cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

keysetup.c (23794B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Key setup facility for FS encryption support.
      4 *
      5 * Copyright (C) 2015, Google, Inc.
      6 *
      7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
      8 * Heavily modified since then.
      9 */
     10
     11#include <crypto/skcipher.h>
     12#include <linux/key.h>
     13#include <linux/random.h>
     14
     15#include "fscrypt_private.h"
     16
     17struct fscrypt_mode fscrypt_modes[] = {
     18	[FSCRYPT_MODE_AES_256_XTS] = {
     19		.friendly_name = "AES-256-XTS",
     20		.cipher_str = "xts(aes)",
     21		.keysize = 64,
     22		.security_strength = 32,
     23		.ivsize = 16,
     24		.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS,
     25	},
     26	[FSCRYPT_MODE_AES_256_CTS] = {
     27		.friendly_name = "AES-256-CTS-CBC",
     28		.cipher_str = "cts(cbc(aes))",
     29		.keysize = 32,
     30		.security_strength = 32,
     31		.ivsize = 16,
     32	},
     33	[FSCRYPT_MODE_AES_128_CBC] = {
     34		.friendly_name = "AES-128-CBC-ESSIV",
     35		.cipher_str = "essiv(cbc(aes),sha256)",
     36		.keysize = 16,
     37		.security_strength = 16,
     38		.ivsize = 16,
     39		.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV,
     40	},
     41	[FSCRYPT_MODE_AES_128_CTS] = {
     42		.friendly_name = "AES-128-CTS-CBC",
     43		.cipher_str = "cts(cbc(aes))",
     44		.keysize = 16,
     45		.security_strength = 16,
     46		.ivsize = 16,
     47	},
     48	[FSCRYPT_MODE_ADIANTUM] = {
     49		.friendly_name = "Adiantum",
     50		.cipher_str = "adiantum(xchacha12,aes)",
     51		.keysize = 32,
     52		.security_strength = 32,
     53		.ivsize = 32,
     54		.blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM,
     55	},
     56};
     57
     58static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex);
     59
     60static struct fscrypt_mode *
     61select_encryption_mode(const union fscrypt_policy *policy,
     62		       const struct inode *inode)
     63{
     64	BUILD_BUG_ON(ARRAY_SIZE(fscrypt_modes) != FSCRYPT_MODE_MAX + 1);
     65
     66	if (S_ISREG(inode->i_mode))
     67		return &fscrypt_modes[fscrypt_policy_contents_mode(policy)];
     68
     69	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
     70		return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)];
     71
     72	WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
     73		  inode->i_ino, (inode->i_mode & S_IFMT));
     74	return ERR_PTR(-EINVAL);
     75}
     76
     77/* Create a symmetric cipher object for the given encryption mode and key */
     78static struct crypto_skcipher *
     79fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
     80			  const struct inode *inode)
     81{
     82	struct crypto_skcipher *tfm;
     83	int err;
     84
     85	tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0);
     86	if (IS_ERR(tfm)) {
     87		if (PTR_ERR(tfm) == -ENOENT) {
     88			fscrypt_warn(inode,
     89				     "Missing crypto API support for %s (API name: \"%s\")",
     90				     mode->friendly_name, mode->cipher_str);
     91			return ERR_PTR(-ENOPKG);
     92		}
     93		fscrypt_err(inode, "Error allocating '%s' transform: %ld",
     94			    mode->cipher_str, PTR_ERR(tfm));
     95		return tfm;
     96	}
     97	if (!xchg(&mode->logged_cryptoapi_impl, 1)) {
     98		/*
     99		 * fscrypt performance can vary greatly depending on which
    100		 * crypto algorithm implementation is used.  Help people debug
    101		 * performance problems by logging the ->cra_driver_name the
    102		 * first time a mode is used.
