cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

keyring.c (35123B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Filesystem-level keyring for fscrypt
      4 *
      5 * Copyright 2019 Google LLC
      6 */
      7
      8/*
      9 * This file implements management of fscrypt master keys in the
     10 * filesystem-level keyring, including the ioctls:
     11 *
     12 * - FS_IOC_ADD_ENCRYPTION_KEY
     13 * - FS_IOC_REMOVE_ENCRYPTION_KEY
     14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
     15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
     16 *
     17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
     18 * information about these ioctls.
     19 */
     20
     21#include <crypto/skcipher.h>
     22#include <linux/key-type.h>
     23#include <linux/random.h>
     24#include <linux/seq_file.h>
     25
     26#include "fscrypt_private.h"
     27
     28static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
     29{
     30	fscrypt_destroy_hkdf(&secret->hkdf);
     31	memzero_explicit(secret, sizeof(*secret));
     32}
     33
     34static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
     35				   struct fscrypt_master_key_secret *src)
     36{
     37	memcpy(dst, src, sizeof(*dst));
     38	memzero_explicit(src, sizeof(*src));
     39}
     40
     41static void free_master_key(struct fscrypt_master_key *mk)
     42{
     43	size_t i;
     44
     45	wipe_master_key_secret(&mk->mk_secret);
     46
     47	for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
     48		fscrypt_destroy_prepared_key(&mk->mk_direct_keys[i]);
     49		fscrypt_destroy_prepared_key(&mk->mk_iv_ino_lblk_64_keys[i]);
     50		fscrypt_destroy_prepared_key(&mk->mk_iv_ino_lblk_32_keys[i]);
     51	}
     52
     53	key_put(mk->mk_users);
     54	kfree_sensitive(mk);
     55}
     56
     57static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
     58{
     59	if (spec->__reserved)
     60		return false;
     61	return master_key_spec_len(spec) != 0;
     62}
     63
     64static int fscrypt_key_instantiate(struct key *key,
     65				   struct key_preparsed_payload *prep)
     66{
     67	key->payload.data[0] = (struct fscrypt_master_key *)prep->data;
     68	return 0;
     69}
     70
     71static void fscrypt_key_destroy(struct key *key)
     72{
     73	free_master_key(key->payload.data[0]);
     74}
     75
     76static void fscrypt_key_describe(const struct key *key, struct seq_file *m)
     77{
     78	seq_puts(m, key->description);
     79
     80	if (key_is_positive(key)) {
     81		const struct fscrypt_master_key *mk = key->payload.data[0];
     82
     83		if (!is_master_key_secret_present(&mk->mk_secret))
     84			seq_puts(m, ": secret removed");
     85	}
     86}
     87
     88/*
     89 * Type of key in ->s_master_keys.  Each key of this type represents a master
     90 * key which has been added to the filesystem.  Its payload is a
     91 * 'struct fscrypt_master_key'.  The "." prefix in the key type name prevents
     92 * users from adding keys of this type via the keyrings syscalls rather than via
     93 * the intended method of FS_IOC_ADD_ENCRYPTION_KEY.
     94 */
     95static struct key_type key_type_fscrypt = {
     96	.name			= "._fscrypt",
     97	.instantiate		= fscrypt_key_instantiate,
     98	.destroy		= fscrypt_key_destroy,
     99	.describe		= fscrypt_key_describe,
    100};
    101
    102static int fscrypt_user_key_instantiate(struct key *key,
    103					struct key_preparsed_payload *prep)
    104{
    105	/*
    106	 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
    107	 * each key, regardless of the exact key size.  The amount of memory
    108	 * actually used is greater than the size of the raw key anyway.
    109	 */
    110	return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE);
    111}
    112
    113static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
    114{
    115	seq_puts(m, key->description);
    116}
    117
    118/*
    119 * Type of key in ->mk_users.  Each key of this type represents a particular
    120 * user who has added a particular master key.
    121 *
    122 * Note that the name of this key type really should be something like
    123 * ".fscrypt-user" instead of simply ".fscrypt".  But the shorter name is chosen
    124 * mainly for simplicity of presentation in /proc/keys when read by a non-root
    125 * user.  And it is expected to be rare that a key is actually added by multiple
    126 * users, since users should keep their encryption keys confidential.
    127 */
    128static struct key_type key_type_fscrypt_user = {
    129	.name			= ".fscrypt",
    130	.instantiate		= fscrypt_user_key_instantiate,
    131	.describe		= fscrypt_user_key_describe,
    132};
    133
    134/* Search ->s_master_keys or ->mk_users */
    135static struct key *search_fscrypt_keyring(struct key *keyring,
    136					  struct key_type *type,
    137					  const char *description)
    138{
    139	/*
    140	 * We need to mark the keyring reference as "possessed" so that we
    141	 * acquire permission to search it, via the KEY_POS_SEARCH permission.
