
    650			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
    651				"to fully qualified path!\n",
    652				task_tgid_vnr(current), current->comm);
    653			printk(KERN_WARNING "Skipping core dump\n");
    654			goto fail_unlock;
    655		}
    656
    657		/*
    658		 * Unlink the file if it exists unless this is a SUID
    659		 * binary - in that case, we're running around with root
    660		 * privs and don't want to unlink another user's coredump.
    661		 */
    662		if (!need_suid_safe) {
    663			/*
    664			 * If it doesn't exist, that's fine. If there's some
    665			 * other problem, we'll catch it at the filp_open().
    666			 */
    667			do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
    668		}
    669
    670		/*
    671		 * There is a race between unlinking and creating the
    672		 * file, but if that causes an EEXIST here, that's
    673		 * fine - another process raced with us while creating
    674		 * the corefile, and the other process won. To userspace,
    675		 * what matters is that at least one of the two processes
    676		 * writes its coredump successfully, not which one.
    677		 */
    678		if (need_suid_safe) {
    679			/*
    680			 * Using user namespaces, normal user tasks can change
    681			 * their current->fs->root to point to arbitrary
    682			 * directories. Since the intention of the "only dump
    683			 * with a fully qualified path" rule is to control where
    684			 * coredumps may be placed using root privileges,
    685			 * current->fs->root must not be used. Instead, use the
    686			 * root directory of init_task.
    687			 */
    688			struct path root;
    689
    690			task_lock(&init_task);
    691			get_fs_root(init_task.fs, &root);
    692			task_unlock(&init_task);
    693			cprm.file = file_open_root(&root, cn.corename,
    694						   open_flags, 0600);
    695			path_put(&root);
    696		} else {
    697			cprm.file = filp_open(cn.corename, open_flags, 0600);
    698		}
    699		if (IS_ERR(cprm.file))
    700			goto fail_unlock;
    701
    702		inode = file_inode(cprm.file);
    703		if (inode->i_nlink > 1)
    704			goto close_fail;
    705		if (d_unhashed(cprm.file->f_path.dentry))
    706			goto close_fail;
    707		/*
    708		 * AK: actually i see no reason to not allow this for named
    709		 * pipes etc, but keep the previous behaviour for now.
    710		 */
    711		if (!S_ISREG(inode->i_mode))
    712			goto close_fail;
    713		/*
    714		 * Don't dump core if the filesystem changed owner or mode
    715		 * of the file during file creation. This is an issue when
    716		 * a process dumps core while its cwd is e.g. on a vfat
    717		 * filesystem.
    718		 */
    719		mnt_userns = file_mnt_user_ns(cprm.file);
    720		if (!uid_eq(i_uid_into_mnt(mnt_userns, inode),
    721			    current_fsuid())) {
    722			pr_info_ratelimited("Core dump to %s aborted: cannot preserve file owner\n",
    723					    cn.corename);
    724			goto close_fail;
    725		}
    726		if ((inode->i_mode & 0677) != 0600) {
    727			pr_info_ratelimited("Core dump to %s aborted: cannot preserve file permissions\n",
    728					    cn.corename);
    729			goto close_fail;
    730		}
    731		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
    732			goto close_fail;
    733		if (do_truncate(mnt_userns, cprm.file->f_path.dentry,
    734				0, 0, cprm.file))
    735			goto close_fail;
    736	}
    737
    738	/* get us an unshared descriptor table; almost always a no-op */
    739	/* The cell spufs coredump code reads the file descriptor tables */
    740	retval = unshare_files();
    741	if (retval)
    742		goto close_fail;
    743	if (!dump_interrupted()) {
    744		/*
    745		 * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
    746		 * have this set to NULL.
    747		 */
    748		if (!cprm.file) {
    749			pr_info("Core dump to |%s disabled\n", cn.corename);
    750			goto close_fail;
    751		}
    752		if (!dump_vma_snapshot(&cprm))
    753			goto close_fail;
    754
    755		file_start_write(cprm.file);
    756		core_dumped = binfmt->core_dump(&cprm);
    757		/*
    758		 * Ensures that file size is big enough to contain the current
    759		 * file postion. This prevents gdb from complaining about
    760		 * a truncated file if the last "write" to the file was
    761		 * dump_skip.