    103		 */
    104		pr_info("fscrypt: %s using implementation \"%s\"\n",
    105			mode->friendly_name, crypto_skcipher_driver_name(tfm));
    106	}
    107	if (WARN_ON(crypto_skcipher_ivsize(tfm) != mode->ivsize)) {
    108		err = -EINVAL;
    109		goto err_free_tfm;
    110	}
    111	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
    112	err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize);
    113	if (err)
    114		goto err_free_tfm;
    115
    116	return tfm;
    117
    118err_free_tfm:
    119	crypto_free_skcipher(tfm);
    120	return ERR_PTR(err);
    121}
    122
    123/*
    124 * Prepare the crypto transform object or blk-crypto key in @prep_key, given the
    125 * raw key, encryption mode (@ci->ci_mode), flag indicating which encryption
    126 * implementation (fs-layer or blk-crypto) will be used (@ci->ci_inlinecrypt),
    127 * and IV generation method (@ci->ci_policy.flags).
    128 */
    129int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
    130			const u8 *raw_key, const struct fscrypt_info *ci)
    131{
    132	struct crypto_skcipher *tfm;
    133
    134	if (fscrypt_using_inline_encryption(ci))
    135		return fscrypt_prepare_inline_crypt_key(prep_key, raw_key, ci);
    136
    137	tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode);
    138	if (IS_ERR(tfm))
    139		return PTR_ERR(tfm);
    140	/*
    141	 * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared().
    142	 * I.e., here we publish ->tfm with a RELEASE barrier so that
    143	 * concurrent tasks can ACQUIRE it.  Note that this concurrency is only
    144	 * possible for per-mode keys, not for per-file keys.
    145	 */
    146	smp_store_release(&prep_key->tfm, tfm);
    147	return 0;
    148}
    149
    150/* Destroy a crypto transform object and/or blk-crypto key. */
    151void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key)
    152{
    153	crypto_free_skcipher(prep_key->tfm);
    154	fscrypt_destroy_inline_crypt_key(prep_key);
    155}
    156
    157/* Given a per-file encryption key, set up the file's crypto transform object */
    158int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key)
    159{
    160	ci->ci_owns_key = true;
    161	return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci);
    162}
    163
    164static int setup_per_mode_enc_key(struct fscrypt_info *ci,
    165				  struct fscrypt_master_key *mk,
    166				  struct fscrypt_prepared_key *keys,
    167				  u8 hkdf_context, bool include_fs_uuid)
    168{
    169	const struct inode *inode = ci->ci_inode;
    170	const struct super_block *sb = inode->i_sb;
    171	struct fscrypt_mode *mode = ci->ci_mode;
    172	const u8 mode_num = mode - fscrypt_modes;
    173	struct fscrypt_prepared_key *prep_key;
    174	u8 mode_key[FSCRYPT_MAX_KEY_SIZE];
    175	u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)];
    176	unsigned int hkdf_infolen = 0;
    177	int err;
    178
    179	if (WARN_ON(mode_num > FSCRYPT_MODE_MAX))
    180		return -EINVAL;
    181
    182	prep_key = &keys[mode_num];
    183	if (fscrypt_is_key_prepared(prep_key, ci)) {
    184		ci->ci_enc_key = *prep_key;
    185		return 0;
    186	}
    187
    188	mutex_lock(&fscrypt_mode_key_setup_mutex);
    189
    190	if (fscrypt_is_key_prepared(prep_key, ci))
    191		goto done_unlock;
    192
    193	BUILD_BUG_ON(sizeof(mode_num) != 1);
    194	BUILD_BUG_ON(sizeof(sb->s_uuid) != 16);
    195	BUILD_BUG_ON(sizeof(hkdf_info) != 17);
    196	hkdf_info[hkdf_infolen++] = mode_num;
    197	if (include_fs_uuid) {
    198		memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid,
    199		       sizeof(sb->s_uuid));
    200		hkdf_infolen += sizeof(sb->s_uuid);
    201	}
    202	err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
    203				  hkdf_context, hkdf_info, hkdf_infolen,
    204				  mode_key, mode->keysize);
    205	if (err)
    206		goto out_unlock;
    207	err = fscrypt_prepare_key(prep_key, mode_key, ci);
    208	memzero_explicit(mode_key, mode->keysize);
    209	if (err)
    210		goto out_unlock;
    211done_unlock:
    212	ci->ci_enc_key = *prep_key;
    213	err = 0;
    214out_unlock:
    215	mutex_unlock(&fscrypt_mode_key_setup_mutex);
    216	return err;
    217}
    218
    219/*
    220 * Derive a SipHash key from the given fscrypt master key and the given
    221 * application-specific information string.