    142	 */
    143	key_ref_t keyref = make_key_ref(keyring, true /* possessed */);
    144
    145	keyref = keyring_search(keyref, type, description, false);
    146	if (IS_ERR(keyref)) {
    147		if (PTR_ERR(keyref) == -EAGAIN || /* not found */
    148		    PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
    149			keyref = ERR_PTR(-ENOKEY);
    150		return ERR_CAST(keyref);
    151	}
    152	return key_ref_to_ptr(keyref);
    153}
    154
    155#define FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE	\
    156	(CONST_STRLEN("fscrypt-") + sizeof_field(struct super_block, s_id))
    157
    158#define FSCRYPT_MK_DESCRIPTION_SIZE	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + 1)
    159
    160#define FSCRYPT_MK_USERS_DESCRIPTION_SIZE	\
    161	(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
    162	 CONST_STRLEN("-users") + 1)
    163
    164#define FSCRYPT_MK_USER_DESCRIPTION_SIZE	\
    165	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
    166
    167static void format_fs_keyring_description(
    168			char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE],
    169			const struct super_block *sb)
    170{
    171	sprintf(description, "fscrypt-%s", sb->s_id);
    172}
    173
    174static void format_mk_description(
    175			char description[FSCRYPT_MK_DESCRIPTION_SIZE],
    176			const struct fscrypt_key_specifier *mk_spec)
    177{
    178	sprintf(description, "%*phN",
    179		master_key_spec_len(mk_spec), (u8 *)&mk_spec->u);
    180}
    181
    182static void format_mk_users_keyring_description(
    183			char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
    184			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
    185{
    186	sprintf(description, "fscrypt-%*phN-users",
    187		FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
    188}
    189
    190static void format_mk_user_description(
    191			char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
    192			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
    193{
    194
    195	sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
    196		mk_identifier, __kuid_val(current_fsuid()));
    197}
    198
    199/* Create ->s_master_keys if needed.  Synchronized by fscrypt_add_key_mutex. */
    200static int allocate_filesystem_keyring(struct super_block *sb)
    201{
    202	char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE];
    203	struct key *keyring;
    204
    205	if (sb->s_master_keys)
    206		return 0;
    207
    208	format_fs_keyring_description(description, sb);
    209	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
    210				current_cred(), KEY_POS_SEARCH |
    211				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
    212				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
    213	if (IS_ERR(keyring))
    214		return PTR_ERR(keyring);
    215
    216	/*
    217	 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
    218	 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
    219	 * concurrent tasks can ACQUIRE it.
    220	 */
    221	smp_store_release(&sb->s_master_keys, keyring);
    222	return 0;
    223}
    224
    225void fscrypt_sb_free(struct super_block *sb)
    226{
    227	key_put(sb->s_master_keys);
    228	sb->s_master_keys = NULL;
    229}
    230
    231/*
    232 * Find the specified master key in ->s_master_keys.
    233 * Returns ERR_PTR(-ENOKEY) if not found.
    234 */
    235struct key *fscrypt_find_master_key(struct super_block *sb,
    236				    const struct fscrypt_key_specifier *mk_spec)
    237{
    238	struct key *keyring;
    239	char description[FSCRYPT_MK_DESCRIPTION_SIZE];
    240
    241	/*
    242	 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
    243	 * I.e., another task can publish ->s_master_keys concurrently,
    244	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
    245	 * to safely ACQUIRE the memory the other task published.
    246	 */
    247	keyring = smp_load_acquire(&sb->s_master_keys);
    248	if (keyring == NULL)
    249		return ERR_PTR(-ENOKEY); /* No keyring yet, so no keys yet. */
    250
    251	format_mk_description(description, mk_spec);
    252	return search_fscrypt_keyring(keyring, &key_type_fscrypt, description);
    253}
    254
    255static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
    256{
    257	char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
    258	struct key *keyring;
    259
    260	format_mk_users_keyring_description(description,
    261					    mk->mk_spec.u.identifier);
    262	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
    263				current_cred(), KEY_POS_SEARCH |
    264				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
    265				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
    266	if (IS_ERR(keyring))
    267		return PTR_ERR(keyring);
    268
    269	mk->mk_users = keyring;
    270	return 0;
    271}
    272
    273/*
    274 * Find the current user's "key" in the master key's ->mk_users.
    275 * Returns ERR_PTR(-ENOKEY) if not found.
    276 */
    277static struct key *find_master_key_user(struct fscrypt_master_key *mk)
    278{
    279	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
    280
    281	format_mk_user_description(description, mk->mk_spec.u.identifier);
    282	return search_fscrypt_keyring(mk->mk_users, &key_type_fscrypt_user,
    283				      description);
    284}
    285
    286/*
    287 * Give the current user a "key" in ->mk_users.  This charges the user's quota
    288 * and marks the master key as added by the current user, so that it cannot be
    289 * removed by another user with the key.  Either the master key's key->sem must
    290 * be held for write, or the master key must be still undergoing initialization.
    291 */
    292static int add_master_key_user(struct fscrypt_master_key *mk)
    293{
    294	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
    295	struct key *mk_user;
    296	int err;
    297
    298	format_mk_user_description(description, mk->mk_spec.u.identifier);
    299	mk_user = key_alloc(&key_type_fscrypt_user, description,
    300			    current_fsuid(), current_gid(), current_cred(),
    301			    KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
    302	if (IS_ERR(mk_user))
    303		return PTR_ERR(mk_user);
    304
    305	err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
    306	key_put(mk_user);
    307	return err;
    308}
    309
    310/*
    311 * Remove the current user's "key" from ->mk_users.