    762		 */
    763		if (cprm.to_skip) {
    764			cprm.to_skip--;
    765			dump_emit(&cprm, "", 1);
    766		}
    767		file_end_write(cprm.file);
    768		free_vma_snapshot(&cprm);
    769	}
    770	if (ispipe && core_pipe_limit)
    771		wait_for_dump_helpers(cprm.file);
    772close_fail:
    773	if (cprm.file)
    774		filp_close(cprm.file, NULL);
    775fail_dropcount:
    776	if (ispipe)
    777		atomic_dec(&core_dump_count);
    778fail_unlock:
    779	kfree(argv);
    780	kfree(cn.corename);
    781	coredump_finish(core_dumped);
    782	revert_creds(old_cred);
    783fail_creds:
    784	put_cred(cred);
    785fail:
    786	return;
    787}
    788
    789/*
    790 * Core dumping helper functions.  These are the only things you should
    791 * do on a core-file: use only these functions to write out all the
    792 * necessary info.
    793 */
    794static int __dump_emit(struct coredump_params *cprm, const void *addr, int nr)
    795{
    796	struct file *file = cprm->file;
    797	loff_t pos = file->f_pos;
    798	ssize_t n;
    799	if (cprm->written + nr > cprm->limit)
    800		return 0;
    801
    802
    803	if (dump_interrupted())
    804		return 0;
    805	n = __kernel_write(file, addr, nr, &pos);
    806	if (n != nr)
    807		return 0;
    808	file->f_pos = pos;
    809	cprm->written += n;
    810	cprm->pos += n;
    811
    812	return 1;
    813}
    814
    815static int __dump_skip(struct coredump_params *cprm, size_t nr)
    816{
    817	static char zeroes[PAGE_SIZE];
    818	struct file *file = cprm->file;
    819	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
    820		if (dump_interrupted() ||
    821		    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
    822			return 0;
    823		cprm->pos += nr;
    824		return 1;
    825	} else {
    826		while (nr > PAGE_SIZE) {
    827			if (!__dump_emit(cprm, zeroes, PAGE_SIZE))
    828				return 0;
    829			nr -= PAGE_SIZE;
    830		}
    831		return __dump_emit(cprm, zeroes, nr);
    832	}
    833}
    834
    835int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
    836{
    837	if (cprm->to_skip) {
    838		if (!__dump_skip(cprm, cprm->to_skip))
    839			return 0;
    840		cprm->to_skip = 0;
    841	}
    842	return __dump_emit(cprm, addr, nr);
    843}
    844EXPORT_SYMBOL(dump_emit);
    845
    846void dump_skip_to(struct coredump_params *cprm, unsigned long pos)
    847{
    848	cprm->to_skip = pos - cprm->pos;
    849}
    850EXPORT_SYMBOL(dump_skip_to);
    851
    852void dump_skip(struct coredump_params *cprm, size_t nr)
    853{
    854	cprm->to_skip += nr;
    855}
    856EXPORT_SYMBOL(dump_skip);
    857
    858#ifdef CONFIG_ELF_CORE
    859int dump_user_range(struct coredump_params *cprm, unsigned long start,
    860		    unsigned long len)
    861{
    862	unsigned long addr;
    863
    864	for (addr = start; addr < start + len; addr += PAGE_SIZE) {
    865		struct page *page;
    866		int stop;
    867
    868		/*
    869		 * To avoid having to allocate page tables for virtual address
    870		 * ranges that have never been used yet, and also to make it
    871		 * easy to generate sparse core files, use a helper that returns
    872		 * NULL when encountering an empty page table entry that would
    873		 * otherwise have been filled with the zero page.