    222 *
    223 * Note that the KDF produces a byte array, but the SipHash APIs expect the key
    224 * as a pair of 64-bit words.  Therefore, on big endian CPUs we have to do an
    225 * endianness swap in order to get the same results as on little endian CPUs.
    226 */
    227static int fscrypt_derive_siphash_key(const struct fscrypt_master_key *mk,
    228				      u8 context, const u8 *info,
    229				      unsigned int infolen, siphash_key_t *key)
    230{
    231	int err;
    232
    233	err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, context, info, infolen,
    234				  (u8 *)key, sizeof(*key));
    235	if (err)
    236		return err;
    237
    238	BUILD_BUG_ON(sizeof(*key) != 16);
    239	BUILD_BUG_ON(ARRAY_SIZE(key->key) != 2);
    240	le64_to_cpus(&key->key[0]);
    241	le64_to_cpus(&key->key[1]);
    242	return 0;
    243}
    244
    245int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
    246			       const struct fscrypt_master_key *mk)
    247{
    248	int err;
    249
    250	err = fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_DIRHASH_KEY,
    251					 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
    252					 &ci->ci_dirhash_key);
    253	if (err)
    254		return err;
    255	ci->ci_dirhash_key_initialized = true;
    256	return 0;
    257}
    258
    259void fscrypt_hash_inode_number(struct fscrypt_info *ci,
    260			       const struct fscrypt_master_key *mk)
    261{
    262	WARN_ON(ci->ci_inode->i_ino == 0);
    263	WARN_ON(!mk->mk_ino_hash_key_initialized);
    264
    265	ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino,
    266					      &mk->mk_ino_hash_key);
    267}
    268
    269static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci,
    270					    struct fscrypt_master_key *mk)
    271{
    272	int err;
    273
    274	err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys,
    275				     HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true);
    276	if (err)
    277		return err;
    278
    279	/* pairs with smp_store_release() below */
    280	if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) {
    281
    282		mutex_lock(&fscrypt_mode_key_setup_mutex);
    283
    284		if (mk->mk_ino_hash_key_initialized)
    285			goto unlock;
    286
    287		err = fscrypt_derive_siphash_key(mk,
    288						 HKDF_CONTEXT_INODE_HASH_KEY,
    289						 NULL, 0, &mk->mk_ino_hash_key);
    290		if (err)
    291			goto unlock;
    292		/* pairs with smp_load_acquire() above */
    293		smp_store_release(&mk->mk_ino_hash_key_initialized, true);
    294unlock:
    295		mutex_unlock(&fscrypt_mode_key_setup_mutex);
    296		if (err)
    297			return err;
    298	}
    299
    300	/*
    301	 * New inodes may not have an inode number assigned yet.
    302	 * Hashing their inode number is delayed until later.
    303	 */
    304	if (ci->ci_inode->i_ino)
    305		fscrypt_hash_inode_number(ci, mk);
    306	return 0;
    307}
    308
    309static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
    310				     struct fscrypt_master_key *mk,
    311				     bool need_dirhash_key)
    312{
    313	int err;
    314
    315	if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
    316		/*
    317		 * DIRECT_KEY: instead of deriving per-file encryption keys, the
    318		 * per-file nonce will be included in all the IVs.  But unlike
    319		 * v1 policies, for v2 policies in this case we don't encrypt
    320		 * with the master key directly but rather derive a per-mode
    321		 * encryption key.  This ensures that the master key is
    322		 * consistently used only for HKDF, avoiding key reuse issues.
    323		 */
    324		err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys,
    325					     HKDF_CONTEXT_DIRECT_KEY, false);
    326	} else if (ci->ci_policy.v2.flags &
    327		   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
    328		/*
    329		 * IV_INO_LBLK_64: encryption keys are derived from (master_key,
    330		 * mode_num, filesystem_uuid), and inode number is included in
    331		 * the IVs.  This format is optimized for use with inline
    332		 * encryption hardware compliant with the UFS standard.