    312 * The master key's key->sem must be held for write.
    313 *
    314 * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
    315 */
    316static int remove_master_key_user(struct fscrypt_master_key *mk)
    317{
    318	struct key *mk_user;
    319	int err;
    320
    321	mk_user = find_master_key_user(mk);
    322	if (IS_ERR(mk_user))
    323		return PTR_ERR(mk_user);
    324	err = key_unlink(mk->mk_users, mk_user);
    325	key_put(mk_user);
    326	return err;
    327}
    328
    329/*
    330 * Allocate a new fscrypt_master_key which contains the given secret, set it as
    331 * the payload of a new 'struct key' of type fscrypt, and link the 'struct key'
    332 * into the given keyring.  Synchronized by fscrypt_add_key_mutex.
    333 */
    334static int add_new_master_key(struct fscrypt_master_key_secret *secret,
    335			      const struct fscrypt_key_specifier *mk_spec,
    336			      struct key *keyring)
    337{
    338	struct fscrypt_master_key *mk;
    339	char description[FSCRYPT_MK_DESCRIPTION_SIZE];
    340	struct key *key;
    341	int err;
    342
    343	mk = kzalloc(sizeof(*mk), GFP_KERNEL);
    344	if (!mk)
    345		return -ENOMEM;
    346
    347	mk->mk_spec = *mk_spec;
    348
    349	move_master_key_secret(&mk->mk_secret, secret);
    350
    351	refcount_set(&mk->mk_refcount, 1); /* secret is present */
    352	INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
    353	spin_lock_init(&mk->mk_decrypted_inodes_lock);
    354
    355	if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
    356		err = allocate_master_key_users_keyring(mk);
    357		if (err)
    358			goto out_free_mk;
    359		err = add_master_key_user(mk);
    360		if (err)
    361			goto out_free_mk;
    362	}
    363
    364	/*
    365	 * Note that we don't charge this key to anyone's quota, since when
    366	 * ->mk_users is in use those keys are charged instead, and otherwise
    367	 * (when ->mk_users isn't in use) only root can add these keys.
    368	 */
    369	format_mk_description(description, mk_spec);
    370	key = key_alloc(&key_type_fscrypt, description,
    371			GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, current_cred(),
    372			KEY_POS_SEARCH | KEY_USR_SEARCH | KEY_USR_VIEW,
    373			KEY_ALLOC_NOT_IN_QUOTA, NULL);
    374	if (IS_ERR(key)) {
    375		err = PTR_ERR(key);
    376		goto out_free_mk;
    377	}
    378	err = key_instantiate_and_link(key, mk, sizeof(*mk), keyring, NULL);
    379	key_put(key);
    380	if (err)
    381		goto out_free_mk;
    382
    383	return 0;
    384
    385out_free_mk:
    386	free_master_key(mk);
    387	return err;
    388}
    389
    390#define KEY_DEAD	1
    391
    392static int add_existing_master_key(struct fscrypt_master_key *mk,
    393				   struct fscrypt_master_key_secret *secret)
    394{
    395	struct key *mk_user;
    396	bool rekey;
    397	int err;
    398
    399	/*
    400	 * If the current user is already in ->mk_users, then there's nothing to
    401	 * do.  (Not applicable for v1 policy keys, which have NULL ->mk_users.)
    402	 */
    403	if (mk->mk_users) {
    404		mk_user = find_master_key_user(mk);
    405		if (mk_user != ERR_PTR(-ENOKEY)) {
    406			if (IS_ERR(mk_user))
    407				return PTR_ERR(mk_user);
    408			key_put(mk_user);
    409			return 0;
    410		}
    411	}
    412
    413	/* If we'll be re-adding ->mk_secret, try to take the reference. */
    414	rekey = !is_master_key_secret_present(&mk->mk_secret);
    415	if (rekey && !refcount_inc_not_zero(&mk->mk_refcount))
    416		return KEY_DEAD;
    417
    418	/* Add the current user to ->mk_users, if applicable. */
    419	if (mk->mk_users) {
    420		err = add_master_key_user(mk);
    421		if (err) {
    422			if (rekey && refcount_dec_and_test(&mk->mk_refcount))
    423				return KEY_DEAD;
    424			return err;
    425		}
    426	}
    427
    428	/* Re-add the secret if needed. */
    429	if (rekey)
    430		move_master_key_secret(&mk->mk_secret, secret);
    431	return 0;
    432}
    433
    434static int do_add_master_key(struct super_block *sb,
    435			     struct fscrypt_master_key_secret *secret,
    436			     const struct fscrypt_key_specifier *mk_spec)
    437{
    438	static DEFINE_MUTEX(fscrypt_add_key_mutex);
    439	struct key *key;
    440	int err;
    441
    442	mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
    443retry:
    444	key = fscrypt_find_master_key(sb, mk_spec);
    445	if (IS_ERR(key)) {
    446		err = PTR_ERR(key);
    447		if (err != -ENOKEY)
    448			goto out_unlock;
    449		/* Didn't find the key in ->s_master_keys.  Add it. */
    450		err = allocate_filesystem_keyring(sb);
    451		if (err)
    452			goto out_unlock;
    453		err = add_new_master_key(secret, mk_spec, sb->s_master_keys);
    454	} else {
    455		/*
    456		 * Found the key in ->s_master_keys.  Re-add the secret if
    457		 * needed, and add the user to ->mk_users if needed.