    874		 */
    875		page = get_dump_page(addr);
    876		if (page) {
    877			void *kaddr = kmap_local_page(page);
    878
    879			stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
    880			kunmap_local(kaddr);
    881			put_page(page);
    882			if (stop)
    883				return 0;
    884		} else {
    885			dump_skip(cprm, PAGE_SIZE);
    886		}
    887	}
    888	return 1;
    889}
    890#endif
    891
    892int dump_align(struct coredump_params *cprm, int align)
    893{
    894	unsigned mod = (cprm->pos + cprm->to_skip) & (align - 1);
    895	if (align & (align - 1))
    896		return 0;
    897	if (mod)
    898		cprm->to_skip += align - mod;
    899	return 1;
    900}
    901EXPORT_SYMBOL(dump_align);
    902
    903#ifdef CONFIG_SYSCTL
    904
    905void validate_coredump_safety(void)
    906{
    907	if (suid_dumpable == SUID_DUMP_ROOT &&
    908	    core_pattern[0] != '/' && core_pattern[0] != '|') {
    909		pr_warn(
    910"Unsafe core_pattern used with fs.suid_dumpable=2.\n"
    911"Pipe handler or fully qualified core dump path required.\n"
    912"Set kernel.core_pattern before fs.suid_dumpable.\n"
    913		);
    914	}
    915}
    916
    917static int proc_dostring_coredump(struct ctl_table *table, int write,
    918		  void *buffer, size_t *lenp, loff_t *ppos)
    919{
    920	int error = proc_dostring(table, write, buffer, lenp, ppos);
    921
    922	if (!error)
    923		validate_coredump_safety();
    924	return error;
    925}
    926
    927static struct ctl_table coredump_sysctls[] = {
    928	{
    929		.procname	= "core_uses_pid",
    930		.data		= &core_uses_pid,
    931		.maxlen		= sizeof(int),
    932		.mode		= 0644,
    933		.proc_handler	= proc_dointvec,
    934	},
    935	{
    936		.procname	= "core_pattern",
    937		.data		= core_pattern,
    938		.maxlen		= CORENAME_MAX_SIZE,
    939		.mode		= 0644,
    940		.proc_handler	= proc_dostring_coredump,
    941	},
    942	{
    943		.procname	= "core_pipe_limit",
    944		.data		= &core_pipe_limit,
    945		.maxlen		= sizeof(unsigned int),
    946		.mode		= 0644,
    947		.proc_handler	= proc_dointvec,
    948	},
    949	{ }
    950};
    951
    952static int __init init_fs_coredump_sysctls(void)
    953{
    954	register_sysctl_init("kernel", coredump_sysctls);
    955	return 0;
    956}
    957fs_initcall(init_fs_coredump_sysctls);
    958#endif /* CONFIG_SYSCTL */
    959
    960/*
    961 * The purpose of always_dump_vma() is to make sure that special kernel mappings
    962 * that are useful for post-mortem analysis are included in every core dump.
    963 * In that way we ensure that the core dump is fully interpretable later
    964 * without matching up the same kernel and hardware config to see what PC values
    965 * meant. These special mappings include - vDSO, vsyscall, and other
    966 * architecture specific mappings
    967 */
    968static bool always_dump_vma(struct vm_area_struct *vma)
    969{
    970	/* Any vsyscall mappings? */
    971	if (vma == get_gate_vma(vma->vm_mm))
    972		return true;
    973
    974	/*
    975	 * Assume that all vmas with a .name op should always be dumped.
    976	 * If this changes, a new vm_ops field can easily be added.
    977	 */
    978	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
    979		return true;
    980
    981	/*
    982	 * arch_vma_name() returns non-NULL for special architecture mappings,
    983	 * such as vDSO sections.
    984	 */
    985	if (arch_vma_name(vma))
    986		return true;
    987
    988	return false;
    989}
    990
    991#define DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER 1
    992
    993/*
    994 * Decide how much of @vma's contents should be included in a core dump.
    995 */
    996static unsigned long vma_dump_size(struct vm_area_struct *vma,
    997				   unsigned long mm_flags)
    998{
    999#define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
   1000
   1001	/* always dump the vdso and vsyscall sections */
   1002	if (always_dump_vma(vma))
   1003		goto whole;
   1004
   1005	if (vma->vm_flags & VM_DONTDUMP)
   1006		return 0;
   1007
   1008	/* support for DAX */
   1009	if (vma_is_dax(vma)) {
   1010		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
   1011			goto whole;
   1012		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
   1013			goto whole;
   1014		return 0;
   1015	}
   1016
   1017	/* Hugetlb memory check */
   1018	if (is_vm_hugetlb_page(vma)) {
   1019		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
   1020			goto whole;
   1021		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
   1022			goto whole;
   1023		return 0;
   1024	}
   1025
   1026	/* Do not dump I/O mapped devices or special mappings */
   1027	if (vma->vm_flags & VM_IO)
   1028		return 0;
   1029
   1030	/* By default, dump shared memory if mapped from an anonymous file. */
   1031	if (vma->vm_flags & VM_SHARED) {
   1032		if (file_inode(vma->vm_file)->i_nlink == 0 ?
   1033		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
   1034			goto whole;
   1035		return 0;
   1036	}
   1037
   1038	/* Dump segments that have been written to.  */
   1039	if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE))
   1040		goto whole;
   1041	if (vma->vm_file == NULL)
   1042		return 0;
   1043
   1044	if (FILTER(MAPPED_PRIVATE))
   1045		goto whole;
   1046
   1047	/*
   1048	 * If this is the beginning of an executable file mapping,
   1049	 * dump the first page to aid in determining what was mapped here.