    333		 */
    334		err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys,
    335					     HKDF_CONTEXT_IV_INO_LBLK_64_KEY,
    336					     true);
    337	} else if (ci->ci_policy.v2.flags &
    338		   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
    339		err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk);
    340	} else {
    341		u8 derived_key[FSCRYPT_MAX_KEY_SIZE];
    342
    343		err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
    344					  HKDF_CONTEXT_PER_FILE_ENC_KEY,
    345					  ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
    346					  derived_key, ci->ci_mode->keysize);
    347		if (err)
    348			return err;
    349
    350		err = fscrypt_set_per_file_enc_key(ci, derived_key);
    351		memzero_explicit(derived_key, ci->ci_mode->keysize);
    352	}
    353	if (err)
    354		return err;
    355
    356	/* Derive a secret dirhash key for directories that need it. */
    357	if (need_dirhash_key) {
    358		err = fscrypt_derive_dirhash_key(ci, mk);
    359		if (err)
    360			return err;
    361	}
    362
    363	return 0;
    364}
    365
    366/*
    367 * Check whether the size of the given master key (@mk) is appropriate for the
    368 * encryption settings which a particular file will use (@ci).
    369 *
    370 * If the file uses a v1 encryption policy, then the master key must be at least
    371 * as long as the derived key, as this is a requirement of the v1 KDF.
    372 *
    373 * Otherwise, the KDF can accept any size key, so we enforce a slightly looser
    374 * requirement: we require that the size of the master key be at least the
    375 * maximum security strength of any algorithm whose key will be derived from it
    376 * (but in practice we only need to consider @ci->ci_mode, since any other
    377 * possible subkeys such as DIRHASH and INODE_HASH will never increase the
    378 * required key size over @ci->ci_mode).  This allows AES-256-XTS keys to be
    379 * derived from a 256-bit master key, which is cryptographically sufficient,
    380 * rather than requiring a 512-bit master key which is unnecessarily long.  (We
    381 * still allow 512-bit master keys if the user chooses to use them, though.)
    382 */
    383static bool fscrypt_valid_master_key_size(const struct fscrypt_master_key *mk,
    384					  const struct fscrypt_info *ci)
    385{
    386	unsigned int min_keysize;
    387
    388	if (ci->ci_policy.version == FSCRYPT_POLICY_V1)
    389		min_keysize = ci->ci_mode->keysize;
    390	else
    391		min_keysize = ci->ci_mode->security_strength;
    392
    393	if (mk->mk_secret.size < min_keysize) {
    394		fscrypt_warn(NULL,
    395			     "key with %s %*phN is too short (got %u bytes, need %u+ bytes)",
    396			     master_key_spec_type(&mk->mk_spec),
    397			     master_key_spec_len(&mk->mk_spec),
    398			     (u8 *)&mk->mk_spec.u,
    399			     mk->mk_secret.size, min_keysize);
    400		return false;
    401	}
    402	return true;
    403}
    404
    405/*
    406 * Find the master key, then set up the inode's actual encryption key.
    407 *
    408 * If the master key is found in the filesystem-level keyring, then the
    409 * corresponding 'struct key' is returned in *master_key_ret with its semaphore
    410 * read-locked.  This is needed to ensure that only one task links the
    411 * fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race to create
    412 * an fscrypt_info for the same inode), and to synchronize the master key being
    413 * removed with a new inode starting to use it.
    414 */
    415static int setup_file_encryption_key(struct fscrypt_info *ci,
    416				     bool need_dirhash_key,
    417				     struct key **master_key_ret)
    418{
    419	struct key *key;
    420	struct fscrypt_master_key *mk = NULL;
    421	struct fscrypt_key_specifier mk_spec;
    422	int err;
    423
    424	err = fscrypt_select_encryption_impl(ci);
    425	if (err)
    426		return err;
    427
    428	err = fscrypt_policy_to_key_spec(&ci->ci_policy, &mk_spec);
    429	if (err)
    430		return err;
    431
    432	key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec);
    433	if (IS_ERR(key)) {
    434		if (key != ERR_PTR(-ENOKEY) ||
    435		    ci->ci_policy.version != FSCRYPT_POLICY_V1)
    436			return PTR_ERR(key);
    437
    438		/*
    439		 * As a legacy fallback for v1 policies, search for the key in
    440		 * the current task's subscribed keyrings too.  Don't move this
    441		 * to before the search of ->s_master_keys, since users
    442		 * shouldn't be able to override filesystem-level keys.