    458		 */
    459		down_write(&key->sem);
    460		err = add_existing_master_key(key->payload.data[0], secret);
    461		up_write(&key->sem);
    462		if (err == KEY_DEAD) {
    463			/* Key being removed or needs to be removed */
    464			key_invalidate(key);
    465			key_put(key);
    466			goto retry;
    467		}
    468		key_put(key);
    469	}
    470out_unlock:
    471	mutex_unlock(&fscrypt_add_key_mutex);
    472	return err;
    473}
    474
    475static int add_master_key(struct super_block *sb,
    476			  struct fscrypt_master_key_secret *secret,
    477			  struct fscrypt_key_specifier *key_spec)
    478{
    479	int err;
    480
    481	if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
    482		err = fscrypt_init_hkdf(&secret->hkdf, secret->raw,
    483					secret->size);
    484		if (err)
    485			return err;
    486
    487		/*
    488		 * Now that the HKDF context is initialized, the raw key is no
    489		 * longer needed.
    490		 */
    491		memzero_explicit(secret->raw, secret->size);
    492
    493		/* Calculate the key identifier */
    494		err = fscrypt_hkdf_expand(&secret->hkdf,
    495					  HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0,
    496					  key_spec->u.identifier,
    497					  FSCRYPT_KEY_IDENTIFIER_SIZE);
    498		if (err)
    499			return err;
    500	}
    501	return do_add_master_key(sb, secret, key_spec);
    502}
    503
    504static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
    505{
    506	const struct fscrypt_provisioning_key_payload *payload = prep->data;
    507
    508	if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
    509	    prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE)
    510		return -EINVAL;
    511
    512	if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
    513	    payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
    514		return -EINVAL;
    515
    516	if (payload->__reserved)
    517		return -EINVAL;
    518
    519	prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
    520	if (!prep->payload.data[0])
    521		return -ENOMEM;
    522
    523	prep->quotalen = prep->datalen;
    524	return 0;
    525}
    526
    527static void fscrypt_provisioning_key_free_preparse(
    528					struct key_preparsed_payload *prep)
    529{
    530	kfree_sensitive(prep->payload.data[0]);
    531}
    532
    533static void fscrypt_provisioning_key_describe(const struct key *key,
    534					      struct seq_file *m)
    535{
    536	seq_puts(m, key->description);
    537	if (key_is_positive(key)) {
    538		const struct fscrypt_provisioning_key_payload *payload =
    539			key->payload.data[0];
    540
    541		seq_printf(m, ": %u [%u]", key->datalen, payload->type);
    542	}
    543}
    544
    545static void fscrypt_provisioning_key_destroy(struct key *key)
    546{
    547	kfree_sensitive(key->payload.data[0]);
    548}
    549
    550static struct key_type key_type_fscrypt_provisioning = {
    551	.name			= "fscrypt-provisioning",
    552	.preparse		= fscrypt_provisioning_key_preparse,
    553	.free_preparse		= fscrypt_provisioning_key_free_preparse,
    554	.instantiate		= generic_key_instantiate,
    555	.describe		= fscrypt_provisioning_key_describe,
    556	.destroy		= fscrypt_provisioning_key_destroy,
    557};
    558
    559/*
    560 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
    561 * store it into 'secret'.
    562 *
    563 * The key must be of type "fscrypt-provisioning" and must have the field
    564 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
    565 * only usable with fscrypt with the particular KDF version identified by
    566 * 'type'.  We don't use the "logon" key type because there's no way to
    567 * completely restrict the use of such keys; they can be used by any kernel API
    568 * that accepts "logon" keys and doesn't require a specific service prefix.
    569 *
    570 * The ability to specify the key via Linux keyring key is intended for cases
    571 * where userspace needs to re-add keys after the filesystem is unmounted and
    572 * re-mounted.  Most users should just provide the raw key directly instead.
    573 */
    574static int get_keyring_key(u32 key_id, u32 type,
    575			   struct fscrypt_master_key_secret *secret)
    576{
    577	key_ref_t ref;
    578	struct key *key;
    579	const struct fscrypt_provisioning_key_payload *payload;
    580	int err;
    581
    582	ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
    583	if (IS_ERR(ref))
    584		return PTR_ERR(ref);
    585	key = key_ref_to_ptr(ref);
    586
    587	if (key->type != &key_type_fscrypt_provisioning)
    588		goto bad_key;
    589	payload = key->payload.data[0];
    590
    591	/* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
    592	if (payload->type != type)
    593		goto bad_key;
    594
    595	secret->size = key->datalen - sizeof(*payload);
    596	memcpy(secret->raw, payload->raw, secret->size);
    597	err = 0;
    598	goto out_put;
    599
    600bad_key:
    601	err = -EKEYREJECTED;
    602out_put:
    603	key_ref_put(ref);
    604	return err;
    605}
    606
    607/*
    608 * Add a master encryption key to the filesystem, causing all files which were
    609 * encrypted with it to appear "unlocked" (decrypted) when accessed.