   1050	 */
   1051	if (FILTER(ELF_HEADERS) &&
   1052	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
   1053		if ((READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0)
   1054			return PAGE_SIZE;
   1055
   1056		/*
   1057		 * ELF libraries aren't always executable.
   1058		 * We'll want to check whether the mapping starts with the ELF
   1059		 * magic, but not now - we're holding the mmap lock,
   1060		 * so copy_from_user() doesn't work here.
   1061		 * Use a placeholder instead, and fix it up later in
   1062		 * dump_vma_snapshot().
   1063		 */
   1064		return DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER;
   1065	}
   1066
   1067#undef	FILTER
   1068
   1069	return 0;
   1070
   1071whole:
   1072	return vma->vm_end - vma->vm_start;
   1073}
   1074
   1075static struct vm_area_struct *first_vma(struct task_struct *tsk,
   1076					struct vm_area_struct *gate_vma)
   1077{
   1078	struct vm_area_struct *ret = tsk->mm->mmap;
   1079
   1080	if (ret)
   1081		return ret;
   1082	return gate_vma;
   1083}
   1084
   1085/*
   1086 * Helper function for iterating across a vma list.  It ensures that the caller
   1087 * will visit `gate_vma' prior to terminating the search.
   1088 */
   1089static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
   1090				       struct vm_area_struct *gate_vma)
   1091{
   1092	struct vm_area_struct *ret;
   1093
   1094	ret = this_vma->vm_next;
   1095	if (ret)
   1096		return ret;
   1097	if (this_vma == gate_vma)
   1098		return NULL;
   1099	return gate_vma;
   1100}
   1101
   1102static void free_vma_snapshot(struct coredump_params *cprm)
   1103{
   1104	if (cprm->vma_meta) {
   1105		int i;
   1106		for (i = 0; i < cprm->vma_count; i++) {
   1107			struct file *file = cprm->vma_meta[i].file;
   1108			if (file)
   1109				fput(file);
   1110		}
   1111		kvfree(cprm->vma_meta);
   1112		cprm->vma_meta = NULL;
   1113	}
   1114}
   1115
   1116/*
   1117 * Under the mmap_lock, take a snapshot of relevant information about the task's
   1118 * VMAs.
   1119 */
   1120static bool dump_vma_snapshot(struct coredump_params *cprm)
   1121{
   1122	struct vm_area_struct *vma, *gate_vma;
   1123	struct mm_struct *mm = current->mm;
   1124	int i;
   1125
   1126	/*
   1127	 * Once the stack expansion code is fixed to not change VMA bounds
   1128	 * under mmap_lock in read mode, this can be changed to take the
   1129	 * mmap_lock in read mode.
   1130	 */
   1131	if (mmap_write_lock_killable(mm))
   1132		return false;
   1133
   1134	cprm->vma_data_size = 0;
   1135	gate_vma = get_gate_vma(mm);
   1136	cprm->vma_count = mm->map_count + (gate_vma ? 1 : 0);
   1137
   1138	cprm->vma_meta = kvmalloc_array(cprm->vma_count, sizeof(*cprm->vma_meta), GFP_KERNEL);
   1139	if (!cprm->vma_meta) {
   1140		mmap_write_unlock(mm);
   1141		return false;
   1142	}
   1143
   1144	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
   1145			vma = next_vma(vma, gate_vma), i++) {
   1146		struct core_vma_metadata *m = cprm->vma_meta + i;
   1147
   1148		m->start = vma->vm_start;
   1149		m->end = vma->vm_end;
   1150		m->flags = vma->vm_flags;
   1151		m->dump_size = vma_dump_size(vma, cprm->mm_flags);
   1152		m->pgoff = vma->vm_pgoff;
   1153
   1154		m->file = vma->vm_file;
   1155		if (m->file)
   1156			get_file(m->file);
   1157	}
   1158
   1159	mmap_write_unlock(mm);
   1160
   1161	for (i = 0; i < cprm->vma_count; i++) {
   1162		struct core_vma_metadata *m = cprm->vma_meta + i;
   1163
   1164		if (m->dump_size == DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER) {
   1165			char elfmag[SELFMAG];
   1166
   1167			if (copy_from_user(elfmag, (void __user *)m->start, SELFMAG) ||
   1168					memcmp(elfmag, ELFMAG, SELFMAG) != 0) {
   1169				m->dump_size = 0;
   1170			} else {
   1171				m->dump_size = PAGE_SIZE;
   1172			}
   1173		}
   1174
   1175		cprm->vma_data_size += m->dump_size;
   1176	}
   1177
   1178	return true;
   1179}