    443		 */
    444		return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci);
    445	}
    446
    447	mk = key->payload.data[0];
    448	down_read(&key->sem);
    449
    450	/* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */
    451	if (!is_master_key_secret_present(&mk->mk_secret)) {
    452		err = -ENOKEY;
    453		goto out_release_key;
    454	}
    455
    456	if (!fscrypt_valid_master_key_size(mk, ci)) {
    457		err = -ENOKEY;
    458		goto out_release_key;
    459	}
    460
    461	switch (ci->ci_policy.version) {
    462	case FSCRYPT_POLICY_V1:
    463		err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw);
    464		break;
    465	case FSCRYPT_POLICY_V2:
    466		err = fscrypt_setup_v2_file_key(ci, mk, need_dirhash_key);
    467		break;
    468	default:
    469		WARN_ON(1);
    470		err = -EINVAL;
    471		break;
    472	}
    473	if (err)
    474		goto out_release_key;
    475
    476	*master_key_ret = key;
    477	return 0;
    478
    479out_release_key:
    480	up_read(&key->sem);
    481	key_put(key);
    482	return err;
    483}
    484
    485static void put_crypt_info(struct fscrypt_info *ci)
    486{
    487	struct key *key;
    488
    489	if (!ci)
    490		return;
    491
    492	if (ci->ci_direct_key)
    493		fscrypt_put_direct_key(ci->ci_direct_key);
    494	else if (ci->ci_owns_key)
    495		fscrypt_destroy_prepared_key(&ci->ci_enc_key);
    496
    497	key = ci->ci_master_key;
    498	if (key) {
    499		struct fscrypt_master_key *mk = key->payload.data[0];
    500
    501		/*
    502		 * Remove this inode from the list of inodes that were unlocked
    503		 * with the master key.
    504		 *
    505		 * In addition, if we're removing the last inode from a key that
    506		 * already had its secret removed, invalidate the key so that it
    507		 * gets removed from ->s_master_keys.
    508		 */
    509		spin_lock(&mk->mk_decrypted_inodes_lock);
    510		list_del(&ci->ci_master_key_link);
    511		spin_unlock(&mk->mk_decrypted_inodes_lock);
    512		if (refcount_dec_and_test(&mk->mk_refcount))
    513			key_invalidate(key);
    514		key_put(key);
    515	}
    516	memzero_explicit(ci, sizeof(*ci));
    517	kmem_cache_free(fscrypt_info_cachep, ci);
    518}
    519
    520static int
    521fscrypt_setup_encryption_info(struct inode *inode,
    522			      const union fscrypt_policy *policy,
    523			      const u8 nonce[FSCRYPT_FILE_NONCE_SIZE],
    524			      bool need_dirhash_key)
    525{
    526	struct fscrypt_info *crypt_info;
    527	struct fscrypt_mode *mode;
    528	struct key *master_key = NULL;
    529	int res;
    530
    531	res = fscrypt_initialize(inode->i_sb->s_cop->flags);
    532	if (res)
    533		return res;
    534
    535	crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_KERNEL);
    536	if (!crypt_info)
    537		return -ENOMEM;
    538
    539	crypt_info->ci_inode = inode;
    540	crypt_info->ci_policy = *policy;
    541	memcpy(crypt_info->ci_nonce, nonce, FSCRYPT_FILE_NONCE_SIZE);
    542
    543	mode = select_encryption_mode(&crypt_info->ci_policy, inode);
    544	if (IS_ERR(mode)) {
    545		res = PTR_ERR(mode);
    546		goto out;
    547	}
    548	WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
    549	crypt_info->ci_mode = mode;
    550
    551	res = setup_file_encryption_key(crypt_info, need_dirhash_key,
    552					&master_key);
    553	if (res)
    554		goto out;
    555
    556	/*
    557	 * For existing inodes, multiple tasks may race to set ->i_crypt_info.
    558	 * So use cmpxchg_release().  This pairs with the smp_load_acquire() in
    559	 * fscrypt_get_info().  I.e., here we publish ->i_crypt_info with a
    560	 * RELEASE barrier so that other tasks can ACQUIRE it.
    561	 */
    562	if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) {
    563		/*
    564		 * We won the race and set ->i_crypt_info to our crypt_info.
    565		 * Now link it into the master key's inode list.