    610 *
    611 * When adding a key for use by v1 encryption policies, this ioctl is
    612 * privileged, and userspace must provide the 'key_descriptor'.
    613 *
    614 * When adding a key for use by v2+ encryption policies, this ioctl is
    615 * unprivileged.  This is needed, in general, to allow non-root users to use
    616 * encryption without encountering the visibility problems of process-subscribed
    617 * keyrings and the inability to properly remove keys.  This works by having
    618 * each key identified by its cryptographically secure hash --- the
    619 * 'key_identifier'.  The cryptographic hash ensures that a malicious user
    620 * cannot add the wrong key for a given identifier.  Furthermore, each added key
    621 * is charged to the appropriate user's quota for the keyrings service, which
    622 * prevents a malicious user from adding too many keys.  Finally, we forbid a
    623 * user from removing a key while other users have added it too, which prevents
    624 * a user who knows another user's key from causing a denial-of-service by
    625 * removing it at an inopportune time.  (We tolerate that a user who knows a key
    626 * can prevent other users from removing it.)
    627 *
    628 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
    629 * Documentation/filesystems/fscrypt.rst.
    630 */
    631int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
    632{
    633	struct super_block *sb = file_inode(filp)->i_sb;
    634	struct fscrypt_add_key_arg __user *uarg = _uarg;
    635	struct fscrypt_add_key_arg arg;
    636	struct fscrypt_master_key_secret secret;
    637	int err;
    638
    639	if (copy_from_user(&arg, uarg, sizeof(arg)))
    640		return -EFAULT;
    641
    642	if (!valid_key_spec(&arg.key_spec))
    643		return -EINVAL;
    644
    645	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
    646		return -EINVAL;
    647
    648	/*
    649	 * Only root can add keys that are identified by an arbitrary descriptor
    650	 * rather than by a cryptographic hash --- since otherwise a malicious
    651	 * user could add the wrong key.
    652	 */
    653	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
    654	    !capable(CAP_SYS_ADMIN))
    655		return -EACCES;
    656
    657	memset(&secret, 0, sizeof(secret));
    658	if (arg.key_id) {
    659		if (arg.raw_size != 0)
    660			return -EINVAL;
    661		err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
    662		if (err)
    663			goto out_wipe_secret;
    664	} else {
    665		if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
    666		    arg.raw_size > FSCRYPT_MAX_KEY_SIZE)
    667			return -EINVAL;
    668		secret.size = arg.raw_size;
    669		err = -EFAULT;
    670		if (copy_from_user(secret.raw, uarg->raw, secret.size))
    671			goto out_wipe_secret;
    672	}
    673
    674	err = add_master_key(sb, &secret, &arg.key_spec);
    675	if (err)
    676		goto out_wipe_secret;
    677
    678	/* Return the key identifier to userspace, if applicable */
    679	err = -EFAULT;
    680	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
    681	    copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
    682			 FSCRYPT_KEY_IDENTIFIER_SIZE))
    683		goto out_wipe_secret;
    684	err = 0;
    685out_wipe_secret:
    686	wipe_master_key_secret(&secret);
    687	return err;
    688}
    689EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
    690
    691static void
    692fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret)
    693{
    694	static u8 test_key[FSCRYPT_MAX_KEY_SIZE];
    695
    696	get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE);
    697
    698	memset(secret, 0, sizeof(*secret));
    699	secret->size = FSCRYPT_MAX_KEY_SIZE;
    700	memcpy(secret->raw, test_key, FSCRYPT_MAX_KEY_SIZE);
    701}
    702
    703int fscrypt_get_test_dummy_key_identifier(
    704				u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
    705{
    706	struct fscrypt_master_key_secret secret;
    707	int err;
    708
    709	fscrypt_get_test_dummy_secret(&secret);
    710
    711	err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size);
    712	if (err)
    713		goto out;
    714	err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER,
    715				  NULL, 0, key_identifier,
    716				  FSCRYPT_KEY_IDENTIFIER_SIZE);
    717out:
    718	wipe_master_key_secret(&secret);
    719	return err;
    720}
    721
    722/**
    723 * fscrypt_add_test_dummy_key() - add the test dummy encryption key
    724 * @sb: the filesystem instance to add the key to
    725 * @dummy_policy: the encryption policy for test_dummy_encryption
    726 *
    727 * If needed, add the key for the test_dummy_encryption mount option to the
    728 * filesystem.  To prevent misuse of this mount option, a per-boot random key is
    729 * used instead of a hardcoded one.  This makes it so that any encrypted files
    730 * created using this option won't be accessible after a reboot.
    731 *
    732 * Return: 0 on success, -errno on failure
    733 */
    734int fscrypt_add_test_dummy_key(struct super_block *sb,
    735			       const struct fscrypt_dummy_policy *dummy_policy)
    736{
    737	const union fscrypt_policy *policy = dummy_policy->policy;
    738	struct fscrypt_key_specifier key_spec;
    739	struct fscrypt_master_key_secret secret;
    740	int err;
    741
    742	if (!policy)
    743		return 0;
    744	err = fscrypt_policy_to_key_spec(policy, &key_spec);
    745	if (err)
    746		return err;
    747	fscrypt_get_test_dummy_secret(&secret);
    748	err = add_master_key(sb, &secret, &key_spec);
    749	wipe_master_key_secret(&secret);
    750	return err;
    751}
    752EXPORT_SYMBOL_GPL(fscrypt_add_test_dummy_key);
    753
    754/*
    755 * Verify that the current user has added a master key with the given identifier
    756 * (returns -ENOKEY if not).  This is needed to prevent a user from encrypting
    757 * their files using some other user's key which they don't actually know.
    758 * Cryptographically this isn't much of a problem, but the semantics of this
    759 * would be a bit weird, so it's best to just forbid it.
    760 *
    761 * The system administrator (CAP_FOWNER) can override this, which should be
    762 * enough for any use cases where encryption policies are being set using keys
    763 * that were chosen ahead of time but aren't available at the moment.
    764 *
    765 * Note that the key may have already removed by the time this returns, but
    766 * that's okay; we just care whether the key was there at some point.
    767 *
    768 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
    769 */
    770int fscrypt_verify_key_added(struct super_block *sb,
    771			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
    772{
    773	struct fscrypt_key_specifier mk_spec;
    774	struct key *key, *mk_user;
    775	struct fscrypt_master_key *mk;
    776	int err;
    777
    778	mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
    779	memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
    780
    781	key = fscrypt_find_master_key(sb, &mk_spec);
    782	if (IS_ERR(key)) {
    783		err = PTR_ERR(key);
    784		goto out;
    785	}
    786	mk = key->payload.data[0];
    787	mk_user = find_master_key_user(mk);
    788	if (IS_ERR(mk_user)) {
    789		err = PTR_ERR(mk_user);
    790	} else {
    791		key_put(mk_user);
    792		err = 0;
    793	}
    794	key_put(key);
    795out:
    796	if (err == -ENOKEY && capable(CAP_FOWNER))
    797		err = 0;
    798	return err;
    799}
    800
    801/*
    802 * Try to evict the inode's dentries from the dentry cache.  If the inode is a
    803 * directory, then it can have at most one dentry; however, that dentry may be
    804 * pinned by child dentries, so first try to evict the children too.
    805 */
    806static void shrink_dcache_inode(struct inode *inode)
    807{
    808	struct dentry *dentry;
    809
    810	if (S_ISDIR(inode->i_mode)) {
    811		dentry = d_find_any_alias(inode);
    812		if (dentry) {
    813			shrink_dcache_parent(dentry);
    814			dput(dentry);
    815		}
    816	}
    817	d_prune_aliases(inode);
    818}
    819
    820static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
    821{
    822	struct fscrypt_info *ci;
    823	struct inode *inode;
    824	struct inode *toput_inode = NULL;
    825
    826	spin_lock(&mk->mk_decrypted_inodes_lock);
    827
    828	list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
    829		inode = ci->ci_inode;
    830		spin_lock(&inode->i_lock);
    831		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
    832			spin_unlock(&inode->i_lock);
    833			continue;
    834		}
    835		__iget(inode);
    836		spin_unlock(&inode->i_lock);
    837		spin_unlock(&mk->mk_decrypted_inodes_lock);
    838
    839		shrink_dcache_inode(inode);
    840		iput(toput_inode);
    841		toput_inode = inode;
    842
    843		spin_lock(&mk->mk_decrypted_inodes_lock);
    844	}
    845
    846	spin_unlock(&mk->mk_decrypted_inodes_lock);
    847	iput(toput_inode);
    848}
    849
    850static int check_for_busy_inodes(struct super_block *sb,
    851				 struct fscrypt_master_key *mk)
    852{
    853	struct list_head *pos;
    854	size_t busy_count = 0;
    855	unsigned long ino;
    856	char ino_str[50] = "";
    857
    858	spin_lock(&mk->mk_decrypted_inodes_lock);
    859
    860	list_for_each(pos, &mk->mk_decrypted_inodes)
    861		busy_count++;
    862
    863	if (busy_count == 0) {
    864		spin_unlock(&mk->mk_decrypted_inodes_lock);
    865		return 0;
    866	}
    867
    868	{
    869		/* select an example file to show for debugging purposes */
    870		struct inode *inode =
    871			list_first_entry(&mk->mk_decrypted_inodes,
    872					 struct fscrypt_info,
    873					 ci_master_key_link)->ci_inode;
    874		ino = inode->i_ino;
    875	}
    876	spin_unlock(&mk->mk_decrypted_inodes_lock);
    877
    878	/* If the inode is currently being created, ino may still be 0. */
    879	if (ino)
    880		snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
    881
    882	fscrypt_warn(NULL,
    883		     "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
    884		     sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
    885		     master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
    886		     ino_str);
    887	return -EBUSY;
    888}
    889
    890static int try_to_lock_encrypted_files(struct super_block *sb,
    891				       struct fscrypt_master_key *mk)
    892{
    893	int err1;
    894	int err2;
    895
    896	/*
    897	 * An inode can't be evicted while it is dirty or has dirty pages.