    566		 */
    567		if (master_key) {
    568			struct fscrypt_master_key *mk =
    569				master_key->payload.data[0];
    570
    571			refcount_inc(&mk->mk_refcount);
    572			crypt_info->ci_master_key = key_get(master_key);
    573			spin_lock(&mk->mk_decrypted_inodes_lock);
    574			list_add(&crypt_info->ci_master_key_link,
    575				 &mk->mk_decrypted_inodes);
    576			spin_unlock(&mk->mk_decrypted_inodes_lock);
    577		}
    578		crypt_info = NULL;
    579	}
    580	res = 0;
    581out:
    582	if (master_key) {
    583		up_read(&master_key->sem);
    584		key_put(master_key);
    585	}
    586	put_crypt_info(crypt_info);
    587	return res;
    588}
    589
    590/**
    591 * fscrypt_get_encryption_info() - set up an inode's encryption key
    592 * @inode: the inode to set up the key for.  Must be encrypted.
    593 * @allow_unsupported: if %true, treat an unsupported encryption policy (or
    594 *		       unrecognized encryption context) the same way as the key
    595 *		       being unavailable, instead of returning an error.  Use
    596 *		       %false unless the operation being performed is needed in
    597 *		       order for files (or directories) to be deleted.
    598 *
    599 * Set up ->i_crypt_info, if it hasn't already been done.
    600 *
    601 * Note: unless ->i_crypt_info is already set, this isn't %GFP_NOFS-safe.  So
    602 * generally this shouldn't be called from within a filesystem transaction.
    603 *
    604 * Return: 0 if ->i_crypt_info was set or was already set, *or* if the
    605 *	   encryption key is unavailable.  (Use fscrypt_has_encryption_key() to
    606 *	   distinguish these cases.)  Also can return another -errno code.
    607 */
    608int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported)
    609{
    610	int res;
    611	union fscrypt_context ctx;
    612	union fscrypt_policy policy;
    613
    614	if (fscrypt_has_encryption_key(inode))
    615		return 0;
    616
    617	res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
    618	if (res < 0) {
    619		if (res == -ERANGE && allow_unsupported)
    620			return 0;
    621		fscrypt_warn(inode, "Error %d getting encryption context", res);
    622		return res;
    623	}
    624
    625	res = fscrypt_policy_from_context(&policy, &ctx, res);
    626	if (res) {
    627		if (allow_unsupported)
    628			return 0;
    629		fscrypt_warn(inode,
    630			     "Unrecognized or corrupt encryption context");
    631		return res;
    632	}
    633
    634	if (!fscrypt_supported_policy(&policy, inode)) {
    635		if (allow_unsupported)
    636			return 0;
    637		return -EINVAL;
    638	}
    639
    640	res = fscrypt_setup_encryption_info(inode, &policy,
    641					    fscrypt_context_nonce(&ctx),
    642					    IS_CASEFOLDED(inode) &&
    643					    S_ISDIR(inode->i_mode));
    644
    645	if (res == -ENOPKG && allow_unsupported) /* Algorithm unavailable? */
    646		res = 0;
    647	if (res == -ENOKEY)
    648		res = 0;
    649	return res;
    650}
    651
    652/**
    653 * fscrypt_prepare_new_inode() - prepare to create a new inode in a directory
    654 * @dir: a possibly-encrypted directory
    655 * @inode: the new inode.  ->i_mode must be set already.
    656 *	   ->i_ino doesn't need to be set yet.
    657 * @encrypt_ret: (output) set to %true if the new inode will be encrypted
    658 *
    659 * If the directory is encrypted, set up its ->i_crypt_info in preparation for
    660 * encrypting the name of the new file.  Also, if the new inode will be
    661 * encrypted, set up its ->i_crypt_info and set *encrypt_ret=true.
    662 *
    663 * This isn't %GFP_NOFS-safe, and therefore it should be called before starting
    664 * any filesystem transaction to create the inode.  For this reason, ->i_ino
    665 * isn't required to be set yet, as the filesystem may not have set it yet.
    666 *
    667 * This doesn't persist the new inode's encryption context.  That still needs to
    668 * be done later by calling fscrypt_set_context().