    898	 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
    899	 *
    900	 * Just do it the easy way: call sync_filesystem().  It's overkill, but
    901	 * it works, and it's more important to minimize the amount of caches we
    902	 * drop than the amount of data we sync.  Also, unprivileged users can
    903	 * already call sync_filesystem() via sys_syncfs() or sys_sync().
    904	 */
    905	down_read(&sb->s_umount);
    906	err1 = sync_filesystem(sb);
    907	up_read(&sb->s_umount);
    908	/* If a sync error occurs, still try to evict as much as possible. */
    909
    910	/*
    911	 * Inodes are pinned by their dentries, so we have to evict their
    912	 * dentries.  shrink_dcache_sb() would suffice, but would be overkill
    913	 * and inappropriate for use by unprivileged users.  So instead go
    914	 * through the inodes' alias lists and try to evict each dentry.
    915	 */
    916	evict_dentries_for_decrypted_inodes(mk);
    917
    918	/*
    919	 * evict_dentries_for_decrypted_inodes() already iput() each inode in
    920	 * the list; any inodes for which that dropped the last reference will
    921	 * have been evicted due to fscrypt_drop_inode() detecting the key
    922	 * removal and telling the VFS to evict the inode.  So to finish, we
    923	 * just need to check whether any inodes couldn't be evicted.
    924	 */
    925	err2 = check_for_busy_inodes(sb, mk);
    926
    927	return err1 ?: err2;
    928}
    929
    930/*
    931 * Try to remove an fscrypt master encryption key.
    932 *
    933 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
    934 * claim to the key, then removes the key itself if no other users have claims.
    935 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
    936 * key itself.
    937 *
    938 * To "remove the key itself", first we wipe the actual master key secret, so
    939 * that no more inodes can be unlocked with it.  Then we try to evict all cached
    940 * inodes that had been unlocked with the key.
    941 *
    942 * If all inodes were evicted, then we unlink the fscrypt_master_key from the
    943 * keyring.  Otherwise it remains in the keyring in the "incompletely removed"
    944 * state (without the actual secret key) where it tracks the list of remaining
    945 * inodes.  Userspace can execute the ioctl again later to retry eviction, or
    946 * alternatively can re-add the secret key again.
    947 *
    948 * For more details, see the "Removing keys" section of
    949 * Documentation/filesystems/fscrypt.rst.
    950 */
    951static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
    952{
    953	struct super_block *sb = file_inode(filp)->i_sb;
    954	struct fscrypt_remove_key_arg __user *uarg = _uarg;
    955	struct fscrypt_remove_key_arg arg;
    956	struct key *key;
    957	struct fscrypt_master_key *mk;
    958	u32 status_flags = 0;
    959	int err;
    960	bool dead;
    961
    962	if (copy_from_user(&arg, uarg, sizeof(arg)))
    963		return -EFAULT;
    964
    965	if (!valid_key_spec(&arg.key_spec))
    966		return -EINVAL;
    967
    968	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
    969		return -EINVAL;
    970
    971	/*
    972	 * Only root can add and remove keys that are identified by an arbitrary
    973	 * descriptor rather than by a cryptographic hash.
    974	 */
    975	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
    976	    !capable(CAP_SYS_ADMIN))
    977		return -EACCES;
    978
    979	/* Find the key being removed. */
    980	key = fscrypt_find_master_key(sb, &arg.key_spec);
    981	if (IS_ERR(key))
    982		return PTR_ERR(key);
    983	mk = key->payload.data[0];
    984
    985	down_write(&key->sem);
    986
    987	/* If relevant, remove current user's (or all users) claim to the key */
    988	if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
    989		if (all_users)
    990			err = keyring_clear(mk->mk_users);
    991		else
    992			err = remove_master_key_user(mk);
    993		if (err) {
    994			up_write(&key->sem);
    995			goto out_put_key;
    996		}
    997		if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
    998			/*
    999			 * Other users have still added the key too.  We removed
   1000			 * the current user's claim to the key, but we still
   1001			 * can't remove the key itself.
   1002			 */
   1003			status_flags |=
   1004				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
   1005			err = 0;
   1006			up_write(&key->sem);
   1007			goto out_put_key;
   1008		}
   1009	}
   1010
   1011	/* No user claims remaining.  Go ahead and wipe the secret. */
   1012	dead = false;
   1013	if (is_master_key_secret_present(&mk->mk_secret)) {
   1014		wipe_master_key_secret(&mk->mk_secret);
   1015		dead = refcount_dec_and_test(&mk->mk_refcount);
   1016	}
   1017	up_write(&key->sem);
   1018	if (dead) {
   1019		/*
   1020		 * No inodes reference the key, and we wiped the secret, so the
   1021		 * key object is free to be removed from the keyring.