    669 *
    670 * Return: 0 on success, -ENOKEY if the encryption key is missing, or another
    671 *	   -errno code
    672 */
    673int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
    674			      bool *encrypt_ret)
    675{
    676	const union fscrypt_policy *policy;
    677	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
    678
    679	policy = fscrypt_policy_to_inherit(dir);
    680	if (policy == NULL)
    681		return 0;
    682	if (IS_ERR(policy))
    683		return PTR_ERR(policy);
    684
    685	if (WARN_ON_ONCE(inode->i_mode == 0))
    686		return -EINVAL;
    687
    688	/*
    689	 * Only regular files, directories, and symlinks are encrypted.
    690	 * Special files like device nodes and named pipes aren't.
    691	 */
    692	if (!S_ISREG(inode->i_mode) &&
    693	    !S_ISDIR(inode->i_mode) &&
    694	    !S_ISLNK(inode->i_mode))
    695		return 0;
    696
    697	*encrypt_ret = true;
    698
    699	get_random_bytes(nonce, FSCRYPT_FILE_NONCE_SIZE);
    700	return fscrypt_setup_encryption_info(inode, policy, nonce,
    701					     IS_CASEFOLDED(dir) &&
    702					     S_ISDIR(inode->i_mode));
    703}
    704EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode);
    705
    706/**
    707 * fscrypt_put_encryption_info() - free most of an inode's fscrypt data
    708 * @inode: an inode being evicted
    709 *
    710 * Free the inode's fscrypt_info.  Filesystems must call this when the inode is
    711 * being evicted.  An RCU grace period need not have elapsed yet.
    712 */
    713void fscrypt_put_encryption_info(struct inode *inode)
    714{
    715	put_crypt_info(inode->i_crypt_info);
    716	inode->i_crypt_info = NULL;
    717}
    718EXPORT_SYMBOL(fscrypt_put_encryption_info);
    719
    720/**
    721 * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay
    722 * @inode: an inode being freed
    723 *
    724 * Free the inode's cached decrypted symlink target, if any.  Filesystems must
    725 * call this after an RCU grace period, just before they free the inode.
    726 */
    727void fscrypt_free_inode(struct inode *inode)
    728{
    729	if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) {
    730		kfree(inode->i_link);
    731		inode->i_link = NULL;
    732	}
    733}
    734EXPORT_SYMBOL(fscrypt_free_inode);
    735
    736/**
    737 * fscrypt_drop_inode() - check whether the inode's master key has been removed
    738 * @inode: an inode being considered for eviction
    739 *
    740 * Filesystems supporting fscrypt must call this from their ->drop_inode()
    741 * method so that encrypted inodes are evicted as soon as they're no longer in
    742 * use and their master key has been removed.
    743 *
    744 * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0
    745 */
    746int fscrypt_drop_inode(struct inode *inode)
    747{
    748	const struct fscrypt_info *ci = fscrypt_get_info(inode);
    749	const struct fscrypt_master_key *mk;
    750
    751	/*
    752	 * If ci is NULL, then the inode doesn't have an encryption key set up
    753	 * so it's irrelevant.  If ci_master_key is NULL, then the master key
    754	 * was provided via the legacy mechanism of the process-subscribed
    755	 * keyrings, so we don't know whether it's been removed or not.
    756	 */
    757	if (!ci || !ci->ci_master_key)
    758		return 0;
    759	mk = ci->ci_master_key->payload.data[0];
    760
    761	/*
    762	 * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes
    763	 * protected by the key were cleaned by sync_filesystem().  But if
    764	 * userspace is still using the files, inodes can be dirtied between
    765	 * then and now.  We mustn't lose any writes, so skip dirty inodes here.
    766	 */
    767	if (inode->i_state & I_DIRTY_ALL)
    768		return 0;
    769
    770	/*
    771	 * Note: since we aren't holding the key semaphore, the result here can
    772	 * immediately become outdated.  But there's no correctness problem with
    773	 * unnecessarily evicting.  Nor is there a correctness problem with not
    774	 * evicting while iput() is racing with the key being removed, since
    775	 * then the thread removing the key will either evict the inode itself
    776	 * or will correctly detect that it wasn't evicted due to the race.
    777	 */
    778	return !is_master_key_secret_present(&mk->mk_secret);
    779}
    780EXPORT_SYMBOL_GPL(fscrypt_drop_inode);