   1022		 */
   1023		key_invalidate(key);
   1024		err = 0;
   1025	} else {
   1026		/* Some inodes still reference this key; try to evict them. */
   1027		err = try_to_lock_encrypted_files(sb, mk);
   1028		if (err == -EBUSY) {
   1029			status_flags |=
   1030				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
   1031			err = 0;
   1032		}
   1033	}
   1034	/*
   1035	 * We return 0 if we successfully did something: removed a claim to the
   1036	 * key, wiped the secret, or tried locking the files again.  Users need
   1037	 * to check the informational status flags if they care whether the key
   1038	 * has been fully removed including all files locked.
   1039	 */
   1040out_put_key:
   1041	key_put(key);
   1042	if (err == 0)
   1043		err = put_user(status_flags, &uarg->removal_status_flags);
   1044	return err;
   1045}
   1046
   1047int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
   1048{
   1049	return do_remove_key(filp, uarg, false);
   1050}
   1051EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
   1052
   1053int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
   1054{
   1055	if (!capable(CAP_SYS_ADMIN))
   1056		return -EACCES;
   1057	return do_remove_key(filp, uarg, true);
   1058}
   1059EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
   1060
   1061/*
   1062 * Retrieve the status of an fscrypt master encryption key.
   1063 *
   1064 * We set ->status to indicate whether the key is absent, present, or
   1065 * incompletely removed.  "Incompletely removed" means that the master key
   1066 * secret has been removed, but some files which had been unlocked with it are
   1067 * still in use.  This field allows applications to easily determine the state
   1068 * of an encrypted directory without using a hack such as trying to open a
   1069 * regular file in it (which can confuse the "incompletely removed" state with
   1070 * absent or present).
   1071 *
   1072 * In addition, for v2 policy keys we allow applications to determine, via
   1073 * ->status_flags and ->user_count, whether the key has been added by the
   1074 * current user, by other users, or by both.  Most applications should not need
   1075 * this, since ordinarily only one user should know a given key.  However, if a
   1076 * secret key is shared by multiple users, applications may wish to add an
   1077 * already-present key to prevent other users from removing it.  This ioctl can
   1078 * be used to check whether that really is the case before the work is done to
   1079 * add the key --- which might e.g. require prompting the user for a passphrase.
   1080 *
   1081 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
   1082 * Documentation/filesystems/fscrypt.rst.
   1083 */
   1084int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
   1085{
   1086	struct super_block *sb = file_inode(filp)->i_sb;
   1087	struct fscrypt_get_key_status_arg arg;
   1088	struct key *key;
   1089	struct fscrypt_master_key *mk;
   1090	int err;
   1091
   1092	if (copy_from_user(&arg, uarg, sizeof(arg)))
   1093		return -EFAULT;
   1094
   1095	if (!valid_key_spec(&arg.key_spec))
   1096		return -EINVAL;
   1097
   1098	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
   1099		return -EINVAL;
   1100
   1101	arg.status_flags = 0;
   1102	arg.user_count = 0;
   1103	memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
   1104
   1105	key = fscrypt_find_master_key(sb, &arg.key_spec);
   1106	if (IS_ERR(key)) {
   1107		if (key != ERR_PTR(-ENOKEY))
   1108			return PTR_ERR(key);
   1109		arg.status = FSCRYPT_KEY_STATUS_ABSENT;
   1110		err = 0;
   1111		goto out;
   1112	}
   1113	mk = key->payload.data[0];
   1114	down_read(&key->sem);
   1115
   1116	if (!is_master_key_secret_present(&mk->mk_secret)) {
   1117		arg.status = FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED;
   1118		err = 0;
   1119		goto out_release_key;
   1120	}
   1121
   1122	arg.status = FSCRYPT_KEY_STATUS_PRESENT;
   1123	if (mk->mk_users) {
   1124		struct key *mk_user;
   1125
   1126		arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
   1127		mk_user = find_master_key_user(mk);
   1128		if (!IS_ERR(mk_user)) {
   1129			arg.status_flags |=
   1130				FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
   1131			key_put(mk_user);
   1132		} else if (mk_user != ERR_PTR(-ENOKEY)) {
   1133			err = PTR_ERR(mk_user);
   1134			goto out_release_key;
   1135		}
   1136	}
   1137	err = 0;
   1138out_release_key:
   1139	up_read(&key->sem);
   1140	key_put(key);
   1141out:
   1142	if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
   1143		err = -EFAULT;
   1144	return err;
   1145}
   1146EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
   1147
   1148int __init fscrypt_init_keyring(void)
   1149{
   1150	int err;
   1151
   1152	err = register_key_type(&key_type_fscrypt);
   1153	if (err)
   1154		return err;
   1155
   1156	err = register_key_type(&key_type_fscrypt_user);
   1157	if (err)
   1158		goto err_unregister_fscrypt;
   1159
   1160	err = register_key_type(&key_type_fscrypt_provisioning);
   1161	if (err)
   1162		goto err_unregister_fscrypt_user;
   1163
   1164	return 0;
   1165
   1166err_unregister_fscrypt_user:
   1167	unregister_key_type(&key_type_fscrypt_user);
   1168err_unregister_fscrypt:
   1169	unregister_key_type(&key_type_fscrypt);
   1170	return err;
   1171}